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Data-Driven Capacity Planning for
Vehicular Fog Computing

Wencan Mao, Ozgur Umut Akgul, Abbas Mehrabi, Byungjin Cho, Yu Xiao, and Antti Ylä-Jääski

Abstract—The strict latency constraints of emerging vehicular
applications make it unfeasible to forward sensing data from
vehicles to the cloud for processing. To shorten network latency,
vehicular fog computing (VFC) moves computation to the edge
of the Internet, with the extension to support the mobility of
distributed computing entities (a.k.a fog nodes). In other words,
VFC proposes to complement stationary fog nodes co-located
with cellular base stations with mobile ones carried by moving
vehicles (e.g., buses). Previous works on VFC mainly focus on
optimizing the assignments of computing tasks among available
fog nodes. However, capacity planning, which decides where and
how much computing resources to deploy, remains an open and
challenging issue. The complexity of this problem results from
the spatio-temporal dynamics of vehicular traffic, varying com-
puting resource demand generated by vehicular applications,
and the mobility of fog nodes. To solve the above challenges,
we propose a data-driven capacity planning framework that
optimizes the deployment of stationary and mobile fog nodes
to minimize the installation and operational costs under the
quality-of-service constraints, taking into account the spatio-
temporal variation in both demand and supply. Using real-
world traffic data and application profiles, we analyze the cost
efficiency potential of VFC in the long term. We also evaluate
the impacts of traffic patterns on the capacity plans and the
potential cost savings. We find that high traffic density and
significant hourly variation would lead to dense deployment of
mobile fog nodes and create more savings in operational costs
in the long term.

Index Terms—Capacity planning, vehicular fog computing
(VFC), spatio-temporal analysis, application profiling, integer
linear programming (ILP), techno-economic analysis.

I. INTRODUCTION

CLOUD computing has long been the dominant solu-
tion for handling the big data generated from various

sources [1]. However, the traditional cloud strategies are
not feasible for the emerging vehicular applications with
strict latency constraints, such as cooperative intersection
crossing [2] and lane change scheduling [3] for autonomous
vehicles. Fog computing, as a promising alternative, moves
computation resources to the edge of the network [4] and
reduces network latency due to its close proximity to the
end-users and dense geographical distribution [5].

In the fog computing scenarios, distributed fog comput-
ing entities, often called fog nodes (FNs), can be installed
in network infrastructures such as cellular base stations
(BSs) and road side units (RSUs). We call these cellular
fog nodes (CFNs). This stationary deployment of fog nodes
often forces service providers to over-provision the re-
sources to ensure the quality-of-service (QoS) requirements
and turn the service provisioning into a non-profitable
business model. Motivated by this techno-economic pres-
sure, vehicular fog computing (VFC) has been proposed to

complement stationary fog nodes with mobile ones, which
are carried by vehicles, such as buses, taxis, and drones.
We call them vehicular fog nodes (VFNs). VFNs provide
computing services to the surrounding vehicles within the
range of single-hop V2X communications. With the mobility
of VFNs, it becomes possible to satisfy the dynamic resource
demand in a more cost-efficient manner [6].

Previous works on VFC have mainly focused on the
task assignment problem among available fog nodes using
various methods, including reinforcement learning and par-
ticle swarm optimization. For example, a joint optimization
solution was developed in [7] to assign the tasks generated
from vehicles across the stationary and mobile fog nodes
under the constraints of service latency, quality loss, and fog
capacity. Unlike the task allocation problem, capacity plan-
ning focuses on determining the locations and capacities
of fog nodes. A capacity planning framework was proposed
in [8] to satisfy the QoS requirements while minimizing the
number of required fog nodes. However, this framework
considers only stationary deployment of fog nodes and
therefore cannot be applied to VFC.

Despite the increasing focus on the VFC capacity plan-
ning problem, it is still a challenging issue. First, vehicular
traffic has high spatio-temporal diversity, where the traffic
flow depends on the time of day and the geographic
location [9]. The capacity planning for VFC requires a deep
understanding of the spatio-temporal dynamics of vehicular
traffic. Second, to estimate the computing resource de-
mand, it is necessary to consider the resource consumption
pattern of various vehicular applications. Finally, VFNs
are supposed to serve the vehicles within the one-hop
communication range. The mobility of VFNs adds a layer
of complexity to the analysis of service availability and cost
estimation.

In this paper, we propose a data-driven capacity planning
framework that takes real-world traffic data and application
profiles as inputs and outputs a cost-optimal deployment
plan of CFNs and VFNs using a heuristic algorithm and in-
teger linear programming (ILP). Our framework determines
the number and types of fog nodes needed in different
regions to satisfy the computing resource demand and
plans the trajectory and timetables of VFNs based on real-
world bus schedules. The contributions of this work are as
follows.

1) To the best of our knowledge, this is the first work on
data-driven capacity planning for VFC, taking into account
the spatio-temporal distribution of computing resource
demand and supply. It provides a mathematical model for
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minimizing the installation and operational costs under
QoS constraints of emerging vehicular applications.

2) Through evaluation with real-world datasets, we show
the potential of complementing CFNs with VFNs to fulfill
the dynamic computing resource demand with lower costs.
Our evaluation also indicates that the deployment of VFNs
would increase the service rate by up to 9.3% compared to
the scenario where only CFNs are used.

3) Our study provides deep insights on the impacts of
traffic patterns on the fog node deployment strategies:
we compare the deployment plan and the potential cost
savings between areas with different traffic characteristics
(e.g., a downtown area with dense traffic flows vs. a suburb
area with low traffic volume), and between weekdays and
weekends. We discuss the uncertainty in the demand and
the ways to handle it.

This paper is organized as follows. Section II presents
the related works. Section III overviews VFC. Section IV
introduces the data-driven methodology of the capacity
planning platform for VFC. Section V presents methods
for estimating computing resource demand based on real-
world traffic data and application profiles. Section VI for-
mulates the optimization problem for capacity planning.
After introducing the experimental setup in Section VII, the
functionality evaluation and results analysis are discussed
in Section VIII and Section IX, respectively. Section X
presents the discussion before we conclude the work in
Section XI.

II. RELATED WORK

In this section, we compare our work with the state-of-
the-art methods in spatio-temporal analysis, task allocation,
and capacity planning.

A. Spatio-temporal Analysis

Previous researches on spatio-temporal analysis mainly
focused on finding the spatio-temporal patterns (i.e., traffic
status, interaction among road segments, and changing
trends) of the vehicular traffic. For example, Zhang et al.
[10] employed the dictionary-based compression theory to
detect the anomaly behavior in road networks by analyzing
the multi-dimensional traffic data. Zhang et al. [11] pro-
posed a multi-agent system to examine the spatio-temporal
characteristics of the traffic data and the cooperation and
workflow among the road segments. Our work not only
analyzes the spatio-temporal patterns but also uses the
regression-based methods and traffic flow theory to model
the vehicular traffic.

B. Task Allocation

Previous works used both classic methods (e.g., greedy
algorithm) and new methods (e.g., reinforcement learning)
for task allocation in the edge/fog computing environment.
Sahni et al. [12] proposed a data-aware multi-stage greedy
adjustment algorithm to schedule tasks and network flows
together to achieve low latency. Gu et al. [13] designed a dis-
tributed and context-aware task assignment mechanism to

reduce overall energy consumption while satisfying the het-
erogeneous delay requirements. Wang et al. [14] presented
a latency-aware heterogeneous mobile edge computing sys-
tem, where the data is offloaded to the cloud center if the
edge cannot process it on time. Mai et al. [15] developed a
reinforcement learning approach that utilizes the evolution
strategies for real-time task assignment among fog nodes to
minimize the total latency during a long-term period. These
works have focused on assigning the tasks to the stationary
fog nodes without considering the mobility of vehicles.

