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a b s t r a c t 

Influence diagrams are widely employed to represent multi-stage decision problems in which each deci- 

sion is a choice from a discrete set of alternative courses of action, uncertain chance events have discrete 

outcomes, and prior decisions may influence the probability distributions of uncertain chance events en- 

dogenously. In this paper, we develop the Decision Programming framework which extends the appli- 

cability of influence diagrams by developing mixed-integer linear programming formulations for such 

problems. In particular, Decision Programming makes it possible to (i) solve problems in which earlier 

decisions cannot necessarily be recalled later, for instance, when decisions are taken by agents who can- 

not communicate with each other; (ii) accommodate a broad range of deterministic and chance con- 

straints, including those based on resource consumption, logical dependencies or risk measures such as 

Conditional Value-at-Risk; and (iii) determine all non-dominated decision strategies in problems which 

multiple value objectives. In project portfolio selection problems, Decision Programming allows scenario 

probabilities to depend endogenously on project decisions and can thus be viewed as a generalization 

of Contingent Portfolio Programming (Gustafsson & Salo, 2005). We present several illustrative examples, 

evidence on the computational performance of Decision Programming formulations, and directions for 

further development. 

© 2021 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Influence diagrams, in their many variants (see, e.g., Bielza, 

Gómez, & Shenoy, 2011; Diehl & Haimes, 2004; Díez, Luque, & 

Bermejo, 2018; Howard & Matheson, 1984; Howard & Matheson, 

2005 ), are widely employed to represent decision problems whose 

consequences depend on uncertain chance events and decisions. 

Specifically, such decisions and chance events are represented by 

decision and chance nodes in an acyclic graph whose arcs indicate 

(i) what information is available to the decision maker (DM) and 

(ii) how realizations of chance events depend on earlier decisions 

and chance events. The value node represents consequences associ- 

ated with the DM’s decisions and the realization of chance events. 

Risk preferences are typically modeled with a utility function over 

the set of consequences. 

The optimal solution to the influence diagram is the strategy 

that, at each decision node, assigns one of the decision alternatives 

to every possible state of information at the node so that the com- 

∗ Corresponding author.:. 
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bination of these decisions maximizes the DM’s expected utility. 

If the diagram fulfills the ‘no-forgetting’ assumption, meaning that 

earlier decisions can be recalled when making later ones (see, e.g., 

Jorgensen, Kristensen, & Nilsson, 2014; Lauritzen & Nilsson, 2001 ), 

this optimal strategy can be computed with well-established tech- 

niques, for example by carrying out local transformations such as 

arc reversals and node removals ( Shachter, 1986; 1988 ), or by for- 

mulating the equivalent decision tree representation and solving it 

with dynamic programming ( Tatman & Shachter, 1990 ). Mathemat- 

ically, dynamic programming is based on the principle of optimal- 

ity (see, e.g., Bertsekas, 2012 ) which allows the problem to be tack- 

led by solving a sequence of nested subproblems whose solutions 

coincide with the corresponding optimal decisions in the original 

problem. This makes it possible to develop computationally effi- 

cient solution approaches to problems in which the principle of 

optimality holds. 

Yet, while the ‘no-forgetting’ assumption often holds, there are 

important problems in which it does not. For example, in dis- 

tributed decision making and adversarial risk analysis ( Rios Insua, 

Rios, & Banks, 2009; Roponen, Ríos Insua, & Salo, 2020 ) there can 

be agents such as military patrols who cannot communicate with 

each other (for examples, see, e.g., Zhang, 1994; Zhang, Qi, & Poole, 
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1994 ). Moreover, the adequate performance of safety-critical sys- 

tems must be ensured even in situations where it may be im- 

possible to synchronize information due to disruptions or com- 

munication delays, which makes it necessary to assess how sys- 

tem performance is affected by information sharing. In these sys- 

tems, it is also crucial to pay attention to the full probability dis- 

tribution over consequences (as opposed to expected consequences 

only), because high consequences with low probabilities are of- 

ten of greatest concern (see, e.g., Mancuso, Compare, Salo, & Zio, 

2019 ). Importantly, if the ‘no-forgetting’ assumption does not hold, 

then the principle of optimality breaks down and dynamic pro- 

gramming cannot be applied as usual, because the optimal strat- 

egy within a given branch of the decision tree depends on what 

decisions are taken in the other, non-overlapping branches of the 

decision tree. Furthermore, the consideration of risk measures such 

as Value-at-Risk, which reflect the full variability of consequences 

across the entire decision tree, also undermines this principle and 

consequently optimal solutions for the original problem cannot be 

obtained by combining solutions obtained for different branches of 

the decision tree. Project portfolio selection problems, too, involve 

comparable dependencies, because the consumption of shared re- 

sources, for example, implies that the optimal strategy for a given 

project cannot be determined without considering strategies for 

the other projects ( Gustafsson & Salo, 2005 ). 

In this paper, we develop the Decision Programming framework 

which uses the graphical representation of influence diagrams to 

capture the salient properties of multi-stage decision problems un- 

der uncertainty. The inputs of this framework consist of (i) the 

problem structure, represented by a connected, acyclic directed 

graph consisting of decision, chance and value nodes as well as in- 

formational and probabilistic dependencies between these, shown 

through arcs ; (ii) discrete sets of states that represent the set of 

possible decisions at each decision node and the possible realisa- 

tion of chance events at chance nodes; (iii) numerical parameters, 

such as probabilities at chance nodes and consequences (or their 

utilities) at value nodes. The inputs also include (iv) constraints, 

such as logical dependencies between decisions, bounds on re- 

source consumption and requirements associated with risk pref- 

erences (eg, chance and VaR constraints). These constraints, too, 

typically involve numerical parameters. 

Out of the five types of requirements that can be imposed on 

influence diagrams (see, e.g., Section 1.2 in Zhang et al., 1994 ), we 

do not require regularity (i.e., there exists a single path travers- 

ing all decision nodes), no-forgetting (i.e., all information which 

is known when making earlier decisions will be available when 

making later decisions) or existence of a single value node . Further- 

more, the constraint of not allowing value nodes to have children 

(i.e., no-children-to-value-node ) is not restrictive as it can be cir- 

cumvented by restructuring the influence diagram (i.e., by convert- 

ing any such value node into a chance node whose state is non- 

randomly dependent on the nodes from which there are arcs to 

this value node and by appending the equivalent new value node 

to the end of the diagram). Thus, we only retain the constraint of 

acyclity which, as an assumption, can be justified on the grounds 

that decisions and chance events are all typically associated with 

specific points in time. 

Within this generic set-up, we allow for both deterministic 

(e.g., logical dependencies, costs arising at one or more nodes) 

and chance (i.e., probabilistic) constraints. The resulting joint prob- 

lem representation (influence diagram plus constraints) is then 

converted into an equivalent mixed-integer linear programming 

(MILP) problem that is generic enough for solving also LI mited 

M emory I nfluence D iagrams (LIMIDs) in which the ‘no-forgetting’ 

assumption does not hold. Furthermore, we provide an algorithm 

for computing all non-dominated strategies in problems that have 

multiple objectives associated with corresponding multiple value 

nodes. All these modeling features are cast into corresponding 

MILP problems that can be solved with available software tools (for 

a survey, see, e.g., Fourer, 2017 ). 

As visual tools for problem representation, influence diagrams 

differ from decision trees since they do not communicate in what 

ways the problem structure may be asymmetric so that the sets of 

possible states at some decision and chance nodes may be con- 

strained by the states at other nodes. Nevertheless, asymmetric 

problems can be modeled with influence diagrams by defining 

node states and their dependencies appropriately (see, e.g., Smith, 

Holtzman, & Matheson, 1993 ). Mathematically, the mapping of in- 

put parameters (i.e., probabilities and decisions) to outputs (i.e., 

expected utilities) in influence diagrams can be viewed as a piece- 

wise multilinear function ( Borgonovo & Tonoli, 2014 ), which un- 

derpins the developments in this paper. For an account of the evo- 

lution of influence diagrams, see Bielza et al. (2011) . 

Our contribution is relevant to stochastic programming ( Birge & 

Louveaux, 2011 ) in outlining a general framework for problems in 

which decisions are made over several stages and realizations of 

uncertain events are observed between pairs of successive stages. 

In the first stage, an initial decision is selected, and subsequent 

recourse decisions are made after observing the realizations of un- 

certain earlier events. We distinguish between endogenous and ex- 

ogenous uncertainties based on whether the probability distribu- 

tions associated with chance events are impacted by decisions. In 

Decision Programming, both types of uncertainties are accommo- 

dated by converting influence diagrams and adjoining constraints 

into multi-stage stochastic integer programming (MSSIP) problems 

that can be solved using off-the-shelf MILP solvers. That is, the di- 

agram is first converted into a sequence of decision and chance 

nodes. This sequence is then employed to build the deterministic 

equivalent MILP formulation of the MSSIP. More generally, the field 

of stochastic optimization spans a wide range problem types and 

solution approaches. Within the framework influence diagrams, 

we address three of the research challenges identified by Powell 

(2019) in the recent literature review, i.e., (i) consideration of risk 

measures, (ii) treatment of multiple objectives, and (iii) modelling 

of multiple agents. 

This paper is structured as follows. Section 2 discusses earlier 

approaches. Section 3 develops the Decision Programming frame- 

work, and Section 4 presents illustrative examples. Section 5 de- 

velops approaches for dealing with risk preferences, chance con- 

straints and multiple objectives. Section 6 presents results on 

computational performance and outlines directions for further re- 

search. Section 7 concludes. 

2. Earlier approaches 

Influence diagrams were initially developed in the1970 ′ s 
( Howard & Matheson, 1984; Howard & Matheson, 2005; Howard 

& Matheson, 2006; Howard, Matheson, Merkhofer, Miller, & North, 

2006; Olmsted, 1983 ) to represent informational and probabilis- 

tic dependencies between decisions and uncertain chance events 

whose realizations govern what the consequences for the DM will 

be. If the regularity, no-forgetting and single-value node assump- 

tions hold and the aim is to maximize expected utility at the 

value node, these diagrams can be solved with well-established 

techniques, notably by forming the equivalent decision tree which 

can be solved through dynamic programming ( Tatman & Shachter, 

1990 ); or by removing decision and chance nodes from the dia- 

gram one-by-one, possibly after arc reversals (see, e.g., Howard & 

Matheson, 2005; Koller & Friedman, 2009; Shachter, 1986; Smith 

et al., 1993 ). 

Problems in which the ‘no-forgetting’ assumption does not hold 

give rise to LIMIDs. It is well-known (see, e.g., Mauá & Cozman, 

2016; Zhang et al., 1994 ) that LIMIDs are computationally chal- 
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lenging because optimal strategies cannot be determined through 

a straightforward series of local computations. They have been 

solved primarily in view of maximizing the expected utility (MEU) 

at a single value node, in the absence of constraints which would 

place restrictions on decision nodes in different parts of the in- 

fluence diagram. For this problem context, Lauritzen & Nilsson 

(2001) develop an iterative Single Policy Updating (SPU) approach 

for LIMIDs by solving a series of expected utility maximization 

problems by message passing in a junction tree derived from the 

influence diagram. This approach is guaranteed to give the opti- 

mum in soluble problems which, in non-technical terms, means 

that there exists a sequence of decision nodes such that the op- 

timum can be computed by solving a series of local optimiza- 

tion problems. Parmentier, Cohen, Leclère, Obozinski, & Salmon 

(2020) construct rooted junction trees and provide an MILP-based 

formulation which solves soluble MEU problems to optimality, but 

which is slower than the SPU algorithm. For problems which are 

not soluble, their formulation provides bounds which are better 

than those by applying the SPU algorithm to the soluble relaxation 

of the initial problem. 

