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Domain Curiosity: Learning Efficient Data Collection Strategies for
Domain Adaptation

Karol Arndt!, Oliver Struckmeier!, and Ville Kyrki1

Abstract—Domain adaptation is a common problem in
robotics, with applications such as transferring policies from
simulation to real world and lifelong learning. Performing
such adaptation, however, requires informative data about
the environment to be available during the adaptation. In
this paper, we present domain curiosity—a method of training
exploratory policies that are explicitly optimized to provide data
that allows a model to learn about the unknown aspects of
the environment. In contrast to most curiosity methods, our
approach explicitly rewards learning, which makes it robust
to environment noise without sacrificing its ability to learn.
We evaluate the proposed method by comparing how much
a model can learn about environment dynamics given data
collected by the proposed approach, compared to standard
curious and random policies. The evaluation is performed
using a toy environment, two simulated robot setups, and on
a real-world haptic exploration task. The results show that the
proposed method allows data-efficient and accurate estimation
of dynamics.

I. INTRODUCTION

Since the advent of reinforcement learning methods ca-
pable of handling complex, continuous state spaces [1]-[4],
the ability to train control policies using only data coming
from interacting with the environment has gained interest
in the robotics community. Modern reinforcement learning
methods, however, still require extensive interactions with the
environment before learning useful behaviours, which may
take from hours [2] to months [5] of real-time interaction.
To reduce the dependence on large amounts of real-world
data, a policy is often trained in a simulated environment,
where the general structure of the problem is learned, and
then deployed in the physical world. This scenario is known
as domain transfer.

Domain transfer in reinforcement learning has been ex-
tensively studied, especially in the context of sim-to-real
transfer in robotics [5]-[7]. Multiple approaches to this
problem have been proposed in the past, such as training a
robust policy that performs well across a range of dynamics
conditions [8], [9], training a policy conditioned on the belief
over dynamics [10], or training a policy that is able to
adapt to new dynamic conditions [11], [12]. However, robust
policies do not generalize well when the possible range of
dynamics is wide [13], especially in situations where the task
requires high precision or the optimal actions depend heavily
on the dynamics [6].
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Fig. 1: The proposed method learns efficient strategies to
collect data for dynamics estimation, as shown in a haptic
exploration setup (a) and on a sliding setup with unknown
friction parameters (b).

Adaptation and domain identification approaches, on the
other hand, use data from the target environment; this dataset
has to be complex enough to allow the model to identify the
dynamics parameters, and yet small enough to be feasible
to collect on physical hardware within a reasonable time.
The data collection process also needs to be safe to perform
on physical hardware which rules out random policies. In
addition, dynamics identification requires the actions to be
identifiable which poses a problem e.g. with kinesthetic
human demonstrations, where only states may be directly
measured. Gathering the data for dynamics adaptation is thus
a central problem for domain adaptation and identification.

In this paper, we propose the domain curiosity approach
to learning a policy that efficiently collects such adaptation
data. In contrast to previously proposed intrinsic rewards
in the domain adaptation context, our method rewards the
agent for providing data that allows a dynamics model
to improve its predictions about the environment, instead
of rewarding prediction error. This is achieved by jointly
training a meta-learned adaptable dynamics model together
with an exploration policy.

We experimentally evaluate the method on a toy environ-
ment and on two simulated robotics setups: a sliding task
under unknown friction and a haptic exploration task, where
the robot’s goal is to locate the position of an object in the
scene. We also deploy the policy for the latter setup on a
real-world Franka Panda robot arm.

The contributions of this paper are (1) proposing a novel
framework for training a curious policy that maximizes the
agent’s information gain about the domain-specific aspects
the environment, (2) providing experimental evaluation in
simulated and real world environments, (3) showing that the
proposed domain curious approach is able to reliably provide
data which helps to identify the dynamic conditions in the
environment and to perform better next state prediction.



II. RELATED WORK
A. Curiosity in reinforcement learning

The idea of intrinsic, curiosity-based exploration was
first described by Schmidhuber [14]. In order to focus on
epistemic (i.e., learnable) uncertainty, this method was later
modified to reward model improvement [15], [16], model pa-
rameter updates [17], work in feature space [18] and reward
disagreement between ensemble dynamics models [19], [20],
instead of operating on raw state predictions.