Recently, new methods, such as particle swarm opti-
mization and reinforcement learning, have been used for
task allocation in VFC, taking the mobility of vehicles into
account. Zhu et al. [7] designed a dynamic task allocation
framework where binary particle swarm optimization was
used to jointly optimize the quality and latency. Hou et
al. [23] proposed a software-defined networking and edge
computing-aided internet of vehicle framework, where they
use fault-tolerant particle swarm optimization for the par-
tial computation offloading and reliable task allocation.
Zhou et al. [24] presented a two-stage VFC framework with
a contract theory-based vehicular computational resource
management mechanism and a matching-learning based
task offloading mechanism. Zhu et al. [25] proposed a
latency and resolution aware task offloading framework
based on a partially observable Markov decision process.
They further proposed a deep Q-network to learn the op-
timized task allocation strategies for increasing the quality
of information (QoI) of collected data while reducing the
processing latency [26]. Apart from above, a deep rein-
forcement learning-based algorithm was designed in [27]
for maximizing both the expected reward and the entropy
of policy, while simultaneously evaluating the service avail-
ability of VFNs. A vehicular sensing networks-aided smart
city model was proposed in [28] with an information source
selection algorithm and a reinforcement learning-based city
information sharing mechanism.

Although task allocation and capacity planning are usu-
ally coupled together for managing the computing re-
sources in VFC, they focus on different targets. The methods
above focused on how to assign the tasks to the available
fog nodes, whereas our work focuses on where to deploy the
fog nodes and how much computing capacity is required
to meet the demand.

C. Capacity Planning

The capacity planning in the edge/fog computing envi-
ronment is generally formulated as an optimization prob-
lem with different objectives, inputs, outputs, and con-
straints. Table I presents a comparison between our work
and the state-of-the-art capacity planning methods. Due to
space limitations, we have not detailed the inputs, but they
can be referred to in the works listed in the table.

One way to model and solve the capacity planning prob-
lem is to use classical methods (e.g., Knapsack algorithm).
For example, Noreikis et al. [8] established a knapsack-
based capacity planning model for edge computing aim-
ing to satisfy the QoS requirements while minimizing the
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TABLE I: Comparison of our work with other capacity planning methods.

Work Method Objective Outputs Constraints
User

Mobility
Resource
Mobility

[16] Heuristic algorithm Minimize latency A feasible set of FNs
Communication, processing

data, computing tasks
No No

[17]
Weighted sum method,
evolutionary algorithms

Minimize latency
and costs

Location, number,
capacity of FNs

Source, openness, fog type, link
type, fog capacity, link capacity

No No

[18]
Weighted sum method,
hierarchical, trade-off

Minimize latency
and cloud traffic

Location, number,
capacity of FNs

Node capacity, network capacity,
cloud network capacity, costs

No No

[19]
Mixed integer linear

programming
Minimize costs

Routing strategy among
BSs and data centers

Probabilistic delay
guarantees

No No

[8] Knapsack algorithm
Improve edge

utilization
Combinations of

resource demands
Latency, resource

consumption
No No

[20] Queuing model
Minimize the

number of FNs
Number of FNs

Latency, resource
consumption

No No

[21]
Integer linear
programming

Minimize latency
and energy

Location, number,
capacity of FNs

Node capacity, network capacity,
link type, cloud network capacity

Yes No

[22]
Mixed integer linear

programming
Minimize costs

Location, number,
power of RSUs

Network coverage,
computational demand

Yes No

Ours
Heuristic, integer linear

programming
Minimize costs

Location, number of FNs,
and schedules of VFNs

Latency, resource consumption,
capacity, availability

Yes Yes

number of required fog nodes. They further employed the
queuing theory for the capacity planning for the real-
time computing-intensive applications [20]. However, these
methods cannot be applied directly to VFC, because they
did not consider the mobility of the vehicles, including the
ones generating computing demand and the ones carrying
the computing resources.

Alternatively, we can use heuristics for capacity planning.
For example, Chiu et al. [16] utilized a heuristic algorithm
to simultaneously decide the number of fog nodes with
proper communication resource allocation and computing
task assignment. Zhang et al. [17] presented a framework
that employed weighted sum and evolutionary algorithms
to optimize the trade-off between the capital expenditure
and the network delay. Haider et al. [18] used weighted
sum, hierarchical, and trade-off methods to simultaneously
determine the optimal location, capacity, and the number
of fog nodes, as well as the connection between the fog
nodes and the cloud to minimize the delay in the network
and the traffic to the cloud. Despite providing a fast result,
the heuristic solutions are usually sub-optimal.

Another solution for capacity planning is to use ILP
or mixed-integer linear programming (MILP). For exam-
ple, Stypsanelli et al. [19] proposed an optimal capacity
planning solution for fog computing infrastructures un-
der probabilistic delay guarantees aiming to save energy
and operations costs. Hussain et al. [21] aimed to find
the optimal location and capacity of fog nodes towards
minimizing overall network delay and energy consumption.
Premsankar et al. [22] aimed to minimize the deployment
cost of edge devices by jointly satisfying a target level of
network coverage and computational demand of vehicular
applications in smart cities. By using ILP or MILP, we can
guarantee the optimal solution. However, the execution
time can be lengthy, especially when the computational
complexity is high.

As summarized in Table I, we utilize both a heuristic
algorithm and ILP for the capacity planning for VFC. We
use a heuristic to rapidly estimate the upper bound of the

computing demand generated by the vehicular applications,
and we use ILP to obtain the optimal deployment decisions
of CFNs and VFNs. Moreover, our solution differs from
previous works by supporting the mobility of fog nodes and
utilizing it to maximize cost-efficiency. The outputs of our
algorithm include not only the locations and capacities of
CFNs but also the schedules and capacities of VFNs.

III. VEHICULAR FOG COMPUTING

In this section, we present an overview of the VFC
paradigm. First, we demonstrate an application scenario
of VFC. Then, we introduce the vehicular communication
technologies to support the implementation of VFC.

A. VFC Application Scenario

Fig. 1 presents an application scenario of VFC. In this
scenario, Vehicle A generates an object detection task to
recognize the traffic signs. It is within the communication
range of a bus that carries a VFN. Thus, Vehicle A offloads
the task to the bus. Meanwhile, Vehicle B generates a lane
detection task, which is offloaded to a CFN co-located with
the connected cellular base station.

In case more than one fog node is available within the
vehicle’s communication range, the vehicle uses task alloca-
tion algorithms to decide where to offload the tasks. Capac-
ity planning, on the other hand, focuses on planning where
to deploy the fog nodes and how much computing capacity
should be deployed to fulfill estimated computing resource
demand with better techno-economic performance. In this
paper, we focus on capacity planning for VFC. We employ
CFNs for fulfilling the constant demand while utilizing VFNs
to meet the spatial-temporal varying demand from the
vehicular traffic environment.

B. Vehicular Communication Technology

Dedicated short range communications (DSRC) and cel-
lular V2X (C-V2X) are the most widely used radio access
technologies for vehicular communication. DSRC uses an
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Fig. 1: An application Scenario of VFC, where Vehicle A offloads
its task to a VFN carried by a bus and Vehicle B offloads its task
to a CFN co-located with a cellular base station.

orthogonal frequency division multiplexing-based physical
layer with a channel bandwidth of 10 MHz [29]. C-V2X
uses the widely distributed cellular infrastructure and de-
fines additional transmission modes that allow direct V2X
communication using side-link channels [29]. According to
[30], DSRC and C-V2X can support basic safety applications
(e.g., advertising driving alerts periodically) as long as the
vehicular density is not intense. The latency requirements
for these applications are 100 ms [29].

Moreover, IEEE 802.11bd and 5G NR V2X are designed to
support the vehicular applications characterized by high-
reliability and low-latency requirements [29]. These ap-
plications, so-called advanced vehicular applications, aim
to increase driving safety and benefit traffic management.
3GPP has divided these applications into four categories:
vehicle platooning, advanced driving, extended sensor, and
remote driving. Their latency requirements are 10-500 ms,
3-100 ms, 3-100 ms, and 5 ms, respectively [31].