Yuan, Wu, & Hansen (2010) propose a branch-and-bound algo- 

rithm which presumes that the influence diagram satisfies the reg- 

ularity condition. Koller & Milch (2003) consider multi-agent prob- 

lems and provide algorithms for computing Nash equilibria based 

on MEU maximization under the assumption that agents have per- 

fect recall. Mauá & Cozman (2016) study the computational per- 

formance of k -neighborhood local search algorithms and propose 

approximate algorithms. 

MEU problems have also been tackled also in the context of 

credal networks which can be derived from influence diagrams by 

replacing each decision node by a corresponding chance node with 

incompletely specified probabilities such that these probabilities 

add up to one. Then, the computation of optimal MEU strategies 

can be viewed as a problem of probabilistic inference in which 

the aim is to determine for which combination of these incom- 

pletely specified probabilities the expected utility is highest (for 

an overview, see Mauá & Cozman, 2020 ). Linear constraints have 

been employed in this setting by de Campos & Ji (2008) who 

employ McCormick constraints ( McCormick, 1976 ) which, 

however, are not computationally very efficient. Antonucci, 

de Campos, Huber, & Zaffalon (2013, 2015) present an approach 

that is based on conditioning the joint probability distribution on 

iteratively selected nodes and by solving ensuing linear optimiza- 

tion problems for these. However, they provide no formal proofs 

of convergence. 

A limitation of the above approaches is that they are not capa- 

ble of explicitly addressing multiple objectives which correspond 

to different value nodes (see, e.g., Diehl & Haimes, 2004 ). Further- 

more, while approaches based on local computations and iterative 

message passing schemes are likely more efficient under a compu- 

tational standpoint, they are not applicable to problems with con- 

straints that pertain to several chance, decision and value nodes in 

different parts of the influence diagram (e.g., due to logical inter- 

dependencies, limited budgets, bounds on risk levels) and whose 

fulfilment cannot therefore be determined locally. For example, the 

DM may seek to maximize the expected net present value (NPV) 

subject to the requirement that the expectation in the lower tail of 

the NPV distribution is not too low (i.e., Conditional Value-at-Risk, 

which is a coherent risk measure; Artzner, Delbaen, Eber, & Heath, 

1999 ). 

In portfolio decision analysis ( Liesiö, Salo, Keisler, & Morton, 

2021; Salo, Keisler, & Morton, 2011 ), influence diagrams help por- 

tray the overall structure of probabilistic and informational depen- 

dencies, but they cannot handle constraints arising from limited 

budgets or logical dependencies between alternatives. For project 

selection problems, Contingent Portfolio Programming ( Gustafsson 

& Salo, 2005 ) employs MILP to determine optimal project man- 

agement strategies when the projects’ cash flows are contingent 

on scenarios whose probabilities cannot depend endogenously on 

project decisions. Vilkkumaa, Liesiö, & Salo (2018) extend this ap- 

proach to single-stage selection problems in which scenario prob- 

abilities can depend endogenously on project decisions. Liesiö

& Salo (2012) derive decision recommendations for single-stage 

project selection problems with one objective and possibly incom- 

plete utility and probability information. Yet, none of these ap- 

proaches is equipped to handle problems in which there is a com- 

bination of endogenous uncertainties, several decision stages, and 

multiple objectives. 

Stochastic programming is widely employed as one of the un- 

derpinning frameworks for multi-stage decision problems under 

uncertainty. Nevertheless, the literature on endogenous uncertain- 

ties in stochastic programming is still sparse, because these uncer- 

tainties give rise to models that cannot be readily solved with ex- 

isting solution techniques, most prominently convex programming 

in general, and linear programming in particular. 

Specifically, most of the related stochastic programming liter- 

ature focuses on problems in which decisions can influence the 

information structure, in particular the timing of unveiling un- 

certainties, but not the probability distributions associated with 

uncertain events. Goel & Grossmann (2006) develop a stochastic 

programming formulation for multi-stage problems for the tim- 

ing of oil well exploitation, which decision is assumed not to in- 

fluence the uncertain amount of recoverable oil. Building on Goel 

& Grossmann (2004) , they propose a unified framework and so- 

lution methods for problems in which the decisions influence 

the time of observing uncertainties. Gupta & Grossmann (2011, 

2014) present specialized solution methods for oil and gas field 

development. Colvin & Maravelias (2008) propose a stochastic pro- 

gramming model for novel product development in pharmaceuti- 

cal research, further extended by Colvin & Maravelias (2009) . In 

this context, the timing of the resolution of uncertainties is influ- 

enced endogenously by the decisions on how to perform clinical 

trials which, however, leads to computational challenges ( Colvin 

& Maravelias, 2010 ). Solak, Clarke, Johnson, & Barnes (2010) op- 

timize R&D project portfolios under endogenous uncertainty, ac- 

knowledging that the inclusion of decision dependent uncertainties 

significantly degrades tractability. To tackle this issue, they propose 

a sophisticated solution method, exploiting the formulation de- 

vised specifically for the problem. Apap & Grossmann (2017) pro- 

vide a comprehensive recent literature overview and propose an 

approach for problems with a decision-dependent information 

structure. 

Problems where decisions can (also) affect the probability dis- 

tributions of uncertain events have been much less explored in 

stochastic programming. The predominant strategy has been to re- 

move decision dependent probabilities using appropriate transfor- 

mations in the probability measure, as described by Rubinstein 

& Shapiro (1993) (see also Pflug, 2012 ), or in the probabil- 

ity distribution itself (cf. Dupa ̌cová, 2006 ). In their overview of 

this scarce literature, Hellemo, Barton, & Tomasgard (2018) pro- 

pose a taxonomy of distinct classes for stochastic programs with 

endogenous uncertainties and possible formulation approaches. 

They also report computational experiments to highlight how 

challenging these problems are for state-of-the-art optimization 

solvers. 

In fact, multi-stage optimization problems under uncertainty 

can involve decision dependent probabilities, parameters, and/or 

information structures ( Hellemo et al., 2018 ). The Decision Program- 

ming framework seeks to encompass all these variants, on condi- 

tion that each chance event has a finite number of possible real- 

izations and decisions correspond to choices from a finite set of 

discrete alternatives. 
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3. Methodological development 

3.1. Influence diagram representation of the decision problem 

Multi-stage decision problems under uncertainty can be mod- 

eled as connected acyclic networks G = (N, A ) whose nodes N = 

C ∪ D ∪ V consist of chance nodes C, decision nodes D , and value 

nodes V . Chance nodes C represent uncertain events associated 

with random variables; decision nodes D correspond to decisions 

among discrete alternatives; and value nodes V represent conse- 

quences that result from the realizations of random variables at 

chance nodes and the decisions made at decision nodes. 

Dependencies between nodes are represented by arcs A = 

{ (i, j) | i, j ∈ N} . A directed path of length k is a sequence of nodes 

(i 1 , i 2 , . . . , i k ) such that (i l , i l+1 ) ∈ A for all l = 1 , . . . , k − 1 . The in- 

formation set of a node j ∈ N, defined as I( j) = { i ∈ N | (i, j) ∈ A } , 
consists of the direct predecessors (also referred to as parents) 

of j from which there is an arc to j. Because the network G is 

acyclic, the nodes N can be indexed consecutively with integers 

1 , 2 , . . . , | N| (where | · | denotes the number of elements in a set) 

so that for each node j ∈ N, the indices of the nodes in its infor- 

mation set I( j) are smaller than j (i.e., i < j for all i ∈ I( j) ). 

We denote the number of chance nodes by n C = | C| and the 

number of decision nodes by n D = | D | . These n = n C + n D chance 

and decision nodes are indexed as C ∪ D = { 1 , 2 , . . . , n } , while the 

n V = | V | = | N| − n value nodes are indexed as n + 1 , . . . , n + n V . For 

now, we assume that there is a single value node in the influ- 

ence diagram (the extension to multiple value nodes is covered in 

Section 5.4 ). Consequences at this value node are determined by 

the decisions and the realization of chance events. There are no 

arcs from the value node to chance and decision nodes, as these 

are not affected by the consequences. All chance events and deci- 

sions are relevant in the sense that there is a directed path from 

every chance and decision node to the value node. There is a path 

from every chance and decision node to the value node. 

Each chance and decision node j ∈ C ∪ D has a finite set S j of 

discrete states. The occurrence of states depend on their possible 

information states s I( j) ∈ S I( j) , defined as all possible combinations 

of states S I( j) ⊆
∏ 

i ∈ I( j) S i for the nodes in the information set I( j) . 

For each chance node j ∈ C, these states correspond to realizations 

of the random variable X j , which depends probabilistically on the 

states s i of the nodes i ∈ I( j) in the information set of j. For a de- 

cision node j ∈ D , each state s j ∈ S j corresponds to a decision that 

is made based on the information state s I( j) . For brevity, we use 

X j , j = 1 , . . . , n , to denote both random variables which are asso- 

ciated with chance nodes j ∈ C and decision variables which are 

associated with decision nodes j ∈ D . 

If j ∈ C is a chance node whose information state is s I( j) , then 

state s j ∈ S j occurs with the conditional probability 

P (X j = s j | X I( j) = s I( j) ) , ∀ j ∈ C, s j ∈ S j , s I( j) ∈ S I( j) , (1) 

where X I( j) = s I( j) means that the variables X i in the information 

set i ∈ I( j) have same values that are assigned to them by the in- 

formation state s I( j) . For each decision node j ∈ D , a local (deci- 

sion) strategy Z j : S I( j) �→ S j is a function that maps each informa- 

tion state in S I( j) to a decision in S j . A (global decision) strategy Z

is a collection of local decision strategies which specifies one lo- 

cal strategy Z j for each decision node j ∈ D . The set of all decision 

strategies is denoted by Z . 

Fig. 1 illustrates the notation in the context of a simple oil 

wildcatter example in which a test may (but does not have to) 

be carried out to obtain information about the prospective oil 

well before the drilling decision (see, e.g., Yet, Neil, Fenton, Con- 

stantinou, & Dementiev, 2018 ). The diagram has two chance nodes 

C = { 2 , 3 } , two decision nodes D = { 1 , 4 } and a single value node 

V = { 5 } . Thus, n C = n D = 2 and n = n C + n D = 4 . The information 

Fig. 1. An influence diagram for the oil wildcatter example. 

sets I(1) = I(2) = ∅ , I(3) = { 1 , 2 } , I(4) = { 1 , 3 } , I(5) = { 1 , 2 , 4 } . The 

decision at node D 1 node represents whether or not the test is 

carried out, modelled through the states S 1 = { t est, ¬ t est } (where 

¬ stands for “do not”). At chance node 3, the test result S 3 = 

{ wet, dry, none } depends on the state of the oil well s 2 ∈ S 2 = 

{ wet, dry } and the testing decision made at node 1. If s 1 = no, then 

the result s 3 is none ; otherwise the test result will be either wet

or dry , depending on the state of the oil well and the proper- 

ties of the test. For example, P (X 3 = dry | X 2 = wet) is the prob- 

ability of getting a false negative result from the test when the 

oil well is wet. A local strategy Z 1 at node 1 specifies whether 

or not the test will be carried out. At node 4, the local strat- 

egy Z 4 maps all its information states S I(4) , defined as combi- 

nations (s 1 , s 3 ) ∈ { (yes, wet) , (yes, dry ) , (no, none ) } of testing deci- 

sions s 1 and corresponding test results s 3 , to a drilling decision 

s 4 ∈ S 4 = { dril l , ¬ dril l } . Finally, the final net present value at the 

value node 5 depends on the costs arising from the testing and 

drilling decisions as well as the state of the oil well. Note that in 

Fig. 1 , all arcs lead from a node with a lower index to a node with 

a higher one. This would be the situation also if the two first nodes 

were to be listed in the reverse order, starting with the state of the 

oil well, followed by the testing decision. 

3.2. Paths 

A path s = (s 1 , s 2 , . . . , s n ) of length n is a sequence of states s i ∈ 

S i of all chance and decision nodes, i.e., i ∈ C ∪ D for all i = 1 , . . . , n . 