In robotics, curiosity- and uncertainty-based rewards were
successfully used with Bayesian optimization to improve
exploration in sparse reward settings [21] and in exploration
tasks [22]; however, these methods did not include any
domain variability or domain adaptation.

Our method learns to focus on epistemic uncertainty by
rewarding model improvement, similarly to [15]; however,
our method is designed for a domain adaptation scenario,
which allows it to distinguish prediction errors induced by
lack of knowledge about the domain from pure noise. In con-
trast to [19], our approach performs inner-loop model updates
(model adaptation) and rewards performance improvements
caused by these updates, instead of attempting to learn a
global model for all domains. This is distinction is crucial,
since, to a single dynamics model, domain uncertainty would
present itself as aleatoric rather than epistemic uncertainty,
as the non-adaptable dynamics model cannot further reduce
the prediction error for a particular domain beyond learning
the expected outcome over all domains, or modelling its
distribution (which includes aleatoric uncertainty).

Our method shares the basic theoretical formulation with
VIME [17]. VIME maximizes the information gain of an
agent about a distribution of dynamics models in addition to
the extrinsic reward from the environment. The information
gain is measured using variational inference with a reward
term based on the KL divergence between two following
hidden states of a model. This method, however, considers
only a single training domain, while our approach combines
it with the meta-learning formulation and applies it to the
multi-domain reinforcement learning scenario.

B. Exploration in meta-reinforcement learning

In meta-RL, various ways of learning exploration strate-
gies have been previously explored. The original model-
agnostic meta-learning (MAML; [23]) formulation only op-
timizes for post-adaptation performance, without explicitly
optimizing the meta-policy to provide useful samples for
adaptation. Despite this shortcoming, MAML has been
successfully applied to domain adaptation and sim-to-real
transfer [11], [12]. This problem was later addressed in [24]
and [25], where the agent was additionally incentivised to
provide useful trajectories during adaptation, and in [26],
where an uncertainty-aware Bayesian model was used as the
policy in combination with the maximum entropy objective
function [2], [27]. This resulted in more stable and more
consistent training procedure.

More recently, VariBAD [10] was shown to perform
close to Bayes-optimal exploration in simple gridworlds by

performing approximate variational inference over a hidden
parameter and conditioning a dynamics model on that hidden
parameter. The method implicitly learns to explore by using
this hidden parameter to meta-learn a policy on an unknown
task based on previous experience. However, it does not di-
rectly include the prediction accuracy in the reward function
and requires an extrinsic task reward. In contrast, our method
directly encourages collecting useful data by rewarding the
correction to the model’s predictions.

Zhang et al. [28] described a meta-learning framework
based on similar grounding to VIME; however, in the
practical implementation, this approach was simplified to
embedding a basic surprise-based curiosity reward inside a
meta-reinforcement learning agent.

A limitation of previous meta-RL methods is the depen-
dence on on-policy data. Rakelly et al. [29] address this with
a stochastic component performing inference over a latent
context variable to encourage exploration and ultimately
faster adaption to new tasks. Domain curiosity on the other
hand jointly learns the task and a dynamics model in a way
that promotes exploration of informative components of the
environment to achieve the same effect.

III. METHOD
A. Definitions and problem formulation

The domain adaptation problem problem can be formu-
lated as a partially observable Markov decision process
(POMDP) of the form M = (S, A, ptr, Psy, 7, ), where S
is the state space, A is the action space, £ is a vector of
dynamics parameters, p(sg) is the initial state probability
distribution, pg : S X A X § X E — R represents the
transition probabilities conditioned on &, and r : SX AXS —
R is the reward function. By following a policy =(a|s),
the agent collects a set of trajectories: D = {79, ...,7n },
where each trajectory is a sequence of states and actions:
T = (S50,00,81,0Q1, ..., a1, ST).

Then, the specific problem addressed in this paper can be
formulated as follows: find a policy 7(a|s) that collects a
trajectory dataset D that maximizes the agent’s information
gain about the dynamics parameters £. More specifically,
knowing ¢ reduces the entropy of dynamics transitions,
H(per(s,a,8'|€)) < H(per(s,a,s")). Since each individual
state transition depends on &, so does D: p(D|{), and thus
D can, in turn, be used to estimate &: p(&|D). All in all, the
agent’s information gain can be expressed by the entropy
difference H(pir(s,a,s’)) — H(p-(s, a, s'|D)).

