
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Lashchev, Andrei; Veselov, Gennady; Vyatkin, Valeriy
Towards Distributed Trajectory Interpolation and Motion Control

Published in:
Proceedings - 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation,
ETFA 2021

DOI:
10.1109/ETFA45728.2021.9613176

Published: 01/01/2021

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Lashchev, A., Veselov, G., & Vyatkin, V. (2021). Towards Distributed Trajectory Interpolation and Motion
Control: Prototyping with ROS. In Proceedings - 2021 26th IEEE International Conference on Emerging
Technologies and Factory Automation, ETFA 2021 IEEE. https://doi.org/10.1109/ETFA45728.2021.9613176

https://doi.org/10.1109/ETFA45728.2021.9613176
https://doi.org/10.1109/ETFA45728.2021.9613176


© 2021 IEEE. This is the author’s version of an article that has been published by IEEE. 
Personal use of this material is permitted. Permission from IEEE must be obtained for all other 
uses, in any current or future media, including reprinting/republishing this material for 
advertising or promotional purposes, creating new collective works, for resale or redistribution to 
servers or lists, or reuse of any copyrighted component of this work in other works.  



Towards Distributed Trajectory Interpolation and Motion Control:  
Prototyping with ROS  

Andrei Lashchev1, Gennady Veselov1, Valeriy Vyatkin2,3 

1Institute of Computer Technology and Information Security, Southern Federal University, Taganrog, Russia 

2Dept. of Computer Science, Electrical and Space Engineering, Luleå University of Technology, Luleå, Sweden 
3Dept. of Electrical Engineering and Automation, Aalto University, Espoo, Finland 

e-mails: lashhev-andrej@yandex.ru, gev@sfedu.ru, vyatkin@ieee.org  

Abstract—This article presents an approach for implementing 
distributed multi-agent control of a multi-axis manipulator 
using decentralised trajectory interpolation.  The approach is 
prototyped using communication architecture of the Robot 
Operating System (ROS) framework. Also, using the proposed 
approach, the simulation was performed in the Copella 
Simulator. The solution aims at enabling multi-axis machines 
with intelligent axes having embedded controllers, capable of 
following trajectories without central control system.  

Keywords— distributed multi-agent motion control, 
decentralised trajectory interpolation, ROS.  

I. INTRODUCTION  
The plug-and-produce concept [1] has been inspiring the 
automation world as enabler of manufacturing flexibility. 
When applied to manufacturing machines, it means the 
ability to quickly modify the machine by substituting certain 
mechatronic components with functionally equivalent ones, 
or even build a machine from a variety of available 
components and then make the machine running with 
minimum effort spent on configuration and programming. 
This implies the mechatronic components to be intelligent 
enough to allow for such a seamless and effortless 
integration.  

A typical example of a manufacturing machine, composed 
of intelligent mechatronic components, a multi-axis handling 
system of AFAG AG, is shown in Figure 1. Each of the axes 
is equipped with an embedded motion control system based 
on a microcontroller. However, it still requires a central 
control system to translate the trajectory of the required 
motion to the control tasks of each axis controller.  

 
Figure 1. Multi-axis handling system of AFAG [3]. 

In the ongoing H2020 project 1-SWARM, the ambition is 
to achieve the equivalent behaviour of such machines without 
the central controller, applying the multi-agent control 
architecture. This would drastically increase the plug and 
produce capabilities of machines. Moreover, the solution is 
sought in terms of the distributed automation architecture of 
the IEC 61499 standard to enable portability and 
interoperability. This paper reports on the initial steps and 
results achieved. The paper is structured as follows. In Section 
II the problem is formulated. In Section III the related works 

are briefly observed. Section IV presents briefly the 
mathematical foundations of the forward and reverse 
kinematics problem. Section V reviews relevant services of 
the Robotic Operating System (ROS), which was used as a 
convenient prototyping framework. Section VI discusses the 
developed multi-agent distributed control method and Section 
VII presents simulation results. The paper is concluded with 
discussion of the results.  

II. PROBLEM STATEMENT 
The task of distributed multi-agent manipulator control 
consists in synthesizing motion control for each axis along 
the specified trajectory, that is defined by a set of points in 
spatial coordinates. The problem is divided to the following 
tasks: 
1. Distribute control between the distributed control nodes 

to perform the trajectory task. 
2. Develop a communication scheme between the node 

controllers. 
3. Develop an algorithm for coordinated online adjustment 

of the local control actions. 

III. RELATED WORKS 
Multi-agent approach to the plug and produce 
implementation is proposed in [4]. 

A step towards decentralised motion control using the 
skills OPC-UA profile was investigated in [6], providing a 
standardised communication interoperability layer for plug 
and produce.  