The set S of all paths of length n is 

S = S 1: n = { (s 1 , s 2 , . . . , s n ) | s i ∈ S i , i = 1 , . . . , n } . (2) 

Paths of length k < n are sequences s 1: k = (s 1 , s 2 , . . . , s k ) such that 

s i ∈ S i , i ≤ k . If s 1: k ∈ S 1: k , k < n , and s k +1 ∈ S k +1 , the state s k +1 can 

be appended to s 1: k to form the path s 1: k +1 = (s 1 , s 2 , . . . , s k , s k +1 ) ∈ 

S 1: k +1 . If s 1: k ∈ S 1: k , k ≤ n , and I � { 1 , . . . , k } , then s I is a subse- 

quence of s 1: k for the nodes i ∈ I. Thus, s I is a sequence of length 

| I| which contains the same states as s 1: k for nodes i ∈ I. 

Thus, at each decision node j ∈ D , Z j ∈ Z maps the informa- 

tion state s I( j) contained in s to the corresponding decision s j in 

s . The strategy Z ∈ Z is compatible with the path s ∈ S if and only if 

Z j (s I( j) ) = s j , ∀ Z j ∈ Z, j ∈ D . Conversely, the set of active paths for 

the strategy Z is S Z = { s ∈ S| Z j (s I( j) ) = s j , ∀ Z j ∈ Z, j ∈ D } . 
Referring to Fig. 1 , the paths S correspond to sequences 

(s 1 , s 2 , s 3 , s 4 ) where the states s i , i = 1 , . . . , 4 , indicate decisions 

and realizations of chance events. For example, s = (s 1 , s 2 , s 3 , s 4 ) = 

(test, dry, wet, dril l ) is the path in which the test is carried out 

( s 1 = test), the well is dry ( s 2 = dry ), the test result is positive 

( s 3 = wet) and the well is drilled ( s 4 = dril l ). The strategy defined 

by first testing and then drilling if and only if the test result is 
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positive is compatible with this path. Strategies in which no test is 

carried out, regardless of the drilling decision, are not compatible 

with this path. 

For any strategy Z ∈ Z , the probability of a path s ∈ S can be 

expressed recursively as a function of the conditional probabilities 

(1) and local decision strategies so that 

P (s 1: k | Z) = 

(∏ 

i ∈ C 
i ≤k 

P 

(
X i = s i | X I(i ) = s I(i ) 

))(∏ 

j∈ D 
j≤k 

I 
(
Z j (s I( j) ) = s j 

))
, 

(3) 

where the indicator function I ( · ) is defined so that 

I (Z j (s I( j) ) = s j ) = 

{
1 , if Z j (s I( j) ) = s j , 

0 , otherwise. 
(4) 

Note that if the strategy Z is compatible with s , then I (Z j (s I( j) ) = 

s j ) = 1 and thus P (s | Z) = 

∏ 

i ∈ C P (X i = s i | X I(i ) = s I(i ) ) . Conversely, if 

Z is not compatible with s , it contains some local strategy Z j , j ∈ D 

such that the information state s I( j) contained in s is mapped to 

a decision that is not the same as the state s j for node j along 

the given path s . Thus, choosing Z means that s cannot occur and 

therefore P (s | Z) = 0 . Moreover, P (s | Z) = 0 for any s �∈ S Z . 

3.3. Characterizing path probabilities using linear inequalities 

A given strategy Z ∈ Z assigns probabilities to all paths s 1: k ∈ 

S 1: k , k = 1 , . . . , n , in accordance with (3) . In principle, one could 

introduce binary variables for the indicator functions I 
(
Z j (s I( j) ) = 

s j 
)
, for all j ∈ D, whose multiplication would lead to a mixed- 

integer nonlinear programming (MINLP) problem which could be 

converted into a equivalent MILP. An early version of the Decision 

Programming approach relied on this strategy, which, although fea- 

sible, led to an MILP formulation with a weak linear programming 

relaxation that was too inefficient for off-the-shelf solver perfor- 

mance. 

Alternatively, the path probabilities s 1: k ∈ S 1: k , k = 1 , . . . , n , can 

be characterized through sets of linear inequalities. Towards this 

end, local decision strategies Z j , j ∈ D , are modelled through corre- 

sponding binary variables z(s j | s I( j) ) ∈ { 0 , 1 } such that z(s j | s I( j) ) = 

1 if and only if Z j maps the information state s I( j) to the decision 

s j ∈ S j , i.e., 

Z j (s I( j) ) = s j ⇐⇒ z(s j | s I( j) ) = 1 , ∀ j ∈ D, s j ∈ S j , s I( j) ∈ S I( j) . 

(5) 

The mutual exclusivity of the decisions is ensured through the con- 

straints ∑ 

s j ∈ S j 
z(s j | s I( j) ) = 1 , ∀ j ∈ D, s I( j) ∈ S I( j) , (6) 

which ensure that exactly one decision s j ∈ S j is chosen for every 

information state s I( j) ∈ S I( j) . 

For the given strategy Z ∈ Z , the corresponding probability π(s ) 

of any path s ∈ S can be derived recursively as follows. To ini- 

tialize the recursion, let π0 (s ) = 1 . Suppose that the probabili- 

ties πi (s ) = P (X 1: k −1 = s 1: k −1 | Z) are known for nodes i ≤ k − 1 and 

consider the next node k ≤ n . If k ∈ C is a chance node, let 

πk (s ) = P 

(
X k = s k | X I(k ) = s I(k ) 

)
πk −1 (s ) , (7) 

where the first term on the right side of (7) is given by (1) . If k ∈ D 

is a decision node, let 

πk (s ) = 

{
πk −1 (s ) , if z(s k | s I(k ) ) = 1 

0 , if z(s k | s I(k ) ) = 0 . 
(8) 

This assignment corresponds to the inequalities 

max { 0 , πk −1 (s ) + z(s k | s I(k ) ) − 1 } ≤ πk (s ) 

≤ min { πk −1 (s ) , z(s k | s I(k ) ) } , 
which are equivalent to 

πk (s ) ≤ πk −1 (s ) (9) 

πk (s ) ≤ z(s k | s I(k ) ) (10) 

πk (s ) ≥ 0 (11) 

πk (s ) ≥ πk −1 (s ) + z(s k | s I(k ) ) − 1 . (12) 

Theorem 1 states that the path probabilities implied by strategy 

Z can be calculated through the assignment (5) –(8) . Importantly, 

the equivalence between the assignments (5) –(8) and the inequal- 

ities (9) –(12) implies that the path probabilities implied by deci- 

sion strategies can be determined by employing these inequalities 

as constraints on the variables z(s k | s I(k ) ) , k ∈ D, s k ∈ S k , s I(k ) ∈ S I(k ) . 

Theorem 1. Let Z ∈ Z be a decision strategy and choose a path s ∈ S. 

If πk (s ) , k = 1 , . . . , n , and z(s j | s I( j) ) , ∀ j ∈ D , satisfy the constraints 

(5) –(8) , then 

πk (s ) = P (X 1: k = s 1: k | Z) , ∀ k = 1 , . . . , n. (13) 

In particular, π(s ) 
de f = πn (s ) is the probability of the path s for the 

strategy Z. 

Proof . See Appendix A. 

3.4. Maximization of expected utility 

We assume that at the value node v ∈ V , the function Y v : 

S I(v ) �→ C maps combinations of states of the nodes in its informa- 

tion set I(v ) to the set of consequences C and that there exists a 

real-valued utility function U : C �→ R that is defined over C . Then, 

the utility associated with the path s ∈ S can be precomputed as 

U(s ) = U[ Y v (s I(v ) )] . (14) 

Because the path probabilities π(s ) , s ∈ S, for the selected strat- 

egy Z ∈ Z are given by Theorem 1 , it follows that the strategy 

which maximizes the DM’s expected utility is the solution to the 

optimization problem in Corollary 1 . 

Corollary 1. The expected utility is maximized by the strategy Z ∈ Z 

which solves the optimization problem 

maximize 
Z∈ Z 

∑ 

s ∈ S 
π(s ) U(s ) (15) 

subject to constraints (5) –(7) and (9) –(12) on decision variables 

z(s k | s I(k ) ) ∈ { 0 , 1 } , ∀ k ∈ D , s k ∈ S k , s I(k ) ∈ S I(k ) and path probabilities 

πk (s ) ∈ [0 , 1] , ∀ s ∈ S. 

In particular, the objective function and constraints in 

Corollary 1 are linear in the decision variables z(s j | s I( j) ) and the 

corresponding path probabilities πk (s ) . This is an MILP problem 

for which the optimal strategy can be computed with off-the-shelf 

MILP solvers. 

3.5. An improved MILP formulation 

To enhance the formulation in Corollary 1 , we note that the ob- 

jective function (15) has path probabilities π(s ) only for full paths 

s ∈ S = S 1: n of length n . Also, the probability π(s ) of each path s ∈ S

depends on two separable components. First, for each path s ∈ S, 

the conditional probabilities (1) of the states s j for chance nodes 
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j ∈ C can be multiplied to obtain the following upper bound for 

π(s ) : 

p(s ) = 

∏ 

j∈ C 
P (X j = s j | X I( j) = s I( j) ) . (16) 

Second, for a given strategy Z ∈ Z , this upper bound p(s ) is the 

actual probability of s if and only if Z is compatible with s . That 

is, if z(s j | s I( j) ) = 1 , ∀ j ∈ D , the inequalities (9) –(12) imply π j (s ) = 

π j−1 (s ) for each j ∈ D . This result can be used to solve the equa- 

tions (7) –(8) recursively starting from π0 (s ) = 1 to the last node n 

for which πn (s ) = p(s ) in (16) . Conversely, if the strategy Z is not 

compatible with s , inequalities (9) –(10) imply that πn (s ) ≤ π j (s ) = 

0 for some j ∈ D . Thus, because π(s ) = πn (s ) = p(s ) if and only if 

z(s j | s I( j ) = 1 ∀ j ∈ D , the optimization problem in Corollary 1 can 

be reformulated as 

maximize 
Z∈ Z 

∑ 

s ∈ S 
π(s ) U(s ) (17) 

subject to 

∑ 

s j ∈ S j 
z(s j | s I( j) ) = 1 , ∀ j ∈ D, s I( j) ∈ S I( j) (18) 

0 ≤ π(s ) ≤ p(s ) , ∀ s ∈ S (19) 

π(s ) ≤ z(s j | s I( j) ) , ∀ s ∈ S, j ∈ D (20) 

π(s ) ≥ p(s ) + 

∑ 

j∈ D 
z(s j | s I( j) ) − | D | , ∀ s ∈ S (21) 

z(s j | s I( j) ) ∈ { 0 , 1 } , ∀ j ∈ D, s j ∈ S j , s I( j) ∈ S I( j) , (22) 

where the constraints (18) ensure that some decision s j ∈ S j is 

made at each decision node j ∈ D for every information state set 

s I( j) ∈ S I( j) (as stated in (6) ). Constraints (19) bound the probabil- 

ities of paths s ∈ S. Constraints (20) ensure that only those paths 

which are compatible with the strategy can have positive prob- 

abilities. Constraints (21) ensure that the probabilities of paths 

with negative utility U(s ) cannot become smaller than their up- 

per bounds p(s ) for paths s such that z(s j | s I( j) ) = 1 , j ∈ D . Con- 

straints (22) enforce the domain of all binary variables z(s j | s I( j) ) . 

For clarity, we note that in constraints (20) –(21) , the states s j and 

s I( j) are taken from the selected path s ∈ S. The terms U(s ) and 

p(s ) in (17) and (19) , respectively, can be calculated from (16) and 

(14) before solving the model (17) –(22) . 