B. Policy training

The training procedure for Domain curiosity is outlined
in detail in Algorithm 1, and an overview of the reward
computation procedure is shown in Figure 2. The main idea
is to have an adaptable dynamics model of the environment
fo(s,a), whose prediction updates can be used as a basis for
reward computation. These rewards are then used to train an
exploratory policy. Our method assumes that the dynamics
model is not available in advance, and trains one from scratch
using data collected by the policy.
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Fig. 2: Overview of the proposed reward calculation method. The elements of the agent are marked in green, the

environment—in blue, and the dynamics model in purple.

The algorithm is initialized by randomly setting the policy
weights € and the model weights ¢, and initializing two
empty buffers for storing state transitions: one for the policy
D, and one for the dynamics model Dy (steps 1-2). On-
policy methods like PPO [4] require D, to be cleared after
every policy update; since model training can be performed
off-policy, using a single, shared buffer in this context would
be wasteful, and could make model training unstable due to
data distribution shift.

Each training iteration starts by sampling a random task
¢, which—in the domain adaptation context—defines the
dynamics of the system. At the same time we also reset
the environment (step 5) and set the belief over the hidden
state back to the prior (step 6).

Algorithm 1: Domain curiosity

Result: Parameters 6 of a policy that identifies &
1 randomly initialize 6 and ¢ ;
2 initialize empty replay buffers D, and Dy ;
3 while not done do
4 Sample a random task &; ~ p(£);
5 Reset the env; s ~ p(sp);
6 Reset the model parameters; ¢;: = ¢o;
7 while episode not over do
8
9

Sample a ~ mp(als);

Calculate pre-update state prediction (Eq. 1) ;
10 Execute a, observe s’;
11 Update the dynamics model (Eq. 2) ;
12 Calculate post-update state prediction (Eq. 3) ;
13 Calculate the reward (Egs. 4 and 5) ;
14 Store (s,a,r,s") in D, and Dy ;
15 end

16 Update my with D, to maximize expected
cumulative return;

17 Update ¢y with Dy to minimize prediction errors
over each sequence (Eq. 6);

18 end

For each episode, we follow the policy 7g. We first sample
an action from the policy (step 8 in Alg. 1 and step 1 in
Fig. 2). We then use the current dynamics model to predict
the next state (step 9 in Alg. 1 and step 2 in Fig. 2) as

‘§;1‘e = fd)t(sua)' (l)

Next, we step the environment using a and observe the true
next state s’ (step 10 in Algorithm 1 and step 3 in Figure 2).
Then, we update the belief over dynamics using the observed
transition (step 11 in Alg. 1 and step 4 in Fig. 2) by

b1 = U(¢t7 $, @, Sl)v (2
where U(-) represents the inner-loop update rule used by
the dynamics model (e.g., in case of MAML, U would
correspond to performing a step of gradient descent).

To quantify the improvement of the dynamics model after
observing the transition, we predict the post update state
8,05t Using the dynamics model with the updated state belief
from Eq. 2 (step 12 in Alg. 1 and step 5 in Fig. 2):

‘§;)ost = f¢t+1 (87 a)' 3)

This effectively evaluates if observing the transition allows
the model to make more accurate prediction about it.

While it may seem that having observed the transition
would always allow the model to make a good prediction by
simply memorizing the value that has just been passed to it,
this would only be the case with a model that memorizes the
observed samples instead of generally modelling the environ-
ment. This was an important consideration for selecting the
architecture of the dynamics model; we provide more details
behind it in Section III-C. To provide a tangible example,
observing a sample from the unit Gaussian distribution does
not allow one to make more accurate predictions about future
samples from that distribution (assuming the distribution
that the sample came from is known). This step allows our
method to tell apart prediction errors coming from noise
(aleatoric uncertainty) and prediction errors coming from
insufficient knowledge of the domain the model has been
deployed in (epistemic uncertainty). It also differentiates
the proposed method from standard curiosity-based intrinsic
rewards, where the policy is rewarded for model prediction
errors, as opposed to rewarding the reduction in the error.

