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A B S T R A C T

Lattice materials are extremely efficient in combining high stiffness and strength at low densities. Their
architecture is a periodic assembly of bars, which, in most cases, all have the same length and cross-section.
This is, however, suboptimal since the level of stress is not the same in all bars. To take these variations
into account, we propose to design prismatic lattices with two different bar thicknesses. The ratio of these
two thicknesses introduces a new parameter in the design of lattices. Analytical expressions are developed
to capture the effect of this new parameter on the elastic modulus, failure mode and compressive strength
of hexagonal and triangular lattices. This analytical work is then validated by finite element simulations and
experiments performed on polymer lattices fabricated by additive manufacturing. This new parameter offers
two advantages in the design of prismatic lattices. First, the thickness ratio can be used to vary the properties
of a lattice without changing its relative density. Second, it allows to stiffen and strengthen the lattice along a
specific loading direction and therefore, controls the degree of anisotropy. This work opens new possibilities
to tailor the mechanical properties of prismatic lattices, and facilitates the creation of new materials by design.

1. Introduction

Lattice materials can be designed to have precise, and often unique,
mechanical properties [1,2]. Their properties are a function of three
parameters: (i) the parent material from which the lattice is made of,
(ii) its topology and (iii) its relative density �̄� (which represents the
volume fraction of material) [3]. For example, the elastic modulus of a
lattice can be expressed as [4]:

𝐸 = 𝐵�̄�𝑏𝐸𝑠, (1)

where 𝐸𝑠 is the Young’s modulus of the parent material, whereas 𝐵
and 𝑏 are two constants dependent upon the topology of the lattice.
Optimising the architecture to maximise the elastic modulus has been
the subject several investigations, and a number of highly efficient
isotropic topologies have been identified recently [5–7].

Fabricating these optimised topologies has become significantly
easier with the recent and rapid development of additive manufac-
turing [8,9]. On one hand, this technology facilitated the production
of existing concepts, such as truss lattices [10–14]; shell lattices [15,
16]; and hierarchical topologies [17–22]. On the other hand, additive
manufacturing and rapid prototyping technologies opened new oppor-
tunities to customise the design of lattices and enhance their properties.
One example is the development of ultralight micro-lattices that are
strengthen by material size effects [23–27]. Other examples include
lattices with tapered beams [28–30], or an origami architecture [31] to
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increase their energy absorption; topologies combining two dissimilar
materials to achieve high strength and high compressive strains [32];
and architectures with wavy struts to enhance their tensile fracture
strain [33,34].

Additive manufacturing also offers the possibility to optimise the
properties of lattices by changing the distribution of material. Previous
studies on this topic can be categorised in two groups depending if
the optimisation is done at (i) the structural length-scale or (ii) the
unit cell level. In the former group, the properties of a lattice structure
are optimised for specific loading conditions by spatially varying the
relative density [35–39]. These are commonly referred to as graded
architectures. In the latter group, computational topology optimisa-
tion is used to design the unit cell of the lattice, based on a set of
constraints and objective functions [40–43]. While these optimisation
approaches can lead to highly efficient topologies, they are computa-
tionally expensive and often restricted to elastic properties only. These
limitations highlight the need to investigate analytically the effect of
mass distribution in lattices, and this is the subject of this study.

In this work, we propose to tailor the properties of prismatic lattices
by introducing two different bar thicknesses, 𝑡1 and 𝑡2, as shown in
Fig. 1. For most loading cases, these two bars are carrying different
loads and therefore, optimising their thickness accordingly has the
potential to increase performances. This geometrical change introduces
a new design parameter, the thickness ratio 𝑡 = 𝑡1∕𝑡2. We will show
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Fig. 1. Geometry of (a) triangular and (b) hexagonal lattices, where the horizontal bars, numbered 1, have a thickness 𝑡1 and the diagonal bars, numbered 2, have a thickness 𝑡2.
The periodic unit cells used in finite element simulations are delimited by the red dashed lines.

below that 𝑡 has a pronounced effect on the properties: it transforms the
constant 𝐵 in Eq. (1) into a function of 𝑡, and this offers an opportunity
to modify the properties without changing the relative density �̄� of
the lattice. The objective of the paper is to quantify the effect of 𝑡 on
the elastic modulus, compressive strength and failure modes of pris-
matic lattices. Our investigation focuses on hexagonal and triangular
lattices since they have strikingly different behaviours: the former is
bending-dominated whereas the latter is stretching-dominated.

The in-plane properties of triangular and hexagonal lattices with
𝑡 = 1 have been investigated both analytically and experimentally [44–
46]. Hexagonal lattices with 𝑡 = 2 have also been the subject of many
investigations [47–54]. These are expanded honeycombs, fabricated by
gluing and pulling apart strips of materials, and therefore, their dif-
ferent bar thicknesses are simply a consequence of the manufacturing
route. Nonetheless, the bar thickness has been considered as a design
parameter in a number of studies. For example, hexagonal lattices with
cell walls that vary in thickness along their length (thicker at the nodes
than in the middle) can be stiffer and stronger than their uniform
counterparts [55–58]. Others, have design honeycombs with a gradient
in bar thickness to increase the transverse shear modulus [59] or, in
most cases, the energy absorption capacity [60–64]. Note that in these
graded honeycombs, the bar thickness is varied at different locations
inside a structure (thereby modifying structural properties), which is
different from the approach proposed here where the distribution of
material is changed within the unit cell (tuning its material properties).
Another approach to improve the properties of honeycombs has been to
completely re-design their geometry, see the review of Qi et al. [65].
This, however, produces stepwise changes in properties, whereas the
thickness ratio 𝑡 proposed in this study enables to vary properties in a
continuous manner.

