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Abstract: In several examples it has been observed that a module category of a vertex
operator algebra (VOA) is equivalent to a category of representations of some quantum
group. The present article is concerned with developing such a duality in the case of the
Virasoro VOA at generic central charge; arguably the most rudimentary of all VOAs, yet
structurally complicated. We do not address the category of all modules of the generic
Virasoro VOA, but we consider the infinitely many modules from the first row of the Kac
table. Building on an explicit quantum group method of Coulomb gas integrals, we give
a new proof of the fusion rules, we prove the analyticity of compositions of intertwining
operators, and we show that the conformal blocks are fully determined by the quantum
group method. Crucially, we prove the associativity of the intertwining operators among
the first-row modules, and find that the associativity is governed by the 6j-symbols
of the quantum group. Our results constitute a concrete duality between a VOA and
a quantum group, and they will serve as the key tools to establish the equivalence of
the first-row subcategory of modules of the generic Virasoro VOA and the category of
(type-1) finite-dimensional representations of U (sl2).
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1. Introduction

Conformal field theories, vertex operator algebras, and quantum groups. Two-
dimensional conformal field theories (CFT) are an outstanding example of extremely
fruitful interaction of physics and mathematics [DFMS97,Gaw99,Hual2,Nah00]. Their
physical applications include string theory [GSW87] and critical phenomena in planar
statistical physics [Mus10], and they are among the best understood examples of quantum
field theories. In mathematics, ideas from CFT have been instrumental to the Monster
simple group [FLM89], tensor categories [BKJO1], subfactors [Kaw15], moduli spaces
[FBZ04], the geometric Langlands program [Fre07], and conformally invariant random
geometry [BB04], among others.

As with quantum field theories in general, the mathematical axiomatization and con-
struction of CFTs are vast challenges, but CFTs possess remarkable structure that has
enabled a highly successful algebraic axiomatization based on vertex operator alge-
bras (VOA) [Kac97,LL04,Hual2]. A VOA is essentially the chiral symmetry algebra
of a CFT as envisioned in the seminal work of Belavin, Polyakov, and Zamolodchikov
[BPZ84a,BPZ84b]. The symmetry algebra always contains the Virasoro algebra re-
sponsible for the conformal symmetry itself. Virasoro vertex operator algebras are thus
fundamental in that they incorporate only and exactly the minimal amount of symmetry
that any CFT possesses. At special choices of the central charge c, a key parameter
of CFTs, there may actually exist two different Virasoro VOAs: the universal Virasoro
VOA [LL04] (maximally large) and its irreducible quotient, the minimal Virasoro VOA
[Wan93]. At generic values of ¢, however, the universal Virasoro VOA itself is irre-
ducible, and we call it a generic Virasoro VOA. The topic of this article is such generic
Virasoro VOAs.
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Generic Virasoro VOAs have been studied very little in comparison with many other
VOAs. The main reason is that they fail most structural properties that have enabled sig-
nificant progress. In particular, they are far from rational VOAs [FZ92,Zhu96], which
possess a semisimple category of modules with finitely many simple objects. Generic
Virasoro VOAs admit first of all infinitely many simple modules, and many more inde-
composable but not irreducible ones. We are lacking even the description of the general
indecomposable modules, let alone the category of such modules equipped with the de-
sired structures of a tensor product and braiding. In a notable recent progress [CTH+21],
the category of C-cofinite modules of the generic Virasoro VOA was studied, and the
tensor product constructed in it.

An intriguing aspect of conformal field theories, and of the corresponding VOAsS,
is a hidden quantum group symmetry. In a number of prominent examples, a represen-
tation category of a suitable quantum group has been found to agree with a module
category of a VOA—often together with the tensor products and braiding in the cate-
gories. The case of (VOAs based on) Wess—Zumino—Witten (WZW) CFTs at various
levels have been treated in [Dri89,KL94a,McR16], and the corresponding quantum
group was a g-deformation of the finite dimensional Lie algebra of the correspond-
ing WZW theory. Another well studied example is the triplet W-algebra of logarith-
mic CFT [FGST06b,FGST06a,NT11,KS11,TW13,GN21,CLR21], whose representa-
tion category is equivalent to that of the restricted quantum group of sl,. Though not
as much as a categorical equivalence, a certain structure related to a quantum group has
been also observed in the context of Liouville CFT [TV 14].

First row subcategory of modules for the generic Virasoro VOA The category of all
modules of the generic Virasoro VOA being hopelessly complicated, we focus here on
a subcategory we call the first row subcategory. It is the semisimple category whose
infinitely many simple modules are the irreducible Virasoro highest weight modules “in
the first row of the Kac table”, i.e., with highest weights & = hj g, s € Z-o, when
hys, 1S € Zso, denote the usual Kac labeled highest weights [Kac79]. These corre-
spond to a certain infinite set of (chiral) primary fields in a CFT, which has been found
to be relevant in particular to questions in conformally invariant random geometry—
the two simplest of these primary fields after the identity, with Kac labeled conformal
weights i1 2 and A 3, correspond to SLE-type curves’ starting points [BB03b,Dub07]
and boundary visit points [BB03a,JJK16,Dubl5], respectively. For such SLE applica-
tions, the generic Virasoro VOA corresponds to generic values of the key parameter« > 0
of SLEs [Wer(04,RS05,Law08], and is completely natural.

By contrast to the general Kac labeled highest weights &, s, r, s € Z~, at the first
row highest weights /1 5, s € Z..¢ one has truly explicit expressions of singular vectors
in the Virasoro Verma module, by the Benoit—St. Aubin (BSA) formula [BSA88]. Corre-
spondingly the BPZ partial differential equations [BPZ84a] for the correlation functions
of these primary fields are explicit. This is a feature that facilitates the analysis of the
first row subcategory, but resorting to the explicit partial differential equations does not
in principle seem essential.

Our analysis of this first row subcategory of the generic Virasoro VOA is based on a
quantum group method of [KP20], which is a concrete and practical version of the hid-
den quantum group symmetry [MR89,PS90,RRRA91,FW91,SV91, Var95, GRAS96]
developed with applications [KP16,JJK16] to random geometry in mind. The corre-
sponding quantum group is i, (s[2), a g-deformation of sl,, at a deformation parameter g
which is not a root-of-unity. Correspondingly the category of (type-1) finite-dimensional



1138 S. Koshida, K. Kytola

representations of this quantum group is semisimple, with infinitely many irreducible
representations, and it is equipped with tensor products and braiding [Lus93,BKJO01].

We consider it noteworthy that our VOA without extended symmetries of Lie group
type (present, e.g., in WZW models) has a quantum group counterpart in this way, and
that our VOA, which is irrational with very complicated representation theory, corre-
sponds to a quantum group with extremely well-behaved category of finite-dimensional
representations (albeit with infinitely many irreducibles). The case more often seen
before has been rational VOAs with good module categories, and complicated root-of-
unity quantum groups whose representation categories are “semisimplified” for certain
purposes.

In general terms, our main results are that the first row subcategory of modules of
the generic Virasoro VOA is stable under fusion, and detailed calculations of the fusions
with the quantum group method.

Methods After reviewing the characterization and construction of intertwining operators
among the first row modules, we show that the intertwining operators and their arbitrary
compositions are the correlation functions obtained with the quantum group method.
A priori, the compositions of intertwining operators of a VOA are formal series, but
this shows that they are actual analytic functions given by explicit integral formulas. In
particular one obtains convergence of the series, and straightforward methods of analytic
continuation.

Showing associativity of tensor products of modules of VOAs is generally a very
difficult task, and one of the main obstacles to constructing the appropriate tensor cate-
gory of modules of a VOA [HL92,HL.94,HL.95a,HL95b,HL.95¢,Hua95, Hua05,HLZ 14,
HLZ10a,HLZ10b,HLZ10c,HLZ10d,HLZ10e,HLZ11a,HLZ11b], see also [HKJL15,
Section 2] for a review. The difficulties lie partly in the fact that the formal series
are not even supposed to correspond to single-valued functions, so nontrivial branch
choices are inevitable, and yet the convergence and analyticity of the formal series is far
from obvious. The explicit analytic expressions from the quantum group method enable
our proof of associativity. It is also the explicit expressions that show the equivalence
of the tensor categories of the finite-dimensional representations of I/, (sl) and of the
first-row modules of the generic Virasoro VOA. The operator product expansion (OPE)
coefficients of the corresponding primary fields, in particular, are explicit, and involve
the quantum 6 j-symbols.

The braiding in the tensor category of VOA modules makes the multivaluedness of
the functions even more manifest. We will postpone the construction of the braiding in
the first row subcategory to a subsequent article, but the key to it is similarly the explicit
analytical expressions that are amenable to analytic continuation.

Novelty and advantages of the approach Our results provide a very satisfactory VOA
to quantum group duality for the fundamentally important generic Virasoro VOA, es-
pecially when combined with the follow-up work establishing the equivalence of the
tensor categories of the first row modules of the VOA and of (type-1) finite-dimensional
representations of the quantum group U, (sl). The formulation is practical, and in par-
ticular allows us to perform VOA calculations with very straightforward linear algebra
in finite-dimensional representations of U, (sl2).

Conversely the method sheds light onto the quantum group method of [KP20]. No-
tably, VOA techniques can be used to systematize the calculation of general series
expansion coefficients of the correlation functions obtained from the method. Moreover,



The Quantum Group Dual of the First-Row Subcategory 1139

the result gives a rather satisfactory characterization of the space of solutions to BSA
PDEs obtained from the quantum group method: it says that the obtained solutions are
exactly the linear span of the conformal blocks, which can be described combinatorially,
and in this sense all solutions relevant to CFTs are included. By contrast, direct analytical
description of the solution space is complicated already in the particular case involving
only second order BSA PDEs [FK15a].

Underlying the method and the results is the key observation that the intertwining
operators in the first row subcategory for the generic Virasoro VOA are described by
explicit analytic functions, not just formal series.

Related works The recent article [CJH+21] also treats the question about the tensor
products in a subcategory of modules for the generic universal Virasoro VOA. The
category of all C;-cofinite modules considered there is more general than the first row
category considered in the present article. Our approach is thus less general, but it is
fully explicit, and additionally shows the intimate relationship with the quantum group.

Very recently, in [GN21], a ribbon tensor equivalence was established between a
module category of the Virasoro VOA at a central charge lying in a specific series and a
module category of the quantum SL, at a root of unity. That article employs results about
tensor categories directly, and specifically the fact that the tensor categories in question
have a distinguished generator. The first row subcategory of the generic Virasoro VOA
is also generated (as a tensor category) by a single module. With the methods of [GN21]
one could therefore expect to obtain a complementary viewpoint to the relationship of
the U, (s2) and our first row subcategory, which would be directly category theoretical
but not as explicit about the correlation functions as our approach.

The setting of the article [TV14] involves the same VOA and the same quantum
group as the present work, and the authors also observed a duality between modules of
the two. The modules of both are, however, different from what we consider here. In
other words, the results of us and [TV 14] thus pertain to different CFTs despite the fact
that the VOA and the quantum group are the same.

The quantum group method of [KP20] relies on tensor products of finite-dimensional
representations of the quantum group U, (sl>) at generic values of the deformation pa-
rameter ¢ when the representation theory is semisimple. Questions about it often reduce
to the commutant of the quantum group on the tensor product representation, via a
general g-Schur-Weyl duality. This approach to calculations with the quantum group
method has been developed in particular by Flores and Peltola, in a series of articles
[FP18b,FP18a,FP20,FP21]. The commutant is a generalization of Temperley-Lieb al-
gebas, and Flores and Peltola have developed specific representation theoretic tools that
are suitable for explicit calculations in the quantum group method. Some of the calcu-
lations in the present article, especially related to the 6 j symbols, are closely parallel to
such a g-Schur-Weyl duality approach. The results we need are, however, sufficiently
concrete and tractable directly, so we do not need to introduce the commutant algebra
and its presentation by generators and relations.

Ideas of reconstructing intertwining operators for the Virasoro VOA from integral
formulas appeared already in the seminal article [Fel89], and more recently [KKP19]
contains a conjecture of a special case of the precise relationship between the quantum
group method and the generic Virasoro VOA that we establish here.

As a future perspective, it would be desirable to develop the method to a more
systematic one and facilitate generalizations in particular to non-semisimple, root of



1140 S. Koshida, K. Kytola

unity cases. For that purpose, we view the theories of twisted (co)homologies [AK11,
TW14] and Nichols algebras [Len21] as particularly promising.

2. Background on the Quantum Group Method

In this section we review the method of [KP20], by which one construct functions of
relevance to conformal field theories from vectors in tensor product representations of
a quantum group. In Sect. 3 we select specific vectors in such representations, which
will correspond to the conformal blocks that are crucial to all of our main results: the
construction (Sect. 4) of the intertwining operators among the first-row modules of the
generic Virasoro VOA, their compositions (Sect. 5), and associativity (Sect. 6).
The textbook [Kas95] uses conventions similar to ours about the quantum group i (s2).

Our specific choices and notations are identical to [KP20].

2.1. The quantum group. The quantum group U, (sly) is the Hopf algebra defined as
follows. Fix a non-zero complex number ¢ € C \ {0}.

Definition of the quantum group As an algebra, U, (s[) is generated by elements

E,F.K, K",
subject to relations
KK '=1=K"'K, KE = ¢* EK,
EF—FE:——L—{K—K‘S KF =q *FK.

qg—q7!

The Hopf algebra structure on 4, (sl2) is uniquely determined by the coproduct, an alge-
bra homomorphism A: U, (slz) — U, (sl2) ® U, (sl), whose values on the generators
are

AKY=K®K, AE=EQK+1QE, AF)=F®Il+K '®F.

Representations of the quantum group We consider the representations of 4, (sl>) which
continuously g-deform the finite-dimensional representations of sl,. These are specified
by a highest weight A € N. The (A + 1)-dimensional representation M;, of 1/, (sl») has a

(8

basis (u j ))}\.:0 in which the generator K acts diagonally

K,uy‘) =g’ 2 uy\), forj=0,...,2,

and the generators E and F' act as raising and lowering operators

) 0 if j=0
Euy’ = . o). .
! [[J]][[)“"l_]ﬂuj_] if0 < j <4,
W .
Fu® = Uily ?f0§]<)»
J 0 if j =2,
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where we used the g-integers defined by

l’l —n

—q
[n] = e

The representations M, A € N, are irreducible if ¢ is not a root of unity, as we will
assume throughout the present article.

Tensor product representations Using the coproduct A: U, (slr) — U, () @ U, (sl2),
we can equip the tensor product V' ®V” of any two representations V', V" of U, (sl») with
the structure of a representation. Coassociativity of A ensures that we can unambiguoulsy
define triple tensor products such as V' ® V" ® V", as well as further iterated tensor
products. One should note, however, that due to the lack of cocommutativity of A, we
can not canonically identify V' ® V" with V' ® V'. In the category of modules that we
will consider, such identifications can be done by braiding, but the choice of braiding
direction must be specified.
The rest of the section assumes that ¢ is not a root of unity,

q" #1 foralln € Z\ {0}.

Then the tensor products of the representations M, , A € N, are completely reducible,
and the Clebsch—Gordan decomposition is the same as for sl

min(u,2)

Mi@M, = P My o 2.1)
£=0

see, e.g., [KP20, Lemma 2.4]. Let us therefore define the selection rule set associated
to 1, A € N as the set of those o such that a copy of M, is contained in My @ M, i.e.,
Sel(u, 1) = [o eN ‘ c+pu+A=0(mod?2), |u—A|l <o 5;L+A].

Note the symmetries
Sel(u, &) = Sel(r, w) and
o eSel(u, ) <= pneSello,A) <= xeSel(n,o).

The most convenient formulation of the Clebsch—Gordan rule for our purposes is in
terms of the following embedding.

Lemma 2.1. Let i, . € N. Then we have

1 ifo e Sel(u, 1)

dim(Homuq(s[z)(Ma, M, ® Mu)) = {O othermise.

In the case o € Sel(u, 1), any Uy (slp)-module map My — M; ® M, is proportional
to the embedding

AR My > My @M, (2.2)

which is uniquely determined by

M+)» a

(5) ) EREY [ = 1> =il
= 3t 0 Sl

q/(u+l J) o) w
e u ®uir).

i,j=0
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Proof. This follows directly from, e.g., [KP20, Lemma 2.4]. O

Since for o € Sel(u, A) the multiplicity of the irreducible representation M, in the
tensor product M; ® M,, is one, there exist a unique I/, (sl>)-module map

0, M, @M, — My suchthat  #,°, o /g# =idy, . (2.3)

The projection
0 My @My, — M, @ My,

from M ® M, to its unique subrepresentation isomorphic to M, then agrees with the
composition of ﬁfu with the embedding L):}M ,

A, N
w0, =gt om’,. (2.4)

2.2. The correspondence with functions. Throughout this section, we parametrize g by
K via

idm [k
9

g=qk)=e

and assume that « € (0, 0c0) \ Q. Then ¢ has unit modulus, but is not a root of unity.
For A € N, we write

A2 +2) — k)
2k

for the conformal weight of a module in the “first row of the Kac table” (see Sect. 4).
For N € N, let us denote by

h(A) = (2.5)

XN :={(x1,...xN)eRN|x1 <-~<xN]

the chamber of N ordered real variables. We also fix parameters A, ..., Ay € N, and
sometimes refer to all of them collectively as

A= (1.0 AN).

We are interested in functions F': Xy — C that satisfy certain properties moti-
vated by conformal field theory: N linear partial differential equations, asymptotics as
two variables approach each other, as well as translation invariance, homogeneity, and
sometimes covariance under more general Mobius transformations.

Specifically, for each j € {1, ..., N}, we define a Benoit—Saint-Aubin partial differ-
ential operator

Aj+l (_4/K)1+A.j_k )\.]'2

79 =3 FU D (26)
k—1 k -P —Pk’
k=1 pr,...pr=>1 Hu:l(Z?zl pi)(2i=u+1 pi) : ¢
pr++pr=A;+1
of order A; + 1, where
< B
R 2:(@p—wﬂﬂag+a+nmugu;—ww>, forn € Z. (2.7)

1<i<N

i#]j



The Quantum Group Dual of the First-Row Subcategory 1143

The parameters A1, ...,Ax € N as well as the number of variables N are implicit

in this notation. Note that with a fixed j, the operators .,Sﬂn(/ ) satisfy the Witt algebra
commutation relations

[grflj)’ fn(])] = (m — n)fn(z]-i-)n» form,n € Z.

The correspondence involves the representation of the quantum group U, (sl2) con-
structed as the tensor product of the irreducible representations M, , ..., M;, . The
tensorands are ordered from left to right in the reverse order of the index, and we use
the shorthand notation

N
QM = My @ @M, (2.8)
i=1

for this ordering convention. Similarly we denote, e.g.,

®Mki:M)\j71®"'®M}‘l’ ®Mki =M)LN®"'®M)LJ-+1-

i<j i>j

For the projection nkfm Y of (2.4) applied in the two consecutive tensorands with in-
dices j, j + 1, we use the notation

N N
et @M > QM
i=1 i=1
T ey = <( ® ide,-) ®7T,\jfl,,\j ® (®idM*i)>’
i>j+1 i<j

and when the projection frk‘;ﬂ A is applied instead (thus reducing the number of tenso-
rands by one), we use the notation

N
e @My = (@ M) @M@ (QM;,))
j=1

i>j+l i<j

(j 1) = (( & idw,) @7, 7,5, ® (®ide,»))~

i>j+1 i<j

Within the tensor product (2.8), we are primarily concerned with the subspace

Ev=0 (2.9)

N
Hy = {ve @M,
j=1

consisting of highest weight vectors.