We finally calculate the prediction error for both methods
pre = (8 — 8),.)% and epost = (5 — 8],,5;)°. The domain
curiosity reward is then calculated as the difference between
the two prediction errors, corresponding to the reduction in
prediction error (step 13 in Alg. 1 and step 6 in Fig. 2)

Tcur = Epre — Epost 4
To regularize the policy and to make it physically feasible,
we also add a control cost penalty

T = Tcontrol + )\rcur (5)



The control cost, expressed by the reward term 7control,
penalizes large control forces and—in case of robot
environments—large contact forces between the robot and
the objects in the environment. The A hyperparameter is used
to balance between control cost and the curiosity reward.

We then store the observed transition (s,a,s’) in Dy
in order to update the dynamics model, and (s,a,r,s’) in
D, for training the policy. After finishing each episode, we
update the policy 7y and the dynamics model f4. The policy
update can be performed with an arbitrary reinforcement
learning algorithm.

C. Dynamics model

Generally speaking, the proposed policy training approach
can be used with an arbitrary adaptable meta-learned dynam-
ics model. We found MAML [23] to be impractical due to
the large computational cost of performing an update every
timestep over a long episode, and due to the potential of
memorizing the last-seen sample, which is facilitated through
the gradient-descent inner-loop learning rule. We also found
the classic LSTM approach [30] to be unsuitable, as the
post-update state prediction step in the proposed method
requires the calculation of output given the updated hidden
state (f(z¢, ht)), whereas, during training, the model is never
trained to make such predictions (only f(z¢,hi—1)); such
samples also cannot be directly included in the training
procedures, as that creates a direct path in the model between
the true value y; and the model’s prediction ¢, which
encourages the model to “cheat” by simply memorizing
the previous observed sample in h;. This would effectively
cause the model to make accurate post-update predictions of
observation and/or system noise.

Given these considerations, we selected the backprop
Kalman filter (BKF)-based approach proposed in [31]. The
model is separated into three parts: dynamics measurement,
belief update, and next state prediction. Unlike the recurrent
method in [30], the architecture is constructed such that
the recurrent hidden state is optimized to only encode
information about the dynamics and does not need to store
information about previously observed samples. This allows
the reward calculation procedure to query arbitrary dynamics
beliefs with arbitrary state-action pairs. In this formulation,
model parameter vector can be split in two parts: the static
parameters, which are only updated in the outer loop (all the
neural network weights) and the task specific parameters,
updated by U(+) (the hidden state of the filter, as defined by
the mean and variance of the state belief).

To further facilitate learning over long sequences, we
change the loss function to calculate be the sum of the
prediction loss over the whole sequence:

T N
‘C:ZZ(S;L_f%(Sman)f (6)
t=0 n=0
With this change, it is important to keep the data used to
compute the values of ¢; separate from the state transitions
used to calculate the loss (in contrast to [30], where the same
data is used for both tasks, but the target labels are shown

to the model only after it has already made the prediction
for their corresponding input). This prevents the model from
memorizing the observed samples in the hidden state. While
we find it unlikely to occur in practice, it would theoretically
still be possible if the selected dimensionality of the hidden
states ¢ were too large. We also found it beneficial to add
L2 norm regularization on ¢, in the form of adding ZZ;O 7
to the loss term.

IV. EXPERIMENTS

In this section, we present the results of the experimental
evaluation in the toy environment, in two simulated robotics
setups and on a real-world setup with the Franka Panda robot.

In all experiments, the policy is trained using Proxi-
mal Policy Optimization (PPO; [4]), but—in general—
the method can be used with an arbitrary reinforcement
learning algorithm. During the first updates, the model’s
predictions and inner-loop updates are random, which can
have an adverse effect on learning. To reduce this effect
and, effectively, stabilize the training, we only update the
dynamics model in the early phases of training, and later
gradually start training the policy by linearly increasing the
PPO clip coefficient from O to the final value. We perform
4 epochs of model updates per each policy update and use
a model replay buffer of 25000 episodes in all experiments.
The X\ hyperparameter, which balances the curious reward
and the control cost, is set to 10* in all environments.