This paper is structured as follows. Analytical expressions are de-
veloped in Section 2 to capture the effect of 𝑡 on the mechanical
properties of hexagonal and triangular lattices. These analytical results
are presented in Section 3 and then validated using finite element
simulations in Section 4. The study is complemented by experiments
performed on samples manufactured by additive manufacturing, and
these are presented in Section 5. In these experiments, 𝑡 is varied by
changing both 𝑡1 and 𝑡2 while keeping the relative density fixed. Finally,
the main advantages of 𝑡 are discussed in Section 6.

2. Analytical modelling

In this section, analytical expressions are derived for the elastic
modulus and strength of prismatic lattices with different bar thick-
nesses, see Fig. 1. Triangular and hexagonal topologies are considered
in turn, and equations are derived for uniaxial compression in 𝑥1 and 𝑥2
directions. Both lattices are assumed to be made from a linear elastic,
perfectly plastic material, characterised by a Young’s modulus 𝐸𝑠 and a
yield strength 𝜎𝑦𝑠. The cell walls of the stretching-dominated triangular
lattice are considered to behave as pin-jointed trusses, whereas those
of the bending-dominated hexagonal topology are modelled as Euler–
Bernoulli beams. These assumptions generally acceptable provided that
lattices have a relative density �̄� ≤ 0.3 [4] and that the cell walls of the
hexagonal lattice are sufficiently slender (𝑡1∕𝑙 and 𝑡2∕𝑙 are less than 0.2)
to neglect axial and shear deformations [44].

2.1. Triangular lattice

Consider the triangular lattice shown in Fig. 1a, where all bars have
a length 𝑙, but not the same thickness. The horizontal bars have a
thickness 𝑡1, whereas the diagonal struts have a thickness 𝑡2. Therefore,
the relative density of the triangular lattice is given by:

�̄� =
2
√

3
3

(𝑡1 + 2𝑡2)
𝑙

. (2)

2.1.1. Loading in 𝑥1 direction
First, consider the triangular lattice loaded in the 𝑥1 direction by

a uniform compressive stress 𝜎1. The triangular lattice is stretching-
dominated, and the axial forces in bars 1 and 2 are given by [45]:

𝑇1 = −

√

3
2

𝜎1𝑏𝑙 and 𝑇2 = 0, (3)

respectively, where 𝑏 is the out-of-plane dimension, and the negative
sign indicates a compressive force. We emphasise here that the axial
forces 𝑇1 and 𝑇2 are independent of the bar thickness. Since only bar 1
is carrying load, the nominal compressive strain of the lattice is given
by:

𝜖1 =

√

3𝑙𝜎1
2𝑡1𝐸𝑠

, (4)

where 𝐸𝑠 is the Young’s modulus of the parent material. The elastic
modulus of the lattice in the 𝑥1 direction is 𝐸1 = 𝜎1∕𝜖1, which gives:

𝐸1 =
[

𝑡
𝑡 + 2

]

�̄�𝐸𝑠, (5)

where the thickness ratio 𝑡 = 𝑡1∕𝑡2.
Next, we turn our attention to the compressive strength of the trian-

gular lattice. Two collapse mechanisms are possible: (i) elastic buckling
and (ii) yielding. Elastic buckling will occur when the compressive load
in a bar reaches the Euler buckling load [66]:

𝑇𝑐𝑟 =
𝑛2𝜋2𝐸𝑠𝐼

𝑙2
, (6)

where 𝐼 is the second moment of area and 𝑛 is the end constraint factor
(𝑛 = 1 for pinned joints, whereas 𝑛 = 2 when both ends are fixed). When
compressed in the 𝑥1 direction, only bar 1 is loaded in compression (see
Eq. (3)), therefore setting 𝑇1 = 𝑇𝑐𝑟 gives us the elastic buckling strength:

𝜎[𝑡1]1,𝑒𝑙 =
𝑛2𝜋2

16

[

𝑡
𝑡 + 2

]3
�̄�3𝐸𝑠, (7)

where the subscript 𝑒𝑙 and the superscript [𝑡1] are used to indicate that
bar 1 is buckling elastically. It is important to mention that the end
constraint factor 𝑛 varies with 𝑡. It is possible to show analytically that
𝑛 decreases from 2 to 1 as 𝑡 increases from 0 to 5. This lengthy analysis
relies on beam–column theory [67,68] and is provided in Appendix A.1.