Theorem 2.2. [KP20] There is a family of linear mappings F : ‘H,, — C*(Xy) indexed

byi €| lyen NV, normalized so thatfor N = 1 and any .; € Nwe have ]—'[u(())”l)](xl) =
1, and with the following properties:
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(PDE) For any u € H,, the function F = Flu]: Xy — C satisfies

PDF(xy,...,xy) = 0

forallj=1,...,Nand (x1,...,xn) € XN .
(COV) For any u € 'H,, the function F = Flu]: Xy — Cis translation invariant,
Fxp+t,...,xy+1t) = F(x1,...,xn)
forall (x1,...,xy) € Xyandt € R. (2.10)

If, moreover, u is a Cartan eigenvector, u € H, N Ker(K — gq%), then the
function F = Flu]: Xy — C is translation invariant and homogeneous,

F(sxi+t,...,8xy +1) = sh(”)le']v=1 hOD F(xp, ... xn)
forall (x1,...,xy) € Xyandt € R,s > 0. 2.11)

Finally, if u lies in a trivial subrepresentation, u € H, N Ker(K — 1), then
the function F = Flu]: Xy — C is fully Mobius-covariant in the sense that
forany (x1,...,xy) € Xy and any M(z) = ‘Cf:s such that M(x1) < -+ <
M(xy), we have

N
FON(x)), ..., Mxy)) = Hi)ﬁ'(x,-)_h()"') F(X1,...,XN). (2.12)

i=1

(ASY) If u € H, _lies in the subrepresentation corresponding to the irreducible M; in
the tensor product of the j:th and j + 1:th factors, i.e., ifu = ﬂ{j-fj+1} (u), then
the function F = Flu]: Xy — C has the expansion

F(xl,...,Xj,Xj+1,...,.XN)
= B(xjn —)cj)A (ﬁ(xl, ...,E,...,xN)+0(1)> asxj,xjy —> &,

where F = F[ii] with

i=A W e (( (04) Mx,-)®MT®(®Mx,-)),

i>j+1 i<j
1 A i+Aj41—T)/2
andB=B,7 , = S
B (Mg 4 A1 — T)/2)! =

4 4 4
FA+-p)T'A=—=1+A; = p) TA—=(1+21;41 — p))
K K K

— T —
4 2 and A = Mgy =
FA+)TQ——-@—=2p+Aj+Aij1+71))
K K

h() —h(A;) —h(dj+1).

2.3. Series expansions of the functions. The method of Theorem 2.2 in fact yields not
only smooth functions, but analytic functions which have Frobenius series expansions
on the codimension one boundaries of the chamber X . These Frobenius series will be
important in Sects. 5 and 6. We start with a general definitions about the assumptions
we use on parametrized power series, and then state the series expansion results. The
proofs are left to “Appendix A”.
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Controlled parametrized power series We will need to expand the functions of Sect. 2.2
as power series recursively one variable at a time. Therefore, we will treat one of the
variables as the variable of the power series, and the other variables as parameters. In
order to be able to perform the natural operations on the power series, we need the
following type of control of the power series coefficients locally uniformly over the the
parameters.

Definition 2.3. Let 2 C R™ be an open setand ¢ : 2 — C smooth functions for k € N.
For R > 0, we say that (ci)ren are locally uniformly R-controlled power series
coefficients if for every compact K C 2 and every multi-index o« € N we have

1
lim sup ( sup |8°‘ck(y)|)l/k < —
k—oo yek R

As simpler terminology, in the above situation we may just say that the power series

oo

Y am

k=0

parametrized by y € € is locally uniformly R-controlled. Note that by the Cauchy-
Hadamard formula for the radius of convergence, this implies in particular that for
any y € € the radius of convergence of the power series itself and its coefficientwise
derivatives with respect to the parameters y have radius of convergence at least R.

Analyticity and Frobenius series statements The analyticity statement in a single vari-
able for the functions from Theorem 2.2 is the following.

Lemma 2.4. Let F' = Flu]: Xy — C be the function associated to any u € H;, and
let (x1,...,xN) € Xy,andlet j € {1, ..., N}. Then we have a power series expansion

o0

k

FXL oo X1, 20 X0 XN) = D Ck(X1 o X1 X X)) (2] — X))
k=0

in the j:th variable. For fixed xj € R and R > 0, viewing the other variables (x;);+

as parameters, on the subset @ C RN~ defined by the conditions x| < --- < xy and
min;; |x; — xj| > R, the power series is locally uniformly R-controlled.

The proof is elementary, but it is instructive as a preparation for the consideration of the
Frobenius series, so we give it in “Appendix A”.

The Frobenius series statement that we will use is the following. Variants of this
formulation with obvious modifications to the statement and proof could be done as
well.

Lemma 2.5. Let j € {2, ..., N}. Suppose that T € Sel(A;_1, A;) and that u € H, is
such that u = n{ji] j}(u). The function F = Flu]: Xy — C associated to u has a
Frobenius series expansion in the variable 7 = xj — xj_1

o0

A k

F(xi, ... xj1, (Xj—1+2), Xjsl, ..., XN) =2 E k(X1 ooy Xjo1, Xjtls -, XN)Z
k=0
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where the indicial exponent is A = h(t) — h(A;) — h(Aj_1). For fixed R > 0, viewing
the other variables (x;);+; as parameters, on the subset 2 C RN-1 defined by the
conditions x| < --- < xyandmin;»; ;1 |x; —x;_1| > R, the power series part of this
Frobenius series is locally uniformly R-controlled, and for 0 < z < R the Frobenius
series converges to the function F on the left hand side.

Remark 2.6. The leading coefficient ¢y of the Frobenius series in Lemma 2.5 is related
to the value of the function associated to & = fr{ jf_l j}(u) as follows
CO(XT, ooy Xjo 1 Xjls oo on XN) = B X FAl(X1, ..., Xj1, Xjs1, .- XN,

where B = B, f)\/_l is as in Theorem 2.2. This can be seen from the (ASY) part of
Theorem 2.2 (or more directly from the proofs).

The proof of Lemma 2.5 is based on an elaboration of ideas from [KP20], in particular
those leading to part (ASY) of Theorem 2.2. Since this result will be crucially relied on
in the present article, we outline the proof in “Appendix A”.

3. Construction of Conformal Block Vectors for the Quantum Group

In this section we construct specific vectors in tensor product representations of the
quantum group Uy, (slz), which will correspond to our basis of “conformal blocks”.
More precisely, in the subsequent sections, compositions of intertwining operators in
the first row category of modules for the generic Virasoro VOA will be obtained from
these vectors via the quantum group method of Sect. 2.

3.1. The quantum 6 j-symbols. The embeddings&;“ : My — M;®M, inLemma?2.1
can be combined in different ways, and the relationships between the choices are given
by the quantum 6 j-symbols.

Lemma 3.1. Let 11, A2, A3 € N. Then for any o € N, the space
Homuq(srz)(Mo, My, ® My, ® M;,))
has one basis consisting of
(372 @idw, ) oM, v e Sel(a, A1) N Sel(rs, A2),
and another basis consisting of
(idw,, ® J2*1) 0 /3%, € Sel(o, A3) N Sel(ha, A1).

Proof. Clearly the given maps are U, (sl)-module maps M, — M;; @ M, ® My,.
It follows straightforwardly from coassociativity and Clebsch—Gordan decompositions
that the two collections both span and are linearly independent. O

The expansions of the elements of the second basis of Lemma 3.1 with respect to the
first basis are denoted as in the following:

. A3 Ay vV .
(idw,, ® 2™) ol = Y {32 VH (2 @idw, ) oM. G
v
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o A A o Ak
. A3 A2V v
« - Z[M o K}
vV
MM Al

The coefficients [ i? );2 /]; } in these expansions are called the quantum 6 symbols.

3.2. The construction of the conformal block vectors. Fix
b= (hoshts - A, hoo) € NV2

throughout. Note that compared to Sect. 2 we now have two additional labels, Ao and Ao
They will later be seen to have the interpretations of labels of primary fields at the origin
and at infinity.

Definition 3.2. A sequence

5 =0(50.61.---. 6N—1. sn) € NV*!

is said to be A-admissible, if we have
S0 = Ao, SN = Accs and
Aj € Sel(sj, gj-1) forall j=1,...,N

The following picture should serve as a visual guide to what is going on at the level of
representations of U (sl2) (and in fact at the level of modules of the generic Virasoro
VOA in later sections); the A-admissibility of the sequence ¢ exactly ensures that the
selection rules are satisfied at every vertex of this picture:

AN AN-1 A2 A

N SN-1 3! S0 -
I I

Aoo A0

We seek to associate a conformal block to such an admissible sequence, and for that
purpose we will first associate to it a suitable vector

ug € (éMAJ@MM.
j=1

Our convention is that tensor products are formed in the order with the indices increasing
from right to left, i.e., the space above is

My, ® (M,\Nl ® (® (M, ® (My,; @ M) - - ))
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Above we have placed the parentheses to illustrate the idea according to which the
vector u is chosen. The construction of the vector is done with the composition

MgNC—> MAN®M (—>MAN®MAN71®M > ...

SN—1 SN-2

N
— (®j:1 M?»j) ® Mg,
3.2)
of embeddings

((®i>j idM-M) ® ‘A'é}gj_l> : ((®i>j M;,) ® M;j)

¢ ((®i>j—1 M)»i) ®M§j71)

(Ao

Namely, we take u¢ to be the image of the highest weight vector u ) € M;., under
this composition of embeddings,

N
. . AN—-1,SN— AN,SN— Aoo
ug = (((@mMAj) ®ﬂ;;§0> oo (ldMAN ® N 2) oLy eN 1>(u(() ).
j=2

(3.3)

Lemma 3.3. The vector u¢ in (3.3) satisfies

Euc.=0 and K., =qk°° Uc.
Proof. These properties are satisfied by the vector u(())‘w) € M,_,, and the mapping
applied on this vector in (3.3) is a U, (slz)-module map. O

More formally, the reason for the choice of u is the following projection conditions.
We use partial compositions of the following sequence

Miy ® --- @ My, @ M;, o Muy ® Miy_; ® Mgy,
My ® Mg, Mi
of projections
IS
((®i>j ldM/\ )®nk /g,,l) : ((®i>j—1 MM)®M§]‘71)
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Proposition 3.4. For each j = 1, ..., N, denote by P(j)(us) IS (®izj MM) ® M;_H
the image of us under the composition of the first j — 1 projections above. The following
conditions hold for the vector u < in (3.3):

POy = <(®idei) ®n§{'§j_l)(p(f)(ug))

i>j
foreach j =1, ..., N. Moreover, u. is up to a multiplicative constant the unique vector

in (®§V: 1 M, j) ® M,,, for which the above conditions hold.

Proof. The conditions for vector u. follow directly from its construction, using the

. . A Aot ~ Aot . T
o o
relatlonshlps JT)\’M ot'yg" = 1y" and ]T)’ olgy = 1dM0 between the projections and

embeddings.
Uniqueness (up to multiplicative constants) can be shown by an induction over N,
using the multiplicity-free branching rule (2.1). O

4. Generic Virasoro VOA

This section introduces the main algebraic structure of the present work, the generic
Virasoro vertex operator algebra. We also define its modules and intertwining operators
between modules.

From the point of view of physics, vertex operator algebras serve as the chiral algebras
of conformal field theories, and the case of the Virasoro VOA is appropriate for the case
with conformal symmetry alone. The modules of a VOA correspond to the (conformal
families of) fields in the CFT. Intertwining operators are the building blocks of the
correlation functions of these fields.

This section is organized as follows. In Sect. 4.1 we introduce notation and fix conven-
tions about formal series. In Sect. 4.2 we introduce the Virasoro algebra and its highest
weight representations, as well as the VOAs based on them. Sect. 4.3 contains the general
definition of modules and intertwining operators of VOAs, and Sect. 4.4 concentrates
on the specific case of the first row modules of the generic Virasoro VOA. The specific
result about the fusion rules, in particular, is given in Sect. 4.4. Much of the topic of this
section can be found in textbooks. To the extent possible, in our presentation we follow
[LLO4] in Sects. 4.1-4.2, and [Xu98,Li99] in Sects. 4.1-4.3. The more specific fusion
rule statement of Sect. 4.4 has been obtained through a different method in [FZ12].

4.1. Some notational conventions. Let us first fix some notational conventions.

General conventions When a statement depends on a real number m (integer, natural
number, ...), we use the quantifier “for m > 07 (resp. “for m <« 0”) to mean that the
statement holds for all sufficiently large m (resp. sufficiently small m), i.e., that there
exists some mq such that the statement holds for all m > mg (resp. for all m < my).

Formal series We will have to consider various types of formal series: polynomials,
Laurent polynomials, formal power series, formal Laurent series, and formal series of
yet more general types. The formal series are formal sum expressions with terms which
are a coefficient times a power of a formal variable. The coefficients are always taken to
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lie in some complex vector space, and consequently also the spaces of formal series are
naturally vector spaces with addition and scalar multiplication defined coefficientwise.
Let V be a vector space, and let 3 be a formal variable.
The space of formal power series with coefficients in V is

VIl = {Z vn 3"

neN

v, € Viforalln e N} , 4.1

and the space of polynomials is the subspace V[3] C V[[3]] consisting of those formal
power series ), . Un 3" Which only have finitely many non-zero coefficients, i.e., v, =
0 for all n > 0.

Similarly the space of formal Laurent series with coefficients in V is

VIiz*' = {Z U 3"

mez

vy, € Vforallm e Z} , “4.2)

and space of Laurent polynomials is the subspace V[3*'] c V[[3T!]] consisting
of those formal Laurent series ), ., v, 3™ which only have finitely many non-zero
coefficients, i.e., v,, = O for [m| >> 0. The residue of a formal Laurent series is defined
as

Resa( Z Um 3’7’1) =V_1.

The space of general formal series with coefficients in V is

Vs = {Z Ve 3

aeC

vy € Viforalla € (C} . 4.3)

Elements of any of the above are typically denoted by e.g. f(3) = >, v; 3, to
explicitly indicate the formal variable 3, and to emphasize the analogue with functions.
Series with several formal variables are defined by considering series in one vari-
able with coefficients in a vector space of formal series of other variables, and natural
identifications are made without comment: we set, e.g., V[[3, tv]] = (V[[g]])[[m]] =

(Vi) [310-

Binomial expansion convention We follow the commonly used binomial expansion
convention according to which the power of a binomial in formal variables is always
expanded in non-negative integer powers of the second variable: for example if 3, v are
two formal variables and 8 € C, we interpret

G+w)f =" (ﬂ ) 7" e CsHiw]l,

|
—_
=

|
~
~

-1
where <'§> = % ). 4.4)
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The convention does require some caution: for instance for n € Z~( the two series
G—w) " £ (-w+3)"

are not equal, but are different Laurent series expansions of the same rational function
function. The series on the left is in (C[[g,jEl , to]] and is convergent in the region |3| > [to],
while the series on the right is in C[[3, o*!]] and is convergent in the region |ro| > |3].
In the case of non-integer §, note that non-integer powers are placed on only one of the
formal variables, leading to different branch choice issues when specializing the formal
variables to actual complex values.

The formal delta function The formal delta-function in the formal variable 3 is the formal
Laurent series

8G) =Y 3" € Cliz""1l. (4.5)

mez

If 3, 10, u are formal variables, with the binomial expansion convention we interpret

5(3 _um> _ Z Z (’Z>(_1)n w T e C[[uil,jil, wll.

meZ n=0

Multiplication of formal series In the case when V = A is an associative algebra, e.g.,
V = Cor V = End(W) for some vector space W, multiplication of formal series of
particular types may be meaningful: e.g. the product a(3) b(3) of two formal power series
a(3), b(3) € All3]] is well-defined in A[[3]] (there are finitely many contributions to the
coefficient of any 3"), and the product f(3) g(3) of a general series f(3) € A{3} with
a Laurent polynomial g(3) € A[3%'] is well-defined in A{3} (there are finitely many
contributions to the coefficient of any 3%).

Likewise, suitable formal series with complex coefficients can be multiplied with
suitable series with coefficients in complex vector spaces: e.g., the multiplication of a
Laurent polynomial r(3) € (C[;,il] with a formal power series h(3) € V[[3]] is well-
defined in V[[3%']] (there are finitely many contributions to the coefficient of any 3™).

Where well-defined, we use any such products without explicit comment in what
follows.

4.2. Generic Virasoro vertex operator algebra.

Virasoro algebra The Virasoro algebra is the complex Lie algebra
vir= PCL, & CC
nez
with the Lie bracket determined by

m3

—m
[Ly, Lyl = (m —n) Ly, + T 8m+n,0 C form,n € Z,

[C, vit] = 0.
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To describe the relevant representations of vit, we introduce the Lie subalgebras

bitsg = @(CLH, vit g ;= @(CL,“

n>0 n<0

vitg := CLy @ CC, vit>( = virg P vir..

The universal enveloping algebra of vit is denoted by U/ (vir).

Verma module For c¢,h € C, the Verma module M (c, i) of central charge ¢ and
conformal weight 7 is defined as the quotient of the universal enveloping algebra by
the left ideal generated by the elements C — cl, Ly — hl, and L, forn > 0, i.e.

M(c. h) = U(viv) / (M(nit)(C — ¢1) + Uvit) (Lo — h1) +U(vit) tlit>0). (4.6)

By construction, the vector w, , := [1] € M(c, h) satisfies
Cwep = cWe,p, Lowep = hwep, L,wep =0 forn>0,

anditis acyclic vector, i.e., it generates the whole representation, i (viv)w. , = M(c, h).
Owing to the Poincaré-Birkhoff—Witt (PBW) theorem, as a vector space the Verma
module is isomorphic to U (vir-g); a PBW basis for M (c, k) consists of vectors

L—nk e L—n1 wc,ha (47)

where k e Nand 0 <n; <np <--- < ny.

The central element C acts as the scalar ¢ on M (c, h). The element L is diagonaliz-
able and has eigenvalues h + d, d € N, and we use this to define a grading of the Verma
module

o0
Mc, h) = @Ker(Lo —(h+d) idM(C,h)).
d=0

The homogeneous subspaces in this grading are finite-dimensional, since the basis ele-
ments (4.7) are eigenvectors of L, with eigenvalues h +d, where d = ny + - - - + ny.

The Verma module has a filtration associated with the PBW basis, which we will use
extensively. For each p € Zx(, we define the subspace

FPM(c, h) = span{L_nkn-L_nl Ben |0 <ny < <, k< p} C M(c. h)
4.8)

spanned by basis vectors (4.7) with “PBW word-length” at most p. The PBW filtration
is the increasing sequence of subspaces

Cep =.F'M(c,h) C --- € FPM(c,h) € FP'M(c,h) C --- C M(c, h),

which clearly has the property that (_J peN FPM(c, h) = M(c, h). Note furthermore that
each subspace .# P M (c, h) is itself a representation of the Lie subalgebra vit>o C vit.
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Highest weight modules 1f x is a non-zero vector in a representation VV of vir, which
for some 1 € C and ¢ € C satisfies

Lox =nx, Cx =cx, and L,x =0 foralln > 0,

then we call x € W a singular vector.
If a singular vector x € )V generates the whole representation,

Uity =W,

then it is called a highest weight vector, the representation WV is called a highest
weight representation, and the Ly-eigenvalue 5 and the C-eigenvalue c of x are called
its conformal weight and central charge, respectively. As an example, the Verma
module M (c, k) is a highest weight representation and w, ; its highest weight vector.
Note that a highest weight vector in a given representation is necessarily unique up to
non-zero scalar multiples.

By construction the Verma module M (c, #) has the universal property that for any
highest weight representation YV with the same central charge ¢ and highest weight #,
there exists a surjective I/ (vir)-module map

M(c,h) —== W .

As a consequence, any highest weight representation is isomorphic to a quotient of a
Verma module by a proper subrepresentation (possibly zero). In particular, a highest
weight representation )V with highest weight % also admits a N-grading by eigenvalues
of Lo — hidyy, and the homogeneous subspaces Ker(Lo —(h+d) idw) are finite-
dimensional. The PBW filtration of a Verma module is also inherited to its quotient:
letting .% P W denote the image of .% ? M (c, h) under the above surjection, we obtain an
increasing filtration

Cx=FWcZgWc...c 2’WcFzr'wc...cw.

Since the surjection is a ¢ (vir)-module map, each .% W is a representation of vitx.

The unique irreducible highest weight representation with given c, & is the quotient
of the Verma module M (c, h) by its maximal proper subrepresentation. A basic fact is
that all subrepresentations of Verma modules are generated by singular vectors, and that
at most two singular vectors are needed to generate a given subrepresentation [FF90],
see also [IK11, Chapter 6].

The easiest example of a non-trivial submodule of a Verma module appears when
h = 0: the vector L_jw, o is a singular vector in the Verma module M (c, 0) and thus
generates a proper subrepresentation U (vit)L_jw. o C M(c, 0). This easy case will
be relevant for the universal Virasoro vertex operator algebra, but we first give other
examples that are the building blocks of the module category that we study.

The Kac table and its first row The highest weights 4 for which the Verma mod-
ule M (c, h) is notirreducible form what is called the Kac table: these highest weights /.
are indexed by two positive integers r, s.
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Let us parametrize central charges c by « via!

o 3k =4 K 4
¢=cl) =1 == =13-6(5+) (4.9)

Then an explicit formula for the Kac table highest weights is

16(s2 = D +8c(1 —rs)+x2(r2 = 1)

hV,S(K) = 16K ’

forr, s € Z+y.