A. Toy example

To demonstrate the method on a simple example and
provide an evaluation with a Bayes-optimal task variable
prediction model, we developed a simple environment, Spots-
AndHoneypots, shown in Figure 3. In this environment, an
agent has to learn to explore task specific variables by visit-
ing three spots (marked as green, purple and orange circles in
Figure 3) that provide noisy estimates of those variables. The
environment also includes a honeypot that acts as a source of
random noise. The state space is (z,y, ) € R® where (x,v)
is the position of the agent and « is a variable that depends
on the current dynamics, £. The action space consists of the
agent’s desired velocity in each direction a = (vg,vy). At
the beginning of an episode the agent, represented by a black
dot, starts in the center of the environment.

Whenever one of the spots is visited by the agent, the
third element in the state vector is a noisy measurement of
one of the task variables, proportionally to the distance from
the center of the spot: & ~ N (fta, 107%), p1o = (1 — %)fi,
where ¢ is the index of the visited spot, p is its radius, and
d is the distance to center. Thus, in order to learn about the
task-specific aspects of the environment, the agent needs to
explore all three spots.

In honeypot, the yellow spot in Figure 3, « is a random
value sampled from a zero-mean Gaussian distribution: o ~
N(0,25). Similarly to the spots, this value is also scaled by
the distance to center (1 — g). The task variable describing
the system dynamics, &, is a three-element vector, with each
element sampled independently from 2/(—8, 8).



Method SpotsAndHoneypots | FetchSlide | PandaFindBox
Random 6.3 0.092 021
Task policy - 0.053 -
Random reach - - 0.20
Curiosity 7.7 0.044 0.21
Uniform 2.6 - -
Domain curiosity 0.7 0.042 0.03

TABLE I: Task variable prediction error after 50 (SpotsAnd-

Honeypots, FetchSlide) or 200 samples (PandaFindBox). (@) (b)
Method SpotsAndHoneypots FetchSlide | PandaFindBox
Random 0.81 5.18 - 1077 7.8-107%
Task policy - 4.15 104 - /
Random reach - - 7.8-1074
Curiosity 0.81 4.09-107% 7.8-107%
Uniform 0.77 - -
Domain curiosity 0.68 4.08-10~% 7.6-10~4
TABLE II: Mean next state prediction error after observing () (d)

50 samples using data collected by each method.

In this environment, a standard ’greedy’ curious algorithm
is attracted to the yellow honeypot (as shown in Figure 3c),
while the proposed method learns a policy that moves around
the whole environment, visiting all three spots and thus
revealing information about all elements of the task variable
&, as shown in Figure 3d. This result also experimentally
verifies that the trained dynamics model does not memorize
random noise samples in the hidden state, as described in
Section III-C—if that were the case, the model would learn
to overfit to each observed sample from the honeypot, which
have a larger standard deviation than the spots. A random
agent (Figure 3b), with actions sampled from a normal
distribution, also sometimes visits the spots, and is thus
capable of collecting some information about the task, but is
far less efficient than the domain curious approach.

1) Bayes-optimal model: The simple nature of the en-
vironment makes it feasible to quantitatively evaluate the
quality of the data provided by each method, by evaluating
how much a Bayes-optimal model can learn about the task
variable £ with data provided by each method. To do this, we
implemented the model in Stan [32], a Bayesian inference
framework. We evaluate each model by measuring the log-
probability of the true value of £ under the ¢ distribution
inferred by the model n timesteps into the episode, with
n € {10, 20,50, 100, 200, 500}.

The results of this evaluation are shown in Figure 4.
We observe that the domain curious approach provides data
that allows to identify the task variable accurately and with
high confidence, compared to other approaches. A standard
curious policy, which learns to go to the honeypot (as
shown in Figure 3c), never collects any useful data about
the environment, as it is attracted by environment that is
highly unpredictable. A random policy gains more and more
confidence as it keeps exploring, but does not get close to the
results achieved by the proposed domain curiosity approach
within a single episode. Notably, a random policy with
standard deviation of 10 performs the best out of all tested
values. Smaller values, such as 5, tend to stay close to the
center or explore only one spot, whereas larger values, such
as 20, tend to get stuck along the edges of the environment;
a value of 10 provides a tradeoff between both behaviors.

2) & identification: To demonstrate how reliably the task
variables can be predicted given a set of collected transitions

Fig. 3: The SpotsAndHoneypots environment (a) and trajec-
tories taken by each policy during exploration: 5 rolluouts of
a random policy (b), a standard curious policy (c), and the
proposed method (d).