The work [7]  proposes a kinematic model for a swarm of 
agents able to exhibit the formation of vortices around a given 
reference trajectory and to deal with uncertainty in the 
reference information. 

The paper [8] presents a modular and distributable 
approach for kinematic and dynamic control of serial 
handling systems using IEC 61499 and exemplified with a 
Scara robot. 

In [5] synchronization of distributed interpolation was 
proposed via cross-coupled control.  

IV. MATHEMATICAL FOUNDATIONS 

A. Forward kinematics problem 
The forward kinematics problem is formulated as a method, 
which uses the kinematic equations of a robot to compute the 
position of the end-effector from specified values for the joint 
parameters.[10]  

Let’s calculate transformation between a base coordinate 
system of a manipulator and coordinate system of the last link 
of a manipulator: 
 

 
1

cos sin cos sin sin cos
sin cos cos cos sin sin
0 sin cos
0 0 0 1

n n n n n n n

n n n n n n nn
n

n n n

a
a

M
d

q q a q a q
q q a q a q

a a-

-æ ö
ç ÷-ç ÷=
ç ÷
ç ÷
è ø



                  (1) 

where, R is 3×3 submatrix, which describes rotation 
movement, T is 3×1, submatrix, which describes translation 
movement, and N is number of joints [9][9].   is the 
resulting transformation matrix from the n-link coordinate 
system to the manipulator base coordinate system.  is 4×1 
vector, which represents the coordinates of the manipulator 
grip in the coordinate system of the n-th link. 

                  (2) 
where, 

 , , 

, 

and p is grip coordinates of the manipulator in the base 
coordinate system. 

B. Inverse kinematics problem 
The inverse kinematics problem (hereinafter referred to as IK) 
is the calculation of generalized coordinates for given linear 
and angular coordinates of the end effector of a manipulator. 
This problem is more complex than the direct kinematics 
problem, since it can lead to uncertainty of a solution (i.e., 
different configurations of a robot can correspond to the same 
position of end effector in space). 

The inverse kinematics problem can be approximated 
using heuristic methods. These methods perform simple, 
iterative operations to gradually lead to an approximation of 
the solution. The heuristic algorithms have low computational 
cost (return the final pose very quickly), and usually support 
joint constraints. The most popular heuristic algorithms 
are: Cyclic Coordinate Descent (CCD) and Forward And 
Backward Reaching Inverse Kinematics (FABRIK) and 
Levenberg–Marquardt algorithm. [2][12] 

The main task of this methods to solve the next equation: 

 

As applied to the IK of a manipulator, instead of , we 
substitute the coordinates of the target position of a gripper of 
the manipulator (1) into a basic coordinates system(BCS), 
and instead of  we can use expression (2). 

V. ROS AS A FRAMEWORK FOR PROTOTYPING  
ROS provides standard operating system services, such as: 
hardware abstraction, low-level device control, 
implementation of frequently used functions, message passing 
between processes, and package management. ROS is based 
on a graph architecture, where data processing takes place in 
nodes that can exchange messages among themselves. 

ROS has many user-supported packages (organized into 
sets called stacks) that implement various robotics functions: 
SLAM, scheduling, getting data from sensors, modelling, etc. 

The most relevant ROS capabilities are: 
1) It has a set of tools for dividing the code into different 

modules and managing their builds and dependencies for 
individual development. 

2) This framework has a central repository of common 
parameters and files for all system components, available for 
all components (there is no need to implement a custom 
configuration file for parameters). 

3) Communication between system agents (nodes) is 
carried out using a simple abstract solution. ROS has a built-
in system of so-called topics that help to exchange data 
between nodes. 

4) It provides a seamless communication between 
different machines connected to a common Ethernet 
network.[11] 

All these characteristics of the ROS framework make it 
suitable for use as a communication framework in a 
distributed control architecture. 

VI. PROPOSED MULTI-AGENT CONTROL 
Figure 2 shows architecture diagram of the proposed 
implementation of a distributed multi-agent control system. 

 
Figure 2. Functional diagram of the architecture of a distributed 
multi-agent control system. 

All individual components of the system (nodes) 
exchange data using the ROS communication protocols. The 
manipulator has three links (J1-J3), each of which has an 
independent controller to control the drive.  

Based on the current position of the manipulator grip, the 
trajectory generating unit sets a set of points in the base 
coordinate system and time stamps of arrival at each point of 
the trajectory, which forms the target trajectory of movement 
for the manipulator gripping. After receiving the "Ready" 
signal from the controllers, the trajectory generation unit 
sends this data to the inverse kinematics (IK) nodes of each 
link to recalculate the coordinates of the trajectory points 
from the base coordinate system to the generalized coordinate 
systems of each link (formula (4)). The algorithm is presented 
in flow-chart in Figure 3.  