We will be interested in highest weight modules with conformal weights in the first row
of the Kac table, i.e., with r = 1. These conformal weights are exactly the ones in (2.5);
we have

A2(A+2) —k)

h(A) = hi10.(k) = P ;

for A e N. (4.10)

Lemma 4.1. [FF90] Assume k € Q and L € N, and let ¢ and h()) be as in (4.9)
and (4.10). Then the maximal proper subrepresentation of the Verma module M (c, h()))
is isomorphic to the Verma module M (c, h(X) + 1 + X). In particular, the irreducible
highest weight representation with highest weight h(A) is the quotient

0y = M(c,h(})) [ M(c, h(A) + 1 + ). (4.11)

Proof. See,e.g.,[FF90] or [IK11, Section 5.3.1]. With the above assumptions, the Verma
module M (c, h())) falls in “class I” following the terminology of Iohara and Koga
[IK11]. O

The singular vector in M (c, k(1)) that generates the maximal proper subrepresenta-
tion M(c, h(A) + 1+ 1) C M(c, h(}))) is given by the explicit formula of [BSA8S],

Sy We,pn) € M(c, h(2)), where
A+l

(—4/i)*1=0 ()2 )
Sy = E E T z L_p ---L_p € Upit).
k=1 pi,e >l [T Qimt PO imisr PO
p1++pr=A+l

4.12)

1 This parametrization of the central charges ¢ < 1 by ¥ > 0 arises naturally in the context Schramm-
Loewner Evolutions (SLE). It is a 2-to-1 parametrization (except at ¢ = 1 and x = 4): the values « and
K = % give rise to the same c. In these two cases with the same central charge ¢ we will introduce different
categories of modules for the same vertex operator algebra. What we call “the first row of the Kac table” for
«’ becomes instead “the first column of the Kac table” for k—notice that i s(k’) = hg r(x) in the formula
below. Thus with this 2-to-1 parametrization also the latter category becomes covered even if we explicitly
only treat the former.
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Virasoro vertex operator algebras A vertex operator algebra is an N-graded vector space

V = @ Viay

deN

equipped with two distinguished non-zero vectors,
the vacuum vector 1 € V(g and  the conformal vector w € V(),
as well as a vertex operator map
Y (. 8): V — End()I[gF],

all subject to axioms which are explicitly given in, e.g., [LLO4].

Let ¢ € C be given. The vector L_jw, o is a singular vector in the Verma mod-
ule M (c, 0) of highest weight 1 = 0. Consider the highest weight representation obtained
as the quotient of the Verma module by the proper subrepresentation U (vit) L _jw.0 C
M (c, 0) generated by this singular vector,

Ve := M(c,0) / U(vit) L_ e o.

It is known [LL04, Theorem 6.1.5] that the vector space V. can be equipped with the
structure of a vertex operator algebra (VOA), uniquely fixed by the following. The
vacuum vector is 1 = [w, o], the conformal vector is w = L_»1 = [L_2w, 0], and the
Laurent modes of the vertex operator

Y(@,8) =) ¢ >"L, € End(Vo)l[g, ¢ ']

nez

corresponding to the conformal vector are the Virasoro generators L,, n € Z (acting
as endomorphisms of V). This vertex operator algebra V, is known as the universal
Virasoro vertex operator algebra with central charce c.

The irreducible highest weight representation of the Virasoro algebra with highest
weight 4 = 0 can be also obtained as the quotient of V. by its maximal proper submodule.
A simple vertex operator algebra can be formed as the corresponding quotient of the
universal Virasoro VOA V. [LL0O4, Theorem 6.1.5], and we refer to this as the simple
Virasoro vertex operator algebra with central charce c. For generic central charges,
¢ = c(x) with « ¢ Q, the representation V, is in fact already irreducible by itself
(case A = 0 of Lemma 4.1), so the simple Virasoro VOA coincides with the universal
Virasoro VOA V.. In this article we focus on the generic case: specifically we assume
that ¢ = c(x) as in (4.9) with

k € (0, +00) \ Q. (4.13)

For clarity, we then call V, the generic Virasoro vertex operator algebra, although it
is also both the universal Virasoro VOA and the simple Virasoro VOA. As a warning we
already point out that, despite being a simple VOA, the generic Virasoro VOA V, fails
many key properties assumed in most VOA theory: V. is not C»-cofinite, it has infinitely
many simple modules, it has modules which are not completely reducible, etc.

Itis instructive to contrast the generic case we consider with what happens for rational
central charges c—which are relevant, e.g., for minimal models of CFT. For typical
rational central charges the representation V. is not irreducible, and correspondingly the
universal Virasoro VOA and the simple Virasoro VOA are different. The simple Virasoro
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VOA has been studied extensively in these cases, and is a model case of a well-behaved
VOA: it is in particular Cp-cofinite, has finitely many simple modules, has semisimple
category of modules closed under fusion, satisfies Verlinde’s formula, etc. The failure of
such good properties for the generic Virasoro VOA is probably one of the main reasons
the generic Virasoro VOA has not been extensively studied yet.

4.3. Modules and intertwining operators for VOAs. We introduce the notions of modules
and intertwining operators for a general vertex operator algebra V.

Modules for vertex operator algebras A module for a vertex operator algebra V is a
vector space W equipped with a linear map

Yw(¢): V — End(W)[[¢E']

subject to the following conditions. For v € V, let us denote by v(% € End(W) the
coefficient of ;’1’” in the formal series Yw (v, ), so that

Yw, o)=Y ¢ ol (4.14)
meZ

For the coefficients of the series associated to the conformal vector w € V, we use
the notation L := w(v;/m), n € Zso that Yy (w,8) = >,z ¢ >7"LY. When the
module W is sufficiently clear from the context, we even omit the superscript and denote
simply L, = LY. The required conditions then read:

e We have Yy (1,¢) = idw.

e For any vy, v2 € V, the following Jacobi identity holds:

CJI(S(CI; gz)YW(m,cl)wazw:z) 4615(;2 ;0;1)

0

Yw(v2, §5) Yw(vi, &)

=138 (Clc ;O)YW(Y(Uhfo)UZ, £5). (4.15)

e The operator L() € End(W) is diagonalizable, its eigenspaces W) := Ker(LgV -
n idW) are finite-dimensional, and W,y = {0} when Re(n) <« 0.

A module W thus has an L(V)V -eigenspace decomposition
W = @ Wen- (4.16)
neC

The coefficients of the module vertex operator (4.14) respect this decomposition in the
following sense.

Lemma 4.2. For any homogeneous element v € V(4 of the vertex operator algebra and
anym € Z and n € C we have
w
Vamy Wiy € Wip—m+a—1)-
Proof. This is a standard result; it follows from
[Lo, v(v};)] =(—m+d — l)vg},‘;), meZz,

which in turn follows from applying the Jacobi identity (4.15) in the case that v = w
and vy = v. (Similar calculations will be done in some more detail in a more general
case in Lemma 4.6 and Corollary 4.7, for example.) O
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Contragredient modules Suppose that W is a module for a vertex operator algebra V.
Considering the duals W(*n) = Hom(W(,;), C) of the finite-dimensional LgV -eigenspaces

W, in the decomposition (4.16), the restricted dual (also called graded dual) is the
space

W =W 4.17)

neC

It can be equipped with the structure of a V-module [FHL93,Xu98] so that the module
vertex operator Yy (-, ¢£) on W’ is defined by the formula

(Yw (v, OHw', w) = <w’, Yw (€851 (=g %) v, I;_l)w>,
forveV, w eW, weW.

This V-module W' is called the contragredient module of W. Double contragredients
are isomorphic to the original modules, W” = W.

Lemma 4.3. We have LW (LY )T foranyn € 7, i.e., forany w' € W and w € W
we have

W’ W
(L, w'iw)y=(w',LY, w).

Proof. Taking v =  and using 4L (—¢~2)low = ¢~* w, this is just the equality of
the coefficients of ¢ ~>~" in the defining formula above. O

Intertwining operators As an analogy to that the tensor product of modules over a Hopf
algebra is governed by the coproduct structure, the fusion product of modules of a VOA
V is governed by the notion of intertwining operators.

Definition 4.4. Let Wy, W, W, be three modules for a VOA V, with respective module
vertex operators Yw, (-, £), Yw, (-, £), Yw,, (-, £). Anintertwining operator of type (W‘/]Vﬁj’vo)
is a linear map

Y(,x): Wi — Hom(Wy, Weo){x}
satisfying the Jacobi identity
& 18<§s ) Vi (v, 8) Y(w, x) — &7 (%) Yw. x) Yiry (v, £)
s (C g)JJ(le(v,S)w, x) (4.18)

and the translation property

V(LM w, x) = —xy(w,x) (4.19)

forallv e Vand w € Wj.
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The space of intertwining operators of type (WVIV"VOVO) is a vector space, which we will

denote by
7( ")
Wi Wo

It is known that spaces of intertwining operators admit the following symmetry.

Proposition 4.5. [HL95b] Let Wy, W1, and Woo be modules of a VOA V. Then, we have
linear isomorphisms

g Moy oz Weo ) 2 7 W‘S.
W1 Wo Wo Wi Wy Wi

The next lemma is useful for calculations with intertwining operators, and it is in fact
equivalent to the property (4.18).

Lemma 4.6. Let Y (-, x) be an intertwining operator of type (Wvlvﬂj’vo). Then, for any
p.q €Z,veV,we W, wehave

Resg (Y (v, ) Y(w, %) ¢7 (¢ = 0)7) = Res (Y(w, x) Yy (v,€) £ (=x +£)7)
= Resg, (y(YWI (v, So)w, x) (x +&o)” Cg)-
Proof. Take the terms in (4.18) proportional to £ ¢~ to obtain
Yw,, (0, )Y (W, x)(& —x)T = V(w, x)Yw, (v, &) (—x +&)?
= Resg <§‘1x1 5(§ - ‘E) V(Yw, (v, Ew, x))

X

Yo =Dt (Z);m"‘x""—‘y<v<q+@w, x).

meZ k=0

We further multiply ¢? and take the residue with respect to ¢ to obtain

Resg (Yo, (v, ) V(w, %) £7(5 = 0)7) = Resg (V(w, ) Yy (v, 8) £7 (5 = x)7)

o0

Z <1]:>xp_ky(v(q+k)w, x)

k=0

Resg, (J)(YWl w, ¢pw, x) (x + ;0)”§g).

This proves the assertion. O

From the above formulas, we get the following equations for intertwining opera-
tors, which give the basis of many recursive constructions with respect to the PBW
filtration (4.8) that we will use.

Woo

Corollary 4.7. Let Y (-, x) be an intertwining operator of type (Wn Wo)‘
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(1) For any w € Wy, n € Z, we have
JJ(L,‘:Vl w, X)
= Resg (Yo (0.8) Y(w, x) (¢ =)™ = V(w, %) Yy @, &) (=x + )"
> 1 > 1
3 (” . ) =0k LY Y, 0 = (” . ) (=" Y, o) L.

k=0 k=0

(2) For any w € Wy, n € Z, we have

00 - n+l n—k+ |41
LY yw, x) — Y(w,x) LV = §< N )x Ly w, x).

(3) For any w € Wy, we have

d
LY yw, x) — Y(w, x) LM = Y. x).

Remark 4.8. From here on, we will not use as careful notation as above to indicate in
which modules the different L,,’s act. We will instead abuse the notation slightly and
write

LY Y(w,x) — Y(w,x) LY = [L,, Y(w, x)]
in, e.g., parts (2) and (3) above.

Proof of Corollary 4.7. Recall that L, = w41y, n € Z. By setting v = w, p = 0,
g =n+1,wesee (1). By settingv = w, p =n+1,q =0, we see (2). In particular the
latter gives

[L-1. Y(w,x)] = V(L 1w, x),

and the right hand side here equals %y (w, x) by the translation property (4.19) of
intertwining operators. O

4.4. Modules and intertwining operators for the generic Virasoro VOA. We now discuss
modules and intertwining operators focusing on the case of the generic Virasoro VOA
V., and describe the subcategory of modules that is the topic of this article. We continue
to parametrize the central charge ¢ < 1 by ¥ > 0 as in (4.9). Throughout we make the
genericity assumption that « ¢ Q.

Modules Suppose that MV is a representation of the Virasoro algebra where C acts as
cidyy, and Lg acts diagonalizably with finite-dimensional eigenspaces and eigenvalues
with real part bounded from below. Then V has a unique structure of a module for the
universal Virasoro VOA V. such that

Yw(, &) =Y ¢ Ly,

nez

i.e., a)zy[) = L;,—1 € End(W), see, e.g., [LLO4, Theorem 6.1.7].
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In particular any of the Verma modules M, = M(c, h(1)), . € N, and their irre-
ducible quotient representations

0. =M, [M(c, hA)+1+1), LreN

in Lemma 4.1 becomes a module for the generic Virasoro VOA V.. We call these Q;,
A € N first row modules, and we denote the module vertex operators in them simply
by

Yi(, §): Ve — End(QuI[E*11.
Irreducible highest weight representations are self-dual in the following sense.

Lemma 4.9. Let W be an irreducible highest weight representation of Virasoro algebra,
viewed as a module for the universal Virasoro VOA V.. Then the contragradient module
W' is isomorphic to W.

Proof. Let w € W) be a highest weight vector in W, and choose w’ € W(*h) such that
(w’, w) = 1. From Lemma 4.3 we see that W’ € W' is a singular vector with highest
weight & in WW. Then, W’ contains the subrepresentation I (vit)w’ C W, which is a
highest weight representation with the same highest weight /. Since W is irreducible,
there is a surjective module homomorphism U (vit)w’ — W, which in particular implies
that dim (U (vit)w’) ;) > dim(W,,)) forall n € C. On the other hand, by construction,
we have dim(Wén)) = dim(W,)), n € C. Therefore we get that

dim(W,)) = dim(W,)) < dim(U(vi)d') ) < dim(W,,).  forn e C,

and we can conclude that Y (viv)yw’ =W ~W. O

Corollary 4.10. The first-row modules are self-dual, Q' = Q;, for any » € N.

Intertwining operators among highest weight modules Let us now suppose that Wy, Wy,
Wxo are three modules for the universal Virasoro VOA V., and that each of W, W,
and W/, are highest weight modules (note also that by Lemma 4.9, the contragredient
W/, is a highest weight module for example if W itself is an irreducible highest weight
module). Let w, wo, w,, be highest weight vectors in Wy, Wy, W/, respectively, and
denote the corresponding highest weights by k1, hg, ho.

For an intertwining operator operator Y € 7 (Wvlvofvo)’ define

Init[V](x) := (w.,, V(wy,x) wo)

and call this the initial term of the intertwining operator ). The initial term defines a
linear map

Init: I( Weo )—> C{x}.
W1 Wy

We make a few simple general observations in this setup.

Lemma 4.11. The initial term of any ) € I(Wvlvﬂj’vo) is of the form

Init[Y](x) = A xh‘”—h‘_ho, for some A € C.
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Proof. Using Corollary 4.7(2) for n = 0, Lemma 4.3, and the eigenvector equations
Lowi = h1 wy, Lowg = hg wo, Loﬂ)go =hs u_)(,)o, we calculate

hoo nit[Y1(x) = (Lows,, Y (1, X) o)
= (W5, Lo Y(W1,x) o)
= (W, (x V(L_1w1, %)+ Y (Lowr, x)) Wo)

+ (W, YW1, x) Lowo)

= (x 4 +hi + ho) Init[V](x)
dx '

Thus the initial term satisfies x %Init[y](x) = (hoo — h1 — ho) Init[Y](x). The solution

space of this differential equation is one dimensional and spanned by x">~~"1=50 5o the
assertion follows. 0O

The following straightforward proposition contains a key idea, that of an induction
based on PBW-filtrations, so we do it in detail here. In later proofs (including our main
results), we will then not always write out explicitly all of the cases, as the ideas are
similar.

Proposition 4.12. An intertwining operator Y € T (WV]VO‘O/V()) is uniquely determined by

its initial term Init[Y](x). In particular, by Lemma 4.11 we thus have

14
dmZ( > ) <1,
Wi Wy

i.e., ifa non-zero intertwining operators exists, it is unique up to a multiplicative constant.

Proof. Suppose that Init[Y](x) = 0. We will prove that then (w/,, Y(w;,x) wo) =0
for all wl, € W/, wi € Wi, wg € Wp. It will follow that ¥ = 0. From this we can
conclude that the initial term indeed determines the interwining operator.

The proof of the above is done by induction with respect to the total PBW word
length for the PBW filtrations of the three highest weight representations Wy, Wy, W,,.
So assume that (w,,, Y(wi, x)wo) = 0 whenever w,, € FPW,,, w; € FPW,
wo € FP3W, are such that the total word lengths satisfy p; + p2 + p3 < p. Now let
n > 0, and consider any such wgo, w1, wo. From Corollary 4.7(2) we get that

(Lonwig, Y(wi, X)wo) = (wie, Y(wi, x)Lywo) +x"+la (wee, Vw1, ¥)wo)
2 /n+1
+Z< N )x”k” (Woer V(Li—1w1, X)wo)
k=1
=0,

where each term of the second expression vanished by the induction hypothesis (note
that also L,wo € ZP3~'Wy and Ly_jw; € FP2W; above). Similarly we get

—n+l i (

i who, Y(wi, x)wo)

(wéo’ y(wlv x)L—nwO) = (an(/xy y(wls x)w0> - X

_ Z <_n ’ l)xnk” (Woo» V(Lg—1w1, X)wo)

k=1 k
=0.
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Finally, using Corollary 4.7(1-3), we similarly get

> [—n+1
(whe, V(L—pwi, X)wp) = Z( nk+ )(—x)k (Lpkwhs, Y(wi, X)wo)
k=0
= —n+1 —n—k+1 ’
- Z r (—x) (Woo, Y(w1, x)Li—1wo)
k=1

— (=) 7" (Lywly, Y(wr, x)wo)

d
+ (—x) ! o5 (Whe Y(wi, x)wo)
X
=0.

These three cases complete the induction step, by establishing that (u/oo, Y(wi, x) wo)
vanishes also whenever w., € FP' W/, , w; € FP2W, wy € .FP3W, are such that the
total word lengths satisfy p1 + po+ p3 < p+1. O

Intertwining operators among first row modules To find all intertwining operators
among the first row modules Q;, in view of Proposition 4.12 it suffices to determine
when non-zero intertwining operators can exist. We call the conditions for the existence
selection rules.’

The singular vectors (4.12) lead to necessary conditions. Fix A € N, and introduce
the corresponding polynomial of A, kg

A+l

—4 Al—k Al 2
Py(ho, hoo) 1= Z l—[k—l((zik) , (k) '
k=1 pl,..p>1 u=1 i=1 171)(2,':“1 Di)

.....

p1+-+pr=Xi+l

k
x H(—l)pf(Zp,- +h(}) —hoo+pjh0). (4.20)

j=1 i>j

Lemma 4.13. Suppose that Wy, Woo are modules for V. such that Wy and W/ are
highest weight modules with highest weights ho and hoo, respectively. For each ). € N,
the linear map

Woo Woo \.
I(QA W()) - :Z-(]W)L Wo)’ y(, x) = y(ﬂk(),X),

where 1) : M) — Q; is the canonical projection, is an embedding of the space of

intertwining operators. Furthermore, this embedding is an isomorphism if and only if
the highest weights satisfy the polynomial equation

Py.(ho, hoo) = 0.

2 These selection rules turn out to take exactly the same form as the selection rules which determine when
an irreducible representation of the quantum group Uy (sl2) appears in the tensor product of two others.
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Proof. Ttis clear that for any ) € 7 ( Q‘iv"‘j’vo), the formula ) (7, (-), x) indeed gives an

intertwining operator of type ( M‘:/O‘j’vo), so the map is well-defined.

For its injectivity, observe the following. The initial terms satisfy Init[)(-, x)] =
Init[ YV (7, (-), x)]. Now if Y(m,.(-), x) = 0, we have Init[)(-, x)] = 0, which by Propo-
sition 4.12 implies that also Y (-, x) = 0. Injectivity follows.

The embedding is an isomorphism if and only if all intertwining operators ) &
T ( M‘fﬁvo) factor through the irreducible quotient in the sense that we have V(w, x) =0
for all w in the maximal proper submodule of M, . As in Proposition 4.12, we see that

the factorization is equivalent to the single condition (w/,, V(SxWe.n(), X) wo) = 0,
where Sy W (1) is the singular vector defined in (4.12); just note that the singular vector
generates the maximal proper submodule of M;, which is isomorphic to M(c, h(A) +
A+ 1).