Task variable log likelihood
—— Domain curiosity
Random (sigma=5)
—— Random (sigma=10)
—— Random (sigma=20)
—— Standard curiosity

20

10

’ %
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Observed samples
Fig. 4: Task variable log likelihood in SpotsAndHoneypots,
as inferred by a Bayes-optimal model with data collected by

each method

Log likelihood

we train a recurrent neural network to predict the value
of the task variable. The neural network used for these
experiments is built up of three fully connected layers with
ReLU nonlinearities, followed by an LSTM cell, and by
three more fully connected layers with 64 neurons each. The
hidden state of the LSTM is 8-dimensional.

As an additional baseline, we also include the Uniform
dataset, which is collected by placing the agent in a uniform
place in the environment, and taking a random action. This
dataset has no time consistency between samples and thus
cannot be realistically collected by any policy; however, it
does not have any bias towards the starting position, like
all the datasets collected by all tested policies do. For the
random policy, in this experiment, we report values for
the standard deviation of 10, as—just like in the previous
experiment—it is the one that performed best out of the
options we tried (1, 5, 10, and 20).

The results of this evaluation are presented in the first
column of Table I. We see that, similarly to the results
obtained from the Bayes optimal model, the domain curious
model allows for the most accurate estimation of the dynam-
ics parameters, with the Uniform data distribution ranking
second, and the standard curious model performing worst
(i.e, not learning anything about the environment).

3) Next state prediction: In addition to task variable
identification, we also asses the state prediction accuracy of
an adaptable dynamics model, using data collected by each of
the methods. The test data for all tests in SpotsAndHoneypots
was sampled from the Uniform data distribution; thus, in
this evaluation, we assess the model’s ability to learn about



predicting transitions in the uniform dataset, in an off-policy
fashion using data collected by each method for learning.
The model we use for this purpose is a recurrent network
using the LSTM cells; we chose this architecture in order
to be able to identify potential bias introduced by the BKF-
based architecture used for optimizing the policy (thus, we
keep the two architectures different).

The results of this evaluation are presented in the first
column of Table II. We can see that, with the proposed
method, the model is capable of learning the most about the
state transitions in the Uniform dataset, with a noticeably
smaller prediction error than other methods. The remaining
error—(0.68—can mostly be attributed to the honeypot, where
the dynamics model cannot learn to make any predictions
about the a element of the state vector. Similarly to the &
identification task, data collected by the ’standard’ curious
algorithm does not provide any useful data.

The experiments in SpotsAndHoneypots show that the pro-
posed method is capable of identifying task-specific elements
of the environment, while not overfitting to observation
noise. This simple environment allowed us to perform eval-
uation using a Bayes-optimal model for ¢ identification, and
later to approximate this procedure with a recurrent neural
network. In later experiments, we evaluate the method’s
capability of handling more complex robotics setups.

B. FetchSlide

Our first robotics setup is the FetchSlide environment from
OpenAl Gym [33], where the goal is to slide an object to a
target position on a surface with unknown friction. The state
space contains the positions and velocities of the robot end-
effector and the puck. The action space contains Cartesian
velocity of the end-effector and a command to open or close
the gripper. To randomize the environment, we randomize the
friction between the puck and the surface, similarly to [31].

In this setup, we do not provide Bayes-optimal results,
as it is infeasible to implement a physics simulation engine
inside a Bayesian inference framework.

1) Dynamics identification: For this evaluation, we use
the same method as was used for the £ identification in
SpotsAndHoneypots. The model is trained to predict friction,
given a sequence of state transitions from a single episode
collected by each of the methods. The model is regularized
by adding a small Gaussian noise ¢ ~ A(0,4-107%) to the
position and velocity measurements used as the state. The
results of this evaluation are presented in Table I.

Based on the results, we see that both the curious and the
domain curious algorithm learned to provide more or less
equally informative data. This can be attributed to the lack
of randomness in the environment; essentially, the only thing
the feedforward dynamics model can be inaccurate about is
the motion of the puck; thus, domain curiosity and the stan-
dard curiosity approach both learn to hit the puck in a way
that allows for dynamics identification. Interestingly, most
curiosity methods aimed at aiding exploration, such as [18],
would actually learn to ignore this source of randomness,
as it would be treated as environment noise and ignored

by the model in the feature space; thus, for exploration
tasks related to domain identification, the usual benefits of
this method (apparent in single-domain exploration) would
actually have an adverse effect in exploration related to
domain identification.