In this work, we consider 5G NR V2X as the communi-
cation module among the vehicles, which enables vehic-
ular communications either within or out of the gNodeB
coverage and supports multiple communication types (i.e.,
broadcast, groupcast, and unicast) and message types (i.e.,
periodic and aperiodic). A system-level evaluation of the
5G NR V2X is provided by [32] using a 60-kHz sub-carrier
spacing, a 20-MHz channel, and a 10-Hz transmission rate.
Under highway scenarios, the packet delivery rate (PDR) is
between 99.7% and 99.8%; under urban scenarios, the PDR
varies from 93% to 97% [32]. Consequently, 5G NR V2X can
provide high-reliable vehicular communication for VFC.

IV. DATA-DRIVEN CAPACITY PLANNING

We follow a data-driven methodology to plan for the
deployment solutions of CFNs and VFNs. Fig. 2 presents
an overview of the data-driven capacity planning process.
We implement the capacity planning model in three steps:
demand estimation, cost minimization, and bus scheduling.
In this model, we use three types of data as the inputs. The
vehicular traffic data and application profiles are used for

Fig. 2: Flowchart of data-driven capacity planning.

demand estimation, and the bus mobility data are used for
cost minimization and bus scheduling.

We first estimate the computing resource demand gen-
erated by the vehicles, which depends on the spatio-
temporal distribution of vehicular traffic and the resource
consumption profiles of vehicular applications. The latter
describes the usage pattern of central processing unit
(CPU) and graphics processing unit (GPU) resources for
each application. Based on real-world traffic datasets, we
apply spatio-temporal analysis methods, such as clustering,
traffic flow theory, and Gaussian process regression, to
model traffic flows. Meanwhile, we choose a set of rep-
resentative vehicular applications as examples and profile
their resource usages under different latency constraints.
The output of the demand estimation module defines the
minimum amount of computing capacity (in terms of the
number of fog nodes with fixed unit size) required in each
cluster to meet the QoS requirements.

Our second step is to determine a cost-optimal de-
ployment plan based on the estimated demand and the
potential supply. We assume that VFNs would be installed
on commercial fleets such as buses, due to their predictable
mobility patterns (e.g. schedules and driving routes). Ac-
cordingly, the supply of VFNs depends on the mobility
pattern of buses, while the supply of CFNs depends on
the deployment of cellular base stations. Based on real-
world bus schedules, we divide a target area into clusters
and map bus journeys using a spatio-temporal availability
matrix. Here a bus journey defines the driving route as well
as the time of day when the trip starts. The same journeys
are typically repeated on a daily basis during weekdays, and
on a weekly basis during weekends. The same bus journeys
may be served by different buses on different days.

Our cost minimization module produces the deployment
plan of CFNs, the selection of bus journeys, and the mini-
mized operational cost. In this module, we assume that all
the busses carry VFNs in the study area. However, this may
cause an oversupply of VFNs. Our final step is to run the bus
scheduling module to identify a minimal subset of buses to
cover the selected bus journeys for VFN deployment. The
bus journeys that belong to the same bus line and have
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(a) The road network of our study
area, where each red line represents
a road segment, and each blue dot
represents a road intersection.

(b) Clusters of road segments using
k-means, colours are used to distin-
guish clusters.

(c) Traffic density versus normalized
speed based on traffic flow theory.

(d) An example of traffic flow versus
time of day during the weekdays.

Fig. 3: Process of spatio-temporal traffic modeling.

sufficient turnaround time are chained together to ensure
the same bus can cover different trips. Therefore, we can
minimize the installation cost of VFNs.

V. DEMAND ESTIMATION

In this section, we introduce our demand estimation ap-
proach. We first establish the spatio-temporal traffic model
to understand how vehicular traffic varies over time and
among locations. Additionally, we illustrate the application
profiling process to determine the consumption pattern of
the vehicular applications. Finally, with these inputs, we
formulate the demand estimation problem.

A. Spatial-temporal Traffic Modeling

Fig. 3 shows the process of spatio-temporal traffic model-
ing. We use k-means clustering to group the road segments
into clusters based on the road network. Two types of traffic
datasets are used to derive the traffic density according to
traffic flow theory [33]. Finally, we model the daily traffic
flow as a distribution of time of day using Gaussian process
regression.

1) Road Network: We use a graph G = (V ,E) to show
a road network, where each vertex V represents a road
segment, and each edge E indicates a road intersection. The
road segment is the basic unit of the road network, and the
road intersections represent the topological relationship of
the road segments.

2) Road Segment Clustering: We group the road segments
into clusters based on their geographical relationship, and
the traffic flow is accumulated in each cluster to estimate
the demand. At each time slot, the CFNs and VFNs will
serve the client vehicles within the same cluster. We use k-
means for clustering the road segments, and there should
be at least one base station inside each cluster.

3) Traffic Density Derivation: According to the traffic flow
theory, the basic variables of traffic flow are the average
speed, flow rate, and traffic density. If we know any two
of these variables, we can derive the remaining one [33].
There are usually two types of traffic datasets. One type is
the speed dataset, which samples the average speed of the
vehicles on each road segment at each time slot. The other
type is the flow rate dataset, which records the number of
vehicles that pass through a site (e.g., a traffic monitoring
station) during a time interval. We calculate the traffic
density of each road lane by dividing the flow rate from the
latter dataset by the average speed in the former dataset.
Then we apply piece-wise regression to get the relationship
between the traffic density and the normalized speed (i.e.,
the ratio of average speed and the speed limit). With this
relationship, we can estimate the traffic density of all the
road lanes in the city based on their normalized speed.
We then calculate the spatio-temporal traffic flow (i.e., the
number of vehicles on each road segment at each time slot)
by multiplying the traffic density with the number of lanes
and the length of the road segment.

4) Traffic Flow Modeling: We use Gaussian process re-
gression to model the daily traffic flow in terms of vehicles
per cluster, with the predicted mean and variance functions.
Assume the mean function and variance function in a
cluster have the value X̄ and σ̂ at a certain time. To get the
upper bound of the confidence interval, we use X̄ +β×σ̂ to
denote the spatio-temporal traffic flow, where β represents
the coefficient of the variance in the confidence interval.
The traffic flow is modeled separately during weekdays and
weekends due to different time of day patterns.

B. Vehicular Application Profiling

Apart from the vehicular traffic, the demand of the fog
computing system also depends on the resource consump-
tion of the vehicular applications, which is reflected in the
CPU and GPU consumption [8]. The vehicular applications
are containerized into Docker [34] Images, and we design
a set of benchmark testing for each containerized appli-
cation. Algorithm 1 presents our application benchmark
testing algorithm. After getting the vehicular application
profiles, nonlinear least-squares regression is used to map
the mathematical relationship among the CPU usage, the
GPU usage, and the latency. Then we find the CPU and GPU
consumption under different latency requirements based
on the mathematical relationship.

C. Formulation of Demand Estimation

The demand estimation problem aims to find the mini-
mum amount of computing capacity required in each clus-
ter at each time slot to meet the computing tasks generated
by the users of vehicular applications. The computing ca-
pacity is represented as the number of fog nodes with fixed
unit size. I represents the set of computing tasks. Assume
each user will keep one active computing task at each time
slot, then the number of the computing task is equal to the
number of users. This is denoted as |I | = n, where n is the
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Algorithm 1: Application benchmark testing algo-
rithm

Input: computing latency requirement rcompute

Output: mean of frame latency µcompute , standard
deviation of frame latency σcompute , mean
of CPU usage µcpu , mean of GPU usage
µg pu

i = 1;
while µcompute ≤ rcompute do

start the docker service of i replicas of
application;

while service is running do
record the frame latency;
record the CPU and GPU usage per second;

end
calculate µcompute , σcompute , µcpu , µg pu ;
i = i +1;

end

number of users, and |.| represents the cardinality of the set.
The CPU and GPU consumption of each computing task
p is represented by c(p) and g (p), respectively. The CPU
and GPU consumption depend on the vehicular application
type and the latency requirement. We assume the latency
requirement is universal for the users at each time. We also
need to know the maximum capacity of the CPU and GPU
according to the configurations of the fog nodes, which
are given by BCPU and BGPU, respectively. In this work, we
assume that all the fog nodes have the same CPU and GPU
configurations.