The collapse mode is anticipated to change from elastic buckling to
yielding as the relative density is increased. The yield strength of the
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lattice is obtained by setting 𝑇1 = 𝑏𝑡1𝜎𝑦𝑠, which gives:

𝜎[𝑡1]1,𝑝𝑙 =
[

𝑡
𝑡 + 2

]

�̄�𝜎𝑦𝑠. (8)

Above, the subscript 𝑝𝑙 and the superscript [𝑡1] are used to indicate
that yielding occurs in bar 1. Finally, the lattice will collapse in the
mode associated with the lowest stress, and therefore, its compressive
strength is given by:

𝜎1 = min
(

𝜎[𝑡1]1,𝑒𝑙 , 𝜎
[𝑡1]
1,𝑝𝑙

)

. (9)

2.1.2. Loading in 𝑥2 direction
Consider the triangular lattice loaded in the 𝑥2 direction by uniform

compressive stress 𝜎2. For this loading scenario, the axial forces in bars
1 and 2 are [45]:

𝑇1 =

√

3
6

𝜎2𝑏𝑙 and 𝑇2 = −

√

3
3

𝜎2𝑏𝑙, (10)

respectively. The nominal compressive strain 𝜖2 can be obtained by
equating the internal strain energy to the work done by the external
stress 𝜎2. For the unit cell in Fig. 1a, the internal strain energy is:

𝑈 = 𝑙
𝐸𝑠𝑏

[

4𝑇 2
1

𝑡1
+

8𝑇 2
2

𝑡2

]

=
(8𝑡1 + 𝑡2)𝑏𝑙3𝜎22

3𝑡1𝑡2𝐸𝑠
, (11)

whereas the work done by the external stress is 𝑊 = 2
√

3𝑏𝑙2𝜎2𝜖2.
Setting 𝑈 = 𝑊 and solving for 𝜖2 returns:

𝜖2 =
(8𝑡1 + 𝑡2)𝑙𝜎2
6
√

3𝑡1𝑡2𝐸𝑠

. (12)

The elastic modulus in the 𝑥2 direction is simply 𝐸2 = 𝜎2∕𝜖2, and this
yields:

𝐸2 =
9𝑡

(8𝑡 + 1)(𝑡 + 2)
�̄�𝐸𝑠. (13)

The compressive strength of the triangular lattice in the 𝑥2 direction
is controlled by either elastic buckling or yielding. Elastic buckling will
occur when 𝑇2 = 𝑇𝑐𝑟, which yields:

𝜎[𝑡2]2,𝑒𝑙 =
3𝑛2𝜋2

32

[ 1
𝑡 + 2

]3
�̄�3𝐸𝑠. (14)

Again, the end constraint factor 𝑛 varies with 𝑡 and its value is provided
in Appendix A.1. Otherwise, yielding can occur in bar 1 or 2 since both
struts are carrying load, see Eq. (10). Yielding in bar 1 will occur when
𝑇1 = 𝑏𝑡1𝜎𝑦𝑠, whereas bar 2 will yield when 𝑇2 = 𝑏𝑡2𝜎𝑦𝑠. This gives us:

𝜎[𝑡1]2,𝑝𝑙 = 3
[

𝑡
𝑡 + 2

]

�̄�𝜎𝑦𝑠 and (15)

𝜎[𝑡2]2,𝑝𝑙 =
3
2

[ 1
𝑡 + 2

]

�̄�𝜎𝑦𝑠. (16)

Finally, the compressive strength 𝜎2 of the triangular lattice is governed
by the collapse mode which occurs at the lowest stress and this can be
expressed as:

𝜎2 = min
(

𝜎[𝑡2]2,𝑒𝑙 , 𝜎
[𝑡1]
2,𝑝𝑙 , 𝜎

[𝑡2]
2,𝑝𝑙

)

. (17)

2.2. Hexagonal lattice

The hexagonal lattice is shown in Fig. 1b and its relative density is
given by:

�̄� = 2

3
√

3

(𝑡1 + 2𝑡2)
𝑙

. (18)

2.2.1. Loading in 𝑥1 direction
Consider the hexagonal lattice loaded in the 𝑥1 direction by a

uniform compressive stress 𝜎1. If the axial deformation of bar 1 is
neglected, the hexagonal lattice deforms by bending bar 2, see Fig. 1b.
Based on Gibson and Ashby [44], the nominal compressive strain is:

𝜖1 =

√

3𝜎1𝑙3

4𝐸𝑠𝑡32
, (19)

and the elastic modulus of the hexagonal lattice is 𝐸1 = 𝜎1∕𝜖1, which
yields:

𝐸1 =
81
2

[ 1
𝑡 + 2

]3
�̄�3𝐸𝑠. (20)

When the hexagonal lattice is compressed along the 𝑥1 direction,
three collapse modes are possible: (i) elastic buckling of bar 1, (ii)
yielding in bar 1, and (iii) plastic collapse in bar 2. The axial force
in bar 1 is:

𝑇1 =
√

3𝜎1𝑏𝑙, (21)

and elastic buckling will occur when 𝑇1 is equal to the Euler buckling
load, which gives:

𝜎[𝑡1]1,𝑒𝑙 =
27𝑛2𝜋2

32

[

𝑡
𝑡 + 2

]3
�̄�3𝐸𝑠. (22)

Again, the end constraint 𝑛 varies with 𝑡 and its value is derived in
Appendix A.2. Next, the stress causing yielding in bar 1 is obtained by
setting 𝑇1 = 𝜎𝑦𝑠𝑏𝑡1 and this returns:

𝜎[𝑡1]1,𝑝𝑙 =
3
2

[

𝑡
𝑡 + 2

]

�̄�𝜎𝑦𝑠. (23)

Plastic collapse in bar 2 will occur when the bending moment reaches
the fully plastic moment 𝑀𝑝 = 𝜎𝑦𝑠𝑏𝑡2∕4. Adapting the expression
of Gibson and Ashby [44] gives us:

𝜎[𝑡2]1,𝑝𝑙 =
9
2

[ 1
𝑡 + 2

]2
�̄�2𝜎𝑦𝑠. (24)

Finally, the collapse mode associated with the lowest stress will dictate
the compressive strength of the lattice:

𝜎1 = min
(

𝜎[𝑡1]1,𝑒𝑙 , 𝜎
[𝑡1]
1,𝑝𝑙 , 𝜎

[𝑡2]
1,𝑝𝑙

)

. (25)

2.2.2. Loading in 𝑥2 direction
When the hexagonal lattice is loaded by a uniform compressive

stress 𝜎2 in the 𝑥2 direction, it deforms by bending bar 2. The nominal
compressive strain is obtained by adapting the result of Gibson and
Ashby [44], which gives:

𝜖2 =

√

3𝜎2𝑙3

4𝐸𝑠𝑡32
. (26)

The elastic modulus in the 𝑥2 direction becomes:

𝐸2 =
81
2

[ 1
𝑡 + 2

]3
�̄�3𝐸𝑠. (27)

Comparing this result to Eq. (20) reveals that the hexagonal lattice has
the same elastic modulus in both 𝑥1 and 𝑥2 directions.

For compression in the 𝑥2 direction, there is a single failure mode:
plastic collapse in bar 2. Therefore, by adapting the expression of Gib-
son and Ashby [44], we find that the compressive strength 𝜎2 of the
hexagonal lattice is:

𝜎2 = 𝜎[𝑡2]2,𝑝𝑙 =
9
2

[ 1
𝑡 + 2

]2
�̄�2𝜎𝑦𝑠. (28)

Finally, note that all analytical expressions presented in this section
are in agreement with previous work done by Gibson and Ashby [44]
and Wang and McDowell [45]: the properties of uniform triangular and
hexagonal lattices can be recovered by setting 𝑡 = 1, whereas those
of expanded honeycombs (with double thickness vertical walls) can be
retrieved with 𝑡 = 2.
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Fig. 2. Normalised elastic modulus as a function of 𝑡 = 𝑡1∕𝑡2 for (a) triangular and (b) hexagonal lattices. The modulus 𝐸1 is in red, and 𝐸2 is in black.

3. Analytical results

Analytical results are presented in this section to quantify the effect
of 𝑡 on the elastic modulus, collapse mode and compressive strength of
both triangular and hexagonal lattices.

3.1. Elastic modulus

The effect of 𝑡 on the elastic modulus of the triangular lattice is
shown in Fig. 2a. The elastic modulus 𝐸1 is plotted in red, whereas 𝐸2
is in black. The triangular lattice is stretching-dominated and therefore,
both moduli are normalised by �̄�𝐸𝑠. Consequently, the results are inde-
pendent of the relative density �̄� and of the choice of parent material
(𝐸𝑠), see Eq. (5), (13).

The results in Fig. 2a show that 𝐸1 increases monotonically with
increasing 𝑡. On the other hand, the elastic modulus 𝐸2 reaches a
maximum value of 0.36�̄�𝐸𝑠 at 𝑡 = 0.5, which corresponds to 𝑡2 = 2𝑡1.
This peak was anticipated since the axial force 𝑇2 = −2𝑇1, see Eq. (10).
The main advantage offered by 𝑡 is the possibility to vary the elastic
modulus of the lattice while keeping its relative density �̄� fixed. For
the triangular lattice, 𝐸1 can be varied over a wide range of values,
increasing more than five-fold when 𝑡 is varied from 0.25 to 3. Of
course, increasing 𝐸1 by increasing 𝑡 also leads to a reduction in 𝐸2.
Note, however, that 𝐸1 increases more rapidly than 𝐸2 decreases for
𝑡 > 0.5. For example, compare the elastic moduli of a triangular lattice
with 𝑡 = 3 to those of a conventional lattice with 𝑡 = 1. The lattice with
𝑡 = 3 has a modulus 𝐸1 80% higher than that with 𝑡 = 1, whereas the
reduction in 𝐸2 is only 35%. Therefore, the trade-off between 𝐸1 and
𝐸2 can be advantageous.

The elastic modulus of the hexagonal lattice is plotted as a func-
tion of 𝑡 in Fig. 2b. The hexagonal lattice is bending-dominated and
therefore its elastic modulus is normalised by �̄�3𝐸𝑠 to ensure that the
results are insensitive to both �̄� and 𝐸𝑠, see Eq. (20), (27). In contrast
with the triangular lattice, the hexagonal topology has the same elastic
modulus in both directions, see Eq. (20) and (27). In addition, the
elastic modulus increases monotonically as 𝑡 decreases. These two
observations can be explained by the fact that the hexagonal lattice
deforms primarily by bending bar 2 when loaded along either 𝑥1 or 𝑥2.
Again, varying 𝑡 allows to change the elastic modulus over a wide range
of values: 𝐸1 and 𝐸2 change by an order of magnitude when 𝑡 varies
from 0.25 to 3. Note that the effect of 𝑡 on the elastic modulus is more
important for the hexagonal lattice than for the triangular topology.
This is because the expression of 𝐸1 for the hexagonal lattice contains
terms in 𝑡 3, whereas for triangular lattice 𝐸1 contains only terms in 𝑡.