The performance of both random policies and the standard
curious algorithm in this setup is also aided by the ease of
exploration in this environment—the puck is always initial-
ized within 10cm distance from gripper, which makes this
source of model error easy to find for the curious algorithm.

We also see that both curious methods perform slightly
better than the task policy. This could be caused by the puck
moving noticeably faster in both methods, which makes the
changes between consecutive states larger, making it easier to
identify changes in position and velocity, and thus improving
the model’s ability to estimate the dynamics.

2) Next state prediction: Similarly to FetchSlide, we also
evaluate the model’s ability to predict state transitions given
data collected by each of the approaches. The reference
policy—the one whose state transitions are being predicted—
is, in this case, the task policy, which slides the puck to
the goal position. In this experiment, we only predict the
motion of the puck, and ignore other elements of the state
space (such as joint positions), as they are not affected by the
friction in any way. Thus, in this experiment we assess how
well an adaptable, LSTM-based dynamics model can predict
the movement of the puck, as caused by a trained task policy,
given data collected from each exploration method.

The results summarized in Tab. II show that both the
domain curious and standard curious approaches allow for
significantly smaller prediction than a random policy, and
slightly smaller than the task policy. There are no significant
differences between the two curiosity approaches.

C. Box

In this setup, the Franka Panda robot is tasked with
exploring the environment to locate the position of a heavy
box. The position of the box is randomly selected in range
of 50-70 cm along the z axis (facing along the table)
and -40—40cm along the y axis (spanning the whole range
between the left and right edge of the table). The state space
includes the current joint position and velocities of the arm
(and does not include the position of the box). The action
space contains desired accelerations of the robot, making it
relatively easy to enforce torque, acceleration and velocity
limits of a physical robot arm. The robot is controlled by
a compliant, low-gain impedance controller. The position of
the box can be identified by coming in contact with and
pushing onto it—due to large mass of the box and low gains
of the impedance controller, it is difficult for the robot to
move the box. This feedback signal, as expressed by the
difference between where the robot expected to move and
where it actually moved, can be used to identify the location
of the box.

1) Learned motions: This policy learns sweeping mo-
tions, covering most of the space between the edges of the
table, and trying to follow the edges of the box when it is en-
countered. The specific motion depends on the random seed,



(b)
Fig. 5: Example end-effector paths (marked in green) learned
by the policy in the Box environment

with a few example paths shown in Figure 5. In Figure Sa,
the policy encountered the box during the sweeping motion
and started to move the end-effector around it. Figure 5b
shows a failure case, where the box is located too close to
the edge of the table, outside of the explored area.

In contrast to the previous setup, the regular curiosity
baseline did not learn any useful behaviour—it learned
to rotate the joints in a constant direction until reaching
joint limits (with the direction of motion varying between
different random seeds). This is most likely caused by more
complex exploration required to find the uncertainty in the
environment—unlike the previous setup, the box is located
farther away from the starting position and it is harder to
find during exploration.

As an additional baseline, we used a reaching policy that
moves the arm to a random place in the range where the box
may be located.

2) & identification in simulation: Similarly to previous
setups, we train a recurrent model to predict the position
of the box given data collected by each baseline policy. The
box position estimation errors (in meters) are presented in
Table I. We observe that, similarly to previous experiments,
the proposed method allows for most accurate estimation of
dynamics parameters of all evaluated methods. The proposed
method allows for most accurate estimation of the box
position, with an average error of 3 cm. Other methods either
produce an error of 21cm, which is a result of predicting the
center of the range.

3) State prediction in simulation: Similarly to previous
setups, we also evaluate the model’s ability to learn about
state transitions in data collected a reference policy, using
data collected with each method. The reference policy is a
policy that reaches the inside of the box (knowing its ground-
truth location).

The results are shown in the third column of Table II. The
prediction error is, at first, the same for all three methods;
however, between 50-150 samples into the episode (the time
it takes the robot to find the box), it starts to drop for the
domain curious approach, reaching a slightly lower final
value. For other approaches, there is no noticeable learning

4) Real-world & identification: To verify the method’s ca-
pability to identify the task variable in real-world conditions,
we constructed an analogous setup with a real-world Franka
Panda robot arm. The setup is shown in Figure 6.