Because utility functions over consequences are unique to pos- 

itive affine transformations and the value node has a finite num- 

ber of 
∏ 

i ∈ I(v ) | S i | information states, one can normalize the util- 

ity function to an interval of non-negative utilities U N (s ) ∈ [0 , 1] 

through the assignment U N (s ) = [ U(s ) − U )] / [ U − U )] , where U(s ) 

is the utility function to be normalized and U = max s ∈ S {U(s ) } > 

U = min s ∈ S {U(s ) } . In this case, the constraints (21) can be omitted, 

because the path probabilities will be naturally steered to their up- 

per bounds. 

In the oil wildcatter example of Fig. 1 , the constraints (18) are 

given by 
∑ 

s 1 ∈ { t est, ¬ t est } z(s 1 ) = 1 and 

∑ 

s 4 ∈ { dril l , ¬ dril l } z(s 4 | s 3 ) = 1 

where s 3 ∈ { wet, dry, none } specifies on what information the 

drilling decision is made. For the path s = (s 1 , s 2 , s 3 , s 4 ) = 

(test, dry, wet, dril l ) , constraint (20) bounds the path probability 

π(s ) from above p(s ) = P (X 2 = dry ) P (X 3 = wet | X 2 = dry ) where 

P (X 2 = dry ) is the probability that the well is dry and P (X 3 = 

wet | X 2 = dry ) is the probability of getting a report which says that 

the well is wet when it is actually dry. Finally, U(s ) gives the utility 

in the situation where the dry well is drilled after the test. 

3.6. Computational complexity 

The computational complexity of the formulation (17) –(22) de- 

pends predominantly on the number of chance and decision nodes 

i ∈ C ∪ D , as well as the number of their states S i and informa- 

tion states S I(i ) . Here, we assume that the problem is symmetric, 

so that at each chance and decision node all states are possible 

for every one of their information states, noting that in asymmet- 

ric influence diagrams some states are impossible for some infor- 

mation states so that some paths can be eliminated. For exam- 

ple, if the decision at node 1 in Fig. 1 is not to test, then the 

test result s 3 will be none and the results wet and dry are impos- 

sible as P (s 3 = wet | s 1 = ¬ test) = P (s 3 = dry | s 1 = ¬ test) = 0 . Thus, 

paths containing the states s 1 = ¬ test and s 3 ∈ { wet, dry } can be 

eliminated from consideration. 

In symmetric problems, the number of continuous path vari- 

ables π(s ) is 
∏ 

i ∈ C∪ D | S i | . Thus, if there are at least two states 

at each node i ∈ C ∪ D , the number of paths s grows exponen- 

tially with respect to the number of decision and chance nodes 

as the lower bound for the number of paths is o( 
∏ 

i ∈ C∪ D | S i | ) = 

o(2 | C| + | D | ) . The number of binary decision variables z(s j | s I( j) ) , j ∈ 

D, s j ∈ S j , S I( j) ∈ S I( j) , depends on the number of decision nodes 

D as well as their states S i and information states S I( j) . Specif- 

ically, there are 
∑ 

j∈ D | S { j } ∪ I( j) | = 

∑ 

j∈ D | S j | ∏ 

i ∈ I( j) | S i | binary deci- 

sion variables. Thus, the number of these variables is at most 

O 

(∑ 

j∈ D | S { j }∪ I( j ) | 
)
. While the number of binary variables is not 

typically large, they make the problem becomes much harder to 

solve. The number of constraints in (18) is 
∑ 

j∈ D | S j | , while that of 

constraints (19) is the same that of paths. In constraint (20) , the 

path probability π(s ) is constrained by each decision along this 

path s . 

3.7. Valid constraints 

The formulation (17) –(22) can be solved more efficiently by 

introducing valid constraints derived from the problem structure 

and help compute the optimal decision strategies, as shown in 

Section 6 . However, adding these constraints directly may slow 

down the overall solution process, especially in larger problems in 

which many of them can be derived from the problem structure. 

Alternatively, one can include these valid constraints during the 

solution process as “lazy constraints” that can be used by the MILP 

solver to prune nodes of the branch-and-bound tree more effi- 

ciently. One can also add them during the solution process in a 

cutting plane fashion as “user cuts” for a subset of nodes in the 

tree based on some criterion (or multiple criteria), for example, if 

the upper bound has not improved enough within some time in- 

terval. Such lazy constraints and user cuts are standard features in 

off-the-shelf MILP solvers. 

Specifically, the first set of equalities, referred to as probabil- 

ity cuts , exploit the fact that for any strategy Z ∈ Z , the sum of 

the probabilities π(s ) must equal one so that 
∑ 

s ∈ S 
π(s ) = 1 . These 

equalities are valid for any problem that can be formulated as 

(17) –(22) . As an example of a probability cut that works as a 

lazy constraint, suppose that the optimal (fractional) solution of a 

node in the branch-and-bound tree does not satisfy the probabil- 

ity cut. Then, the problem at that node will be re-optimized after 

adding the probability cut, and if the new optimal cost is smaller 

than the current best primal bound, the node can be discarded. 

In our computational analyses, we have used probability cuts as 

lazy constraints that were not initially included in the MILP for- 

mulation, but checked against violation in the branch-and-cut pro- 

cedure. This approach prevents the introduction of a large number 

of constraints that are unlikely to be violated. It is standard prac- 

tice in the use of professional-grade solvers such as Gurobi and 
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CPLEX, and can be done in straightforward manner through their 

application protocol interfaces. 

The second set of equalities can be used in problems whose 

structure makes it possible to determine in advance for a given 

strategy Z ∈ Z how many active paths s ∈ S Z have a positive prob- 

ability π(s ) > 0 . For example, if the number of such active paths 

is n s is for all feasible strategies, we can define a valid equal- 

ity 
∑ 

s ∈ S π(s ) /p(s ) = n s where p(s ) in (16) is the upper bound for 

π(s ) . This approach can be generalized to asymmetric problems 

in which the number of active paths varies for different decision 

strategies. In such cases, several equalities can to be added to cover 

different possibilities in how the number of active paths depends 

on the states of decision or chance nodes. Such information, de- 

rived from an analysis of symmetries in the problem structure (see, 

e.g., Bielza et al., 2011 ), serve to improve computational efficiency. 

4. Decision modeling examples 

4.1. Decision programming without the no-forgetting assumption 

As an example of a problem in which the no-forgetting assump- 

tion does not hold, assume that there is an uncertain load L on a 

built structure which can be fortified through actions A 1 and A 2 

to mitigate the risk of a structure failure F . These two decisions 

are informed by measurement reports R 1 and R 2 on the load L . 

The decision as to whether action A 1 should be implemented is 

informed by the report R 1 only and, similarly, decision A 2 is based 

on the report R 2 alone. In particular, the decision as to whether the 

fortification decision A 1 will be or has been installed is not known 

when making the decision A 2 (and conversely for A 2 ). The utility 

at the target node T depends on whether or not the structure fails 

and how much the fortification actions cost. 

This problem structure also represents a situation where the re- 

ports are generated by sensors which inform safety controls (e.g., 

valves) that must activated instantaneously to prevent potential 

disruptions in a safety-critical system such as a nuclear plant (see, 

e.g., Mancuso et al., 2019 ). In particular, the safety must be en- 

sured even if failures of communication equipment prevent the 

sensors from sharing information with a centralised server or other 

sensors. 

Just as in the example in Figure 12 in Zhang et al. (1994) , this 

problem structure is challenging in that the optimal strategies at 

the decision nodes are inderdependent and cannot be solved based 

on decomposition (see Chapter 8 in Zhang (1994) for a proof). In 

particular, the regularity and ‘no-forgetting’ assumptions do not 

hold, because the temporal order of the decision is not predeter- 

mined and there is no sequence of chance nodes C = { L, R 1 , R 2 , F } 
and decision nodes D = { A 1 , A 2 } such that for all decision nodes, 

the states of all preceding nodes would be known at the time of 

decision making. Fig. 2 presents an influence diagram representing 

this setting. 

Fig. 2. Influence diagram of the double monitoring example. 

Still, this problem can be solved using Decision Program- 

ming . The sequence (L, R 1 , R 2 , A 1 , A 2 , F , T ) captures the depen- 

dence structure: I(R i ) = { L } , i = 1 , 2 (the reports depend on the 

load); I(A i ) = { R i } , i = 1 , 2 (decisions about the fortification actions 

are informed by respective reports); I(F ) = { L, A 1 , A 2 } (failure de- 

pends on the load and fortification decisions, but not on the re- 

ports); and I(T ) = { A 1 , A 2 , F } (the final outcome depends on the 

failure and the cost of implementing the fortification actions). By 

using node labels to indicate sets of states for corresponding nodes, 

the paths are sequences s = (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ L × R 1 × R 2 × A 1 ×
A 2 × F = S. The probabilities p(s ) in (16) are p(l, r 1 , r 2 , a 1 , a 2 , f ) = 

P (l) P (r 1 | l) P (r 2 | l) P ( f | l, a 1 , a 2 ) , and the decision strategies are 

defined by Z = (Z 1 , Z 2 ) such that Z i : R i �→ A i . 

Using this notation, the optimal fortification strategy can be ob- 

tained by solving the Eqs. (18) –(22) , which in this example become 

maximize 
Z∈ Z 

∑ 

(l,r 1 ,r 2 ,a 1 ,a 2 , f ) 

π(l, r 1 , r 2 , a 1 , a 2 , f ) U 

[
Y T (a 1 , a 2 , f ) 

]
subject to 

∑ 

a i ∈ A i 
z(a i | r i ) = 1 , ∀ r i ∈ R i , i = 1 , 2 

0 ≤ π(l, r 1 , r 2 , a 1 , a 2 , f ) ≤ p(l, r 1 , r 2 , a 1 , a 2 , f ) , ∀ (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ S 

π(l, r 1 , r 2 , a 1 , a 2 , f ) ≤ z(a i | r i ) , ∀ (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ S, i = 1 , 2 

π(l, r 1 , r 2 , a 1 , a 2 , f ) ≥ p(l, r 1 , r 2 , a 1 , a 2 , f ) + 

∑ 

i =1 , 2 

z(a i | r i ) − 2 , ∀ (l, r 1 , r 2 , a 1 , a 2 , f ) ∈ S 

z(a i | r i ) ∈ { 0 , 1 } , ∀ a i ∈ A i , r i ∈ R i , i = 1 , 2 , 

where Y T (a 1 , a 2 , f ) gives the consequences associated with the fail- 

ure state f and the actions a 1 and a 2 . If all the decision and 

chance nodes have binary states, then there are 8 decision vari- 

ables (4 per each fortification decision) and 2 6 = 64 paths, result- 

ing in 4 equality constraints and 192 inequality constraints (in the 

second inequality constraint, the states a i , r i are implied by the 

selected path and third inequality constraints can be omitted by 

normalizing the utility function so that it attains positive values 

only). 