Let wo and W/, be highest weight vectors in Wy and W,,, respectively, and let w;
be a highest weight vector in M, . Denote the initial term of ) by

f ) = Init[YV](x) = (WS, (W, X) Wo) -
By Lemma 4.11, we must have
f(x)=Ax®  where A =hg —ho—hQ).

Again by a calculation using the formulas of Corollary 4.7 (in fact the special case
wh, = wj, and wy = wp of the last calculation in the proof of Proposition 4.12), we
getforanyn > 0

(wéoa y(Lfnwl,x)lz}O)
d
= (—x)*"”a (Wee, Y(wi, x)wo) — (1 —mho(—x)™" (e, Y(wi, x)wo)
= Ly (W, Y(wi, X)) ,

where we introduced the differential operator

L= (—x)—"((n — Dho — x%).

Recursively used, this allows to reduce the following expression to a differential operator
acting on the initial term

(wéoa y(L,nk T L7n| IZ))»’ x)lz)0> = gfnk e gfm <lb(/)ov y(lDOv x)kal‘lI)0>
= Lo Lo [, 421)

With induction on k, starting from f(x) = Ax® and using the explicit differential
operators %, we find

k
Loy Lon, fx) = AxBd2in 1_[(—1)1’-1(211,- —A+(nj — 1)h0>

j=1 i<j

From the formula (4.12) for the singular vector S w¢ i), using (4.21), we get
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(W Y(Sp1, X) o)
A+l

—4 M1—k )»!2
=Y Y e L Lo S0
k=1 p1,...,pr>1 Hu:l(Z[:l pi)(Zj:u+1 Pz)
p1+-+pr=i+l

The vanishing (w,,, Y(Syw1, x)we) = 0 therefore amounts to a differential equation
for the initial term f(x) = Init[)](x). With the explicit formula f(x) = Ax%, this
differential equation simplifies to

0=Ax2"1"* P.(ho, hoo)

The intertwining operator ) is non-zero only if A # 0, and in this case the desired
factorization is equivalent to P (ho, hoo) =0. O

For fixed A € N and kg € C, the equation P, (hg, heo) is a degree A + 1 polynomial
equation for /. It is possible to find the roots by a direct calculation [FZ12]. With the
quantum group method, the following easier argument works as well.

Proposition 4.14. Let 1. € N and p € Q. Then we have the factorization

A

Py(h(1). hoo) = [ ] (hoo — KA+ 11 = 20)).
=0

Proof. R26€all from (4.10) that /() is a quadratic polynomial in pu, specifically h(u) =

L%+ (2 — J) . Note also that
m K
h(p+m) — h(p) = ;(m+2,0+(2— 5)),

Recalling that « ¢ @Q, we see in particular that if p € Q, then all h(p + m), m € Z, are
distinct.
Firstfix A e Nand ¢ € {0, 1, ..., A}. Now if u € Nis such that . > A, then we have

o = A+ — 20 € Sel(x, u), so we may consider the non-zero vector u = (5" (u(()”)) €
M;. ® M,,. The associated function

F =Flu]: X, > C
satisfies the BSA PDEs Q(j)F(xo, x1) =0, for j =0, 1, where 2U) is given by (2.6).

From the translation and scaling covariance and asymptotics given in Theorem 2.2 it
follows that in this case the function must be simply

F(x0, x1) = B (x1 — x0)*,

where A = h(A+p —26) —h(}) — h(p) and B = B, /| 5, #0.
But the BSA PDE for a function of the above form reads
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A+l

o (_4/K)1+)\7k )\,'2
0= B (x — x)> ! Ty
kz:; p.,‘%zl [T oy P (s PO
p1+e-+pr =i+l
k
l—[(_l)Pj ( — A+ Zpi +(pj — 1)h(M)>
j=1 i>j

=B (x1 —x0) 2 P (h(), k(0 + = 20)).

We conclude that Py (h(p), h(A + o — 2£)) = 0. Now observe that both u +— ()
and u +— h(A + p — 2¢) are quadratic polynomials in u, so also p — Py, (h(u), h(A+
uw— 2Z)) is a polynomial in ;. We have just shown that this polynomial vanishes for all
integers i > A, so it must be identically zero:

Pk(h(,u),h()\+u—2£)):0 forallA e N,£e€{0,1,...,1},ueC.

Now let A € N and u € Q be fixed. Consider the polynomial i, — P, (h (), hoo)
of degree A + 1. From the above we see that hoo = h(A + u — 2£€) are roots of this
polynomial, when £ = 0, 1, ..., A. Since k ¢ Q, these A + 1 roots are distinct, and so
we must have

A
Py (h(1), hoo) = const. x ]_[ (hoo — h(h + 1 — 20)).
=0

From the defining formula (4.20) one sees that the leading term of this polynomial of /1,
is (hoo)!**, so the constant of proportionality above is in fact 1. O

The following theorem states that there is always a nontrivial intertwining operator
among an arbitrary triple of Verma modules. The theorem can be seen as a particular
case of a more general one in [Li99]. For self-containedness, we give the proof for the
case of our interest in “Appendix B”.

Theorem 4.15. For hy, hg, hoo € C,

dimz< Me, hoo) ):1
M(c,hy) M(c, hg)

The fusion rules among first row modules of the generic Virasoro VOA now follow
from Lemma 4.13, Proposition 4.14 and Theorem 4.15.

Corollary 4.16. Let A, ., v € N. Then,

dimT Oy _ ! veSell()»,pL),
0, 0. 0 otherwise.

Proof. Recall that the first row modules are self-dual (Corollary 4.10). We consider the
following sequence of embeddings
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or0,) = 7 0,) =0 n) = 7o) = (o))
Q)» Q;/. MA Qu QM MA M;/. MA Qv M[l.
(o 31,) =7 )
-7 ~7 ,
M, M, M M,

where we used the symmetry in Proposition 4.5. Then, due to Lemma 4.13, the composed
embedding is an isomorphism if and only if the highest weights satisfy the conditions

Py.(h(w), h(v)) = Py(h(A), h(w)) = Pu(h(v), h(2)) = 0.

It is an easy manipulation of the factorization in Proposition 4.14 to see that these
conditions > are equivalent to v € Sel(A, u). O

5. Compositions of Intertwining Operators

Intertwining operators, defined in the previous section, give 3-point correlation functions
of conformal field theories (or alternatively, in a geometric interpretation, amplitudes in a
pair-of-pants Riemann surface with three parametrized boundary components [Hual2]).
Importantly, they serve as the building blocks of more general correlation functions.
Namely, for a multipoint correlation function (or an amplitude on a Riemann surfaces
with more than three parametrized boundary components), one forms an appropriate
composition of intertwining operators.

An intertwining operator is a formal series, with coefficients that are linear operators
between modules of the VOA. Compositions of intertwining operators are then a priori
formal series in several formal variables, also with coefficients that are (composed) linear
operators between modules. To get actual correlation functions, however, one considers
suitable matrix elements of the formal series of linear operators, and crucially, one must
then address the convergence of the corresponding series.

In this section, we first study properties of the compositions of the intertwining
operators between modules of the first row subcategory for the generic Virasoro VOA as
formal power series. Then we establish analoguous properties for the functions obtained
by the quantum group method—specifically the ones corresponding to the conformal
block vectors of Sect. 3. The main result of this section (Theorem 5.9) is that the formal
series of the composition of intertwining operators coincide with suitable power series
expansions of the actual conformal block functions, and that these series are convergent
in the appropriate domains.

More precisely, the section is organized as follows. In Sect. 5.1 we fix our normal-
ization of the intertwining operators, and in Sect. 5.2 we introduce the specific spaces
of formal series that will be used. Section 5.3 contains the proofs of two key properties;
that (the highest weight matrix elements of) compositions of the intertwining operators
satisfy a system of partial differential equations, and that the formal series solutions to
this PDE system are unique (up to scalar multiples). In Sect. 5.4 we detail a recursive
series expansion procedure for the quantum group functions, and use this and the partial
differential equations to prove the main result (Theorem 5.9) that the formal series of
the composition of intertwining operators converge to the functions corresponding to
the conformal block vectors. In Sect. 5.5 we comment on some first applications of the
result.

3 It can also be seen that two of these conditions imply the other one.
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5.1. Fusion rules and normalized intertwining operators. A comparison of Corollary 4.16
and Lemma 2.1 directly gives

dimI( Crx > = dim Homy, (s1y) (Mie, My ® M)
Q)L] QA.O

1 if Ao € Sel(Aq, Ag)
0 otherwise.

Definition 5.1. When Ao, € Sel(A1, Ag) so that nonzero intertwining operators exist,

we denote by
O
75570, 5,
Mo © OQro Oni

the unique intertwining operator normalized so that

Init[Y,% 1(x) = Bx®, (5.1)
where
B=B/% #0 and A=A"% =h(leo) — (k1) — h(ro)
are as in Theorem 2.2.

The above normalization of the intertwining operator y;f;o is chosen so that that the

“matrix element” (u_)koc, yﬁogo(ml ,X) 11),\0) = Inlt[:)))tl AO](x) = B x2 between highest
weight vectors formally coincides with the function x +— F[uc](0, x) constructed
with the quantum group method from the conformal block vector u c € M, ® M,
corresponding to s = (A0, A1, Aoo) as in Sect. 3. B

5.2. Space of formal series. For a sequence L = (Ag, A1 ..., AN, Aoo) € NN+2, and a
A-admissible sequence s = (60, 615 ---» SN—1, GN), We consider the composition of
intertwining operators

AL s S
Vil ew  n, x YN (oo xn-n) - Vo (o, x2) Y (wi, x ),
which is a priori a formal series in xp, ..., xy with coefficients that are linear maps
— . We consider in particular the “matrix element” between highest weight
S0 SN
states

Cher, o) = (W MY Wy xn) - DL (g, ) i) (52)

As in the proof of Proposition 4.12, the general matrix elements
(wher Moy s xw) -+ VS (wr 1) wo)

with w; € Qy,,i =0,1, , N, and w € Q)L , can be determined by a recursion
using the Jacobi identity (4 18) (in the spemﬁc form of Corollary 4.7) from this matrix
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element (5.2); this particular matrix element serves a role analogous to the initial term
of an intertwining operator. A priori, (5.2) is a formal series in x1, . . ., X, with complex
coefficients, i.e., an element of C{x1, ..., x,}. Butin fact the series has a more particular
structure: it is essentially a formal power series (with non-negative powers!) in the ratios
of the variables.

Lemma 5.2. The series (5.2) belongs to the space

Clixn—1/xN1xN—2/XN-11]- - [[x1/x2]]x Y - - x 2T, (5.3)

with Aj = h(c;) — h(Ai) — h(gi_i) fori =1,...,N

We make a preliminary to prove Lemma 5.2. For each A € N and n € N, we
set Ox(n) := (Qr)n(.)+n) as the eigenspace of Lg corresponding to the eigenvalue

h () +n. Suppose that a triple (Aoo, A1, Ag) satisfies the selection rule Ao, € Sel(r1, Ag),

and take the intertwining operator y;logo of type ( QAQAOQO,\ ) Forw € 0;,(k), k € N,
1 0

using Corollary 4.7(2) for Lg like in Lemma 4.2, we find that yﬁﬁ’o(w, x) takes the
form

)»1)»0(w )= wex® "N with A = h(heo) — h(1) — h(R),

mez

where W) 05,,(n) C Oy (k—m+n—1)form e Z,n e N.
We prove a slightly more general result than Lemma 5.2:

Lemma 5.3. Let w € Q,(n), n € N. Then, the formal series defined by

Ao — (@ S - Stz
Co(w;xy, ..., xN) = (ng, Vi en @iy xN) - Y (@5, x ) w

lies in the space

Cllxn—1/xN1xN—2/XN—11- - [[x1/x2]] XY - 220 P70

Proof. We prove this by induction on N. When N = 1, we have
_ - A I
(W, V& (g xDw) =Y (i, () emyw) X7 "
mez

Here, since (W )mw C Q¢ (—m +n — 1), the matrix element (w’ W, , (Wa ) myw)
vanishes unless m = n — 1. Therefore, we can see that

- — — — A1—n
<w§1’ ykilgo(wklaxl)w> = (wglﬂ (w)\l)(ﬂ—l)w>xl ! ’

which is the N = 1 case.
Then assume that the assertion holds for N < k — 1 with some k > 1. Then, we have

A
Co(wsxy, ..., xk)

§ _ Aj—m—1
= Z(w’gk,ykikgk_,(ka,xk) yhgl(wxz,xz)(wx])(m)w> e

meZ
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Again, since (wy,)m)w € Q¢ (—m +n — 1), the matrix element vanishes unless m <
n — 1. In other words, we have the expansion

A
Co(wsxy, ..., xk)

o0
— - — - Al—n+l
= Z <wgk, Yok (W, Xk) -+ ykizgl (W;,, X2)(wx1)(n7671)w>x1 !

k Sk—1
=0
o0
Vo - Aj—n+t
= Z CZ ((Wr) (n—t—yw; X2, ..., Xg) X7 e
=0 =
where we set ' = (¢1, A2, ..., Ak, Aoo) and g/ = (¢1, ..., ¢k). By the induction hy-
pothesis, each coefficient C?, ((II)M Yn—t—1HW; X2, ... ,xk) lies in

Cllxx_1/xx11 - - [[x2/x3]]1 x52 7.

Consequently, we have the desired resultat N = k. O

5.3. System of differential equations. Due to the quotienting out of the singular vector
in the firstrow module Q; = M, / U (0ir)S) We p(5.), the matrix element C%(xl s s XN)
satisfies a certain system of differential equations. Given a sequence A =
(A0, - - -, AN hoo) € NV*2_we introduce the differential operators

szn(]) :=(_xj)n —X; Z a — (1 +n)h(ro)

1

1<i<N
_ Z (xi —x;)" ((xi —xj)% +(1 +n)h(ki)> (5.4)
1<i<N !
i#]

forj=1,...,Nandn € Z, and

Aj+l (_4/K)l+)nj—k)\'_y X .
M S T I
— —P1 —Pk
k=1 pi,...pe=>1 Hu:l(Z?:l pi)(Zi:uH pi)
pr++pr=A;+1
for j = 1,..., N. These differential operators .,?;(j ) and O essentially correspond

to how the differential operators Xn(/ ) and 2U) of (2.7) and (2.6) act on translation
invariant functions; see Lemma 5.7 for a precise statement. Notice that the actions

of ‘,izn(j ) and V) on the space
Clen][[xn—1/%NIIxN—2/XN—11] - - [[x1 /2]l e T QY - x ]!

of formal series are canonically determined in such a way that

0 0
> — fori=1,..., N,

xj—~>x; and —
ax,' 8x,'
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and the factors (x; — x;)" are expanded as the following formal power series

(—=x))" 020 () (=DF (xi/x )t fori < j

R (D DF G/t fori >,

ie., (xj —x;)" > (x; —x;)" fori > jbut (x; —x;)" = (—x; +x;)" fori < j.
The following standard lemma will be instrumental for us. We include the details
here to concretely demonstrate the source of the specific power series expansions above.

Lemma 5.4. Let . = (Ao, ..., AN, Axo) € NN*2 pe a sequence andi =(50,---5 GCN)

be \-admissible. Then, the matrix element Cé(xl , ..., Xy) solves the following system
of differential equations

FDCEx1,....xN) =0 forj=1,....N.
Proof. Fix j € {l,..., N}.Forw € ij,consider
X(w;Xx1,...,XN)
= (0 Ve D X) - VS wx) - VS (i, % )i ).
Then we can use Corollary 4.7(1) to calculate X (L _,w; x1, ..., xy), for p > 0,

X(L_pw;x1,...,XpN)
=3 (")
k=0
_ _ G _ _
<w;'N’ y)LSI-VNS'N—l (Way,XN) - L_pi yxj]§j71 (w,xj)--- y)jlgo (W, xl)w)»0>
()t
k=0

— SN o Sj . VS 0
<w§N,yAN§N71(wa,xN)'~'yxj§j71(w,xj)Lk71 yhgo(wx.,xl)w/\o>~

In the first term, we use

) _ ad . _
LoV )] = (x4 2l A+ hG)) B . x0). (5:6)
1

from Corollary 4.7(2), to commute L_,_ to the left, where it annihilates the highest
weight vector w; € Q) . The first term thus becomes

21— 9
(et
i>j k=0 !

0
= = (i =g @ =) T (= P ROD) Xwixn ),

i>j

xR (1= p=lh()) X (wix1, .. %)
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which is indeed expanded in non-negative powers of x ; /x;, i > j. Similarly in the sec-
ond term, by commuting L_ to the right and simplifying, the commutator contributions
become

_, 0 _
-3 ((—xj +x;)! Po st (X)) —p)h(ki)) X(wixy, ..., xn),
i<j !
which is expanded in non-negative powers of x;/x;, i < j. However, for k = 0 and

k = 1, the highest weight vector wg, € @, is not annihilated by L;_1, so also the
following two further terms remain

—(—x NP SN n cY S NP S (o n
(=) P (L Ve W X0 Vi w,x))+ VS (W X)Ly )

—(=x;)"?(1 - p) (II/;N, y;i,Nngl(wAN,xN) E y)jjs'j—l(w’ Xj)- -

P51y s X0 Lo i)

After simplifications (the first one still using Corollary 4.7), these two can be written as
_ 0 _
(—x)'P Y — X(wixi, .., xn) = (=x) P (1= p)h(ho) X(w; X1, XN)

I<i<N ox;

By combining everything, we get
X(L_pw;xp,...,xN) = .iz_(j[,) X(w;Xx1,...,XN).

Using this auxiliary observation, the assertion then follows easily from the for-
mula (4.12) for the singular vector Sy, ; We, k(2 € M, i and the fact that its canonical
projection in Q)\j vanishes, Skj LT)M =0. O

The coefficient of the monomial xf,” . ~x1Al in
Cz(x1.....xN) € Cllxy_1/xyll- - [lxr/xallxy" - x

is easy to trace in the calculations above. Ultimately because of the chosen normalizations
of the intertwining operators, this coefficient is

N

Sj
]‘[ B, #0.
j=1

. A . . . .
In particular C¢(x1, ..., Xy) is a non-zero solution to the system of differential equa-
tions above.

Theorem 5.5. In the space of formal series of the form (5.3), the solution space

N
[ Ker 2V c Clenlllxy—1/xnl - [x1 /2]l 27 Ty - x 7

j=1
of the above system of differential equations is one-dimensional,
N
dim( Ker :@(-’)) = 1.
j=l1
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Proof. Since Lemma 5.4 ensures the existence of a nonzero solution, it suffices to show
that solutions are unique up to a multiplicative constant. We prove this by induction
on N. When N = 1, observe that for any n € Z we have

GO xB = Py (h(ho), h(g1) +n)x 1ML
where Py, is the polynomial (4.20). Recall that by the genericity « ¢ Q, we have

Py (h(r0). h(s1) +n) = 0

if and only if n = 0. This shows that Ker7D = C xlA‘, and proves one-dimensionality.
For the induction step, assume the uniqueness of solutions up to multiplicative con-
stants for N — 1 variables. We regard

Clen1[lxn—1/xn1] - [lxr /xo]) e Ty - ox !

as a subspace of the space

(C[xN] [xn—1/xn]]--- [[x2/x30 [x5 T x5 - ~x§2>[[x1]] ETRETS

and on the latter we introduce a Z-grading so that the degree of a monomial is

deg(xlf,NmN-uxlA”"‘) =n forny,...,ny €Z.
The grading also gives rise to the corresponding notion of a degree of an operator acting
on the latter space.
NowletC(xq,...,xyN) € ﬂi-v:l Ker 2) be a non-zero solution. Expand it accord-
ing to the grading above as

o0
Cxp,....xy) =Y x7"™Cy(xa. ... xN),
n=d
where d € Z is the lowest degree with a non-vanishing coefficient, Cy(x2,...,xy) # 0.