In this setup, we have compared the performance of
the proposed method to the random reaching baseline. The
baseline was selected because it was the best performing sim-
ulated baseline and because—unlike the random and curious
policies—it is safe to run on physical hardware. We collected

Fig. 6: The real world FindBox setup with Franka Panda.

a total 382 trajectories from 26 different box locations for the
proposed method and a total of 506 trajectories for the same
box positions. Since the number of rollouts can be different
for each evaluation point, each sequence in the loss term
was weighted to correct for this dataset imbalance. Since the
real-world table has a width of 80cm, and the size of the box
is 20x20cm, we only tested x positions in the range of -30
— 30cm (to reproduce the range used in simulation, it would
be required to have half of the box in the air unsupported by
the table, which would likely result in the box being dropped
when touched by the robot). We then split each dataset,
leaving 60% of the trajectories for training and 40% for the
test set. In order to prevent overfitting, the trained network
was heavily regularized—we used weight decay value of
10~° and injected random noise with a standard deviation of
10~2 into the data. We also used a smaller neural network,
with two hidden layers with the size of 16.

The results of this evaluation, in the form of prediction
error t timesteps into the episode, are shown in Figure 7
(where each timestep is 20ms). Similarly to the simulated
results, the proposed approach allows for accurate identifi-
cation of the location of the box, reaching much smaller
position estimation errors than the random reaching baseline.
By analyzing the shape of the domain curious curve, we
see that at first, the uncertainty about the position of the
box is quite large at around 17cm. After about 25 timesteps
(0.5 seconds), when the robot starts the sweeping motion,
the uncertainty starts to fall down, until it finally settles at
around 6 cm around 175 (3.5 seconds) timesteps into the
episode. This error is a bit larger than what was observed in
simulation ( 3cm), but is still a noticeable improvement over
the random reaching baseline policy.

For the random reaching policy, the error starts at more
or less the same value of 16cm, and, on average, it slightly
improves around 40-80 timesteps (0.8—1.6 seconds), which
roughly corresponds to the time it takes the robot to reach the
goal position. This indicates that the robot was able to make
at least some predictions about the location of the box given
the state transitions collected by the reaching policy, but these
transitions were far less informative than data collected by
the proposed domain curious approach.

V. CONCLUSIONS

In this paper, we presented a method for training a domain
curious policy—a policy specifically optimized to maxi-
mize the agent’s information gain about the environment.
We demonstrated that the method focuses on the domain-
specific, learnable aspects of the environment while ignoring
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Fig. 7: Box position estimation errors ¢ timesteps into an
episode for the real-world Box setup with the proposed
method and the reaching baseline

pure noise, unlike standard curiosity-based methods. We
also demonstrated that the learned policies can be used
to successfully learn about the unknown aspects of the
environment, both in simulation and on a real robot setup.

In the proposed method, the policy is only conditioned
on the current state, and has no direct measure of how much
the agent has already learned. In simple environments, a suc-
cessful policy can still be learned by correlating knowledge
with other elements of the state space, such as position, with
heuristics like if the agent is moving towards the orange
spot, it hasn’t visited the spot yet. Extending the proposed
method to more complex situations may require conditioning
the policy on the current task variable and its uncertainty.

To apply the method in multi-task learning scenarios, such
as walking to an unknown target, a similarly structured
reward prediction model could be used. The method was
studied in the context of dynamics estimation, and it was
assumed that only the state transition probabilities depend
on &£ The reward however remains the same across all
conditions and it is thus unclear how well the proposed
method would perform in such a task.

Ensuring safety is crucial in real-world applications. Thus,
it is essential that the trained policy explores the envi-
ronments without putting the agent itself or other actors
in the environment at risk [34]. While we have provided
a simple measure of safety by penalizing contact forces
between the robot and other objects in the environment,
engineering rewards that assure safety is difficult in general.
While the measure is feasible for cases where acceptable
contacts are easy to specify such as pushing, this approach
would scale poorly to more complex scenarios, such as
compliant interaction between a human and a robot. One
possible way to address this challenge would be to learn
safety measures in the simulation, together with the policy
and the dynamics model. This would open a way to increase
the efficiency and reliability of sim-to-real transfer by curious
domain adaptation, and push sim-to-real methods toward
practical applications.
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