5. Extensions to modeling chance constraints and multiple 

value nodes 

Apart from the use of nonlinear utility functions U( · ) in (14) , 

risk preferences can be accounted through risk measures ρ that 

map decision strategies to non-negative real numbers and can be 

introduced as additional terms into the objective function or em- 

ployed as constraints. In the following, we assume that, at the 

value nodes v ∈ V , the aim is to maximize the consequences C(s ) = 

Y v (s I(v ) ) ∈ C , which are assessed using real numbers. 
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5.1. Absolute and lower-semi absolute deviation 

Let t ∈ R be a given target level for consequences and define 

the non-negative deviation variables 

�+ 
t (s ) = max { 0 , C(s ) − t} , �−

t (s ) = max { 0 , t − C(s ) } . (23) 

By construction, �+ 
t (s ) (respectively �−

t (s ) ) measures how much 

the consequence C(s ) is above (below) the target level t . The devi- 

ations (23) can be precomputed for the information states S I(v ) at 

the value node v . The expected downside risk (EDR) of the strategy 

Z ∈ Z relative to the target level t is 

ρEDR 

(Z; t) = 

∑ 

s ∈ S 
π(s )�−

t (s ) . (24) 

If t is chosen to be the expected value of consequences E [ C | Z] = ∑ 

s ∈ S π(s ) Y v (s I(v ) ) for the strategy Z, the corresponding non- 

negative deviation (decision) variables �+ 
E [ C | Z] 

(s ) , �−
E [ C | Z] 

(s ) can be 

employed with the constraint 

C(s ) − �+ 
E [ C | Z] 

(s ) + �−
E [ C | Z] 

(s ) = E [ C | Z] 

to capture the deviations from E [ C] . The absolute deviation (AD) 

and the lower semi-absolute deviation (LSAD) are then given by 

ρAD 

(Z) = 

∑ 

s ∈ S 
π(s ) 

[
�+ 

E [ C | Z] 
(s ) + �−

E [ C | Z] 
(s ) 

]
(25) 

ρLSAD 

(Z) = 

∑ 

s ∈ S 
π(s )�−

E [ C | Z] 
(s ) . (26) 

These measures can be used to augment the objective function 

through an additional additive term which penalizes for risk. For 

example, if the aim is to maximize expected consequences while 

accounting for risks through (lower semi-)absolute deviation, one 

possibility is to formulate the objective function as max Z∈ Z 
{
(1 −

φ) E [ X v | Z] − φρLSAD 

(Z) 
}

where φ ∈ [0 , 1] is a weighting coeffi- 

cient that reflects the DM’s risk aversion. Alternatively, as an ex- 

ample of using risk measures to constrain feasible decision strate- 

gies, assume that the consequences are defined as profits reported 

in monetary terms. Then, the constraint ρAD 

(Z) ≤ 10 MEUR would 

rule out any strategy Z ∈ Z whose profits can be expected to differ 

more than 10 MEUR from the expected profits E [ C | Z] . 

5.2. Chance constraints and Value-at-Risk 

Probabilistic chance constraints can be modeled as linear in- 

equalities on the path probabilities π(s ) which depend linearly on 

the decision variables. For example, to assess whether the conse- 

quences C(s ) meet or exceed the stated target level t ∈ R , we de- 

fine the parameters 

�t (s ) = 

{
1 , if C(s ) ≥ t 

0 , otherwise . 
(27) 

For example, if the consequence is required to reach the target 

level t with a probability that is higher than or equal to a stated 

threshold level p t , we have the constraint 

P 

(
{ s | C(s ) ≥ t} | Z 

)
= 

∑ 

s ∈ S 
π(s )�t (s ) ≥ p t , (28) 

which is linear in the path probabilities π(s ) . As for utilities, the 

terms �t (s ) , ∀ s ∈ S can be readily derived from the information 

states s I(v ) ∈ S I(v ) . 

In the present context where the probability distributions over 

consequences are discrete, the Value-at-Risk (VaR) risk measure for 

the strategy Z can be defined as 

VaR α(Z) = F −1 
Z (α) = sup { t | P (s | C(s ) ≤ t) < α} , (29) 

where F −1 
Z 

is the inverse function of the cumulative prob- 

ability distribution F Z : C �→ [0 , 1] which is defined as F Z (t) = ∑ 

{ s |C(s ) ≤t} π(s ) . 

Because the probability distribution over the set of paths is dis- 

crete, the definition (29) means that consequences which are less 

than or equal to VaR α(Z) can occur with a probability greater than 

α ( Rockafellar & Uryasev, 2002 ). This is the case if VaR α(Z) coin- 

cides with a consequence where the cumulative probability distri- 

bution function jumps from a level below α to one that exceeds α

so that P 

(
{ s | C(s ) < VaR α(Z) } 

)
< α < P 

(
{ s | C(s ) ≤ VaR α(Z) } 

)
. 

Constraints such as (28) can be employed to introduce VaR re- 

quirements. That is, if the probability α > 0 is associated with the 

corresponding VaR level t α
VaR 

, then the path probabilities for any 

feasible strategy Z must satisfy the constraint ∑ 

s ∈ S 
π(s )[1 − �t α

VaR 
(s )] ≤ α, (30) 

where �t α
VaR 

(·) is defined as in (27) . This approach can be gen- 

eralized to introduce chance constraints on the states of nodes 

k ∈ C ∪ D as well. For instance, assume that the state at node k 

needs to be in some set ˜ S k ⊂ S k with a probability which is less 

than or equal to ˜ p k . This requirement can be represented by the 

constraint 
∑ 

s ∈ S π(s )� ˜ S k 
(s ) ≤ ˜ p k where � ˜ S k 

(s ) = 1 if s k ∈ 

˜ S k and 

� ˜ S k 
(s ) = 0 otherwise. Thus, for example, for a decision node k ∈ D , 

one could require that the probability of having to employ excep- 

tional decisions, as represented by the states in 

˜ S k , does not exceed 

the given probability level ˜ p k . 

5.3. Conditional Value-at-Risk 

For the strategy Z ∈ Z ,the Conditional Value-at-Risk (CVaR) at 

the given probability level α > 0 is the expected level of conse- 

quences, conditioned on the event that the realized consequence 

is in the α ∈ (0 , 1] lower tail of the probability distribution. Con- 

tributions to this expectation come from (i) paths s ∈ S < 
VaR α(Z) 

= 

{ s ∈ S | C(s ) < VaR α(Z) } which lead to consequences strictly less 

than VaR α(Z) ; and (ii) paths s ∈ S = 
VaR α(Z) 

= { s ∈ S | C(s ) = VaR α(Z) } 
which lead to the consequence VaR α(Z) . The share of the prob- 

ability of these latter paths that needs to be accounted in the 

computation of the CVaR level is the difference α − P ({ s | C(s ) < 

VaR α(Z) } ) = α − ∑ 

s ∈ S < 
VaR α (Z) 

π(s ) . Thus, as in Liesiö & Salo (2012) , 

we define the risk measure CVaR α(Z) as 

CVaR α(Z) = 

1 

α

( ∑ 

s ∈ S < 
VaR α (Z) 

π(s ) C(s ) 

+ 

∑ 

s ∈ S = 
VaR α (Z) 

( 

α −
∑ 

s ∈ S < 
VaR α (Z) 

π(s ) 

) 

C(s ) 

) 

. (31) 

By Proposition 1 , the VaR and CVaR levels for a given prob- 

ability level α > 0 and strategy Z ∈ Z can be determined by 

solving the optimization problem (33) –(43) with precomputed 

parameters c ∗ = max {C(s ) | s ∈ S} , c ◦ = min {C(s ) | s ∈ S} , M = c ∗ − c ◦

and ε = 

1 
2 min {|C(s ) − C(s ′ ) | | |C(s ) − C(s ′ ) | > 0 , s, s ′ ∈ S} . 

Proposition 1. Choose α ∈ (0 , 1] and let π(s ) , ∀ s ∈ S, be the path 

probabilities for a strategy Z ∈ Z . Then the optimization problem 

min η (32) 

η − C(s ) ≤ Mλ(s ) , ∀ s ∈ S (33) 

η − C(s ) ≥ (M + ε) λ(s ) − M, ∀ s ∈ S (34) 
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η − C(s ) ≤ (M + ε) λ(s ) − ε, ∀ s ∈ S (35) 

η − C(s ) ≥ M( λ(s ) − 1) , ∀ s ∈ S (36) 

ρ(s ) ≤ λ(s ) , ∀ s ∈ S (37) 

π(s ) − (1 − λ(s )) ≤ ρ(s ) ≤ λ(s ) , ∀ s ∈ S (38) 

ρ(s ) ≤ ρ(s ) ≤ π(s ) , ∀ s ∈ S (39) 

∑ 

s ∈ S 
ρ(s ) = α, (40) 

λ(s ) , λ(s ) ∈ { 0 , 1 } , ∀ s ∈ S (41) 

ρ(s ) , ρ(s ) ∈ [0 , 1] , ∀ s ∈ S (42) 

η ∈ [ c ◦, c ∗] , (43) 

has a solution such that the optimum value η∗ = VaR α(Z) and 

CVaR α(Z) = 

1 
α

∑ 

s ∈ S ρ(s ) C(s ) . 

PROOF . See Appendix A. 

An inspection of the proof of Proposition 1 shows that for 

any feasible solution to the constraints (33) –(43) , the expression ∑ 

s ∈ S ρ(s ) C(s ) /α gives the correct CVaR α(Z) risk measure for Z. 

Thus, if the expectation of consequences in the lower α-tail of the 

probability distribution over consequences is required to be greater 

than or equal to the lower bound t α
CVaR 

, this requirement can be 

enforced by adding the constraints (33) –(43) and 

∑ 

s ∈ S ρ(s ) C(s ) ≥
αt α

CVaR 
to (18) –(22) . 

One approach to address trade-offs between the maximization 

of conditional expectations for different levels of α is to treat 

these as different objectives with respective weighting coefficients. 

Thus, combining the unconditional expectation with the selected 

α ∈ (0 , 1) for CVaR leads to the problem 

maximize 
Z∈ Z 

w 

(∑ 

s ∈ S π(s ) C(s ) 
)

+(1−w ) 
(

1 
α

∑ 

s ∈ S ρ(s ) C(s ) 
)

(44) 

subject to (18) − (22) , (33) − (43) (45) 

whose solution depends on the parameter w ∈ (0 , 1) that repre- 

sents trade-offs between (i) the overall expectation in the first 

term of (44) and (ii) the expectation in the lower α-tail as ex- 

pressed by the second term. This parameter can be elicited by ask- 

ing the DM to answer much of the overall expectation the DM is 

willing to give up in return for improving the CVaR level by one 

unit, which gives the ratio 1 −w 

w 

. Note that the linear model as- 

sumes that the answer to this question does not depend on the 

overall expectation 

∑ 

s ∈ S π(s ) C(s ) . 

5.4. Multiple value nodes and objectives 

The consideration of CVaR levels together with the maximiza- 

tion of expected consequences is an example of the more gen- 

eral case in which there are multiple objectives n V > 1 (see, e.g., 

Antunes, Alves, & Clímaco, 2016 ) associated with different value 

nodes. Then, if these objectives are compared based on their ex- 

pected consequences, attention can be focused on non-dominated 

strategies Z ∈ Z ND . In this case, the dominated strategies can be de- 

fined so that Z is non-dominated if and only if there is no other 

feasible strategy Z ′ ∈ Z F whose expectation is equal to or higher 

than that of Z at each value node and strictly higher for at least 

one value node, i.e., 

Z ∈ Z ND ⇐⇒ Z ∈ Z F ∧ � ∃ Z ′ ∈ Z F such that E [ C v | Z ′ ] 
≥ E [ C v | Z] , ∀ v ∈ V, 

where E [ C v | Z] = 

∑ 

s ∈ S π(s ) C v (s ) denotes the expectation at value 

node v ∈ V and the inequality is strict for at least one value node 

v ∈ V . Because the strategies are choices from a discrete set of al- 

ternatives, this is a discrete multi-objective optimization problem 

(MOO) in which the objectives correspond to the maximization of 

expectations for different value nodes. Thus, it can be solved with 

algorithms for this problem class. Holzmann & Smith (2018) pro- 

vide an extensive review and propose an algorithm based on aug- 

mented Tchebychev norm, in which choices about the initial step 

size need to be made. 

The weighting approach in (44) or, more generally, the max- 

imization of the expression 

∑ 

v ∈ V w v E [ C v | Z] can be employed to 

generate non-dominated strategies. However, a shortcoming of 

this approach is that it does not necessarily generate all non- 

dominated strategies even if all non-negative weighting coeffi- 

cients w v ≥ 0 , ∀ v ∈ V , such that 
∑ 

v ∈ V w v = 1 , are employed. This 

will be the case if a non-dominated strategy Z ′ ∈ Z ND is dominated 

by a weighted linear combination of other non-dominated strate- 

gies Z 1 , . . . , Z k ∈ Z ND so that for some selection of positive weights 

ω i > 0 with 

∑ k 
i =1 ω i = 1 , it holds that E [ C v | Z ′ ] ≤ ∑ k 

i =1 ω i E [ C v | Z i ] 
for all v ∈ V (with a strict inequality for some v ∈ V ). 