3.2. Collapse modes

Failure maps are presented in Fig. 3 to illustrate how the collapse
mode changes as a function of �̄� and 𝑡. These maps are sensitive to the
choice of parent material, and the results in Fig. 3 are for 𝐸𝑠 = 200GPa
and 𝜎𝑦𝑠 = 250MPa, which is representative of structural steel.

Two collapse modes are possible when the triangular lattice is
compressed in 𝑥1: elastic buckling or yielding of bar 1, see Fig. 3a.
As expected, elastic buckling is predominant at low values of relative
density (less than �̄� ≈ 0.07) and when 𝑡 is inferior to approximately 0.25.
On the other hand, three collapse modes can occur when the triangular
lattice is compressed in 𝑥2: elastic buckling in bar 2, and yielding of bar
1 or 2, see Fig. 3b. Again, elastic buckling takes place at low values of
relative density. Yielding takes place in bar 1 when 𝑡 < 0.5, and in bar
2 otherwise.

Failure maps for the hexagonal lattice are given in Fig. 3c and d
for compression in 𝑥1 and 𝑥2, respectively. In both directions, most
geometries fail by plastic collapse of bar 2. For compression in 𝑥1, the
hexagonal lattice can also fail by elastic buckling or yielding of bar 1,
but these modes are active only for very low values of �̄� or 𝑡.

Finally, the influence of the parent material on the collapse mode
can be evaluated by comparing Fig. 3 to 4, where the failure maps are
plotted for 𝐸𝑠 = 2.4GPa and 𝜎𝑦𝑠 = 41MPa. These material properties
are those of a polymer, which will be used in the experiments reported
below (Section 5). For both lattices, changing the parent material from
steel to a polymer significantly expands the predominance of elastic
buckling. This is particularly striking for the triangular lattice, where
nearly all geometries fail by elastic buckling when the parent material
is a polymer.

3.3. Compressive strength

The influence of 𝑡 on the compressive strength is shown in Fig. 5
for the triangular lattice and in Fig. 6 for the hexagonal topology. In
both figures, the results are given for steel lattices (𝐸𝑠 = 200GPa and
𝜎𝑦𝑠 = 250MPa) with �̄� = 0.001 (in part a) and �̄� = 0.2 (in part b). These
two values of relative density were selected to cover all failure modes
for steel lattices, see Fig. 3.

Triangular lattices with �̄� = 0.001 fail by elastic buckling in both
𝑥1 and 𝑥2 directions, see Fig. 3. Accordingly, the compressive strength
is normalised by �̄�3𝐸𝑠 in Fig. 5a; therefore, the results are valid for
any triangular lattice that fails by elastic buckling, see Eq. (7), (14).
The compressive strength 𝜎1 increases with increasing 𝑡, whereas 𝜎2
decreases with increasing 𝑡. The failure mode of triangular lattices
switches to yielding when its relative density is increased to �̄� = 0.2,



International Journal of Mechanical Sciences 219 (2022) 107079

5

A. Markou and L. St-Pierre

Fig. 3. Failure maps for prismatic lattices made from steel (𝐸𝑠 = 200GPa and 𝜎𝑦𝑠 = 250MPa). Results are given for the triangular lattice compressed in (a) 𝑥1 and (b) 𝑥2; and the
hexagonal lattice compressed in (c) 𝑥1 and (d) 𝑥2.

see Fig. 3. Consequently, its compressive strength has been normalised
by �̄�𝜎𝑦𝑠 in Fig. 5b to ensure that the results are representative of any
triangular lattice that fails by yielding, see Eq. (8), (15), (16). The
compressive strength 𝜎1 increases with increasing 𝑡, but, in contrast,
𝜎2 exhibit a peak strength 𝜎2,𝑝𝑘 = 0.6�̄�𝜎𝑦𝑠 when 𝑡 = 0.5. This peak is
associated with a change in failure mode: yielding occurs in bar 1 for
𝑡 < 0.5 and in bar 2 otherwise, see Fig. 3.

The compressive strength of an hexagonal lattice with �̄� = 0.001 is
shown in Fig. 6a, where results are plotted on a double 𝑦-axis. On the
left axis, 𝜎1 is normalised by �̄�3𝐸𝑠 because the lattice fails by elastic
buckling, see Fig. 3c. On the right axis, 𝜎2 is normalised by �̄�2𝜎𝑦𝑠 since
the hexagonal lattice collapses by plastic bending, see Fig. 3d. These
normalisations are based on Eq. (22) and (28) to ensure that the results
are insensitive to �̄� and the material properties (as long as the failure
modes remain unchanged). Clearly, 𝜎2 increases monotonically with
decreasing 𝑡. In contrast, the strength along 𝑥1 displays a peak 𝜎1,𝑝𝑘 =
0.147�̄�3𝐸𝑠 at 𝑡 = 1.11. This peak is the result of two competing effects.
On one hand, increasing 𝑡 increases the elastic buckling resistance
according to Eq. (22). On the other hand, the end constraint 𝑛 decreases
with increasing 𝑡: 𝑛 decreases from 1 to 0.1 when 𝑡 varies from 0 to 5,
see Appendix A.2.