We express the action of j_(llz p € Z, explicitly as
~ _ d
20 = (—nrix? (xl— +(1— p)h(m)
8x1
N a > —p+1
- —Px P x; Pk
o

—x )k <xi% +(=p—k+ l)h(k,)))

1

in order to manifest the degree of each contribution. Let us denote the first term in this
expansion by

~ _ 0
ZO = (—)PHix? (:ma—xl +(1- p)h(x())) ,
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which is an operator of degree — p and involves no other variables besides x 1. It is readily

seen that, if p > 0, the difference ﬁflp) — 2 9;, is a sum of operators of degrees strictly
greater than — p. Therefore, when we set

A+l 1421 —k
50— Z Z (=4/1c) 170! O Fo
1 3 L —p L e
= Pl pi>1 Hu:](Z:'l:l pi)(Zi:u+1 pl)

- 1?1+ +[7k =i+l

this is of degree —A; — 1 and the difference M — 2 M is a sum of operators of degree
strictly greater than —A; — 1. Specifically, let us expand 21 as

o
GO =G0 G deg D = g — 14k,
k=1
Recall the polynomial (4.20). It is again straightforward that the action of 2 (M on the

A+ .
monomial x| " nez, gives

2V X = Py (o). h(sr) +n) xR

Having assumed the generic case k ¢ (Q, from the factorization in Proposition 4.14, we
see that the factor Py, (h Ro), h(g1) + n) vanishes if and only if n = 0. This observation

gives first of all an indicial equation: the lowest degree term in M C =0is
CaZV - xp™ = Cy Py (o), h(sp) +d) xPHHTL

and its vanishing is only possible if d = 0. Moreover, the same observation gives
a recursion to determine the coefficients of higher degree, C, for n > d = 0. Indeed,
plugging in the series expansions for both C and 2!, the differential equation & 710 C =
0 for the solution C becomes

0 = <@(1) + Z%(l)> ZxA'M Cp(x2,...,XN)

o0

=Y P (h(ro). h(s)) +m) x P Cu(xa, L xw)
n=0

o0 o0
Z Z%,gl) (xlA1+" Cp(xa, ..., xN))

=1n=0

8

=Y " P, (h(ho), k() + ) x P Crxn, L x)
k=1

+ ZZ%’,EI_)n (xlA”" Cp(xa, .. .,xN)) .

Foreach k = 1, 2, ..., the equality of the components of degree —1; — 1 + k gives

A—k+i+1 k—1

X
Ci(xa, ..., = 1 2V (x™M77C(xs, . )
K2 XN = ) e + K) ; D (G xw)
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where we used the property that Py, (h(Xo), h(s1)+k) #Ofork = 1,2, .... The appar-
ent dependence of the right hand side on x is checked to be cancelled by considering the

degrees of the operators involved. This formula implies that, for each k = 1,2..., the
coefficient Cy, is determined by the finitely many previous coefficients Cy, C1, ..., Cx_1.
Recursively, we conclude that each Cx, k = 1,2, ..., is determined by the initial coef-
ficient Cyp.

Note that C¢ belongs to the space

Clen][[xn—1/xn]11- - [[x2/x31 [x5 T x4 - 52

The next task is to show that the formal series C¢ solves the desired system differential
equations. Those differential equations involve the differential operators

i B )
LY== Y0 5o = (L= p)he)

1

2<i<N
d
- Y i—x)7? ((xi —xp)g -+ (- p)h(m)
2<i<N i
i#]

for 2 < j < N. These differential operators j/(_j) do not involve the variable x{, and

they can be viewed either as operators on the space Clx y][[xny—1/xn]]- - [[x2/x3]]

[xz_l] xﬁ” -~-sz2 or as operators on the space ((C[xN] [[xn—1/xn]1]--[[x2/x3]]

[xz_l]xﬁN -~-x2A2)[[x1]] [xl_l]xlA‘, in which case they obviously have degree 0. In

the latter space, the difference Diz_(]p) -7 (_]; can be straightforwardly simplified to the
form

. . B 9
ffjp) —f’(_ji)j == p)(=x;) p(Al _x18_x1>

o0
1=p\ & 1—p—k 0
_Z( K )xl(_xj) v
k=2 1

— (A =phGD) Y. (}p)x’f(—xjr""‘,
k=1

where the first line is a degree zero operator, and all the terms on the second line have
strictly positive degrees. We thus see that

o0
.,279[,) ( leA‘J'” Cn(xa, ... ,xzv)) = x1Al (j/(_/; Co(xa, ..., xN)) +h.o.t.,
n=0

where h.o.t. contains only terms of strictly positive degree. Now the vanishing of the
degree zero term in the differential equation 2 (/) ( Yo x1A1+" Ch(x2,...,x N)) =0
implies the differential equation

é/(j) Co(x2,...,xny) =0
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for Cp, where

Aj+l (_4/ )1+)L/~—k)h.’ X .
') .— Z k) i R740 )10
' k—1 k —Pp1 —DPk*
k=1 pi,..., pe>1 nu=1(2?=1 pi)(ZizuH pi)
pi1t++pr=Aj+l
The initial coefficient Co(x2, ..., xy) therefore solves the system of differential
equations 2'/) Cy = 0 for j = 2, ..., N, which is a system of the original form with

one fewer variable. By the induction hypothesis, such a Cy is unique up to multiplicative
constants. Since a solution C is determined by its initial coefficient C, we conclude that
the solution C is also unique one up to multiplicative constants. O

5.4. Functions from the quantum group method. In this subsection we do the exactly
analoguous steps for the functions from the quantum group method as were done for the
highest weight matrix elements of compositions of intertwining operators in the previous
subsection. The conclusions have an identical appearance, and this is in fact what will
allow us to show the equality of the two. While Sect. 5.3 dealt with formal power series,
we will now be working with functions.

We use the quantum group method of Sect. 2, with the difference that we first use
N + 1 variables, labeled xg, x1, ..., xy. After some initial observations, we will in fact
set xg = 0.

Translation invariance We first note that the differential operators fn(j ) of (2.7) preserve
translation invariance.

Lemma 5.6. If F € C*°(Xn+1) is translation invariant,

F(xo+s,x1+s,...,xxy+5) = F(xo, x1,...,xn) for (xo,X1,...,xN) € Xn41 and
s e R,

then so isfn(j)F,foranyj €{0,1,...,N}andn € Z.

Proof. LetussetlL_j := ZlN: 0 % Then, a smooth function F is translation invariant
if and only if L_; F = 0. The desired result follows from the fact that each operator
ZP i =0,1,...,N,n e Zcommutes withL_;. O

We introduce the restricted chamber
Xy ={G....,xn) eXy |x1 >0}

of N variables. To a given translation invariant function F € C*°(Xy41), we associate
a corresponding function on X}, by

F(xi,...,xy) :=F(0,x1,...,xy), for(xi,...,xy) € X4.

For typographical reasons, when the function F is given by a lengthy expression, we
place the tilde symbol as a superscript, F' = F~.
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Lemma 5.7. Fix j € {1,..., N}. Let F € C*®°(Xy+1) be a translation invariant func-
tion. Then we have

(gn(lf)...g,fkf)p) =2 GIDF,
foranyk €e Nandny,...,n; € Z.

Proof. If F is translation invariant, then its partial derivative w.r.t. xo can be rewritten
as

Consequently, we observe that

. 0
,,fn(j)Fz(xo—xj')n ((xo—)Cj) Z a—(1+n)h(lo)>F

1<i<n oM

- > i (o —x,)— +(L+m) hGD) ) F,
1<i<N
i#]

which admits the specialization at xo = 0 and gives (.i’j,(j a )" = ZY9)F . The assertion
is then obtained from Lemma 5.6 by induction on k. O

The following simple corollary of this lemma yields differential equations of the
same form as those in Sect. 5.3.

Corollary 5.8. Fix a sequence . = (Ao, A, ..., AN, Aoo) € NV*2 and a A-admissible
sequence ¢ = (c0,...,cN). Let Ug € (®] | MA ) ® My, be the corresponding con-
formal block vector (3.3), and let F = f[ug] € C (XN+1) denote the corresponding

function obtained by the quantum group method of Sect. 2.2. Then F is translation in-
variant, and the associated function F on X}, solves the system of differential equations

JDF=0,j=1,...,N.

Series expansions of the functions Fix again a sequence A = Aoy A1y AN Ao) €
NV+2 and a A-admissible sequence s = (50,---,6N), and let F: X3, — C be the
function given by

Fxi,....xn) = Flugl©,x1,....xy)  for (x1,....xn) € X},

where u ¢ (® =1 M ;L,) ® M,,, is the corresponding conformal block vector of (3.3).
We will expand this function as a series recursively, one variable at a time, starting
from x;. The series expansion in x| is the Frobenius series at 0 given by Lemma 2.5,

(0.¢]
- A k
Fxp,.oxn) = x0 Y el xn) xf,

and the other variables (x», ..., xy) € %7\,71 are treated as parameters. When the other
variables stay in the open subset

2t = oo e X |0 > R (5.7)
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the Frobenius series in locally uniformly R-controlled.
The differential operators 2.’ and /) of (5.4) and (5.5) are composed of

e differentiations 3"71 with respect to the power series variable x1;
e differentiations % with respect to the parameters x;, fori =2,..., N;

e multiplication operators by (x; — x;)" fori # j and by x]'.

Ifi, j > 1, then the multiplication by (x; —x ;)" acts on the coefficients ¢, € C* (%}L\,;f D
by a multiplication by a smooth (and in particular locally bounded) function. By contrast
(x; —xp)"fori =2,..., Nisexpanded as a power series (x; —x1)" = Z?’;o(—l)f (;l)
xin_j x{ which is itself locally uniformly R-controlled power series in x; on .’{;'V;fl ,and
the multiplication operator involves a convolution of the coefficients of the power series.

By Lemma A.1, each one of the above constituent operators preserves the space of lo-
cally uniformly R-controlled series and acts naturally coefficientwise when (x3, ..., xx)

€ %}va |- Therefore the constituent operators can be composed, and the operators .,22,,(] )
and 2/ also act on the space of locally uniformly R-controlled series, and they also act
naturally coefficientwise, when (x2, ..., xy5) € %X}fl. For different values of R > 0,
the actions of j’n(f ) and 9 on power series parametrized by %X}fl are consistent (co-
efficient functions are obtained by restrictions to the smaller subset), so they give rise to
a natural action on power series parametrized simply by X3,_; = (Jg-¢ .’{7\;51.

It will turn out in the analysis below that the coefficient functions ¢, € C*° (3€1+\,_ 1) are
themselves (essentially) given by functions from the quantum group method, and they

therefore admit Frobenius series expansions of their own. Recursively in the number of
variables, this allows us to uniquely associate to F' a power series in the space (5.3),

ClenT[[xn—1/%N11- - [x1 /220l e TRy - x

The following is our main result about the equality of the quantum group functions
and (the highest weight matrix elements of) the compositions of intertwining operators
of the first row subcategory of the generic Virasoro VOA.

Theorem 5.9. For any A = (Ao, A1, ..., AN, Aoo) € NN*2 gnd any A-admissible se-

quence ¢ = (50, - .., GN), the function Flu ] admits a series expansion
Ar+k AN+k
Flucd©, x1, . Xn) = Y Chydy X gV,
ki,..., kn€eZ
which is convergent for any (x1, ..., xy) € X},. As a formal series, this coincides with

the matrix element (5.2) of the composition of intertwining operators,

Flugl©, x1.....x5) =CE(x1,....x5) € Cllxy—1/xnll- - [lxr /x]lx gy - xp

Proof. We employ an induction over the number of variables N. The case of N = 1 is
obvious; the function is

f[ug](x) = Bk’\lﬁoxm, x > 0.

. . o : A
This function gives the same one term power series in Cx 2! as the matrix element Cz (x).
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Assume that the assertion is true when the number of variables is strictly less than V.
Then use Lemma 2.5 to obtain a Frobenius expansion of F[uc] at x; = 0,

oo
Flugl(xr,....xn) = Y Fylxa, oo ox)x ™ (5.8)
n=0

Note that by Remark 2.6, the initial coefficient fo coincides with BA§| ' A0.7:: [uc], where
5’ =(¢1,..-,6N)isa (g1, A2, - .-, AN, Aoo)-admissible sequence.

We apply 2D to both sides of the expansion (5.8). Because the operators act coef-
ficientwise, we may employ similar arguments as in the proof of Theorem 5.5. We find
that Fy,, n > 1, are determined recursively as

—A1—n+i+l1 n—1

Fo(xa, ..., xN) = — ! Y (xAE (x, . ,
n(x2 XN) P)Ll(h()VO)» h(gl) 1) Z n—m (xl m (X2 xN))

m=0

where .%’](1), J € N, are differential operators given by exactly the same formulas as in

the proof of Theorem 5.5, but now acting on the space Cw(f{x_l)[[xlil]] x]AI .

In particular, fn, n > 1, are determined by fo via the same relations as C,,, n > 1,
are determined by Cy. It also follows that all higher coefficients F,, n > 1, are analytic
on X}, _,. By the induction hypothesis, Fj is expanded in

Cllxn—1/xnl] - [lx2/x3] x g - - x32

and coincides with Cy. Therefore, each F,,, n > 0 is expanded in
Cllxy—1/xn11- - [[x2/x311xy" - x527"

and coincides with C,,. Finally, from the expansion (5.8), we conclude that F [ug] is
expanded in

Cllxn_1/xn11- - [[x1/xal xy™ - xp!

and coincides with C%. The convergence of this series at any (xq, ..., xy) € %}rv is clear
by an inductive application of Lemma 2.5. O

5.5. Some applications. Let us quickly comment on applications of the above result to
the analysis of the PDE system and to the quantum group method itself.

On the solution spaces to BPZ differential equations By Theorem 5.9, for every u €
(®;V=] M, j) ® M,,, such that Eu = 0 we associate a formal series representing the
function F[u]: Xy —C,

f[u] e C{xy1,...,xn}.

By convergence of the series (pointwise) in X%, the series uniquely determines the
function F[u], and by translation invariance it therefore also determines F[u]: Xy+1 —

C.
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For fixed AL = (Ao, A1,..., AN, Axo) € NN+2, any A-admissible sequence s =
(60, --., cn) gives a solution to the (same) system of BPZ partial differential equa-
tions of BSA form,

9VF =0 forj=0,...,N, (5.9)
with homogeneity
N

F(sxo, $X1,...,5xN) = s =2 =g h ) F(xo, x1,...,xXN) (5.10)

for any s > 0 and (xo, X1, ..., XN) € XN+1.
For different ¢, the corresponding formal series in C{x1, . .., x v } are clearly linearly
independent, since the sequences (Aj, ..., Ay) of exponents A; = h(g;) — h(A;) —
h(gi—1),i = 1,..., N, aredistinct in the generic case. In particular the conformal block

type solutions F[u], for ¢ admissible, are linearly independent solutions to the system
of differential equations.

As an application, we therefore get that the dimension of the solution space is at least
the number of conformal blocks, which is a combinatorial and well understood quantity.

Corollary 5.10. Let 1 = (Ao, A, ..., AN, Aoo) € N¥*2. Then we have

dim {F e C*®(Xn+1) ‘ F satisfies (5.9) and (5.10)}

N
> dim Homy, (s1,) (Mkoo» ®MM>'
j=0

Differential equations at infinity From the perspective of CFT, the (PDE) part of Theo-
rem 2.2 has the interpretation that for u € H,, the function F[u] satisfies partial differen-
tial equations stemming from degeneracies of primary fields at the points xq, x1, ..., Xy.
When we take u to moreover satisfy K.u = g’ u, it is natural to expect the func-
tion Flu] to satisfy a further differential equation of order A, + 1, associated with the
field at infinity. It is possible to give a direct proof of this property from the quantum
group method, but such a proof is not entirely trivial. By contrast, a very simple proof
can be obtained as an application of the results of this section.
For the statement, we introduce the following differential operators at infinity

N
3
L = Z <xl~"+1£ +(n+ 1)h(xi)x;1> , nel.
i=0 !

Corollary 5.11. Let u € 'H, NKer(K — q*®), koo € N. The function F[u] satisfies the
differential equation 2'° Flu] = 0, where
Aoot] (—4 ))»oo+l—k()\ |)2
7 = 3 /i o) g0 g,
— 1 k
=1 prome=t Ll izt P i—usr PO

Pr++pr=hoo+l
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Proof. Note that any u € H; N Ker(K — g*~) is a linear combination of u ., where ¢
ranges over the A-admissible sequences. By linearity, it suffices to prove the statement
foru =uc.

To simplify, we make use of the fact that the representation My is the unit for ten-
sor products of representations of U, (sl2), as seen from (2.1). Explicitly, we use the
isomorphism

~

N N N
(®idej)®LAf(;ol (®MM)®MAO — (®Mx,)®Mxo®Mo-
j=1 j=1 Jj=1

N . 0.0 .
We set u’i =(( Q=1 1dM~AJ,) ® Uy )(ug), and note that the function
Flugl(z, x0, %1, ... XN)

satisfies the first order differential equation 0 = 33—1 F [u/g] by the (PDE) property of

Theorem 2.2. Therefore it is constant as a function of z. When we specialize to z = 0,
Theorem 5.9 states that this function is given by

Flugl©, xo, x1, ..., xn)

— =/ SN - Sl - SO (.7, -
= (L Py s ¥+ DS Wy, 30) Dy i3, x0) )

On the other hand, by the (ASY) property of Theorem 2.2 and the observation that
Bng’o = 1, we can determine the value of the constant, and we find

f[u/g](O, X0, X1, -5 XN) = Flugl(xo, X1, ..., XN).

It now suffices to prove the differential equation for the above expression involving a
composition of intertwining operators. Recall that Qj\w = Qs 50 Sig u"/ADO =0, and
therefore

0 = (Suuiblys DS Bays Xw) -+ VS (g, 0) o)

Aootl

3 (—4/K)tot 17K (o 1)?
k=1 pro.pexl [Tzt i 2 (i PO

Pr++pr=hootl

=/ SN " S0 (.= 7
<w§N’ Ly -+ Lp, yAN ngl(w)uNny) : “y)»oO(w)\O’ x0) w0>~

We can commute the Virasoro generators L, to the right by Corollary 4.7 in the
form (5.6) again. For p,, > 0 we have L, wy, = 0, so after commutation we find
the desired differential equation. O

By contrast, to prove Corollary 5.11 directly using the quantum group method, one
would have to introduce an auxiliary variable xy4; and an auxiliary vector

N
u" € M, ® (Q M) ® My,
j=1

as in [KP20, Section 5.2], conjugate by an appropriate exponentiatial of XI(N”), and
take a complicated limit x+; — +00. The proof above is a significant simplification.
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Full series expansions of the functions from the quantum group method The property
(ASY) in Theorem 2.2 gives the explicit leading coefficient of the Frobenius series
expansion of a function obtained by the quantum group method, in the limitx; —x;_; —
0. The main result of this section allows to express also all of the higher order coefficients
of this Frobenius series as matrix elements of compositions of intertwining operators®,
making their calculation tractable by algebraic and combinatorial techniques. This is
perhaps the most important direct application of the results of this section to the quantum
group method.

6. Associativity of Intertwining Operators

In this section we will prove one of the main results of the paper, the associativity of
the intertwining operators among the modules of the first row subcategory. This result
is essentially the associativity in an appropriate tensor category.

From the point of view of correlation functions of conformal field theories, associa-
tivity amounts to the fact that the same correlation function admits series expansions
in different regimes, and the resulting series represent the same function on the over-
lap of the domains where they converge. A geometric interpretation of this property is
that different pair-of-pants decompositions of the same Riemann surface can be used
interchangeably.

In VOA theory, associativity is a statement about the case N = 2 only, but involving
the full intertwining operators, not merely a matrix element that gives a particular cor-
relation function. Starting from the N = 2 case, it is then possible to inductively obtain
coincidence of various expansions of multipoint correlation functions (or interchange-
ability of pair-of-pants decompositions of multiply punctured spheres).

From the point of view of VOA intertwining operators, we will be comparing a priori
entirely different formal series, and it is far from obvious that they should represent the
same function. Indeed, to obtain coincidence, we cannot separate a given conformal block
from the rest: the expansion of a single conformal block in another regime will involve
all possible conformal blocks, so a carefully devised linear combination is needed.
The appropriate coefficients of the linear combination will be the 6j-symbols of the
underlying quantum group.

A key subtlety is that the analytic functions represented by the series are multivalued
(when extended to their natural complex domains), and the correct coincidence state-
ments necessarily involve branch choices. In our setup, the quantum group method and
the ordering of the variables on the real line leads to convenient branch choices which
facilitate the statement. The multivaluedness, in turn, is closely related to braiding prop-
erties, which feature crucially in the analysis of CFT correlation functions, and form a
key structure of the underlying tensor category.

In the previous sections, the quantum group has been used mainly through the fusion
rules of the VOA modules, which matched the selection rules for I (s1>) representations.
The selection rules themselves, however, are not sensitive to the deformation parameter g .
By contrast, the results of this section will involve the specific 6 symbols, and they
will lead to the specific braiding properties. The associativity result therefore gives more
profound evidence for the equivalence of the first row subcategory of the generic Virasoro
VOA and the category of (type-one) finite-dimensional representations of 4, (sl>).