This notwithstanding, the weighting approach can be adapted 

to generate all non-dominated strategies. First, if Z ′ ∈ Z ND is a non- 

dominated strategy, then it can be eliminated from consideration 

in the computation of further candidates for non-dominated strate- 

gies through the linear constraint ∑ 

{ (s i ,s I(i ) ) | z ′ (s i | s I(i ) )=0 } 
z(s i | s I(i ) ) + 

∑ 

d∈ D 

∏ 

i ∈ I(d) 

| S i | 

−
∑ 

{ (s i ,s I(i ) ) | z ′ (s i | s I(i ) )=1 } 
z(s i | s I(i ) ) ≥ 1 , (46) 

where z ′ (s i | s I(i ) ) , s i ∈ S i , s I(i ) ∈ S I(i ) are the decision variables for Z ′ . 
In (46) , the left side for strategy Z will be greater than one if and 

only if Z differs from Z ′ . 
Second, if Z ′ ∈ Z ND , then further candidates for non-dominated 

strategies must not be dominated by Z ′ . A necessary condition 

for this can be stated by defining the binary variables λ+ 
Z ′ , v (Z) , 

λ−
Z ′ , v (Z) ∈ { 0 , 1 } , ∀ v ∈ V so that λ+ 

Z ′ , v (Z) + λ−
Z ′ , v (Z) = 1 and 

E [ C v | Z] ≤ E [ C v | Z ′ ] + Mλ+ 
Z ′ , v (Z) (47) 

E [ C v | Z ′ ] ≤ E [ C v | Z] + Mλ−
Z ′ , v (Z) (48) 

where M is a large constant (e.g., greater than c ∗ = max s ∈ S C(s ) ). 

Now, consider any solution to (47) –(48) such that λ+ 
Z ′ , v (Z) = 

0 , ∀ v ∈ V . Then E [ C v | Z] is either strictly less than E [ C v | Z ′ ] for all 

v ∈ V so that Z is dominated by Z ′ ; or if not, there exists some 

v ′ ∈ V such that E [ C v ′ | Z] = E [ C v ′ | Z ′ ] so that the values of the 

variables λ−
Z ′ , v ′ (Z) = 1 , λ+ 

Z ′ , v ′ (Z) = 0 can be switched to λ−
Z ′ , v ′ (Z) = 

0 , λ+ 
Z ′ , v ′ (Z) = 1 , in which case the constraints (47) –(48) are still sat- 

isfied. Thus, for any strategy Z which is not dominated by Z ′ there 

will exist a solution such that ∑ 

v ∈ V 
λ+ 

Z ′ , v (Z) ≥ 1 , Z ′ ∈ Z ND . (49) 

The above constraints (47) –(48) and (49) constitute a necessary 

but not a sufficient condition. That is, the candidate solution Z 
′′ 
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which maximizes 
∑ 

v ∈ V w v E [ C v | Z] may be dominated by Z ′ if the 

value nodes can be partitioned into non-empty sets V = ∪ V < = V 

such that E [ C v | Z ′′ ] = E [ C v | Z ′ ] , v ∈ V = and E [ C v | Z ′′ ] < E [ C v | Z ′ ] , v ∈ 

V < , i.e., Z 
′′ 

is dominated by Z ′ . Consequently, explicit dominance 

checks are needed to evaluate whether the candidate solution Z 
′′ 

is non-dominated. If it is, the set of non-dominated strategies can 

be updated by adding Z 
′′ 

to this set and by introducing the con- 

straint (46) to eliminate Z 
′′ 

from further consideration. Adding this 

constraint to (47) –(48) for Z ′′ does not prevent the computation of 

alternative strategies whose expectations are the same for all value 

nodes, as such strategies do not dominate each other. 

Next, the algorithm can be iterated by maximizing ∑ 

v ∈ V w v E [ C v | Z] to generate further candidate strategies and 

augmenting the sets of non-dominated strategies and constraints. 

If the algorithm is terminated prematurely, it provides a viable 

set of non-dominated strategies that can be examined to check in 

what region the expected values of any non-dominated strategies 

that have not yet been generated would lie. Because the number 

of non-dominated strategies is finite, the algorithm will generate 

them all. Moreover, if the DM’s preferences are represented by 

a real-valued function which is strictly increasing in each of the 

expectations E [ C v | Z] , v ∈ V , the computation of non-dominated 

strategies generates all the solutions that can be optimal for any 

such function. 

The number of non-dominated solutions and the effort that is 

required to compute them depends on the problem characteristics. 

In general, this effort tends to grow with (i) the number of objec- 

tives and feasible decision strategies; and (ii) the presence of neg- 

ative correlations between the objectives. To see why this the case, 

assume that there are two objectives v and v ′ such that the ex- 

pected consequences E [ C v | Z] and E [ C v ′ | Z] are perfectly correlated 

across the set of feasible decision strategies Z ∈ Z F . Then, there is 

a positive linear relationship between E [ C v | Z] and E [ C v ′ | Z] and 

the strategies which maximize these two objectives are the same. 

Thus, there is only one non-dominated strategy assuming that 

these maximization problems do not have alternative optimal so- 

lutions. At the other end of the spectrum, if the objectives v and 

v ′ have a perfect negative correlation of minus one, there is a neg- 

ative linear relationship between E [ C v | Z] and E [ C v ′ | Z] and conse- 

quently all feasible decision strategies are non-dominated. Between 

these extremes, the number of non-dominated strategies can be 

expected to be larger when there is a strong negative correlation 

between the objectives. 

One reason for computing all non-dominated solutions is that 

in many problems the objectives are negatively correlated across 

the set of alternatives (e.g., low cost vs. high quality). In such prob- 

lems, restricting the attention to the solutions generated by the 

weighted sum approach may suggest comparatively extreme strate- 

gies only (i.e., quite costly with very high quality; or unsatisfac- 

tory quality at a low cost) while neglecting more balanced strate- 

gies that are of interest to the DM in that they perform reasonably 

well on many objectives. 

If there is a single value node v with real-valued consequences, 

the above multi-objective algorithm can be adapted to determine 

all the strategies which are non-dominated in the sense of first- 

order stochastic dominance. Specifically, the consequences associ- 

ated with the information states s I(v ) can be viewed as target levels 

so that the function �t (s ) in (27) is defined for the different tar- 

get levels t that correspond to the different consequences v . Then, 

for strategy Z, the probability of meeting or exceeding the level t

is the expectation E [�t | Z] , which can be treated as the objective 

that corresponds to the target level t . Specifically, strategy Z will 

dominate Z ′ (in the sense of first-order stochastic dominance; see, 

e.g., Liesiö & Salo, 2012; Rockafellar & Uryasev, 2002 ) if and only 

if E [�t | Z] ≥ E [�t | Z ′ ] for all target levels t with a strict inequality 

for some target level. Often, it is reasonable to limit the attention 

to these stochastically non-dominated strategies, because only they 

can be optimal if the DM’s utility function over consequences is 

known to be increasing. Thus, this approach can be used to prune 

the set of viable strategies based on weak assumptions about the 

DM’s utility function. 

The ability to screen non-dominated strategies can be par- 

ticularly useful in group decision making problems as well, be- 

cause there is no need to build a consensual representation of the 

group’s utility function. Rather, once the non-dominated strategies 

have been identified, methods of multi-criteria decision analysis 

can be deployed to support the final selection (see Salo, Hämäläi- 

nen, & Lahtinen, 2021 for an overview). 

6. Computational experiments 

We next report results from computational experiments to 

demonstrate the viability of Decision Programming. All implemen- 

tation were coded in Julia 1.1.0, using the package JuMP to imple- 

ment models which were solved with Gurobi 8.1.0. using 2 out of 

8 available threads. All problem instances were solved with an In- 

tel Xeon E3-1230 v5 desktop clocked at 3.40 GHz with 32 GB RAM 

running Windows 10 x64 Education Edition. The open-source code 

for these examples and supporting documentation are available at 

http://github.com/gamma-opt/DecisionProgramming.jl . 

6.1. N-monitoring problem 

The N-monitoring problem has the same structure as the dou- 

ble monitoring problem in Section 4.1 except that there are N bi- 

nary reinforcement decisions of which each is informed by its own 

load report with two states, low and high . For every problem size, 

we solve 100 instances with randomly generated data, both with 

and without the probability cuts in Section 3.7 . 

Data sets with plausible characteristics were generated as fol- 

lows. The utility of the structure not failing was set to 100 and that 

of failing to 0. For the load node L , the probability p H of the high 

load state was generated from the uniform distribution U(0 , 1) 

over the unit interval and the remaining probability p L = 1 − p H 
was assigned to the low load state. All reports were conditionally 

independent of each other given the load. For both loads, the prob- 

ability of receiving a correct report was max { x, 1 − x } where x was 

generated from the uniform distribution U(0 , 1) . Further realiza- 

tions of x and y from U(0 , 1) were used to set the prior prob- 

ability of failure in the case of high load to max { x, 1 − x } and 

that in the case of low load to min { y, 1 − y } . The costs of forti- 

fication c i , i = 1 , . . . , N actions were also generated from U(0 , 1) . 

The posterior probability of failure after implementing the actions 

A ⊆ { 1 , . . . , N} was taken to be that of the prior divided by e 
∑ 

i ∈ A c i . 
Thus, the actions served to mitigate the possibility of failure and 

the more costly actions are effective in doing so. This is an exam- 

ple of a portfolio problem with endogenous uncertainties in which 

the failure probability depends on all fortification decisions. 

Table 1 shows the solution times in seconds for randomly gen- 

erated instances, comparing the computational performance with 

and without the probability cuts discussed in Section 3.7 . At each 

decision node, there are 4 decision variables (i.e., z(s i | s I(i ) ) , two 

possible decisions for each information state). Thus, for the given 

number of reports N, there are 4 N different decision strategies so 

that in the case of 9 decisions, there 4 9 = 262 122 strategies. Be- 

cause all nodes are binary and there are 2 + 2 N nodes, the number 

of real variables (i.e., π(s ) for path probabilities) is 2 2 N+2 The re- 

sults show the average (Avg) and standard deviation (Std) for 100 

problem instances. A time limit of 25 200 seconds (7 hours) was 

used. The entry “-” denotes cases for which no solution could be 

found within thee 7h time limit. As can be observed, the probabil- 

ity cuts greatly improve the performance of the solver. 

559 

http://github.com/gamma-opt/DecisionProgramming.jl


A. Salo, J. Andelmin and F. Oliveira European Journal of Operational Research 299 (2022) 550–565 

Table 1 

Results for samples of 100 randomly generated N-monitoring instances. 

Number of variables Without probability cuts With probability cuts 

# Decisions N Binary Real Avg Std Avg Std 

2 8 64 0.01 0.01 0.01 0.00 

3 12 256 0.12 0.08 0.02 0.01 

4 16 1 024 0.79 0.53 0.07 0.02 

5 20 4 096 5.94 2.80 0.35 0.19 

6 24 16 384 77.35 46.31 2.44 1.63 

7 28 65 536 676.35 468.09 20.58 17.48 

8 32 262 144 8 474.00 7 377.28 268.93 330.89 

9 36 1 048 576 - - 1 727.19 2 880.20 

Table 2 

Results for the pig farm problem for different numbers of decision periods. 

# Months Optimal value (DKK) Solution time (s) 

3 764 0.01 

4 727 0.04 

5 703 0.62 

6 686 19.52 

7 674 617.21 

Fig. 3. The pig farm problem with three decision periods ( Lauritzen & Nilsson, 

2001 ). 