The demand estimation problem is given in (1a) to (1e).
Our objective function is (1a), where ⌈.⌉ represents the
ceiling function. The object function reflects that a fog node
is needed if at least one computing task is assigned to it,
and the function minimizes the required number of fog
nodes to serve all the computing tasks generated from the
users. Constraints (1b) and (1c) are the CPU configuration
constraint and GPU configuration constraint, respectively,
which prevent the computing tasks assigned to each fog
node from exceeding the CPU and GPU configuration of the
fog node. Constraint (1d) is the non-repetitive assignment
constraint ensuring that each computing task is not as-
signed to multiple fog nodes. Finally, constraint (1e) defines
the binary decision variable xpq , which indicates if the task
p is assigned to the fog node q .

Since the objective of the above problem is to determine
the minimum number of fog nodes, the problem can
be solved in polynomial time using a heuristic algorithm
formulated as follows. We start by picking a random fog
node and assigning the tasks to it until it is full. We repeat
this process of selecting random fog nodes and assigning
tasks until we have allocated all the tasks or all the fog
nodes are full.

min
xpq

n∑
q=1

⌈
∑

p∈I xpq

n
⌉ (1a)

s.t.
∑
p∈I

c(p)xpq ≤ BCPU,∀q ∈ (1,2, ...,n), (1b)∑
p∈I

g (p)xpq ≤ BGPU,∀q ∈ (1,2, ...,n), (1c)

n∑
q=1

xpq = 1,∀p ∈ I , (1d)

xpq ∈ (0,1),∀p ∈ I ,∀q ∈ (1,2, ...,n). (1e)

VI. COST-OPTIMAL FOG NODES DEPLOYMENT

This section focuses on how to deploy CFNs and VFNs to
fulfill the estimated computing resource demand generated
from the vehicular applications. Different from CFNs which
are located at stationary cellular base stations, the locations
of VFNs depend on the schedules and driving routes of
the carriers, which are buses in this case. Therefore, we
start by estimating the availability of VFNs based on the
mobility pattern of buses in Section VI-A. Then, we move to
the problem of minimizing the operational and installation
costs through the optimal distribution of computing capac-
ity on the cellular base stations and buses. In Section VI-B,
we present the algorithm for selecting the bus journeys
to be served by buses carrying VFNs, with the aim of
minimizing the overall costs. Instead of installing VFNs on
all buses, Section VI-C focuses on scheduling the routes of a
subset of buses to cover the bus journeys selected in Section
VI-B, in order to further minimize the installation costs. Fig.
4 outlines the architecture of the capacity planning model.

A. Bus Mobility Pattern

We describe a bus journey m with the bus line lm ,
direction rm , departure time d pm , and the one-way travel
time trm . The bus line and direction together determine
the driving route of the bus journey. During a journey, a
bus may go through several road segment clusters.

1) Spatio-temporal Availability Matrix: To model the mo-
bility of buses, we use a matrix to describe the spatio-
temporal distribution of bus journeys. For cluster i and time
slot t , the spatio-temporal availability matrix A(i , t ) is given
as a vector of size (u ×1), where u is the number of bus
journeys in the study area. Each element in the vector is
a binary value indicating the availability of the bus taking
the journey. The value is 1 if the bus taking each journey
is traveling in the cluster in question; otherwise, the value
is 0. Accumulating the time slots with non-zero elements
for each journey in the study area, we get the duration of
each journey dur j .

If a VFN is placed on a bus, the VFN service becomes
available along the bus journeys taken by the bus. When
estimating the spatial distribution of VFNs in each time
slot, we go through such bus journeys and calculate the
communication range of each VFN. Each VFN is associated
with the nearest road segment cluster within its communi-
cation range. Tasks generated within a cluster are supposed
to be executed only on the associated VFNs.
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Fig. 4: Flowchart of the capacity planning model.

2) Adjacency of bus journeys: In addition, we use a
parameter to indicate the adjacency relationship between
each pair of journeys m and n. More precisely, it shows
whether journey n can be covered after journey m by the
same bus. A journey can be adjacent with another if both
journeys belong to the same bus line, and the departure
time of the upcoming journey is later than the arrival
time of the last journey. Therefore, we define the adjacency
between two journeys m and n as:

cmn =


1, if lm = ln and rm = rn

and d pm +2trm ≤ d pn

1, if lm = ln and rm ̸= rn

and d pm + trm ≤ d pn

−∞, otherwise.

B. Cost Minimization

The cost minimization problem aims to minimize the
overall installation and operational costs of the VFC sys-
tem. The installation cost per fog node is represented
by ccap, and the overall installation cost in this problem
is represented by C ′

cap, where ′ indicates that we can
further minimize the installation cost by bus scheduling.
The installation cost includes the charges of purchasing
and installing the fog nodes, which are paid only once. The
overall number of buses in the region is denoted by n0.

The operational cost of CFN and VFN per unit time is
presented by copc and copv, respectively, and the overall
operational cost is denoted by Cop. The operational cost
includes at least the rent, the power consumption fee (e.g.,
fuel and electricity), and regular maintenance; the cost
proportionally increases with the operating time. To cal-
culate the operational cost, we need to specify the capacity
planning horizon T in days. We also need to record the
duration dur j of each bus journey j ( j ∈ U ) in the study
area, where U is the set of bus journeys, and u denotes the
number of the bus journeys.

The inputs also include the spatio-temporal demand esti-
mation, represented by the demand di t in cluster i (i ∈ S) at
time slot t (t ∈W ). S is the set of clusters, and W is the set

of time slots in a day. And we also need the spatio-temporal
availability matrix A(i t ) from the bus dataset, represented
by a vector of size (u ×1) in cluster i at time slot t .

Assuming all the buses in the area carry the VFNs, we
can write the installation cost as:

C ′
cap = ccap(

S∑
i=1

ni +n0).

The operational cost can be written as:

Cop = T (copc ×W
S∑

i=1
ni + copv ×

U∑
j=1

dur j x j ).

The cost minimization problem is given in (2a)-(2d).
Our objective function, cf. (2a), minimizes the overall
installation and operational costs. Constraint (2b) is the
spatio-temporal capacity constraint, which ensures that the
capacity provided by the CFNs and VFNs is sufficient for
the estimated demand for each cluster at each time slot. To
plan the CFN and VFN deployment, we define two decision
variables in Constraints (2c) and (2d), respectively. The first
decision variable ni is an integer variable to indicate the
number of CFNs in cluster i . The second decision variable
x j is a binary variable to indicate whether the bus journey
j is selected to serve as the VFNs. The vector form of all the
vehicular fog nodes decision is X, with the size of (u ×1).

min
ni , x j

C ′
cap +Cop (2a)

s.t. ni +AT (i , t )X ≥ di t ,∀i ∈ S,∀t ∈W, (2b)

ni ∈Z+,∀i ∈ S, (2c)

x j ∈ (0,1),∀ j ∈U . (2d)

C. Bus Scheduling

In real life, the route of each bus line is fixed, and
several buses may serve the same bus line. Depending on
the timetable, there may be several bus journeys between
the origin and destination of each route. We define a bus
journey as the bus line, bus route (including the origin and
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destination), and departure time. We consider these aspects
when deciding which bus will be responsible for each bus
journey. Only when two journeys are within the same bus
line, and the departure time interval between the two trips
is greater than the turnaround time between their routes,
can the two journeys be covered by the same bus in the
time order. We repeat this process until all the selected bus
journeys are covered.