4 Specifically, the method as presented in this section, applies to the coefficients of the Frobenius series
corresponding to x] —xo — 0. The general case of expansions as x; —x;_1 — 0for j > 1 will be obtained
by associativity, which is addressed in the next section.
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This section is organized as follows. In Sect. 6.1 we introduce the setup and give
the precise formulation of the associativity statement, Theorem 6.1. The proof of that
statement is divided in two parts. Section 6.2 contains the proof of a particular case
involving a highest weight matrix element. In Sect. 6.3, an inductive construction starting
from that particular case is used to finish the proof of the general case.

6.1. The setup and statement of associativity. Fix Ao, A1, A2, Aco € N. For arbitrary
wo € Qi W1 € Onys w2 € Oy, Wy € Q/koo’ and ¢ € Sel(Ag, A1), we will consider
the formal series

(wher Yz twa, x2) V)5, (i x1) wo), 6.1)

which is a special case N = 2 of the series in Sect. 5, and we will compare it with the
formal series

(wher V5505, w2, vy i, x) wo) 62)

for u € Sel(A1, A2)NSel(Lg, Axo). The idea will be to substitute actual values x1, xo € R

so that

X1 = X1 and X = X

X2 = X2 Yy =x3 —X|.
The first series (6.1) will correspond to an expansion in the regime 0 < x; < x3, and
the second (6.2) to and expansion in the regime 0 < x» — x| < x1. As discussed in
Sect. 5, the series (6.1) is in the space
Ay = h(s) — h(1) — h(2o)

Claal [[x1 /22l [y '] 7 with {A2 Gy — h) — e,

Similarly we will see that the series (6.2) is in the space

A() = h(u) — h(2) — h(r1)

—17 LA (W) AW :

The goal of this section is to prove the following associativity of intertwining oper-
ators.

Theorem 6.1. Fix Lo, A1, A2, Ao € N. For arbitrary wo € Qj,, w1 € Qy,, w2 € Qy,,

o € Qghoo’ and ¢ € Sel(rg, A1), the series

Aoo
(wgo, ykzg(wz,xz)yfl,xo(wl,m)w0>,
converges when 0 < x1 < x3, and the series
A2 AL
> 30 hoo © (wéo Vi (Wl (wa,xy = x)wy, xp) wo>
n e Sel(h1,22) NSel(Xp,Aoo)

converges when 0 < xo — x1 < x1, and in the (nontrivial) overlap of these domains, the
analytic functions represented by these two series coincide.



The Quantum Group Dual of the First-Row Subcategory 1183

The proof of Theorem 6.1 consists of two main steps: the special case of the matrix
element of highest weight vectors, and the recursion on the PBW filtration to establish
the general case. We address the two in separate subsections below.

In the rest of the section, sums over u are always taken over the same set of values
satisfying the two selection rules above. For brevity, we omit this from the notation and

()= L E

u e Sel(A1,42) N Sel(Ag, hoo)

6.2. The special case with highest weight vectors. The first step in the proof of The-
orem 6.1 is to consider the special case where instead of general vectors wg € Qj,,
w1 € Qs w2 € Os,ys wgo € Q;\ we use the highest weight vectors wy, € Qa,,
Wy, € Ox» Wi, € Oiy, wloo € Q)L This is analogous to the initial term of an in-
tertwining operator, and the highest We1ght matrix element considered in the context of
compositions of intertwining operators. The precise statement we want to prove is the
following.

Proposition 6.2. Let L, A1, A2, Aso € N. For arbitrary ¢ € Sel(Ag, A1), the two series
(wxw 3&2 Wiy, X2) Vy$ 5, (Wi, X1) wx())

converges when 0 < x1 < xp, and the series
A oA pm) -
Z[M hog (wim, Vi (Wl Wy, x2 = x1) iy, xl)wxo)
%

converges when 0 < xo — x| < x1, and in the (nontrivial) overlap of these domains, the
analytic functions represented by these two series coincide.

The first of the two series is exactly of the form considered in Sect. 5, and by Theo-
rem 5.9 we have

Flugl©,x1.52) = (], V52, 12) V5 (g x0) i) for0 < x1 < x2,

where u¢ € M, ® M, ® My, is the conformal block vector (3.3)

: 2, oo
ue = ((1d|\/|A2 ® tkg"’\o) ol f;) (u(() ).

For the purposes of comparing with the other series in the associativity statement, we
decompose this vector using the defining property (3.1)

. Ay A .
(G, 00805 = X321 5 o, o

of 6j-symbols, to get

A AL M) ~ ~ A,A . Mo (Aoo)
ug = Z{AO Do © } Uy, where @, = ((t,ﬁ ! ®1de0) Otkooo) (g ™).
"
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For the corresponding function, we get the decomposition

Ay A ~
FlugdO.xix) = Y {52 5 2 A0, 0.
"

where each term on the right hand side has a good Frobenius series expansion in the
variable xp — x1, by virtue of the submodule projection property fiﬁ = 71{1’:‘ 2 (’12ﬁ ) and
Lemma 2.5. Specifically, for any wu, in the region 0 < xp — x1 < x1, we have

Fla0.x1,x2) = (2 — x> 3 Celrn) (2 — 2k, (6.3)
k=0

where Z(y,) = h(u) — h(X2) — h(X11) and the leading coefficient is

A A0, (hoo o A

Co(x1) = BA:A. }-[‘liooo(”(() ))](0’ x1) = szlfxl B/L),L)\o X W
with A (m) = h(Aoo) — h() — h(Ag). To prove Proposition 6.2 therefore amounts to
showing that the series (6.3) coincides with the other expression with VOA intertwining
operators,

—/ A " - - -
(B D50 (D, (B ) . ) i)

where one substitutes x = x| and y = xp — x1. For this, the strategy is again to show
that both expressions satisfy the same differential equation, and that the series solutions
to it are unique up to multiplicative constants. The most straightforward approach would
be to use more than one differential equation (e.g., inductively, as in Sect. 5), but in the
current case we can in fact bypass the need for all but one differential equation by using
a priori homogeneity information.

The appropriate differential operator now is

Ao+l 1+ —k

~ —4 27k),1

=YY 7020 4
k=1 p; pe>1 Hu=1(2i=l pi)(ZizuH pi)

Pi++pr=hi+l

.....

where for n € Z we set

a
D= = (x =) ((—x —ygo n)h()»o)>
0 0
— (=" <(‘y’(£ —5y) +n>h(xl)) . (6.5)

Analogously to Sect. 5, these differential operators act on the one hand on spaces of
smooth functions of x and y, and on the other hand on spaces C[x] [[y/x]][ y 1 xA W
y2W of formal series (for any i) via
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and the factors (—x — y)" are expanded as the following formal power series

(~x =" > (x =y = 0" Y <Z> (/2.

k=0

These differential operators 2 and ,?”;,(2) are obtained from 7@ and .,22;1(2) by changing
variables from x1, xo to x = x1,y = xp — x1. In particular the following is obvious
from the property & @ F [#,1(0, x1, x2) = 0, which itself is obtained from the (PDE)
part of Theorem 2.2 using Lemma 5.6.

Lemma 6.3. For any y we have
72 Flia)©,x,x+y) = 0.

Next we show the analoguous property of the formal series.

Proposition 6.4. For each . € Sel(A1, A2) N Sel(Lg, Aeo), the formal series
Chitx, y) = (. W5 (V145, (. 3) %) )
lies in C[[y/x]] yz(“) le(“), and it satisfies the differential equation
9 Ch(x,y) = 0.

Proof. We expand the intertwining operator y)f; 5 (W2, y) so that

yxﬁx.(wkz, y) = ZJ’A(“)_”_I(@AZ)@),

nez

where each (w;,)») € Hom(Qy,, Q) is of degree —n — 1, n € Z. In particular, we
have (wj,)mywx, € Qu(—n—1),n € Z,implying that (w;,) ) w;, = Ounlessn < —1.
Furthermore, we expand each part ylj;g((wkz)(n)wh ,Xx),n < —1 so that

Vs (i) g, ®) = D x¥ 07 (02 () 02,) )
meZ
where ((W5.,) (m) Wx, )(m) € Hom(Q,,, 0,...),m € Zis of degree —n —m — 2. Therefore,
the matrix element

<u_);oo, ((ﬁ)xz)(n)ﬂ)xl)(m) u_)xo>

vanishes unless —n — m — 2 = (. Consequently, we see that the series /C\%i(x, y) is
expanded as

o
~\ N NG _ _ _ _
Culx,y) = yrWx® % <wﬁxw((wx2)<—n_1)wm)(n71) wxo>(y/x)”
n=0

€ Clly/x]] 2w x W
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The differential equation follows from the quotienting out of the singular vector
Si, We,h(3p) Of the Verma module M (c, k(X)) given by (4.12);in Q;, we have S, w), =
0 and therefore

<wim’y/j§)(y)f;)hl(skzwkz’y) w)m x) wko> = 0.

To see that this gives the differential equation of the asserted form, the key is to observe
that for any wy € Q;, and p > 0, we have

- )Loo _ _
<w;Loo’ yM)»O (y)ul;)q (L_Pw27 y) Wi, x) WA0>
2 7) }\oo — -
= 200 VI, wa. )i, %))

which in turn follows by a calculation based on the formulas of Corollary 4.7. The
calculation is otherwise very similar to that in the proof of Lemma 5.4, except that part
(a) of Corollary 4.7 has to be used twice here. O

By the chosen normalization of the intertwining operators, the coefficient of y2(+) xA'(4)

in Eﬁ(x, y) is B/L)"if) BMM,M' In particular, é‘%(x, y) is non-zero.

The remaining core ingredient is a suitable uniqueness statement for series form
solutions of the PDE. Two aspects of the statement here are worth noting. First, we
will have a uniqueness statement separately for every p, in an appropriate space of
formal series. Different  would give other linearly independent solutions, but due to
different characteristic exponents, the forms of the series are different. Second, although
we require just one differential equation, we obtain uniqueness, because we additionally
fix the total homogeneity degree. Alternatively it would be possible to start without the
homogeneity requirement, using instead further differential equations that can also be
established in the present case.

Proposition 6.5. For each v € Sel(h1, A2) N Sel(Lg, Aoo), Subspace
Ker 7@ < Clly/x]] xNw yz(“)

consisting of the solutions to the above differential equation is one-dimensional,
dim(Ker @) = 1.

Proof. Since 6‘% is a non-zero solution in this space of formal series, it suffices to show
that solutions are unique up to multiplicative constant.

_For the present purpose, we introduce a Z-grading of the space Clx][[y/x]][ y 1
x 2w y2W: forn, m € 7, a monomial y2+" x&(m+m g declared to be of degree n.
The degrees of operators are determined accordingly.

For each p > 0, the operator

~ d
Z% =~y <y3—+(1 —p)h(m)
Yy
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is of degree — p, and the difference

Z(2) @
79 -2
S +§oo TN oty (x s p - 0 b))
ox “ k 0x

is a sum of terms of degrees strictly greater than — p. Therefore, we can decompose the
action of 2@ on Clx] [[y/x]][y~"] x2' W yAW g0 that

o
50 = 505 ap,
k=1

where deg@z) =M —1+kfork>1,and

Ao+l 1+ho—k
~ —4/k 27K )51 —~ —~
7%= ¥ GO s 2% .22
= T o P

P+ +pp=ha+l

is a differential operator of degree —A, — 1.
We also have

2(2) yZ(;,L)+n — P)Lz(h()x]),h(,u,)'f'n) yﬁ(u)mszf]

for any n € Z, and we recall that Py, (h (AQ, h(y,)A+ n) = 0if and only if n = 0.
Let us expand a series C € C[[y/x]] x2 ) yAW) o that

o0
C = Z@n xﬁ’(u)fnyﬁ(u)m.
n=0

Requiring the differential equation 9 C =0and considering the terms of different de-
grees separately, we obtain the recursion relations that determines all higher coefficients
Ci, k > 0, by

—A(u)—k+rg+] . — A (u)+k k-1 . .
(W) —k+ro+] 5 (u)+ @(2) RGoen R G—n A
Z n (¥ X C,).

Po, (hGuD), h() +k) =

G = -2

Therefore, a solution is uniquely determined by its leading coefficient 60. O
Putting the above ingredients together, we can prove Proposition 6.2.

Proof of Proposition 6.2. By linearity on F and decomposition of u ., we found

FluglO,x1,22) = Y {32 11 A0, 5.
"

According to Theorem 5.9, the left hand side is given by the series

.y A — < — —
<w%o, Vi e Wnys x2) V5 (Wi, X1) wx0>-
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On the right hand side, change variables to x = x1, y = x — x1, and recall from
Lemma 6.3 that each term F [fiu](O, Xx,x + y) satisfies the differential equation
90 F [ﬁﬂ](O x,x+Yy) = 0and by Lemma 2.5 has a Frobenius series of the form (6.3).
By homogenelty, property (COV) in Theorem 2.2, it is easy to see that the coefficients
are of the form Cn (x) =cp xA (W=n_ The power series part of the Frobenius series in
variable y is locally uniformly R-controlled in the domain defined by x > R, so by
arguments similar to the proof of Theorem 5.9 we get that the differential operator 72
acts naturally coefficientwise on the series. The uniqueness up to multiplicative constant
of series solutions stated in Proposition 6.5 then shows that the series expansion is

FIE0. x5+ y) = (] 05 (Ve g, ) ), %) i)

since the leading coefficients on both sides are 60 x) = BAZM Y B M}‘;’j) & W, o

6.3. Reduction to the initial terms. Here, we present a proof of Theorem 6.1. The proof
is by induction on the total PBW length, broadly similarly to Proposition 4.12. In fact,
since the proof splits to many similar cases, we only provide the details about one.
Proposition 6.2 from above will serve as the base case of the induction.

Proof of Theorem 6.1. Recall that all the modules Q;,,i =0, 1,2 and Q/koo admit the
PBW filtration;

PiQ,, c FPQ, < ...,  fori=0,1,2,

70, c - C F
c Fr=Q,_ c Fr*o) C

700, c

Fix p € N and assume that the claim in Theorem 6.1 is true for any w; € F?: Q;.,

i=0,1,2and w, € FP>Q) with po+ p1+ p2+ poc < p. Note also that the base
case po = p1 = P2 = Poo = 01s covered by Proposition 6.2.

Let us first consider increasing po by one, by applying L_,,,n > 0,onwg € F°Q;,.
The Jacobi identity, as formulated in Corollary 4.7, yields the following

A S
(wher Pz w2, x2) V)5, (w1, 1) Lywo)

/ A S
= (Lawlo, Y2wa, x2S, (w1 x1) wo)
—n+l

0 / A
_ o 00 S
X, ox; <woo, yng(wzyxz) y)\l)\o(wh x1) wo>

o0
-n+1\ _ _
—Z( L )xln kel <wf>o, y;f;(wz,xz)y,\glko(Lk—lwl,xl)w0>

k=1

_ x—n+l

3XQ<

o0
—n+1\ _, _
—E ( X >x2” k+l<wéo, yg?(Lk—lwz,xz)yflko(wl,xl)wo>-
k=1

A
whe VL (wa, x2) S, (wr, x1) wo)
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Each of the terms of the right hand side have a total PBW word length < p, so the
induction hypothesis can be applied to each of them. By the induction hypothesis, the
right hand side power series represents the same analytic function as the following series

Ay A ,
ZH:H/\(Z) A;Z]( (anoo: Vi (W (o, yywy, x )w0>
nf 0 d
—x! <£ - 5) <woo* yu;\o(yxm(wL Ywi, x) wo)
_Z< ) l—n— k<w<>0’ yM)LO(y)\Z)Vl(wz y)Lk 1W1, X ) 0>
—n a /
_ (x+)’)1 5<w<>0’ yu)\o(y)tz)hl(lUZ,y)IU], ) 0>

© 1 _
_Z< k”)(x+y)1nk<wéov yuko(yxle(Lk w2, Y)wi, X) 0>> (6.6)
k=1

when the two series are evaluated at x| = x1, X2 = xp3, and x = x1, y = x2 — X1,

respectively. It remains to check that the expression inside the parentheses in (6.6)
coincides with

(wher V55 (D, (w2, w1, %) Ly

For this, we first commute L_,, to the left with the formula of Corollary 4.7,

(whe )55 (D4, (w2 yywr, %) L)

= <L” w/OO’ yﬂ)\o(y)»z)tl(wz y)wlv )w0>

_Z( ) 1—n—¢ <wé>0’ ylj;?)(lz(—l y)f;)hl(wz,y)wl’x) w0>

The first term here is indeed present in (6.6), so we focus on the second term. Also the
£ = 0 contribution in the second term is

_ oo
—x! (wgo yMO(L—lyﬁ,\l(wz,y)wl,x) w0>

a
= —x 7 (uke Y (0, (w2, yw,x) w).

which also appears in (6.6). We rewrite the remaining terms by commuting L,_ to the
right inside the intertwiner, leading to a contribution
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o0 1_
_Z< . n)xl—n—e <u)(;o’ yMAO(Le ly)hz)\l(UJ2 y)wl, )w0>

=1

X /1—n e ,
= _Z< ¢ )xl £<<woo’ yﬂ)\o(ykzkl(wz WLe—rwy, x )w0>

=1
(0.9) E - /
+k2:(:)<k> ytk (woo, Vi (Wl Lewa, yywi, )w0>)

Again the first term appears in (6.6), so it remains to treat the last term. The k = 0
contribution of it is just

%) 1—n - /
_;< ¢ >x1 fyf <woov yﬂxo(ykz)\l(lu]wz Ywi, x )w0>

/

ad
= _(x +.Y)1_n 5 <w00’ yﬂko(y)uz)q(wZ y)w]’ )w0>
1—n ’

a
T Gy <w°°’ Ve (W, (w2 pwi, x )wo>.

Both of these again appear in (6.6). In the remaining terms, we interchange the order of
summations and change to a new summation variable m = £ — k to express them as

oo 1 _ 00 e /
_Z ( K n)xl_n_zz<k) yZ—k (wOO’ yuko(ykzkl(Lk7]w2 y)u)l7 )w0>
(=1 k=1

2 ¢\ ({1-n et o
<k>< , )xl ZyiZ k<w ym(ykm(Lk w2, y)wi, )w0>

_ki::Ek

00 k+m—1
— 3 l—n—k—m _m
= E Tl 1—([) l—-n—-1i)x y
= i=l

1 m=0
oo
<éo g (yﬁkl(Lk—lwz,J’)wl,x)w0>-

This equals the remaining term in (6.6).

There are in principle three more cases to consider: the application of L_,, on w; €
FP Qs onwy € FP20,, and on wo, € FP* Q) . The calculations are similar to
the case above, so we omit the details here. O
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Appendix A. Proofs of analyticity and Frobenius series

This appendix is devoted to indicating how the results of [KP20] can be strengthened so
as to yield the analyticity and series expansion properties needed in the present article,
and for some elementary power series estimates employed in the proofs of the main
results in Sects. 5 and 6.

A.l. Elementary power series estimates. In Sects. 5.4 and 6.2, we needed that three types
of operations preserved a suitable space of parametrized power series, and that these
operations could be performed essentially “coefficientwise”. Specifically, we needed

e differentiation of the power series itself;
e multiplication of the power series by another power series;
e differentiation of the power series with respect to parameters.

The setup is that we consider power series in a variable z, of the form
o
D amn (A1)
k=0

where the coefficients ¢y depend smoothly on parameters y € €2, where Q C R™ is
an open set. The main assumption is that for some R > 0, the parametrized power
series is locally uniformly R-controlled in the sense of Definition 2.3. For concretely
working with the power series, it is useful to note that the property of being locally
uniformly R-controlled is equivalent to the following: for every compact K C €2, every
multi-index o, and every 0 < Ry < R, there exists a M < oo such that

|0%(»)| < MRy* forally € K andk € N. (A2)

This in particular ensures that for every y € €2, the radius of convergence of (A.1) is
at least R, and for any Ry < R and any compact subset K C €2, the convergence is
uniform over |z] < Rpand y € K.

Crucial for us is that the locally uniformly R-controlled power series are stable
under differentiation of the power series, multiplication by another locally uniformly
R-controlled power series, and differentiation with respect to the parameters y € €.
The first two are in essence just familiar operations on ordinary power series—only the
last one involves dependence on the parameters y. The proofs are all elementary.