6.2. The pig farm problem 

In the pig farm problem (see Lauritzen & Nilsson, 2001 ), a vet- 

erinary doctor visits a pig farm each month to test each pig for a 

disease and decides, based on the uncertain test result, whether or 

not to inject the pig with a drug that helps prevent and cure the 

disease at a cost of 100 DKK. After four months, healthy pigs are 

sold for 1 0 0 0 DKK and diseased ones for 300 DKK. Because the 

doctor has no access to individual records for each pig, she has to 

make the treatment decision based on the most recent test result 

without knowing earlier injection decisions. This problem is repre- 

sented by a limited memory influence diagram (LIMID) in Fig. 3 . 

Despite its practical relevance and conceptual simplicity, this 

problem is not soluble . As a result, the Single Policy Update al- 

gorithm (which is based on solving a series of local optimization 

problems) is not guaranteed to converge to the global optimum 

(for details, see Lauritzen & Nilsson, 2001 ). With Decision Program- 

ming, this problem can nevertheless be solved to global optimal- 

ity relatively efficiently. Table 2 presents the optimal solutions and 

their computation times both for the original four-month version 

of the problem with three decision periods (in which there are 

64 different strategies, corresponding to 4 × 4 × 4 combinations of 

the four local decision strategies in each of these three months), 

as well as extensions for the same problem up to seven monthly 

decision periods with the same numerical parameters. Here, the 

number of strategies grows rapidly with the number of periods, 

meaning that solving the problem through explicit enumeration 

becomes increasingly impractical. In the case of seven periods, for 

example, there are 4 7 = 16 384 decision strategies. 

The formulations in Section 5.4 help determine the non- 

dominated strategies based on the consideration of the two ob- 

jectives of maximizing (i) the overall expected utility and (ii) the 

conditional expectation in the lower α = 20% tail. Fig. 4 shows 

the overall expected utility (assuming risk-neutral preferences over 

monetary consequences) and the conditional CVaR expectation in 

the lower tail of for each of the 64 decision strategies for this 4- 

month pig problem. 

In Fig. 4 , the four non-dominated strategies are connected and 

marked with orange circles, while the remaining 60 dominated 

strategies are marked with blue circles. Going from left to right, 

the first non-dominated strategy has the highest expected utility, 

while the fourth one has the highest conditional expectation in the 

20% lower tail. The vaccination policies in these non-dominated 

strategies are, respectively, as follows: 

1. Never treat at 1st month. Treat at 2nd and 3rd month if and 

only if test results are positive. 

2. Never treat at 1st and 2nd month. Treat at 3rd month if and 

only if test results are positive. 

3. Never treat at 1st and 3rd month. Treat at 2nd month if and 

only if test results are positive. 

4. Never treat at any of the 3 months. 

Thus, the local strategy of never treating in the first month is 

a robust decision recommendation as it is contained in all non- 

dominated strategies and thus in the set of ‘core’ selections in the 

sense of Robust Portfolio Modelling (RPM) ( Liesiö, Mild, & Salo, 

20 07; 20 08 ). Furthermore, all local strategies which suggest treat- 

ments based on negative test results can be ruled out from con- 

sideration, because they are not included in any non-dominated 

strategies and thus belong to the set of ‘exterior’ RPM selections. 

The chosen level α = 20% could be have been set at other levels, 

too (say, at 5% or 10%), leading to the introduction of other objec- 

tive functions that could complement or replace the objective as- 

sociated with α = 20% . Furthermore, because the fourth year cash 

flow is either 1 0 0 0 or 30 0, preceded by either 0, 1, 2 or 3 in- 

jections at a cost of 100 during the first three months, the final 

cash position will be 0, 10 0, 20 0, 30 0, 70 0, 80 0, 90 0 or 1 0 0 0 

(all in DKK) whereby the probability of each of these positions 

depends on the selected decision. For example, in the pig farm 

example there are eleven first-order stochastically non-dominated 

strategies. Among these, there are seven that have an expected fi- 

nal cash position over 670 DKK; but none of these seven strategies 

involve any first period injection. Thus, in the light of this infor- 

mation, one could consider omitting the first period test entirely. 

This notwithstanding, the eleven stochastically non-dominated 
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Fig. 4. Expected utilities and conditional expectations in the lower α = 0 . 20 tail. The four non-dominated strategies are connected and marked with orange circles. 

strategies are instructive in that they also reflect the preferences 

of a highly risk averse DM who is intent on maximizing the prob- 

ability of having a strictly positive final cash position. In this case, 

it is optimal to provide first period injections regardless of the test 

result. This strategy is stochastically non-dominated, albeit with a 

very low expected cash position at 583 DKK. 

6.3. Computational performance, comparative advantages and future 

extensions 

The computational performance of Decision Programming can 

be enhanced in several ways. For example, if the influence diagram 

contain chance nodes that do not belong to the information set 

of any decision node, then this structure can be exploited as fol- 

lows. Specifically, let D = D ∪ { i | ∃ j ∈ D s . t . i ∈ I( j) } be the union 

of decision nodes and their information sets and similarly C = C ∪ 

{ i | ∃ j ∈ C s . t . i ∈ I( j) } . Then, for a given strategy Z, the path prob- 

ability s is p(s ) = p(s 
C 
) = 

∏ 

i ∈ C p(s i | s I(i ) ) for any active path s ∈ 

S Z = { s ∈ S | Z(s I( j) ) = s j , j ∈ D } and 0 otherwise. Now, define binary 

decision variables x (s ′ ) ∈ { 0 , 1 } , s ′ ∈ S 
D 

= { s 
D 
| s ∈ S} such that the 

constraints 1 − [ | D | − ∑ 

j∈ D z(s ′ 
j 
| s ′ 

I( j) 
)] ≤ x (s ′ ) ≤ 1 

| D | 
∑ 

j∈ D z(s ′ 
j 
| s ′ 

I( j) 
) 

hold for s ′ ∈ S 
D 

. Then, x (s 
D 
) = 1 if and only if the s 

D 
is contained 

in an active path s ∈ S Z and the objective function can be written 

as E [ U(s ) | Z] = 

∑ 

s ∈ S Z x (s 
D 
) p(s 

C 
) U(s V ) . Thus, the number of deci- 

sion variables x (s 
D 
) is at most i ∈ 

∏ 

i ∈ D | S i | , which can be smaller 

than the total number of paths | S| = i ∈ 

∏ 

i ∈ C∪ D | S i | . In (20) , it is 

also possible to replace the decision constraints for each decision 

by the single constraint π(s ) ≤ x (s 
D 
) . 

Further improvements in computational performance can be 

sought by noting that because the path probabilities satisfy the 

constraint π(s ) ≤ p(s ) in (19) and because the utilities can be 

normalized into the [0,1] interval so that U(s ) ≤ 1 , s ∈ S, we have ∑ 

s ∈ S ′ π(s ) U(s ) ≤ ∑ 

s ∈ S ′ p(s ) . Thus, the contribution of any given 

subset of paths S ′ � S to the total expected utility is bounded from 

above by 
∑ 

s ∈ S ′ p(s ′ ) . This can be exploited to obtain an approxi- 

mate solution by omitting paths with very low probabilities and 

by computing the optimum based on the more probable paths. 

The computed optimum will then provide a lower bound for the 

true optimum, while the sum of probabilities for the omitted paths 

gives an upper bound for how much higher than the computed ap- 

proximate solution the true optimum can be. For example, in the 

N monitoring example in Section 6.1 . with an initial binary load 

L and N = 8 binary reports on this load, there are 2 9 = 512 sub- 

paths of length nine, defined by the initial load L followed by the 

eight reports R i , i = 1 . . . , 8 . Based on the probability distributions 

in Section 6.1 , the 62% most probable subpaths account for about 

99% of the total probability. Hence, a solution which is within 1% of 

the optimum can be obtained by using paths which are extensions 

of these most probable subpaths. 

In comparison with solution approaches based on the explicit 

enumeration of strategies, Decision Programming has comparative 

advantages when the total number of strategies is large relative 

to the number of paths. For example, in the N monitoring ex- 

ample, it could be of interest to assess what benefits could be 

gained by sharing some or even all measurement reports to in- 

form the actions. In this case, the number of paths would remain 

the same, but the number of decision strategies would grow ex- 

tremely rapidly. To see this, assume that all information is shared 

to the actions. Then each of the 2 N possible combinations of re- 

ports corresponds to an information state that is available to the 

N actions. For each of these combinations, one could, in princi- 

ple, select any one of the 2 N possible combinations of binary ac- 

tions at the N action nodes. Because these selections can be made 

separately for each information state, the number total number of 

strategies becomes (2 N ) (2 N ) . 

Concretely, for four N = 4 actions there are 2 10 = 1 024 paths. 

Now, if all reports are shared among the actions, the number of 

strategies grows from 4 4 = 256 to (2 4 ) (2 4 ) = 1 . 84 × 10 19 . Still, the 

size of the optimization model (17) –(22) grows rather moderately. 

The number of binary decision variables z(s i | s I(i ) ) grows from 16 

to 128, the number of equality constraints (18) grows from 8 to 48, 

and the number inequality constraints (19) - (20) stays unchanged 
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at 1 024 and 4 096, respectively. This problem is small enough so 

that it can be promptly solved to optimality. 

Within this setup, it is possible to assess if the benefits of shar- 

ing information about the actions outweigh the possible costs of 

such information sharing. Such an assessment can be carried out 

only on condition that the optimal solution can be determined 

both (i) when the information is shared and (ii) when it is not. 

In the latter case, the no-forgetting assumption does not hold and 

dynamic programming approaches cannot be deployed effectively. 

From this perspective, we believe that Decision Programming has 

advantages in the class of problems that support the design of sys- 

tems in which information is to be shared and exploited optimally. 

We also note that the formulation (17) –(22) has been applied 

to compute optimal strategies for a realistic Prognostics and Health 

Management problem ( Mancuso, Compare, Salo, & Zio, 2021 ) with 

such a large number of strategies that the solution could not 

have been derived through explicit enumeration. This influence di- 

agram in this application has seven five-state chance nodes and 

two three-state decision nodes so that the number of paths is 

5 7 × 3 2 = 703 125 paths. Each of the two decision nodes are in- 

formed by two five-state chance nodes and thus have twenty- 

five information states. The total number of strategies is therefore 

3 25 × 3 25 ≈ 7 . 18 × 10 22 . 

Decision Programming can be extended to problems repre- 

sented by hybrid influence diagrams (cf. Li & Shenoy (2012) ), in 

which some of the decision and random variables associated with 

decision and chance nodes, respectively, are continuous. There are 

several cases, depending on whether random variables, decision 

variables or both are continuous. Here, we offer ideas for ap- 

proaching such problems, under the assumption that the domains 

of all continuous variables are compact and that the utility and 

probability density functions are continuous. 

First, problems involving discrete decisions based on some con- 

tinuous random variables can be tackled with techniques such as 

dynamic discretization ( Neil, Tailor, & Marquez, 2007 ). That is, if 

the random variable X i , i ∈ C, is represented by the real-valued ran- 

dom variable r ∈ R with the probability density function f i (r | s I(i ) ) 

for the discrete information states s I(i ) ∈ S I(i ) , then this variable can 

be discretized into n i states by defining the intervals [ r k , r k +1 ) , k = 

1 , . . . , n i with probabilities 
∫ r k +1 

r k 
f i (r | s I(i ) ) dr. If the information set 

of this chance node i contains other chance nodes with continuous 

random variables (say, X j , j ∈ I(i ) ), the discretization needs to pro- 

ceed in the order of increasing indices so that the discrete infor- 

mation sets S I(i ) are defined first. In deriving the conditional prob- 

abilities (1) , information about the distribution of X j as well as the 

conditional distribution of X i given X j , j ∈ I(i ) will be needed. Mul- 

tivariate uncertainties described by m -dimensional random vari- 

ables r m ∈ R 

m could be accommodated by defining intervals over 

each of the m dimensions and by deriving probabilities by inte- 

grating over the resulting m -boxes. 