Finally, the compressive strength of the hexagonal lattice with �̄� =
0.2 is plotted in Fig. 6b, There are three different collapse modes when
�̄� = 0.2 (see Fig. 3c) and therefore it is impossible to have a unique
normalisation in this case. Consequently, both 𝜎1 and 𝜎2 are normalised
by 𝜎𝑦𝑠 in Fig. 6b. The hexagonal lattice has the same strength in
both directions when 𝑡 ≥ 0.27 because plastic collapse of bar 2 is
the operative failure mode, see Fig. 3c,d. For this failure mode, the
compressive strength (𝜎1 = 𝜎2) increases with decreasing 𝑡. Then, when

𝑡 < 0.27, 𝜎1 decreases with decreasing 𝑡, and this is due to a change in
failure mode, see Fig. 3c.

4. Finite element simulations

4.1. Description of the finite element model

Finite Element (FE) simulations were performed to verify the an-
alytical results presented in Section 3. All simulations were done with
the commercial software Abaqus (version 2017) and using the standard
solver (Static, Implicit step in Abaqus). Periodic unit cells, shown in
Fig. 1, were used for each topology. In all cases, the bar length was kept
fixed to 𝑙 = 10mm, but the bar thicknesses 𝑡1 and 𝑡2 were modified to
vary �̄� and 𝑡. The cell walls were discretised using Timoshenko beam
elements (B21 in Abaqus notation): we used 30 elements per bar for the
triangular lattice and 70 elements per bar for the hexagonal topology.
A mesh convergence study revealed that further mesh refinements
had a negligible effect on the results (a difference less than 0.3%).
A geometric imperfection was included in all simulations; it had the
shape of the first eigenmode and its amplitude was set to 5% of the
bar thickness expected to buckle. The parent material was modelled
as an elastic perfectly plastic solid. The elastic regime was linear and
isotropic, characterised by a Young’s modulus 𝐸𝑠 = 200GPa and a
Poisson’s ratio 𝜈𝑠 = 0.26, up to a yield strength 𝜎𝑦𝑠 = 250MPa.

Periodic boundary conditions were imposed with the following
constraint equations [69,70]:

𝛥𝑢𝑖 = 𝜖𝑖𝑗𝛥𝑥𝑗 and 𝛥𝜙 = 0, (29)
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Fig. 4. Failure maps for prismatic lattices made from a polymer (𝐸𝑠 = 2.4GPa and 𝜎𝑦𝑠 = 41MPa). Results are given for the triangular lattice compressed in (a) 𝑥1 and (b) 𝑥2; and
the hexagonal lattice compressed in (c) 𝑥1 and (d) 𝑥2. The geometries tested are marked with different symbols depending on the failure mode. In all cases, the observed failure
modes were in agreement with our analytical predictions.

Fig. 5. Normalised compressive strength as a function of 𝑡 = 𝑡1∕𝑡2 for a triangular lattice with (a) �̄� = 0.001 and (b) �̄� = 0.2. The strength 𝜎1 is in red, and 𝜎2 is in black. The
parent material is steel: 𝐸𝑠 = 200GPa and 𝜎𝑦𝑠 = 250MPa.

where 𝛥𝑢𝑖 and 𝛥𝜙 are the difference in displacement and rotation,
respectively, between corresponding points of the unit cell; 𝜖𝑖𝑗 is the
macroscopic nominal strain tensor; and 𝛥𝑥𝑗 is the displacement vector
connecting two corresponding points of the unit cell. The compressive
response of the lattice along 𝑥1 was obtained by prescribing the value
of 𝜖11, and the work conjugate 𝜎11 was calculated by Abaqus assuming
that 𝜎22 = 0. Likewise, the compressive response along 𝑥2 was obtained
by imposing 𝜖22, and computing 𝜎22 provided that 𝜎11 = 0.

4.2. Comparison between simulations and analytical results

Finite Element predictions for 𝐸1 and 𝐸2 are compared to analytical
results in Fig. 2 for both triangular and hexagonal lattices. The FE data
was obtained for �̄� = 0.001, but the normalisation used in Fig. 2 is
such that the results are insensitive to the choice of relative density
even up to �̄� = 0.2. Clearly, there is an excellent agreement between FE
simulations and analytical equations for both 𝐸1 and 𝐸2, and over the
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Fig. 6. Normalised compressive strength as a function of 𝑡 = 𝑡1∕𝑡2 for a hexagonal lattice with (a) �̄� = 0.001 and (b) �̄� = 0.2. The strength 𝜎1 is in red, and 𝜎2 is in black. The
parent material is steel: 𝐸𝑠 = 200GPa and 𝜎𝑦𝑠 = 250MPa.

entire range of 𝑡 considered here. This is true for both triangular and
hexagonal topologies.

Next, FE predictions of the compressive strength are compared to
analytical results in Figs. 5 and 6 for triangular and hexagonal lattices,
respectively. In both figures, there is an excellent agreement between
FE and analytical results. In all cases, the failure mode predicted
analytically corresponded to the one observed in FE simulations. Based
on the results shown in Figs. 2, 5 and 6, we conclude that the analytical
expressions derived in Section 2 are validated by FE simulations.

5. Experiments

Experiments were also conducted to assess the accuracy of the
analytical predictions derived in Section 2. The procedure used to man-
ufacture the samples is described below. Then, the measured responses
and observed failure modes are reported. Finally, the experimental
results are compared to our analytical predictions.