Lemma A.1. Let Q C R™ be an open set, and let R > 0.
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(a) If (ck)ken are locally uniformly R-controlled, then also ((k + 1) cryt )keN are locally
uniformly R-controlled and for any z € C with |z| < R and any y € 2 we have

d o0 o
LM =Y k+Damm
k=0

k=0

(d) If (cr)ken and (dy)ren are locally uniformly R-controlled, then also the convoluted
coefficients (Z?:O ck_jdj) ren are locally uniformly R-controlled and for any
z € Cwith|z| < Rand any y € Q we have

00 00 [} k
(Y amF)(Xamd) =3 (Z k-0 d (y)) *
k=0 k=0 k=0  j=0
(c) If (cx)ren are locally uniformly R-controlled and j € {1, ..., m}, then also the

coefficients (8 /ck)keN are locally uniformly R-controlled and for any 7 € C
with |z| < R and any y € Q we have

8 o0 o
S amd =) @em
Vi ko k=0

Proof. The statements (a) and (b) at a fixed parameter y are textbook power series results
based on the estimates (A.2), and the explicit calculations yield locally uniformly R-
controlledness by the same characterization.

For property (c), note first that arbitrary partial derivatives of the coefficients satisfy
the same estimate (A.2), so it is clear that any partial derivatives of the coefficients
remain locally uniformly R-controlled. It suffices to check that the the partial derivative
of the series is the series with partial derivative coefficients. Fix y € € and choose a
small » > 0 so that the closed ball B,(y) C Q. First fix R’ < Ry < R and consider
lz| < R’. Since B,(y) C  is compact, we may choose M < oo such that for all k € N
and y € B,(u) we have both |c;(y)| < M Ry k and !8 ck(y)| < MRy k The partial

derivative of the power series with respect to the Jj:th parameter y; aty = (y1, ..., Ym)
is
G J— P ey +88) —a(y)
— ) )z = lim z
3yj k2=:0 5—0 ]; 1)

o 1
= lim (/ (Bjck)(y+s8éj)ds) Z
0

5—0
k=0

For 6 < r the integral above is bounded by the same M R, k (since the integrand is,
and the integration is taken over the unit integral), so for |z7] < R’ < Ry the power
series terms are dominated by M (%)k, which are summable. Moreover, as § — 0,
the integrands are tending pointwise w.r.t. s to the constant (9;ck)(y), and they are
bounded by the above. With these observations, we can apply dominated convergence
to interchange the limit § — O with both the series and the interal, and the assertion (c)
follows. 0O
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A.2. Power series for the functions from the quantum group method. We now outline
the proofs of Lemmas 2.4 and 2.5. For convenience, we also recall their statements here.

Lemma. (Lemma 2.4) Let F = Flu]: Xy — C be the function associated to any u €

H,., and let (x1,...,xn) € Xy, and let j € {1, ..., N}. Then we have a power series
expansion
> k
Fxt, oo Xjm1,2j, Xjsls o, XN) = ZCk(M, X Xjads -5 XN) (2 = X)
k=0

in the j:th variable. For fixed xj € R and R > 0, viewing the other variables (x;);+

as parameters, on the subset @ C RN~ defined by the conditions x| < --- < xy and
min;; |x; — xj| > R, the power series is locally uniformly R-controlled.

Proof. The construction in [KP20] expresses F' = F[u] as a finite linear combination
of integrals

G(xla~--’xN):/"'/f(xlw--,xN;wln--,wz)dwl"'dwb
r

where the integrands are branches of the multivalued function

J&r, Xy wr, - we)
25 0 _4,. 8
= const. [ Gj—x)% [T @i—w)™% T (e —wpr,
I<i<j<N 1<i<N I<r<s=<t

1<r<¢

and where the integration surfaces I" are collections of non-intersecting loops (for details
see [KP20]). Most importantly, the integration surfaces I" are compact, and the integrands
(wi, ..., we) — f(x1,...,xy§; Wi, ..., wy) are continuous on them.

Fix R >0 and a compact subset K C Qg ={(x;)i; € R¥ ! min;; [x; —x;| > R}.
When (x;);«; € K, without changing the homotopy class of I', it is possible to arrange
so that none of the £ coordinates of I' = 'k intersects the closed ball B g (x ;) of radius R
centered at x ;. For notational convenience, let us keep the coordinates x;, i # j, fixed
and omit them from the notation, and consider only the dependence of the integrand f on
the j:th variable (denoted z ;; we will perform power series expansions around z; = x)
and the integration variables wy, . .., wy. From the explicit formula for f, itis clear that
for any (wi, ..., wy) € I', the function z; — f(z;; wi, ..., wy) is analytic in an open
set containing B g (x i), and has a convergent power series expansion

fzjswi, ..., we) = Z(ﬁk(wL cowe) (zj — x

k=0

where the Taylor coefficients obey the Cauchy integral based estimates

max, Beix;) | fzjswi, ... wo)
|k (wi, ..., we)| < Rk .
In particular we get the uniform estimate
Cg
[dewr, . wol <



1194 S. Koshida, K. Kytola

for all (wy,...,w¢) € I, with the finite constant Cx taken as the maximum of
|f(zj; wi, ..., w[)| over the compact set Br(x;) x K x I'x (the middle factor is
for the implicit parameters x;, i # j). Then for

G(Zj)Z/"‘[_ f(zjswi, ..., we) dwy - - - dwy,
K

we can use a power series expansion with coefficients
Ck :=/~-~ dr(wy, ..., we) dwy - - - dwe,
Ik

which satisfy |cx| < Ck [Tk| R*.The series converges to G(z;) whenever |z; — x| < R,
by virtue of the error term estimate

‘G(z,) —ch (zj — xj) ’

ko

S/ / U)1,...,U)Z)_Z(Pk(w],...,U)[)(Zj—xj)k dwl"'dU)g
k=0

< C lzj — xjl\*

= Ckllxl Z (T) k(:)oo 0.

k=ko+1

From the above explicit estimate for coefficients (ci)ren, we see that z; — G(z;) is
given by a locally uniformly R-controlled power series parametrized by Q. The same
holds for the finite linear combination z; — F(z;) of such terms. O

The Frobenius series statement that we will use is the following. Variants of this
formulation with obvious modifications to the statement and proof could be done as
well.

Lemma. (Lemma 2.5) Letj € {2,..., N}. Suppose that T € Sel(Aj_1, \;) and that
u € H, is such that u = = 7 1j}(u) Thefunctlon F = Flu]: Xy — C associated
to u has a Frobenius series expanswn in the variable z = xj — xj 1

A k
F(xi, ..o xj1, (=1 +2), Xjsl, -, XN) =2 ch(xl,---,xj—l,xjﬂ,-~-,xN) Z

where the indicial exponent is A = h(t) — h(A;) — h(Aj_1). For fixed R > 0, viewing
the other variables (x;);+j as parameters, on the subset 2 C RN defined by the
conditions x1 < --- < xy andmin;x; ;1 |x; —xj_1| > R, the power series part of this
Frobenius series is locally uniformly R-controlled, and for 0 < z < R the Frobenius
series converges to the function F on the left hand side.

Proof. The idea of the proof is otherwise similar to that of Lemma 2.4, except that a part
of the integration surface needs to be separated from the rest and that part of the surface
also undergoes scaling proportional to variable x; — x;_1 of the Frobenius series.
Again for notational simplicity, we suppress the fixed variables x;, i # j, from
the notation. By translation invariance we can moreover assume x;_1 = 0, so that
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the Frobenius series variable is simply x; and notation with scalings centered at x;_
simplifies.

With the methods of [KP20, Sections 3.4, 4.2, and 4.3], the assumptionu = 7 jil’ i (u)
implies that the function x; — F(x;) = Flu](...,xj,...) can be written as a finite
linear combination of integrals

H(xj) = /.,</ ] f(xj;wi,...,w,/n,wl,...,wg)dw’1~-~dw;n>
x]'()

dwi - - -dwy,

where the surface I’ is compact and can be kept fixed as x i {4 0, and where and
x ;g stands for a scaling by a factor x; > 0 of a fixed surface I'g (same for all terms
in the linear combination and for all sufficiently small x; > 0) of dimension m =

%()»j_1+kj —r),andtheintegrand S w/l, cees W, W, ..., wy)isasin Lemma 2.4.
(now all of w/l, ey W, W1, ..., wy are in the same role as wy, ..., we originally).
With a change of variables to unit scale, ¢, = w; /xjforr =1, ..., m,both integration

surfaces become constant, and the dependence on x is entirely in the integrand: we find

HOC])Z//;(,/‘/F x;-"f(xj;xj-tl,...,x]-tm,wl,...,u)g)dtl~--dtm)
0
dwy - - - dwy.

wy

We will compare f(x;; xjt1, ..., Xjty, w1, ..., we) with (we omit all of the fixed ar-
guments x;, i # j, for brevity)

FGwr, . we)
2513 _43, 8
= const. [ Gw—xpe J] i—woTE T (we—wo)e,
1<i<i’<N: I<i<N:i#j I<r<s<t
ii'#j l<r<t
where
N t ifi=j—1
Ai= L .
A i #Ej—1, ),
because f (; wi, ..., wy)is theintegrand whose integral on '’ yields the asserted leading
asymptotic coefficient.
The ratio
f(xA/; xjtl, e Xjly, W, ey wy)
FGwr, . we)
contains factors (we set x;_1 = 0)
0 Zhjo1ng Fhj-1j
PR K .
(-xj ) j
4y —d 4y
(xjtg —0) M1 = x; ' (1, — 0)TkHi forl <a<m
Yy —45; Yy
(jta = X)) 75N = x5 (g = 1)7RM forl <a<m
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8 8 8
(xjty — Xxjlg)x = ij (tp — ta)* forl <a <b<m,

out of which we extract in particular the powers of the scaling factor x ;, which combined
with the factor x;.” from the change of variables produce the correct overall scaling by

xm+%/\j,1/\j—g(/\j,1+x,)m+§m(m—1)/2 _ xh(t)—h(kj_l)—h(kj) _ A

J J —
The t,-dependent factors are yet to be integrated over I'y. The ratio can naturally also

be rearranged (by appropriately splitting the factor (w, —0)~«*/~! in the denominator)
to contain factors

EYNoY 23 )
xi —xj\ < x o ,
(ﬁ) = (1—x—j> = 1+];Ck(xi) xf fori ¢ {j — 1, j}

4, 4, 00
Xi — Xjlg [ Xjla K Kk
_ = 1 — = 1+ Cr(x;) t, x:
()Ci—()) Xi l;k(l)aj

forig¢{j—1,j},1<a<m

wp —x;\ < Xj —ih > x
r J . X _
<m) = (1 u)r) = 1+X_;ck(wr)xj forl <r<¢
1, H t, H
Wy — Xjtg \ ¥ Xl
<ﬂ> = (1 — w_> =1+ ch(wr) t

for1§r§£,1§a§m

=&

which can be expanded as power series in x; with unit constant coefficient, all having
a radius of convergence at least a fixed positive multiple of the distance R’ of x;_; to
the contours in I, when (¢, ..., 1) lies on the compact set I'g. All remaining factors
in the ratio cancel directly.

We again conclude that after extracting the overall scaling factor x% I , the integrand
in H(x;) admits a power series expansion in x;, with the k:th coefficient bounded
by p(k)(CR’)~*, where p(k)is apolynomial and C > Oisafixed constant. By arguments
similar to the previous case, a term by term integration of this yields a power series
for )cj_A H (x;). The proof of the existence of a convergent Frobenius series expansion
with some positive radius of convergence is complete once one notices that the integral
of the constant coefficient of the power series factorizes to integrals over I'g and I/, the
former yielding the beta-function coefficient B and the latter yielding the function with
one fewer variable and labels (Xi)lsifN; i)

The remaining part of the assertion is the uniform R-controlledness on compact
subsets of the domain determined by min;; ;1 [x; —x;—1| > R.For any such compact
subset, from the start we can choose I'’ so that for some ¢ > 0, on I’ we have |w,| >
(1+¢)R forall r,ie., R > (1 +¢)R. Moreover, I'g can be chosen so that on I'g we
have |t,| < 1+ ¢/2 for all a. With such choices, the constant above is C > and
the estimates indeed yield uniform R-controlledness. O

_1
T+e/2°
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Appendix B. Construction of the intertwining operators for Verma modules

Our goal is to show the following theorem (Theorem 4.15):

Theorem B.1. For hy, hg, hoo € C,

dimI< M(e, hoo ):1
M(c, hy) M(c, ho)

An intertwining operator in this case is unique up to multiplicative constants if exists
(Proposition4.12). Hence, we only have to prove the existence. We apply the construction
in [Li99] to the generic Virasoro VOA to obtain an intertwining operator among Verma
modules; we include this so as to be self-contained, and also because we believe that
the concrete case of the Virasoro VOA is instructive. The procedure is divided into two
parts: in the former part, we will construct a linear map

Y: M(c, h) = Hom(M(c, ho), M(c, hso)){x}, (B.1)

and in the latter part, we will show that this linear map ) is indeed an intertwining
operator of the desired type.

B.1. Construction of a linear map. For convenience, we write Wy := M (c, hg), W1 =
M(c, hy) and W, := M (c, hoo). For each k € N, we also write Wo(k) := (Wo) (g+k)>
Wi (k) := (W) (h,+k) and Weo (k) 1= (Weo) (h+k) for the eigenspaces of L.

Before constructing the linear map (B. 1), it is instructive to observe anticipated prop-
erties. First of all, defining a linear map (B.1) is equivalent to defining its matrix elements

Weo x (W1 @ Wo) = Clx};  (Woeo, w1 @ wp) = (Woo, YV (W1, X)wp) .

Second, if ) gives an intertwining operators of the desired type, it is expanded as
Y, x) =Y )mx® " A=he—hi — ho.
mez

Hence, for our purpose of constructing an intertwining operator, it is natural to specify
the linear map (B.1) in terms of the family of infinitely many bilinear functionals

Weo x (W1 @ W) = C;  (Woo, w1 @ wo) > (Weo, (W1) () Wo)

labeled by m € Z. We will actually incorporate these bilinear functionals, by introducing
the affinization W; := C[+*'] ® Wy, into a single bilinear functional

Woo x (W1 @ W) = C: (Woo. (1" @ w1) @ wo) > (Woos (W1)(myWo) -

Finally, as we have seen in Proposition 4.12, an intertwining operator among highest
weight modules is determined uniquely by the initial term. Therefore, the desired bilinear
functional should be determined recursively by the value at (w¢ s, (t_1 ® We,py) ®

u_)c,ho)-
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Step 1 The first step is to fix an initial term. Taking a constant B € C\{0}, we define a
bilinear functional®

ML W (0) x (Wi(0) ® Wo(0)) — C
by ML) (i, e py ® Weng) = B.

Step 2 We extend the bilinear functional M) 5o that an arbitrary vector from W,
can be inserted.

Proposition B.2. There exists a unique bilinear functional
M0 W (0) x (W) @ W(0)) — C
which coincides with M40 on the subspace
Woo (0) x (W1(0) @ Wp(0)) C Woe(0) x (W1 @ Wo(0))
and which has the property that
MO (e oy Lopwi ® We,ng) = (=17 (=h — nho + hoo)M O (e . w1 @ ey
foranyn > 0and wy € (Wy)@p).

Proof. The proof is by induction with respect the PBW filtration (%7 W) yen of Wi.
We recursively define

MO0 W (0) x (FP W ® Wo(0)) — C

for p € N, and we show consistency and the desired property.
The zeroth level of the filtration is just the highest weight subspace, Z°W; = W, (0),

s0 the required coincidence with M©2-19) fully determines M\, and provides the
base case for the recursion.
Suppose then that Mf,,oo’o) : Weo(0) x (FPW; @ Wp(0)) — C are well-defined and

consistent for p < r — 1. We want to define MSOO’O) : Weo(0) x ("W @ W(0)) — C
according to the required property, by setting

MO (@B g, Loni @ e py) = (= 1) (—h = nho + hoo) MG (e g, w1 @ e )

forn > 0and w; € Z"~'w; N (W1) ). For well-definedness, it suffices to show that
M (e poy s (LomL—n = Lp L = [L_p, L_a D)W ® te,py) = 0.,

forany m,n > 0 and w; € Fr2W,. We may assume that w; € (Wy)). Note that

0) (= 7
M,(«oo ) (wc,hoov Lyl _yw ® wc,ho)
—m— (00,0) , - _
= (D" (=h —n —mho + heo) (—h — nho + hoo) M, "5 (We o » W1 @ We )
5 Atvarious stages of the construction, the superscripts to M are meant to indicate in which of the modules

Wo, W1, W we restrict attention to only the one-dimensional subspaces Wy (0), W1(0), W (0) of highest
weight vectors.
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Hence we have
MO (@ ey (LomL—p — Loy L) w1 ® e iy )
= (=77 (= )=k + o) = (m® = 12 ) M (e W1 @ i)
= (=m+n) (=D (—h— (m+ m)ho + hoo) MUY (e, w1 ® i)
= (=m + )M e e, Lomen Wi @ We po)-

Therefore Mﬁoo’o) is well-defined. Consistency is clear from the construction: for s < r

the map M{™? coincides with M®? on the subspace Wao(0) x (F*W; ®@ Wy(0)).
o

Step 3 As we anticipated, we now consider the affinization of Wy, VT/1 =ClE 1o w,.
Let us also introduce a Z-grading of it as

deg(t" @ wy) :==k—n—1 whenw; € Wi(k), ne€Z.
We extend the bilinear functional M9 to
M0 Woo(0) x (W1 ® Wo(0)) — C
by

M0 (@5 ® (1" @ w1) ® Wepg) 1= Sken—1,0M D (e . ® Wi @ e )
(B.2)

for n € Z and w; € Wi (k). In particular, M0 yanishes unless ¢" ® w| € Wl is of
degree 0.

Step 4 The following fact will be used to extend the bilinear functional M) 5o that
arbitrary vectors from Wy can be inserted.

Proposition B.3. For m,n € Z, and wy € W1, we set
S m+1
Lu(" @wi) =) < ‘ )t"’*“*”‘ ® Li-iwi, C(t" @ wy) :=0.
k=0

Then, this gives a representation of the Virasoro algebra of central charge 0 on wi.
Furthermore, L, has degree —m, i.e., when w, € Wy is homogeneous, we have

deg(L,, (1" ® wy)) = deg(t" ® wy) —m.

Proof. Note that, for any m, n, p € Z and w; € Wy,

e @]

+1 +1
Lan(l‘p®w1) _ Z (l’lk )(ml )l‘m+n+p+2_k_l®LllLklw]-
k,[=0

Therefore,

(L Ly — Lan)(tp ® wy)
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> (n+ 1\ /m+1
— Z ( k )( l )tm+n+p+2—k—l ® [L[—lv Lk—l]wl
k,1=0
o m+1\(m+1
— Z ( k )( l )(l _ k)tm+n+p+2_k_l ® Ll+k72wl
k,1=0
o K n+1\/m+1
=y (k i l)( l )(z — (k=R @ Ly sw
k=0 =0

Here, we use the following identity:

k

n+1\/m+1
Z(k_l)< l )(l—(k—l))

=0

z(m+1)2k:(n+1><m )—(n+1)k1( n ><m+1>

S \k—1)\1 -1 L \k—1—1 /
m+n+1

=(m—n)< k1 )

Hence, we have

(LyLy — Lan)(tp ® wy)

o

+n+1

— (m—n) Z (m ]:z )tm+n+p+1—k ® Li_jw)
k=0

= [Lp, Ln](tp ® wi),

which implies that the action defines a representation of the Virasoro algebra of central
charge 0. The latter property regarding the degree is obvious from the definition. O

Now we define the bilinear functional M(©® : Weo (0) x (Wl ® Wp) — C by

M© (@, (1" @ w1) @ Y gg) i= MO (e, 0 (V) (" © w1) ® We 1)
(B.3)

forn € Z, w; € Wy and y € U(virp), where o is the anti-involution of U (vit) defined
by o (X) := —X, X € vir.

Step 5 Finally we extend the bilinear functional to the whole space W X (Wl ® Wo).
For that purpose, we define an action of the Virasoro algebra on W1 ® W by the so-called
coproduct action:

X" @w) Q@wy) :=X(" @wy) @wo+ (" @ wy) ® Xwg, X € vit.

Then W; ® Wy becomes a representation of the Virasoro algebra of central charge c.
Note that the tensor product Wi ® W is naturally Z-graded so that
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Wi ® Wo = @ (Wl ® Wo) (n),

nez

(W& Wo) i) = @D (CH """ @ Wih)) @ Wo(r).
k,reN

We extend M(®® to a bilinear functional M : Wao X (Wl ® Wy) — Cby
M(YWe,hg» w) 1= MO (e py . 0(IW), ¥ € Ulvitog), w e Wy @ Wo,

where 6 is the anti-involution of I/ (vir) defined by 6(L,)) = L_,,n € Zand 8(C) = C.
Now we define the linear map (B.1) that is meant to be an intertwining operator of
the desired type.