The bus scheduling problem aims to find the minimum
number of buses to cover the selected bus journeys, which
would further minimize the installation cost. The minimal
decomposition model [35] is used for the problem. The
set of selected journeys is denoted by J . The number
of the selected journeys |J | = k, where |.| represents the
cardinality of the set. To schedule the buses, we also need
the adjacency relationship cmn for each journey pair.

We present our bus scheduling problem in (3a)-(3d). The
objective function is (3a), based on the Dilworth theorem
of partially ordered sets [35]. It minimizes the number of
buses to cover the selected journeys (i.e., the minimum
decomposition of the bus journey set J [35]). Constraints
(3b) and (3c) are the non-repetitive scheduling constraints
in two directions. They guarantee that each bus journey
is either covered by an individual bus or covered in a
sequence of bus journeys. Finally, Constraint (3d) defines
the binary decision variable, which indicates whether a bus
is scheduled to cover journey n after journey m.

min
bmn

k − ∑
m∈J

∑
n∈J

cmnbmn (3a)

s.t.
∑
n∈J

bmn ≤ 1,∀m ∈ J , (3b)∑
m∈J

bmn ≤ 1,∀n ∈ J , (3c)

bmn ∈ (0,1),∀m ∈ J ,∀n ∈ J . (3d)

With the minimum number of buses, we can write the
minimized installation cost as:

Ccap = ccap (
S∑

i=1
ni +nv), (4)

where nv equals to the value of the objective function in
the bus scheduling problem.

VII. EXPERIMENTAL SETUP

Real-world datasets and applications are used to validate
the capacity planning framework. This section introduces
the datasets, applications, and simulation settings.

1) Helsinki Speed Dataset: We extracted from HERE [36]
a map that covers 869 road segments in Helsinki, ranging
from latitude 60.222306, longitude 24.858754 to latitude
60.142211, longitude 24.993980. Each road segment is as-
sociated with a set of sequential coordinates, including the
start and end intersections. We created the Helsinki road
network based on this map. We then created a Helsinki
speed dataset that includes speed samples of all the road
segments, collected through HERE Traffic API [37]. The
speed samples were collected once in a minute from Jan-
uary to February 2020.

Fig. 5: A Helsinki city map that covers 869 road segments and
9421 bus traces.

2) Helsinki Flow Rate Dataset: The Helsinki flow rate
dataset was updated daily by the Traffic Monitoring System
(TMS) of the Finnish Transport Agency [38]. The traffic
monitoring stations were located at all the major roads
in Finland, and the flow rates of these roads in the same
study area were sampled during the same time as the
Helsinki Speed Dataset. Combining these two datasets, we
can establish the spatio-temporal traffic models.

3) Helsinki Bus Position Dataset: The Helsinki bus po-
sition dataset was collected using Helsinki regional trans-
portation (HSL) high-frequency positioning (HFP) API [39].
All the buses in Helsinki update their status online, includ-
ing their bus line, vehicle id, direction, departure time, and
real-time position every second. The bus position data were
down-sampled to one sample per minute to be aligned with
the former two datasets. From the Bus Position Dataset, we
can model the bus mobility patterns.

4) Helsinki Bus Timetable: the Helsinki bus timetable is
updated seasonally by HSL general transit feed specification
(GTFS) [40]. It records the departure time and arrival time
of all the bus journeys at every bus stop. From the bus
timetable, we get the driving routes and adjacency rela-
tionship of the bus journeys.

5) City Downtown and City Suburb: As shown in Fig.
5, we classified some clusters into two areas, namely, the
downtown and suburb area, depending on their geograph-
ical information. Each of these areas consists of 6 clusters.
The city downtown covers the city center, a commercial
region, and a high-density residential area. The city suburb
covers highways, natural parks, and a low-density residen-
tial area.

A. Vehicular Applications

To exemplify the compute-intensive and latency-sensitive
vehicular applications, we chose four computing tasks for
testing, including object detection, semantic segmentation,
lane detection, and video transcoding. All of them are data-
intensive applications, with a driving footage video with
1280× 720 resolution and 25 fps frame rate as the input.
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TABLE II: Simulation settings.

Simulation 1 Simulation 2 Unit
ccap 1000 500, 1000, 1500, 2000 MU/device
copc 0.02 0.02 MU/minute
αop 0.5, 1.0, 1.5, 2.0 1.0 /

T 1.3 0.78, 1.04, 1.3, 1.56, 1.82 10e3day
rcomp 250, 150, 100 100 millisecond
β 3 /

pt ask 1:1:1:1 /
W 1440 minute
S 6 in downtown, 6 in suburb cluster
U 5189 in downtown, 5853 in suburb journey
n0 543 in downtown, 603 in suburb bus

Assuming the memory is sufficient for all the applications,
they have different CPU and GPU consumption patterns
described as follows.

1) Object Detection: The object detection application
is implemented through YOLOv5s [41] trained on COCO
dataset [42]. The algorithm divides images into a grid
system, where each cell in the grid is responsible for
detecting objects within itself. It represents the low-CPU
and medium-GPU applications (shown in Fig. 7a and 7b).

2) Semantic Segmentation: The semantic segmentation
application is implemented through Image Segmenta-
tion Keras [43] with VGG-UNET model and trained on
Cityscapes dataset [44]. The algorithm classifies each pixel
in an image from a predefined set of classes using a fully
convolutional network. It is a representative of the medium-
CPU and high-GPU applications (shown in Fig. 7c and 7d).

3) Lane Detection: The lane detection application is
implemented by OpenCV [45] in a Python environment.
It includes image processing techniques such as color
selection, canny edge detection, region of interest selection,
and Hough transform line detection. It is a representative
of the medium-CPU applications (shown in Fig. 7e).

4) Video Transcoding: The video transcoding application
is implemented by HandBrake video transcoder [46] with
x265 video encoder and mp4 container. It contains both
the process of decoding and encoding, which represent the
high-CPU applications (shown in Fig. 7f).

We used an Intel Core i7-7700K CPU with 8 threads that
can run in parallel. Assuming the computing capacity for
each thread is 100%, the capacity of the CPU BCPU = 800%.
We use a NVIDIA GeForce RTX 2080 Ti GPU. The capacity
of the GPU BGPU = 100%.

B. Simulation Setup

To validate the functionality of our model, we consider
three deployment strategies in the experiment, as detailed
below.

• Deploying strategy (DS): deploying fog nodes on both
cellular base stations and buses, and installing VFNs
on a minimum number of buses that can cover the
selected bus journeys (i.e., where the number of VFNs
equals to nv ).

• Comparing strategy - CFNs only (CP-CO): deploying fog
nodes only on cellular base stations.

• Comparing strategy - All buses (CP-AB): deploying fog
nodes on both cellular base stations and buses and

installing VFNs on all the buses in the study area (i.e.,
where the number of VFNs equals n0).

Among these three strategies, our framework adopts DS,
while the other two strategies are used for comparison.
CP-CO corresponds to the traditional stationary fog node
deployment model, and CP-AB corresponds to the output
of the capacity planning model without bus scheduling
module. We control the overall demand that will be fulfilled
by the fog nodes as equal in all of the strategies (i.e., all
of them are from the outputs of the demand estimation
module). We compare the three strategies in terms of cost-
efficiency.

Table II details the two sets of simulations. The given
costs are purely designed for comparison purposes and
given in monetary units (MU). However, we investigate
the impacts of the relative operational costs in Section VI-
B. In both simulations, the confidence interval in traffic
modelling is selected as three times of standard deviation
of the estimated traffic flow. Furthermore, the probability
of selecting each type of computing task is set as equal for
each user.