5.1. Specimen manufacture

All samples were fabricated by additive manufacturing; more specif-
ically, using a Formlabs Form 2 machine, which uses stereolithography
to cure a photo-polymerising resin. Both triangular and hexagonal
lattices were manufactured and their dimensions are given in Fig. 7.
Lattice materials exhibit size effects, but the number of cells in each
sample is sufficiently large to ensure that the elastic modulus is within
12% of the infinite bulk limit [46,71]. For each topology, three speci-
mens were prepared with 𝑡 = 0.5, 1, and 2, while keeping the relative
density fixed. This was done by varying the bar thicknesses 𝑡1 and 𝑡2 as
indicated in Table 1, and keeping the bar length fixed at 𝑙 = 10mm.
In all cases, the specimens had a depth of 15 mm in the prismatic
direction. Tests were conducted in both 𝑥1 and 𝑥2 directions, and the
geometries are indicated on the failure maps presented earlier in Fig. 4.

The specimens were fabricated as follows. First, the geometry of the
sample was created in Abaqus and a stl file was exported to the Form
2 machine. Second, the specimen was printed with a layer thickness of
0.025 mm and using the Formlabs Clear resin. All samples were printed
with their prismatic axis perpendicular to the printing bed. Finally,
when the print was completed, the lattice was washed in an isopropyl
alcohol (IPA) solution and post-cured under UV light at a temperature
of 60 ◦C for 30 min, as recommended in the Formlabs documentation.

Tensile tests were conducted to characterise the behaviour of the
Clear resin used to manufacture the lattices. Following the procedure
detailed above, dog-bone specimens were fabricated with a gauge
length of 33 mm and a width of 6 mm, in accordance with the

Table 1
Values of relative density �̄� and thickness ratio 𝑡 covered in the experiments.
Topology �̄� 𝑡 𝑡1 [mm] 𝑡2 [mm]

Triangular 0.17 0.5 0.30 0.60
1 0.50 0.50
2 0.75 0.38

0.29 0.5 0.51 1.02
1 0.85 0.85
2 1.28 0.64

Hexagonal 0.10 0.5 0.52 1.04
1 0.87 0.87
2 1.30 0.65

standard test method for tensile properties of plastics (ASTM D638-
14). Ten tests were performed: five with a thickness of 1.5 mm and
five with a thickness of 3 mm. The tensile response was, however,
insensitive to the thickness of the dog-bones. From these ten tensile
tests, conducted at 10−3 s−1, the average material properties and their
standard deviation were: a Young’s modulus 𝐸𝑠 = 2.43 ± 0.18GPa,
a 0.2% yield strength 𝜎𝑦𝑠 = 40.9 ± 2.4MPa, and an ultimate tensile
strength of 62.0 ± 2.4MPa. These values are close to those reported by
Formlabs (which are a Young’s modulus of 2.80GPa and an ultimate
tensile strength of 65MPa). Finally, a measured stress–strain curve is
given in Fig. 8; this test had properties very close to the averages given
above.

5.2. Compressive responses and collapse modes

The printed specimens had no visible imperfections, such as broken
or wavy bars. All samples were tested in compression using a MTS
electromechanical testing machine with a capacity of 30 kN. The lat-
tices were crushed at a constant rate of 0.05mm/s, corresponding to a
nominal strain rate of approximately 7 ⋅ 10−4 s−1. Both the compressive
force and displacement were recorded by the testing machine.

The compressive responses of triangular lattices with �̄� = 0.17 are
shown in Fig. 9a and b for compression along 𝑥1 and 𝑥2, respectively.
In each plot, responses for 𝑡 = 0.5, 1 and 2 are compared. All samples
had a linear elastic regime up to a peak stress, followed by a gradually
softening response. To show the failure modes, photographs of all tests
are given in Fig. 10. All specimens compressed in the 𝑥1 direction failed
by elastic buckling of bar 1. In contrast, elastic buckling occurred in
bar 2 for all triangular lattices loaded in 𝑥2. These failure modes are
in agreement with our analytical predictions, see the failure maps in
Fig. 4a, b.
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Fig. 7. Dimensions of the samples tested: triangular lattice compressed in (a) 𝑥1 and (b) 𝑥2; and hexagonal lattice compressed in (c) 𝑥1 and (d) 𝑥2. All samples had a bar length
𝑙 = 10mm and a depth of 15 mm in the prismatic direction. All dimensions are in mm.

Fig. 8. Tensile response of the polymer used to manufacture all samples.

The measured responses for the hexagonal lattice compressed in
𝑥1 are shown in Fig. 9c. The sample with 𝑡 = 0.5 has a linear elastic
response up to the peak stress. This specimen failed by elastic buckling
of bar 1, see the photograph given in Fig. 11a. This is the same buckling
mode observed previously for uniform honeycombs [44]. In contrast,
the response of specimens with 𝑡 = 1 and 2 was characterised by an

initial linear elastic regime, followed by a non-linear regime, before
reaching the peak stress. These geometries failed by plastic collapse
of bar 2, see Fig. 11b, c, where localisation begins at the centre of
the specimen. This deformation mode is practically identical to the
one observed previously for expanded metallic honeycombs [49,50].
Similarly, all samples failed by plastic collapse of bar 2 when the
hexagonal lattice was compressed in 𝑥2, see the responses in Fig. 9d
and photographs in Fig. 11d,e,f. The failure modes observed for the
hexagonal lattice are in agreement with the maps presented earlier in
Fig. 4c, d.