Definition B.4. Define a linear map
Y: Wi — Hom(Wy, W/ ){x}
by the matrix elements
(Woo, Vw1, X)wo) = Y M(weo, (t" @ w1) @ wo)x* ",
meZ

where wg € Wy, w1 € W1 and wo € W are arbitrary, and A = hoo — h1 — ho.

B.2. Some properties of the linear map. We are going to show that the linear map )
constructed in Definition B.4 gives an intertwining operator. We begin with collecting
some immediate properties.

Lemma B.5. Let w € Wl ® Wy. Then we have:

M Ifwe (Wl ® Wo) (k) and wee € Weo(l), we have M(woo, w) = 0 unless k = 1.
(2) For any y € vit-g, we have Ml (U_)c,hoo» yw) =0.
(3) For any y € virg, we have M (J)C,hm, yw) =M (yu')c,hoo, w).

Proof. (1): Writing weo = yWe p,, Withy € U(bit-o), wehave O (y)w € (VT/1®W0)(k—
[). Hence it suffices to show that

M (e, w) = MO (e, w) =0, we (W) @ Wo)(k)

unless k # 0. We may further assume that w = (" @ w1) ® y' W, p, wWith ¥y’ € U (vir<g)
to find

M (e, w) = MO e, 0 (V)" @ 1) @ Weny)-

Since by assumption deg(o () (" ® w1)) = k, this value vanishes unless k = 0 from
the definition (B.2) of M(®-0),

(2): Itis sufficient to considerthecase y = L_,,n > 0,and w = (1" Qw1) @ y2W¢ >
m € Z,wy € Wi, y2 € U(virtg). Then, since L_,y> € U(vit-o), we observe that

W (s Lo (07 @ w1) @ y2i0c,1,))
= M (e, Lon (" ® 1) ® yibe. 1)
+ M (Werhno» (" @ W1) & L_py2tWe o)
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= M (e 0 (32) Lon (" @ W1) @ e py)
+ M (B 0 (Lo y2) (" ® w1) © iDe,i)
= M (D (72 L1 @ W1) @ 1)
— M (Wehoo» 0 (2) L_n (" @ 1) @ We o)
- 0.

(3): The assertion is obvious for y = C, so it suffices to consider the case of y = Ly.
First, we assume that w = (t" @ w1) @ We,p, € Wi ® Wp(0), where wy € Wy (k) is
homogeneous. In this case,

M© (e poy > Lo (1" ® w1) ® We,ny))
= (Sk_n—l,O(M(OO’O) (@ehogs L-1w1 @ Weg) + MY (e s Lowt @ e,y
FMEO (G, w @ L()u_}c,ho))
= Sken—1.0 (—h1 — k — ho + hoo) + h1 + k + ho) MO (e e, w1 ® We.ny)
= MO (Loie e (1" © w1) ® e, o) -

Then consider a general vector wg € Wy, and write it as wo = y'we p, for y’ € U (virp).
Forn € 7Z and w; € W|, we have

M (e, Lo (" @ w1) @ ¥'e.ny))
= M® (W, Lo (" ® 1) @ ¥'ibeng) + MO (e, (1" ® 1) ® Loy Be.ny) -
Note that [Lg, y'] € U(vit-9) and o ([Lg, ¥']) = —[0(y’), Lo]. Hence, we have

M (e > Lo (1" ® w1) ® ¥/ ng))
= MO (@5, 0 () Lo (1" ® wi) ® We g )

+ MO (54, o (y) (" ® wi) ® Lowe ng)

— MO (@, [0()), Lol(t" ® w1) @ We,pg )
= M (e py. Lo (0 ()" @ i) ® te,ng))
= M (Lowe e, 0 ()" @ w1) @ We g )
= M (Lo, (" @ w1) @ ¥ We sy ) -

This finishes the proof. O

Proposition B.6. The bilinear functional M is 0-invariant in the sense that
M(ywoo, w) = M(wo, 6(Dw), ¥ € UIY), Wos € Woo, w € Wi @ Wp.

Proof. Let us write Weo = Y4+We b, Where y, € U(vitog). Since it follows from the
PBW theorem that U (bit) = (U (vir-g) U(vitg)) & U (vir)virs g, we can uniquely write
Yyy = y1 + ¥, Y1 € U(vito) U(virg), yo € U(vir)vir.g. Since y, annihilates the
highest weight vector,

M(ywoo, w) = M(yy@c,hw, w) = M(ylu?c,hoo, w).
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From the definition of M and (3) of Lemma B.5 (note that 0 ;4(vivg) = idzs(virg))s We
have

M(ywoo, w) = M(e py,, 0(y1)w).

Notice alsothat0(y;2) € vitol (vir). Then, (2) of LemmaB.5 gives M(u’)c,hOC ,0(n)w) =
0. Therefore, we have

M(ywoo, w) = MWDy, 01 + y2)w) = M(@e s, 0(yys)w) = M, 0 (310 (y)w)
= M(y4We poy » 0(y)w) = M(woo, 0(y)w)

as desired. O

B.3. Translation property. We show that the linear map ) satisfies the Jacobi identity
(4.18) and the translation property (4.19). Let us begin with the easier one; the translation

property.
Proposition B.7. For w; € Wy, we have
d
y(L—lwlv x) = _y(wla x)
dx

Proof. We take arbitrary vectors wg € Wy(k), w; € Wi(l) and ws, € Woo(m) and
consider the matrix element

(Woo, V(L—1w1, X)wo) = ZM(woo, (" @ L_jw;) ® wo)x>"" L.

nez

Due to (1) of Lemma B.5, the coefficient M(woo, (" ® L_1w1) ® wp) vanishes unless
n =k +1 — m. Hence, we have

(Woo, V(L-1wi, ¥)wo) = M(wes, (™" @ L_jw1) @ wo)x®~F~H+m 1,
Recall that the action of Lo on (1" ~! ® wi) ® wo, n € Z reads
Lo (@' @w) @wo) = (" @ Lyw)) @ wo + Uy +k+ho + D"~ @ w)) @ wp.
Rearranging the terms, we get
(Woo, V(L—1w1, X)wo)
— xA—k=lm—1gy (woo, Lo <(tk+l—m—l ®w)) ® wo))
— xSRI Gy ket g + DFE (oo, (17 @ wi) @ g ).

Employing the #-invariance (Proposition B.6) of the bilinear functional M, we obtain
(Woo, V(L—_1w1, X)wo)
= (A—k—1 +m)xA7k71+m71M (woo’ "1 @ w)) @ wo)

% (xA—k—l+mM (woo’ (tk+l—m—l Quw)® wo)) .

Here, we again observe the identity

(oo, Y(wir, ¥)wo) = xA R (woe, (17" @ wi) @ w)

to conclude the desired result. O
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B.4. Jacobi identity. We next show the Jacobi identity (4.18). Since the Virasoro VOA
is generated by the conformal vector o, it suffices to show the Jacobi identity for v = w.
For convenience, we introduce the generating series L({) = ),z L, ™"2 whose
coefficients are understood as the action of the Virasoro algebra on any representation.
The following commutation relations are sometimes useful:

n+1

[Ln,L(cn:c"“ — L) +2(n+1)E"LE) + ~ ( ;

d¢
where c is the central charge of representations under consideration.
In our setting, it is convenient to formulate the Jacobi identity in terms of matrix
elements. We will therefore prove the following.

>;”—2, neZ, (B4)

Proposition B.8. For wy € Wy, w; € Wi and weo € Weo, we have
— &
—¢

0

;5%(“("‘)<woo,L(;1>y<w1,x)wo> ;516(

0

) (Woo, Y(wi, X)L(&1)wo)

i (61—¢
=x 16( L T 0) (woo,y(L(;‘o)wl,x) wo)
In the following proof, it will be convenient to use the notation
Viwi, x) =Y (" @uw)x"" e Wix)
nez

for w; € Wj. Then applying the bilinear functional M coefficientwise to formal series
in x, we may understand

(Woo, Y(wi, X)w0) = M(weo, Vi (wi, X) ® wo)

for wg € Wy, w; € Wi and weo € Woo. The following formula derived from Proposi-
tion B.3 will be also useful:

o0

LyYi(wi,x) =) <” " l)x”“_kyt(Lk_]wl,x), nez. (B.5)

k=0 k

The strategy of proving Proposition B.8 is to reduce the Jacobi identity to the com-
mutativity and the associativity. Let us first observe the commutativity.

Lemma B.9. For any wg € Wy, w1 € W1 and weo € W, we have
(Woo, L(E 1)V (w1, X)wo) — (Weo, V(wi, x)L(&1)wo)

= Resg,x '8 (c‘ “) (Woo, V (L(Eo)w1, x) wo) -

Proof. From the property of the contragredient module (Lemma4.3) and the 0-invariance
of the bilinear functional M (Proposition B.6), we can see that

(Weo, L(E DY (w1, X)wo) = M(weo, L )(Vs (w1, X) ® wp)).

Hence, we have

<wOOs L(Cl)y(wls x)w())_(wOO’ y(wlv x)L(;l)w()) :M(woo, L(;l)yl(wlv x)®w0)
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Therefore, the proof amounts to showing the identity

¢1— %o

L(§1)Yr(wi, x) = Resg,x '3 <T) Vi (L&o)wr, x)

in Wl {x}, which is straightforward from (B.5). O
We next state the associativity.

Proposition B.10. For any wo € Wy, there exists k € N (depending on wq) such that

(&0 +2) (woo, L(Eq +X) Vw1, X)wo) = (£ +X)* (woo, VL(Eg)wi, X)wo)
holds for any w1 € Wi and we € W
The proof of Proposition B.10 requires some preliminaries.
Lemma B.11. Let wy; € Wy. Then, we have
Rese &g ' (§o + %)% (We g, L(Eg +X)V (Wi, X) i py)
= Resg, &y (S0 + %)% (e Y (LEQWL, X) W) -

Proof. Assuming that w; € Wj (k) is homogeneous, we can see that both sides coincide
with

hooxAikM(oo‘O) (wc,hocs w ® u_)c,ho) .

Lemma B.12. For any w; € Wy andi € N, we have
(Lo +X) (e hog» L(&o +X) VWi, X)We i)
= (Lo +X)" (W, V (LE)WL, X) Wey) -
Proof. Note that the assertion is equivalent to that
Resz &0 (So + x)Z*M (Wehogs L(&o +X) (Vi (wi, X) ® Wepy)) (B.6)
= Resco€81(§0 +x)2+iM (lI)c,hoov yl (L(;O)wl ) x) & lz}c,h())

holds for any w; € Wy, i € Nand m € Z. We show this in several different ranges of
m.
When m € N, we have

Resz, &4 (6o +2)* L(&o +x) (Vi(wi, X) ® e,y
= Resg, (51 —x)" 7L (Vi(wi, %) ® ien)
by changing the variables as £| = { + x. Note that the formal series
&1 = x)" e Ve(wi, %) ® L(§1)deno

does not involve any negative powers of ¢, and hence its residue with respect to ¢
vanishes. Therefore we can subtract the residue for free to obtain
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Resg, L0/ (Lo + X)) L(go +x) (Y (wi, X) ® We o)
= Resg, (&) —x)"ET L&) (Ve (wi, X) ® We o)
—Resg, (&) — )" Vi(wi, %) & L(E ) e, pg

= Res;lReS;O(Cl - x)mf%ﬂx_lfs <§1 ;0> N2, (L(Co)wl,x) & We, g

where we used the commutativity (Lemma B.9) in the last equality. We also use the
identity
x+
s <C1 §o> _ ;1—15< Co)
X &

Resg, L0/ (Lo + X)) L(&o +x) (Y (wi, X) ® We o)

= Res¢ Resg (&) — x)m1,’2+’1;1 Is (x b C()) Vs (L(Co)wl, X) ® We,ng
1

Resg, S0 (S + %) Y, (L(Eo)wi, X) ® We -

to obtain

This in particular implies (B.6) in the case when m € N.
We show (B.6) when m < 0 by induction. When m = —1, we see that

Res &5 (8o + %) M (We e, Lo +X) (Vi(wi, %) ® e iy )
= Z (;)RCS;OCB_Ixir(Co + )2 M (e oy - Lo +%) (Vw1 %) @ Weng)) -

r=0

We divide the sum into the part of » = 0 and those of » = 1, ..., i. For the former case,
we apply Lemma B.11, and for the latter cases, we can already apply (B.6) to obtain

Res &5 (8o + %) M (We e, LEo + %) (Vi(wi, %) ® W iy )
=> <;>RGS;OC6_1xi_r(C0 + )2 M (e oy - Ve (L(EQ)WI, X) @ W g

r=0
= Resg 8y (6 + 600> M (e Vi(L@EQu" %) @ by )

Therefore (B.6) holds form > —1.
Suppose that k € Z- ¢ is such that (B.6) holds for m > —k. In particular, we have

Rescoé'ak(é'o +x) M (We hoor L(Eo+X) (Ve(wi, X) ® We g ))
= Resg, 8o (Lo + %) M (Do, Vi (LEQ)wi, X) ® We g )

for any w; € Wy, and i € N. We differentiate both sides in terms of x. The derivative
of the left hand side (LHS) becomes
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d 0 A\~
7y (LHS) = Resg,£q" <—(§o + X)2+'> M (We,hoy s LG +X) (Vi(wi, X) @ We,ng))
x 290

9 -
+Resg 25 (£ +x)2" aM (We e Lo +X) (Vi (w1, %) ® We g ))

+Resg, &0 (o + )M (e hoy s L(Eo +X) (Ve(L_1wi, X) ® e pg))
= kResg, &5 7 (G0 +2) M (B e, L(&o +%) (Vr(wi, X) ® Be s ))
+Resg, &0 (€0 + )2 M (e pey s Lo +X) (Vi(Lo1wi, X) © Weng)) -
On the other hand, the derivative of the right hand side (RHS) is
d _ d N\ o~ _
E(RHS) = Res;og‘ok <£(C0 +x)2+l> M (wc,hoov yt(L(;O)wls x) ® wc,ho)
0
+Resg, 8o (Lo + 1) M (De e, Vi(L_1L(E)wi, %) ® We pg)
= kResg, &5 "1 (G0 + 1) M (e poy, Vi (L(EQ)W1, X) ® W g )
+ Res;oggk(go +x) M (Weho» V(L) L_jwi, X) @ We iy -

Here we used the commutation relation (B.4) at n = —1 in the last equality. Comparing
these, due to the induction hypothesis, we obtain
Resg, 5" ™! (80 + %)M (B g L(Eo + %) (Vi (w1, X) @ B )
= Resg, 85" 7 (G0 + )7 M (B, V(LG WL, X) @ i) -

Hence, (B.6) holds also at m = —k — 1.
In conclusion, we have shown that (B.6) holds for arbitrary w; € W;,i € N and
m € Z, which is equivalent to the desired result. O

Proof of Proposition B.10. We introduce another filtration on Wy as

d
G'Wo := @ Wok), deN.
k=0

In particular, each subspace G Wy is finite dimensional.
For d, r € N, we name the following statement:
P[d; r]: There exists k € N depending on d such that

(Lo +X) M(weo, L(&o +x) (Vs (w1, x) @ wp))
= (£o+%) M(woo, Vi (LE)w1, X) ® wo)
holds for any wg € G¢Wy, wy € Wj and weo € F" Weo.
To prove Proposition B.10, we employ the induction in p,r € N. The statement
P[0; 0] is true due to Lemma B.12.
Assume that P[d; r] is true. For wg € GdWo, w; € Wi, weo € F" W andn > 0
such that L_,wq € G4 W, we have
M (woo, L(Zo+%) (Vs (w1, X) ® L_ywo))
= M (weo, L(&g + X)Ly (Vi (w1, X) ® wy))
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o0 _ 1 —~
-3 ( nk+ )x—"“-kM (Woor L(&o +x) YV (Lk—1w1, X) @ w)) .
k=0

Using the commutation relation (B.4), we get

M (oo, L(&o + %) Vs (wi, %) ® L_,wo))
= M (Lywoo, L(&o +X) Vr(wi, X) ® wp))

0 ~
— (go+x)"! e (Woo: L(Zo +X) (Y (w1, x) ® wp))
0

—2(=n+ 1)(&o +%) "M (woo, L& +X) Vr(w1, x) @ wo))

—_ 1 —~
- g( ”; )(;o+x>—"—2M(ww,y,<w1,x>®wo>

S [—n+1 ]k
- xR (oo, LZo + x) D (Lie1wi. ) ® wp))

k=0 k

On the other hand, we have

M (oo, Vi (L)W, x) ® L_nwo)
= M (Lnwoo, Vi (L(&o)wi, x) ® wo) — M (oo, (L_n Vi (L(Eg)wi, X))  wo)
= M (Laweo, Vi (L(Ep)wi, x) ® wp)

o0 _ 1 A~
—Z( n+ )x—n“"‘M(woo,yz (Lk=1L(p)wi, x) ® wo)

k
k=0
= M (Lnwoo, Y (L&Zo)w1, x) ® w)

o _ 1 A~
-3 ( " )x‘"ﬂ—kM (woos Vi (L&) Li—1w1, X) ® w)

k=0 k
~ ) -

3 (T e (b e L G ) @ )
k=0 k a€0

+ 2k § M (oo, Yy (L(Eg)wi, X) ® wo)

k A
+ §<3>CS_BM(WOO» yt(wlﬂ x) ® wo))

Using the identities

Z<_nk+ l)(k)x—"“"‘c’éj :<_nj+ 1><x+co>‘"“‘-’} jeN, BT

k=0 J
we obtain

Vi (L(&p)wi. x) @ L_pwo)

F (.
= M (Lawoo, Vi (L(E)w1. x) ® wo)
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o0 _ 1 ~
~ Z( nk+ )x—n+1—kM(woo, Vi (L&) Li—1w1, x) © wy)
k=0

0 ~
—(x+g) ! P (Woo Vi (L(Ep)wi, X) ® wo)
0

—2(=n+ 1)(x +£¢) "M (woo, Vi (L(Eg)wi, X) @ wy)

_ 1 —~
- g( ”; )(x +20) ™" 2N (woo, Y (w1, X) ® wp) .

By induction hypothesis P[d; r], there exists m € N depending on d and n such that
(80 +X)"M (oo, Lo +%) V(w1 %) ® L_ywo))
= (Go+X)"M (wos, Vs (L(E)wi, x) ® L_pwp).
Since G4*!' W, is finite dimensional, we can maximize such m so that it depends only

ond + 1, implying that P[d + 1; r] is also true.
Next, we apply L_, withn > 0 at we, € F" Wy. On one hand, we have

M (L—nwoo, L(Eo +x) (Vs (w1, X) ® wo))

- 1 _
= Z (n'{k' )xn+l—kM (woo’ L(CO +x) (Vi(Lg—1wy,x) @ w()))

k=0
+M (wos, L(Eg +X) (Vi (w1, x) ® Lywp))

0 ~
+ (& +x>"+1§M (woor (&g +x) Vi (wi, X) ® wp))
0

+2(n+ 1)(£o +%)"M (weo, L(Eo +x) Y (w1, X) ® wp))

n+l1 RPN
( 3 >(;O+x) M(woo»yt(wlyx)@wO)-

c
+ —

2
Note that the rational function (') (£ +x)"~2 appearing in the last line is a polynomial
of £( and x for all n > 0. On the other hand, we have

M (L —pweo, Vi (L(Go)wi, x) ® wo)

- 1 _
= Z (” Z )xn+1—kM (Woo, Vi (L(£o) Li—1w1, X) ® wo)
k=0

0 ~
+ (8o + x)"“EM (Woo, Vi (L(Eg)w1, X) ® wo)
0

+2(n + 1&g +%)"M (woo, Vi (L(Eg)w1, X) @ wo)

1 ~
+ g(" ; )(;0 +x)" 2N (weo. Vs (w1, X) @ wo)

+ M (woo, Vi (L(E)wi, X) ® Lywo) .

Here we again used the identities from (B.7). Since L,wo € G? Wy, we can apply the
induction hypothesis P[d; r] to conclude that there exists m € N depending on d such
that

(Lo +X)"M (L_pwos, L(£o +X) (Vs (wi, X) ® wp))
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= (Lo+x)"M (L_yweo, Vs (LE&o)w1, X) ® wp)

holds, implying that P[d; r + 1] is also true. O

Proof of Proposition B.8. The Jacobi identity is equivalent to having both of the com-
mutativity (Lemma B.9) and the associativity (Proposition B.10). In [LL04], this equiv-
alence is shown only for module maps, but the same arguments work for intertwining

operators.

O
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