The first simulation scenario analyzes the impacts of la-
tency requirement and operational cost on the deployment
plans of CFNs and VFNs (see Section IX-A). To analyze
the implications of latency requirement, we change the
computing latency requirements from 250 ms to 150 ms
and 100 ms. The operational costs include at least rent,
electric expenses, and maintenance fees. The pricing level
of each cost varies over time and with the location [47].
For generalization, we have defined the relative operational
cost as the ratio of the unit operational cost of CFNs to that
of VFNs, denoted as:

αop = copc/copv. (5)

To analyze the implications of the relative operational cost,
we change it from 0.5 to 2.0 while keeping other parameters
as constants. For example, the ratio of 1.0 represents the
scenario where operational costs of CFN and VFN are equal
(i.e., for both, it is 0.02 MU/minute). The ratio of 0.5
represents the scenario where the operational cost of CFN
is 50% lower than VFN (i.e., for CFN, it is 0.02 MU/minute,
and for VFN, it is 0.04 MU/minute).

The second simulation scenario compares the installa-
tion and operational costs among the three deployment
strategies under different unit installation costs and oper-
ation time (See Section IX-B). In this set of simulations,
while keeping other parameters as constants and setting
the relative operational cost to 1.0, we change the unit
installation cost from 500 MU/device to 2000 MU/device
and change operational time from 780 days to 1820 days
(i.e., approximate working days from 3 years to 7 years).
To estimate the overall costs in the long term, we assume
that the vehicular traffic and bus mobility patterns remain
unchanged during the operational time. Considering they
may change in the real-life scenario, we will further discuss
this topic in Section X-A.

We compare the deployment decision and the cost es-
timation in the city downtown versus suburb, on week-
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(a) Weekdays in city downtown. (b) Weekends in city downtown. (c) Weekdays in city suburb. (d) Weekends in city suburb.

Fig. 6: Spatio-temporal traffic models, where each color represents a cluster labeled in the legend. The traffic flow is represented by
the number of vehicles in each cluster shown on the y-axis.

(a) Object detection latency vs. CPU. (b) Object detection GPU vs. CPU. (c) Segmentation latency vs. CPU.

(d) Segmentation GPU vs. CPU. (e) Lane detection latency vs. CPU. (f ) Video transcoding latency vs. CPU.

Fig. 7: Vehicular application profiles, where the blue dots and green bars represent the mean and standard deviation of frame latency.
The red curves represent the regression results, and the dashed lines represent the computing latency requirements.

days versus weekends (See Section IX-A and IX-B). For
the convenience of comparison, we set the time range of
the weekend models equal to the weekday models. We
formulate our framework in Fig. 4 as separate optimization
models. Among these models, we solve the demand estima-
tion module using the heuristic method detailed in Section
V-C. The remaining modules are developed in Python 3.8
and solved using Gurobi [48] solver.

VIII. FUNCTIONALITY EVALUATION

In this section, we evaluate the functionality of our
framework through a real-world simulation, including traf-
fic modeling, application profiling, bus journey selection,
and bus scheduling.

A. Traffic Models

Fig. 6 shows the spatio-temporal distribution of the
traffic flow, where each color represents a cluster in the
area. Despite having a smaller geographical coverage, the
downtown area accommodates a larger traffic volume than
the suburban area. The traffic density is higher in the city
downtown, especially during the weekdays. The traffic flow
has different time of day patterns between weekdays and
weekends. During the weekdays (Figs. 6a and 6c), there are

usually two peaks in the traffic flow corresponding to the
morning and afternoon commuting hours. However, on the
weekends (Figs. 6b and 6d), we usually observe one peak
around noon. The traffic flow also shows the difference
between the downtown and suburb areas throughout the
day. In the downtown area (Figs. 6a and 6b), the traffic flow
remains high throughout the daytime, while in the suburb
area (Figs. 6c and 6d), it is low apart from the peak hours.

B. Application Profiles

Fig. 7 shows the application profiles, represented by the
latency versus the CPU and GPU consumption. We can
observe that the resource consumption patterns of the four
application is consistent with the description in Section
VII-A. The figures also show that more stringent latency
requirement necessitates higher CPU and GPU usage until
they have reached the maximum value.

C. Bus Journey Selection

The cost minimization module minimizes the operational
cost while deciding which bus journey will be taken care of
by which bus carrying VFN. We compare the selected bus
journeys among different traffic patterns in terms of their
departure time. From Fig. 8, we can see that during the
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(a) Weekdays (downtown 375 jour-
neys vs. suburb 48 journeys).

(b) Weekends (downtown 410 jour-
neys vs. suburb 111 journeys).

Fig. 8: Cumulative distribution function (CDF) of departure time
of selected bus journeys with different traffic patterns.

weekdays, the departure times of the selected bus journeys
are mainly concentrated in the morning and afternoon
peak hours in the suburb, while the departure times in the
downtown have a more even distribution from the morning
to the afternoon. During the weekends, the departure times
of the selected bus journeys are concentrated around noon
in both the city downtown and city suburb, while the
departure times in the downtown have a wider distribution.
The results show that bus journey selection is consistent
with the spatio-temporal traffic patterns since the departure
times match the moments when the traffic flow increases
in the traffic models.

D. Bus Scheduling Plan

In real life, a bus line between Station A and Station
B is operated by a certain number of buses. Each bus
journey refers to a trip from Station A to Station B, or vice
versa. Throughout the paper, we assume that the buses,
no matter whether they carry fog nodes or not, do not
change their routes and timetables during the capacity
planning horizon. After the bus journeys are chosen, the
bus scheduling module decides which bus will be assigned
to each journey. During the simulation, we schedule the
buses according to the 2020 winter timetables from HSL
GTFS [40]. We demonstrate an exemplary scheduling plan
of bus line No. 322 in Helsinki. There are 25 buses serving
this line and in total 79 bus journeys a day. Among them, 22
bus journeys are selected in the cost minimization module.
According to the bus scheduling result, 6 buses will install
VFNs. From Fig. 9, we can see the 6 buses carrying the VFNs
can cover the 22 selected journeys, and there is no conflict
in their timetables. Following this procedure, a subset of
buses is chosen for fog node deployment instead of all
buses in the region, which greatly reduces the installation
cost of VFNs.

IX. CAPACITY PLAN, COST EFFICIENCY, SERVICE PROVISION,
AND IMPACT ANALYSIS

This section presents the results of the capacity plan and
cost estimation. It analyzes the impacts of the traffic pat-
terns, latency requirements, and relative operational cost on
the capacity plan. It also investigates the effects of changing
the traffic patterns and cost estimation parameters on the
cost-efficiency analysis. Furthermore, this section compares

(a) Schedule of VFN ID 1. (b) Schedule of VFN ID 2.

(c) Schedule of VFN ID 3. (d) Schedule of VFN ID 4.

(e) Schedule of VFN ID 5. (f ) Schedule of VFN ID 6.

Fig. 9: Schedules of the 6 VFNs from bus line No. 322 in Helsinki,
where A and B are the departure stops in two directions. The green
lines represent the schedules of the 22 selected journeys, and the
blue lines represent the turn-around time between the journeys.

different capacity planning strategies in terms of service rate
based on a microscopic VFC simulation.

A. Capacity Plan

In Section VII-B, we describe the three different deploy-
ment strategies, namely DS, CP-CO, and CP-AB. Table III
compares the resulting deployment plans on weekdays. It
lists the number of CFNs in each cluster and the number of
VFNs that travel through the target region. The results are
obtained from the experiments where the latency constraint
is set to 100 ms while the relative operational cost is set to
1.0. DS requires fewer CFNs than CP-CO and fewer VFNs
than CP-AB, given the same QoS requirements. Compared
with CP-CO, DS includes more VFNs. Section IX-B details
the comparison of overall costs.

Fig. 10 shows the impacts of latency requirement, rel-
ative operational cost, and traffic pattern on the fog node
deployment using DS. In the figure, the x-axis is the relative
operational cost, whereas the y-axis shows the number of
fog nodes. The number of CFNs and VFNs are stacked
together in each bar, and the three bars in parallel represent
the three settings of latency requirement, respectively.

Impacts of latency requirement: Given a relative oper-
ational cost, if we compare the numbers of fog nodes
under different latency requirements, we can find that more
computing resources or fog nodes are needed to fulfill
stricter latency requirements.