Then, after recalculating the coordinates, each controller 
polls the states of other controllers, and if all controllers send 
a "Ready signal" i.e. they are ready to send a command to 
their PID controllers. (PID) 

This command is a ROS-action “FollowJointTrajectory“ 
[13] that contains target point, speed and acceleration data. 
This way the controllers are synchronized from one point to 
another. 

1 1 0 0
0 0 0 0 1...

0 0 0 1 g

n n
n n
g n g

R T
r M r M M M r r-

æ ö
= = = ç ÷

è ø

1
n
nM -

gr

( ) ( ) ( )( )0 0 01 2 3g g gp T T T j q y=

2,3

1,3

arctan
R
R

j
æ ö

= ç ÷ç ÷
è ø

1,3 2,3

3,3

cos sin
arctan

R R
R
j j

q
æ ö+

= ç ÷ç ÷
è ø

3,2

3,1

arctan
R
R

y
æ ö

= ç ÷ç ÷-è ø

( ) ( )
1

ˆ argmin argmin ,
N

i i
i

S y f xb bb b b
=

Î º -é ùë ûå

iy

( ),if x b

J1

J2 J3 PID

PID

PID

IKIKIK

Trajectory 
generator

Target points in BCSTarget points in BCS

Target points in BCS

Control
signal

Control
signal

Control
signal

Control 
feedback

Result 
signal

Result 
signal

Result 
signal

Control 
feedback

Control 
feedback

Current coordinates in BCS

Target joint 
point

Target joint 
point

Target joint 
point



Using functions from the API of the Coppella Simulator 
[14] simGetJointPosition(), simGetObjectFloatParameter 
(m_vrepJointsHandle, 2012, & vel), simGetJointForce(), 
PID regulators receive data on the current position, speed, 
moment of inertia of their link, respectively. And the drives 
are controlled are using the simSetJointPosition(), 
simSetJointTargetVelocity() and simSetJointForce() 
functions.  

After the PID controllers bring their link to the target 
coordinate, a signal is sent back to the inverse kinematics 
node. Then the nodes of inverse kinematics are synchronized 
again and send the parameters of the next point of the 
trajectory to the regulators and the regulators again bring 
their link to the desired coordinate.  
 

 
Figure 3. Block diagram of the proposed algorithm for a distributed 
multi-agent control system. 

VII. SIMULATION RESULTS 
According to distributed multi-agent manipulator control 
approach described in the section IV testing set was 
developed. All testing set components were run on the host 
computer as individual programs, using the communication 
architecture of a distributed multi-agent control system 
shown in Figure 2. 

To test the proposed approach, the model of the three-link 
manipulator shown in Figure 4 was used.   

To solve the direct and inverse problems of kinematics 
using the Denavit-Hartenberg method, a kinematic chain was 
created, as shown in Figure 5. 

For each link of the manipulator model shown in Figure 
4 the Denavit-Hartenberg parameters were calculated and 
presented in Table 1. 

 

Figure 4. The model of a three-link manipulator in Coppella Sim. 

 

 
Figure 5. A kinematic chain for the manipulator model shown in 

Figure . 

TABLE I.  DENAVIT–HARTENBERG PARAMETERS 

Link 
number 

Denavit–Hartenberg parameters 
d, m a, m 𝜽, rad 𝜶, rad 

1 0.2469 + 𝑞 ! 0.0 𝜋 -𝜋 2⁄  

2 0.5052 + 𝑞 " 0.0 -𝜋 2⁄  𝜋 2⁄  

3 𝑞 # 0.35 0.0 0.0 

 
Target and actual joint positions and the error between 

target and actual joint positions of the first link are presented 
in Figures 6 and 7 respectively. According to the results the 
error between target and actual joint positions less than 8 
millimeters. 
 

 
Figure 6. Target and actual joint positions of the first link. 

 

begin

Global position points of a 
target trajectory

Are all controllers ready?

No

Perform inverse 
kinematics 

calculations for Joint3

Is the controllers ready?

Is the point reached?

Is the trajectory 
complete?

end

Send control 
signal

Perform inverse 
kinematics 

calculations for Joint2

Is the controllers ready?

Is the point reached?

Is the trajectory 
complete?

Send control 
signal

Perform inverse 
kinematics 

calculations for Joint1

Is the controllers ready?

Is the point reached?

Is the trajectory 
complete?

Send control 
signal

Yes Yes Yes

NoNoNo

NoNo No

Yes Yes

Yes Yes Yes

Yes

NoNo No



 

Figure 7. The error between target and actual joint positions of the 
first link. 