The formulation based on binary variables x 
D 
(s ) , as outlined at 

the beginning of this section, can be very useful in discretizing 

continuous random variables that are not in the information set 

of any decision node. In this case, increasing the granularity of the 

approximation does not much affect computational performance, 

because the number of variables or constraints stays unchanged al- 

though the number of paths in the objective function grows. This 

would be would be the case, for instance, in the N monitoring ex- 

ample where the initial load L and the magnitude of the failure F 

do not belong to the information sets of the fortification actions 

A i . Thus, the distributions of L and F could be approximated with 

many intervals without increasing the computation time markedly. 

Such approximations can be guided by minimizing the Kullback- 

Leibler distance between the discretized distribution and the un- 

derlying continuous distribution (for an illustration, see Yet et al., 

2018 ). Even other approximations techniques can also be employed 

(see, e.g., Hammond & Bickel, 2013 ). 

If there is some continuous random variable which belongs to 

the information set of a discrete decision variable, then improv- 

ing the accuracy of the approximation increases the number of 

paths and constraints significantly. However, because the number 

of discrete strategies is finite, there then exists a partition of the 

domains of the continuous variable such that one of the discrete 

strategies is optimal over each interval in this partition. Thus, one 

possibility is to explore such partitions iteratively and to solve the 

resulting optimization models, keeping track of which strategies 

perform best over the different intervals. Comparable simulation- 

optimization approaches have been tackled in the context of diag- 

nostic testing problems, for example (see, Hynninen, Vilkkumaa, & 

Salo, 2020; Müller, Berry, Grieve, Smith, & Krams, 2007 ). 

If there are continuous decision variables with discrete informa- 

tion states, then the task is to choose which real-valued decision 

should be chosen for each information state. Here, one possibil- 

ity is to generate manageable numbers of candidates (for instance 

through sampling) that represent possible local decision strategies 

and to solve the resulting problems repeatedly to identify ‘good’ 

strategies which are optimal within their own set of candidates 

and from which the best performing ones are taken forward to 

generate recommendations. In principle, the generation of addi- 

tional candidates for local decision strategies could be guided by 

applying ideas from augmented nested sampling which has been 

applied successfully in MEU problems in two-stage decisions with 

a single endogenous uncertainty (see, e.g., Bielza, Müller, & Rios In- 

sua, 1999; Ekin, Polson, & Soyer, 2017; Ekin, Walker, & Damien, 

2020 ). Yet, in our context the characterization of the joint probabil- 

ity distribution over all decisions and chance events would in most 

cases prove challenging. Moreover, it could be hard to provide con- 

vergence guarantees, because some of the conditional probabilities 

at chance nodes may be zero for some information states. 

Importantly, the generality of the MILP-formulation makes it 

possible to exploit remarkable improvements in professional-grade 

solver implementations such as Gurobi and CPLEX in a relatively 

straightforward manner instead of relying on ad-hoc implementa- 

tions which are not readily available, tend to be problem specific 

and may provide few guarantees for having followed sound soft- 

ware engineering practices in terms of versioning, updating and 

continuous improvement. In this regard, our contribution repre- 

sents an important step forward in addressing an increasingly large 

class of problems based techniques such as decomposition, paral- 

lelization and heuristic methods that have made considerable in- 

roads in solving other challenging MILPs. Here, there are two par- 

ticularly promising avenues for investigation. The first is to investi- 

gate the formulation (17) –(22) through the lenses of combinato- 

rial analysis and convex analysis on polyhedral spaces to derive 

stronger formulations from the standpoint of LP relaxation. This 

would suggest additional valid inequalities and/or relaxations of 

the integrality constraints on z(s j | s I( j) ) . The second direction is 

to investigate decomposition approaches that exploit the problem 

structure to identify possibilities for parallelization. In particular, 

because for any strategy Z ∈ Z the set of active paths s ∈ S Z is a 

small subset of all paths, it is possible develop column generation- 

based approaches (using a professional-grade framework such as 

Solving Constraint Integer Programs, see https://www.scipopt.org/ ). 

Both avenues, which have proven very efficient in other challeng- 

ing MILPs, such as vehicle routing and scheduling problems, repre- 

sent exciting research directions for future work. 

7. Summary and conclusions 

In this paper, we have developed Decision Programming as an 

MILP optimization approach for solving mixed-integer multi-stage 
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decision problems with discrete decisions and chance events. Such 

problems can be represented as influence diagrams, including LIM- 

IDs in which the usual ‘no-forgetting’ assumption may not hold. In 

our approach, risk preferences can be captured through non-linear 

utility functions over consequences or, alternatively, by extending 

the objective function with terms for risk measures or by intro- 

ducing risk constraints. Multiple objectives can be handled, for in- 

stance, by using a weighted additive linear function to aggregate 

consequences (or their utilities) across different value nodes. The 

set of all non-dominated strategies, too, can be computed with 

MILP by employing a weighted linear objective function together 

with the sequential introduction of constraints to eliminate dom- 

inated strategies and already discovered non-dominated strategies 

from consideration. 

In the context of stochastic optimization, Decision Programming 

is particularly useful in mixed-integer decision problems where 

the probabilities in the scenario tree depend endogenously on ear- 

lier integer-valued decisions. This ability to handle endogenous un- 

certainties can be helpful, for instance, when appraising R&D and 

marketing investments, because the size of the market as well as 

the products’ market performance are often contingent on these 

earlier decisions. From this perspective, the proposed approach can 

be viewed as a generalization of Contingent Portfolio Program- 

ming (see Gustafsson & Salo (2005) and the on-line companion) 

to problems where the probabilities of chance events associated 

with branches of the scenario tree depend on project selection de- 

cisions. 

Importantly, the Decision Programming framework can be em- 

ployed to address problems that are not amenable to dynamic pro- 

gramming techniques, such as problems in which earlier decisions 

cannot be recalled, there are multiple agents, or deterministic and 

chance constraints make it impractical or impossible to conven- 

tional techniques. Therefore, although Decision Programming has 

parallels to developments in stochastic mixed-integer dynamic pro- 

gramming (such as employing mathematical programming formu- 

lation to find optimal policies, as in the seminal work of Manne 

(1960) and ensuing literature; see Bertsekas (2012) for a thorough 

exposition), Decision Programming makes it possible to tackle a 

broader class of problems by exploiting the expressiveness of in- 

fluence diagrams for problem structuring, whereafter the equiva- 

lent MILP formulations that can be solved using off-the-shelf MILP 

solvers. 

Based on our numerical experiments, the Decision Program- 

ming approach can be used to solve problems of realistic size to 

optimality, even if it does suffer from the curse of dimensionality 

just like other exact approaches for solving dynamic problems with 

a larger number of decision periods and uncertainties. We have 

therefore outlined approaches for enhancing its computational per- 

formance, for example by exploiting the properties of the problem 

structure or by assessing which paths could be eliminated from 

consideration based on their low probabilities in order to compute 

good approximate solutions. We also believe that future research is 

warranted for investigating how techniques which have been pro- 

posed for convex optimization problems with continuous variables 

(such as those proposed by Dupa ̌cová, Gröwe-Kuska, & Römisch, 

2003 ) can be adapted to deal with continuous decision and ran- 

dom variables. 

In summary, Decision Programming holds promise in extending 

the expressiveness of influence diagrams to problems in which it 

may be necessary to account for the probability distribution or de- 

cision consequences and their uncertainties, the presence of mul- 

tiple objectives or the interdependencies between decisions that 

taken by multiple agents. At the same time, it provides a struc- 

tured and systematic approach so that practitioners need not be 

overly concerned with specific problem characteristics (such as 

whether or not the regularity or no-forgetting assumptions are ful- 

filled) in deciding how the problem should be formulated as an 

optimization model. This helps circumvent the need to implement 

different solution methods, allowing practitioners to focus on mod- 

elling, while relying on the maturity and ever improving perfor- 

mance of mathematical programming solvers. 
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Appendix A 

Proof of Theorem 1. Let Z ∈ Z and take any path s ∈ S. The in- 

formation set of the first node k = 1 is empty. If this node is a 

chance node, the random variable X 1 does not depend on Z and 

thus π1 (s ) = P (X 1 = s 1 ) = P (X 1 = s 1 | Z) . If it is a decision node, 

there are two cases. First, if Z 1 = Z 1 (∅ ) = s 1 , it follows that P (X 1 = 

s 1 | Z) = 1 while (5) gives z(s 1 ) = 1 . Thus, by (8) we have π1 (s ) = 

z(s 1 ) = 1 = P (X 1 = s 1 | Z) . Second, if Z 1 � = s 1 , then P (X 1 = s 1 | Z) = 

0 while z(s 1 ) = 0 gives π1 (s ) = 0 , and hence π1 (s ) = 0 = P (X 1 = 

s 1 | Z) in this case, too. Thus, Theorem 1 holds for k = 1 . 

Assume that (13) holds for j ∈ 1 , . . . , k − 1 with k − 1 < n . We 

show that it holds for k , too. If k ∈ C is a chance node, { j | j ∈ D, j ≤
k } = { j | j ∈ D, j ≤ k − 1 } and 

P (s 1: k | Z) = 

(∏ 

i ∈ C 
i ≤k 

P 

(
X i = s i | X I(i ) = s I(i ) 

))(∏ 

j∈ D 
j≤k 

I 
(
Z j (s I( j) ) = s j 

))

= P 

(
X k = s k | X I(k ) = s I(k ) 

)( ∏ 

i ∈ C 
i ≤k −1 

P 

(
X i = s i | X I(i ) = s I(i ) 

))
( ∏ 

j∈ D 
j≤k −1 

I 
(
Z j (s I( j) ) = s j 

))

= P 

(
X k = s k | X I(k ) = s I(k ) 

)
πk −1 (s ) = πk (s ) , 

where the last equality follows the induction hypothesis and (7) . 

Analogously, if k ∈ D is a decision node, then 

P (s 1: k | Z) = I 
(
Z k (s I(k ) ) = s k 

)( ∏ 

i ∈ C 
i ≤k −1 

P 

(
X i = s i | X I(i ) = s I(i ) 

))
( ∏ 

j∈ D 
j≤k −1 

I 
(
Z j (s I( j) ) = s j 

))

= z(s k | s I(k ) ) πk −1 (s ) = πk (s ) , 

where the last equality follows the induction hypothesis and Eqs. 

(5) and (8) . �

Proof of Proposition 1. Choose α ∈ (0 , 1] and consider η∗ = 

VaR α(Z) which, by (29) , is well defined. Then constraints (33) –

(36) are satisfied by ρ(s ) , ρ(s ) , λ(s ) and λ(s ) , defined so that 

λ(s ) = λ(s ) = 1 for paths such that C(s ) < η∗; λ(s ) = 1 and λ(s ) = 

0 for C(s ) = η∗; and λ(s ) = λ(s ) = 0 for C(s ) > η∗. From (37) - (39) 

it follows that ρ(s ) = ρ(s ) = π(s ) when C(s ) < η∗; 0 = ρ(s ) = 0 ≤
ρ(s ) ≤ π(s ) for C(s ) = η∗; and ρ(s ) = ρ(s ) = 0 when C(s ) > η∗. 

By the choice of η∗, is it possible to choose variables ρ(s ) ≥
0 for C(s ) = η∗ so that (40) gives the correct tail expectation ∑ 

s ∈ S ρ(s ) C(s ) /α in (31) . Finally, assume that there exists another 
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solution for some η′ < η∗. But then (40) implies that the prob- 

ability α is attained as the sum of those paths whose conse- 

quence is lower than or equal to η′ , violating the assumption that 

η∗ = VaR α(Z) . �

Supplementary material 

Supplementary material associated with this article can be 

found, in the online version, at 10.1016/j.ejor.2021.12.013 
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