Impacts of relative operational cost: According to Fig. 10a
and 10b, when the relative operational cost increases, the
percentage of VFNs in the downtown area will increase until
it reaches the maximum value. In other words, when the
operational cost of VFNs becomes relatively low, the model
tends to select more bus journeys. We can see in Fig. 8 that
the selected bus journeys are concentrated at the times and
places where the traffic flow increases. This indicates that
at other times and places, employing CFNs will be a more
cost-efficient solution than employing VFNs. The selection
of the bus journeys will stop at the saturation point when
the departure time and routes of the remaining journeys
are not within the high traffic hours and regions, and the
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TABLE III: Comparison of fog node distribution on weekdays
using DS, CP-CO, and CP-AB, where # represents the cluster ID.

CFN VFN
Downtown #4 #13 #14 #18 #24 #35 region

DS 16 20 21 14 21 22 146
CP-CO 17 20 22 15 21 25 0
CP-AB 16 20 21 14 21 22 543

Suburb #2 #8 #20 #28 #34 #42 region
DS 9 20 10 14 13 9 45

CP-CO 9 22 11 14 13 9 0
CP-AB 9 20 10 14 13 9 603

(a) Weekdays in city downtown. (b) Weekends in city downtown.

(c) Weekdays in city suburb. (d) Weekends in city suburb.

Fig. 10: Effects of latency requirement, relative operational cost,
and traffic models on fog node deployment decisions. The maxi-
mum number (percentage) of VFNs are 144 (56%), 151 (61%), 47
(39%), and 42 (53%), respectively, in the four sub-figures.

proportion of the VFNs will stop increasing. The maximum
values and percentages of VFNs can be found in the caption
of Fig. 10. According to Figs. 10c and 10d, the percentage of
VFNs does not change with the relative operational cost in
the suburb area. This is because the selection of the buses
has already reached the saturation point at the first setting.

Impacts of traffic pattern: Based on Figs. 6 and 10, we
can see that traffic density is one of the main decision
factors in the capacity plan. The number of fog nodes
increases with the traffic density because the fog nodes
are necessary at times and places with higher demand.
From Figs. 8 and 10, we can see that another impacting
factor is the hourly variation in traffic flow. When the traffic
flow increases significantly during peak hours, more bus
journeys are selected, and more VFNs are deployed. The
above findings also hold true for different clusters within
the city downtown and city suburb. From Table III, we
can see the number of CFNs is higher in the clusters
with higher traffic density (e.g., cluster #35, #24 in the city
downtown and cluster #8 in city suburb). The difference of
the numbers of CFNs using DS and CP-CO is higher in the
clusters with higher daily variation (e.g., cluster #35, #14 in
the city downtown and cluster #8, #20 in the city suburb)
because more CFNs will be substituted by the VFNs.

B. Cost Efficiency

Fig. 11 shows the comparison of the installation and op-
erational costs among the three strategies. It then compares

(a) Installation cost versus unit in-
stallation cost using DS, CP-CO, and
CP-AB.

(b) Operational cost versus opera-
tional time using DS, CP-CO, and
CP-AB.

(c) Comparison of overall cost using
DS and CP-CO.

(d) Saving of operational cost using
DS with different traffic patterns.

Fig. 11: Cost analysis of different deployment strategies.

DS and CP-CO in terms of the overall cost and the saving
potential of DS with different traffic patterns.

Installation cost: Fig. 11a shows how the installation
cost changes with the unit installation cost. The instal-
lation cost of CP-CO is the lowest and that of CP-AB
is the highest. The cost difference between the strategies
increases when the unit installation cost becomes higher.
Compared to CP-CO, DS has a higher installation cost. This
is because the CFNs provide stable computing services at
their corresponding clusters, while VFNs can only provide
the computing services as they pass through the clusters
along their driving routes. To substitute the CFN, much
more VFNs are required to present at the times and places
with higher demand. Compared to CP-AB, DS significantly
reduces the installation cost. Therefore, it is more feasible
to install the VFNs on part of the buses and schedule them.

Operational cost: Fig. 11b shows how the operational cost
changes with the operation time. The operational cost of
DS and CP-AB coincide with each other since they follow
the same process of bus journey selection to get the same
output. Compared to CP-CO, DS has a lower operational
cost, and the cost difference increases when the operation
time becomes longer. The deployment of VFNs reduces
the idle state of the computing resources, thus saving the
operational cost compared to CP-CO.

Overall cost: Fig. 11c shows the overall cost using DS and
CP-CO. Since CP-AB has much higher cost compared to the
other strategies, it is not plotted. In the figure, the x-axis
is the unit installation cost, and the y-axis is the operation
time. The cost estimation of CP-CO is given as the blue
plane of z = 0, and the cost estimation of DS is shown as the
orange plane. In the shaded area, the z-value of the orange
plane is positive, meaning that DS is more cost-effective
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than CP-CO. When the unit installation cost becomes lower,
or when the operational time becomes longer, DS will
have higher potential for cost-saving compared to CP-CO.
Therefore, we can conclude that VFC is more suitable for
the cases where the operational cost has a larger weight
than the installation cost.

Long-term saving of operational cost: From the above
analysis, we already know that the deployment of VFNs
saves the operational cost at the expense of adding in-
stallation cost. To estimate the saving of operational costs
between different times and places, we compared them in
Fig. 11d. The results show the saving of operational cost
is larger in the city downtown than in the city suburb, and
larger during the weekdays than the weekends. Additionally,
when the operational time becomes longer, the saving
of operational cost becomes more significant. Therefore,
we can conclude that the long-term saving potential of
operational cost is greater in the times and areas with
higher traffic density and greater daily variation because
more VFNs will be deployed.

C. Service Provision

In this section, we analyze the actual service rate, i.e., the
percentage of users that can be served with a given deploy-
ment strategy. The network dynamics, such as the signal-to-
interference-plus-noise ratio (SINR), available bandwidth,
and communication range, play a major role in the actual
service rate of a deployment strategy. We use a VFC simula-
tor [49] to measure the service rates of different deployment
strategies.

We assume that the execution time for vehicular tasks
is negligibly short. Therefore, we model the latency con-
straints to reflect only the network latency. The time is
discretized and divided into time slots, which is denoted
as transmission time interval (TTI). The total simulation
horizon is set to be 2000 TTIs, where 1 TTI is set to be 10
ms. During each TTI, the positions of the client vehicles
and buses are updated. We assume that the vehicles can
have at most one active task. The air interface used in the
simulation is 5G NR n78 with a 3500-MHz frequency band
and a 20-MHz channel bandwidth. The dominant path
model is used for estimating the SINR of the users at each
TTI. Each user is assigned to the cell with the maximum
SINR. Further details on the scheduling algorithms can be
found in [49].

We consider two traffic scenarios, one with 50 client
vehicles (i.e., off-peak scenario) while the other with 150
client vehicles (i.e., peak scenario). Three network latency
requirements are set, namely 50 ms, 100 ms, and 150 ms,
and we measure the service rate for each case. During the
simulation, the CFNs are co-located with 12 base stations,
and the VFNs are carried by 8 bus journeys. We compare
the service rate among three deployment strategies:

• Deploying strategy (DS): using both CFNs and VFNs
with standard capacity.

• Comparison strategy - CFNs only standard (CP-COS):
using CFNs only with standard capacity.

TABLE IV: Service rates of different deployment strategies under
various latency requirements in peak and off-peak scenarios.

Off-peak Scenario Peak Scenario
rnet wor k 50 ms 100 ms 150 ms 50 ms 100 ms 150 ms

DS 84.0% 92.0% 98.0% 69.3% 88.7% 95.3%
CP-COS 80.0% 92.0% 98.0% 60.0% 87.3% 94.7%
CP-COE 88.0% 92.0% 98.0% 75.3% 92.7% 96.0%

• Comparison strategy - CFNs only extended (CP-COE):
using CFNs only with 1.67 times of capacity.