For the second link, the error between target and actual joint 
positions less than 12 millimeters. 

The error between target and actual joint positions of the 
third link are presented on Figure 8. According to the results 
the error between target and actual joint positions about 6 
millimeters. 

 

Figure 8. An error between target and actual joint positions of the 
third link. 

The target trajectory of the manipulator's gripper and the 
trajectory obtained as the result of the simulation are shown 
in Figure 9. 

According to the data obtained from the results of the 
simulation, the proposed approach to distributed multi-agent 
motion control of the manipulator provides high accuracy in 
performing the trajectory task. 
 

 

Figure 9.Target and actual trajectories of the manipulator gripper. 

VIII. CONCLUSIONS 
An approach to distributed multi-agent control with 
decentralised trajectory interpolation is presented and 
prototyped using ROS. The choice of the ROS framework 
was justified, an architecture diagram and an algorithm for 
implementing the problem of distributed multi-agent control 
were developed. Based on the proposed approach to the 
implementation of the distributed multi-agent control 
problem, simulation was carried out using the Coppella 
Simulator and the simulation results are presented. 

Future work will include prototyping and testing of the 
solution using a distributed network of devices, migration to 
IEC 61499 architecture and optimization of performance. 

IX. ACKNOWLEDGEMENTS 
This  work  was  supported,  in  part,  by  the  H2020  project 
1-SWARM  co-funded  by  the  European  Commission  
(grant agreement:  871743). 

REFERENCES 
[1] Arai, T., Aiyama, Y., Maeda, Y., Sugi, M. and Ota, J., 2000. Agile 

assembly system by “plug and produce”. CIRP annals, 49(1), pp.1-4. 
[2] Aristidou A., Lasenby J., Y. Chrysanthou, A. Shamir. Inverse 

Kinematics Techniques in Computer Graphics: A Survey. Computer 
Graphics Forum, 37(6): 35-58, 2018. 

[3] Electric handling system EPS Mini XYZ, AFAG AG, Online: 
https://www.afag.com/en/products/detail/eps-mini-xyz-1.html 

[4] Rocha, A.D., Peres, R.S., Flores, L. and Barata, J., 2015, December. A 
multiagent based knowledge extraction framework to support plug and 
produce capabilities in manufacturing monitoring systems. In 2015 10th 
International Symposium on Mechatronics and its Applications 
(ISMA) (pp. 1-5). IEEE. 

[5] Dripke, C., Ye, Z. and Verl, A., 2019, June. Synchronization of a 
distributed interpolation application via cross-coupled control. In 2019 
IEEE International Conference on Engineering, Technology and 
Innovation (ICE/ITMC) (pp. 1-8). IEEE. 

[6] Beller, M., Schneider, B. and Zoitl, A., 2019, February. Skill-Based 
Motion Control with OPC UA and Deterministic Ethernet. 
In International Conference on Computer Aided Systems Theory (pp. 
461-468). Springer, Cham. 

[7] D’Alfonso, L., Bono, A. and Filice, A., 2020, September. A kinematic 
swarm model for vortex-like behavior around an uncertain target. 
In 2020 25th IEEE International Conference on Emerging Technologies 
and Factory Automation (ETFA) (Vol. 1, pp. 435-440). IEEE. 

[8] Steinegger, M., Plaschka, N., Melik-Merkumians, M. and Schitter, G., 
2016, March. A framework for modular and distributable control of 
reconfigurable robotic systems. In 2016 IEEE International Conference 
on Industrial Technology (ICIT) (pp. 848-853). IEEE. 

[9] Denavit J., Hartenberg R. S., 1955, A kinematic notation for lower-pair 
mechanisms based on matrices. Trans ASME J. Appl. Mech. 23: pp. 
215–221. 

[10] Paul R.,  1981.  Robot manipulators: mathematics, programming, and 
control : the computer control of robot manipulators. MIT Press, 
Cambridge, Massachusetts, ISBN 978-0-262-16082-7. 

[11] Smart W. D., Gerkey B., Quigley M.. Programming Robots with 
ROS. O'Reilly Media, Inc., 2015, pp. 3-5.  

[12] McCarthy J. M., 1990, Introduction to Theoretical Kinematics, MIT 
Press, Cambridge, MA. 

[13] ROS: control_msgs Msg/Srv Documentation. Available at: 
http://docs.ros.org/en/api/control_msgs/html/index-msg.html (accessed 
6 June 2021). 

[14] Coppella Sim User Manual . Available at: 
https://www.coppeliarobotics.com/helpFiles/index.html (accessed 6 
June 2021). 

 