Among the above strategies, DS corresponds to our de-
ploying solution, while CP-COS and CP-COE are used for
comparison. Different from the simulation setup in Section
VII-B, here we control the capacity of single fog nodes
as equal in strategy DS and CP-COS, while control the
overall capacity of all the fog nodes as equal in strategy
DS and CP-COE (i.e 12 × 1.67 ≈ 12 + 8). We compare the
three deployment strategies in terms of service provision.

The service rates of different deployment strategies under
various network and traffic scenarios are shown in Table
IV. We average the presented results over 20 independent
instances. The service rate is generally higher during the
off-peak scenario than the peak scenario, with an average
difference of 7%. This is because when the user number in-
creases, the network resource will become more scarce. The
increasing latency constraint causes an average decrease in
service rate around 14% and 27% during the off-peak and
peak scenarios, respectively, due to the increasing demand
for computing resources.

Comparing different deployment strategies, DS has a
higher service rate (up to 9.3%) than CP-COS and a slightly
lower service rate (less than 6%) than CP-COE. Considering
the relatively small performance difference between DS
and CP-COE, it is possible to argue that the applicability
of the deployment strategies depends on the economic
feasibility. From the economic perspective, upgrading the
cellular capacity in both ways means additional investment
in the infrastructure. However, the mobility of VFC allows
more flexible resource scheduling. Therefore, VFC can save
long-term operational costs and thus be more cost-efficient
than stationary deployment.

X. DISCUSSION

In this section, we discuss the demand uncertainty, the
computational complexity of the capacity planning model,
and the advantages and limitations of our work.

A. Uncertainty in the Demand

We estimated the demand for computing resources in
Section V, with the assumption that the vehicular traffic
would follow the same spatio-temporal distribution during
the planning period. However, the vehicular traffic may
change in the future, e.g., when the number of autonomous
vehicles increases [50]. In this section, we detail how our
framework would handle the uncertainty caused by sea-
sonal changes and occasional events.

Seasonal Changes: The vehicular traffic and the demand
for computing resources may vary with weather conditions,
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(a) Traffic model in January 2020. (b) Traffic model in February 2020.

(c) Comparison of departure time of
selected bus journeys.

(d) Comparison of journey number
and fog nodes deployment.

Fig. 12: Comparison of capacity plan for January and February
2020.

daylight hours, and holiday seasons (e.g., July in Finland).
In Fig. 12, we use the vehicular traffic in Helsinki in Jan-
uary and February 2020 as examples and test whether the
capacity plan made for January would be still suitable for
February. In our experiment, we set the latency constraint
to 100 ms and the relative operational cost to 1.0. We first
compare the temporal traffic distribution between January
and February. As shown in Figs. 12a and 12b, there are two
peak hours in January: one in the morning and another in
the afternoon; however, in February, the amount of traffic
during the peak hour in the afternoons is lower than in
January. We then calculate the optimal capacity plans for
January and February 2020, and compare the schedules of
the selected bus journeys in Fig. 12c and the numbers of
fog nodes in Fig. 12d. Fewer bus journeys and VFNs would
be needed to satisfy the demand in February, especially
for the afternoons. If the capacity plan made for January
is applied in February, regardless of the change in the
demand, it would generate a 2.05% higher operational cost
than the optimal capacity plan based on February’s traffic.
If the change in the demand is significant, it is necessary
to update the capacity plan. However, it depends on the
operators to decide the threshold or a regular interval for
updating the capacity plan.

Occasional Events: Apart from seasonal changes, occa-
sional events can also cause uncertainty in the total de-
mand. For example, when a football match is held, the
city will be crowded with football fans, which would cause
a temporary increase in the computing resource demand.
Under these circumstances, it is not necessary to update the
long-term capacity plan because of the occasional changes.
Instead, it is more cost-efficient to temporarily increase the
supply in certain areas by deploying more VFNs. Compared
with buses that have fixed routes and timetables, taxis and
drones are more suitable in this case, since they can be
easily routed to different places. We call it on-demand VFC

(a) Cost minimization execution
time versus the number of clusters
(with 10 time steps and 10 journeys).

(b) Cost minimization execution
time versus the number of time
steps (with 10 clusters and 10 jour-
neys).

(c) Cost minimization execution
time versus the number of bus jour-
neys (with 10 clusters and 10 time
steps).

(d) Bus scheduling execution time
versus the number of selected jour-
neys.

Fig. 13: Execution time versus the size of data, where blue points
represent the mean values, and the cyan lines represent the
variations.

and will leave it for future work.

B. Computational Complexity

The demand estimation module can be solved in polyno-
mial time using the algorithm explained in Section V-C. The
computational complexity of the cost minimization and the
bus scheduling modules are evaluated for various data sizes.
We use a commercially available computer equipped with
an Intel Core i7-7700K CPU at 4.2 GHz frequency, where
one thread out of eight is used during the measurements.
We have repeated the measurements for 20 independent
instances, and the presented results in Fig. 13 are averaged
over these 20 instances. It can be seen that for the cost
minimization module, the execution time increases linearly
with the number of clusters and time steps. Furthermore,
the execution time rises slightly faster than the linear
relationship with the number of total journeys. For the bus
scheduling model, the execution time increases quadrati-
cally with the number of selected journeys.

These linear and quadratic growth in complexity can be
acceptable in real-world scenarios due to two reasons. First,
the capacity planning is a long-term decision problem (i.e.,
in the order of months or years); therefore, there are no
real-time constraints in the model. Second, even under
stricter time constraints, it is possible to use high-power
computing resources to decrease the execution time. In our
experiments for the Helsinki downtown area, the execution
time of demand estimation for each vehicular application
combination is within 1 second. The average execution
time of cost-minimizing and bus scheduling are around 283
seconds and 9 seconds, respectively, when we consider 6
clusters, 1440 time steps, and 5189 total journeys.
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C. Advantages and Limitations of Our Work

Our capacity planning solution provides the following
advantages. First, it minimizes the costs by complementing
stationary fog nodes with mobile ones. Compared with
the models that consider only stationary fog nodes [8],
[16]–[19], [21], [22], our framework has the potential to
reduce the long-term operational cost. Compared with the
solutions that deploy fog nodes on all buses [6], [7], [25],
[26], our solution selects a subset of buses to install fog
nodes based on traffic information, which results in lower
installation costs without loss in QoS. Second, by enabling
the mobility of fog nodes, our solution provides more
flexibility in the capacity planning model, especially for
handling the uncertainty in demand.

On the other hand, the limitations of our work mainly
exist in two aspects. First, our regression-based model
does not predict the demand in the future. Therefore, it
is not possible to proactively update the capacity plan.
As an extension of this work, we will use deep learning-
based algorithms, such as long short-term memory (LSTM)
network [51] and graph convolutional network (GCN) [52],
for predicting the future traffic flow and update the capacity
plan accordingly. Second, our capacity planning method
targets long-term fog node deployment. In our future work,
we will complement our current long-term deployment
model with short-term on-demand scheduling (as detailed
in Section X-A). We also believe that our data-driven ap-
proach in this paper can be part of beyond 5G capacity
planning, which leads to joint planning of computing and
communication resources in the future.

XI. CONCLUSION

This work proposes a data-driven capacity planning
framework that optimizes the deployment of stationary
and mobile fog nodes. By exploiting the spatio-temporal
fluctuations in demand, we minimize the installation and
operational costs within the QoS requirements. We model
the spatio-temporal distribution of vehicular traffic and the
computing resource demand. We use a heuristic algorithm
and ILP to find the cost-optimal solution. We validate our
framework using real-world vehicular traffic data, vehicular
applications, and bus timetables. Compared with the con-
ventional solutions that rely on cellular fog node deploy-
ments, the experimental results demonstrate the potential
of our framework to reduce costs. The results also show that
the deployment of mobile fog nodes saves operational costs
at the expense of additional installation costs. Moreover, in
the long term, more operational costs will be saved in the
times and areas with higher traffic density and greater daily
variation due to the dense deployment of VFNs.
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