5.3. Comparison between experiments and analytical/FE predictions

The measured elastic moduli are compared to our analytical pre-
dictions in Fig. 2. There are multiple data points since the majority
of our tests were repeated three times to assess their variability. The
experimental scatter is low; in fact, the relative deviation is inferior to
10% for 92% of our tests. For both lattices, there is a good agreement
between the measured and analytical values of 𝐸1 and 𝐸2. The largest
discrepancy is observed for the elastic modulus 𝐸1 of triangular lattices
with �̄� = 0.29 and 𝑡 = 2, where the measurements are on average
17% higher than the analytical prediction. This is mainly due to a size
effect: when the number of cells 𝑛 across the width of triangular lattice
is small, its modulus 𝐸1 is (𝑛 + 1)∕𝑛 times higher than its asymptotic
value [46]. In our experiments, 𝑛 = 8 and therefore, the modulus 𝐸1
is 12.5% higher due to this size effect. Considering this, the difference
between experiments and analytical prediction is less than 5%.

Next, the measured compressive strength is compared to our ana-
lytical results in Fig. 12. Here, the compressive strength is normalised
by the yield strength of the parent material 𝜎𝑦𝑠 = 41MPa. Again, the
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Fig. 9. Measured responses for the triangular lattice compressed in (a) 𝑥1 and (b) 𝑥2; and the hexagonal lattice compressed in (c) 𝑥1 and (d) 𝑥2.

scatter is small on the measured compressive strength; 86% of our tests
have a relative deviation of less than 10%. The largest discrepancy
between experimental and analytical results is observed for the trian-
gular lattice compressed in 𝑥1 with �̄� = 0.29 and 𝑡 = 2, see Fig. 12b.
This sample is expected to fail by yielding (see the map in Fig. 4a)
and a factor that may explain the discrepancy is the fact that the
polymer used in the experiments has a strain hardening response (see
Fig. 8) which is neglected in the analytical model. Furthermore, the
discrepancies are not attributed to the fact that our analytical model
neglects the stress concentrations at the nodes. To reach this conclusion,
we compared the results of 2D plane stress simulations (not reported
here) with those obtained with beam elements and found a negligible
difference between the two approaches. Nonetheless, there is, for both
topologies, a reasonable agreement between the measured compressive
strength and the analytical predictions shown in Fig. 12.

Finally, the observed deformation modes are compared to FE sim-
ulations in Figs. 10 and 11 for the triangular and hexagonal lattices,
respectively. Recall that FE simulations were done using beam ele-
ments, but their profile was rendered in Figs. 10 and 11 for visualisation
purposes only. For both topologies, there is a good agreement between
the observed and simulated deformation modes. This is true for all
values of 𝑡 and for both loading directions.

6. Discussion

In this paper, we introduced a new parameter 𝑡 to customise the
in-plane properties of triangular and hexagonal lattices. The thickness
ratio 𝑡 does not affect the behaviour of a lattice (whether is it stretching-
or bending-dominated) but it does increase the number of possible
failure modes (there is an additional failure mode for both triangular

and hexagonal lattices). The main advantage of 𝑡 is that it enables to
vary the mechanical properties of a lattice without changing its density.
This is illustrated in Fig. 13, where the normalised elastic modulus
𝐸1∕𝐸𝑠 and the normalised strength 𝜎1∕𝜎𝑦𝑠 of the triangular lattice are
plotted as a function of relative density and for selected values of 𝑡. Both
𝐸1 and 𝜎1 increase monotonically with increasing 𝑡 and therefore, the
maximum increase in performances will depend on the highest value
of 𝑡 that can be manufactured. Using a fairly conservative estimate that
𝑡1 = 5𝑡2 already leads to significant increases in properties: a triangular
lattice with 𝑡 = 5 is more than two times stiffer and up to 3.8 times
stronger than a conventional design with 𝑡 = 1, see Fig. 13.

The properties of the hexagonal lattice can also be increased by
varying 𝑡. For this topology, however, it is 𝐸2 and 𝜎2 that increase
monotonically with decreasing 𝑡, see Fig. 14. Again, varying the bar
thickness by a factor of 5 (𝑡2 = 5𝑡1 ⇒ 𝑡 = 0.2) can lead to significant
changes in properties: a hexagonal lattice with 𝑡 = 0.2 is more than 2.5
times stiffer and 1.8 times stronger than its counterpart with 𝑡 = 1.

The results in Figs. 13 and 14 show how the properties along
a specific direction can be increased by varying 𝑡, and this is ideal
for applications where the load is concentrated in a single direction.
Increasing the properties along one direction, however, tends to reduce
the properties in the perpendicular direction. This can be used in an
advantageous way: 𝑡 can be used to control the degree of anisotropy
of a lattice. Elastic anisotropy is usually quantified using the Zener
index [72], but it requires components of the elasticity tensor that
were outside the scope of this work. To overcome this, we propose to
quantify anisotropy here using the ratio 𝐸1∕𝐸2, which has an intuitive
physical meaning. For the triangular lattice, the anisotropy ratio 𝐸1∕𝐸2
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Fig. 10. Photographs showing the failure modes of a triangular lattice with �̄� = 0.17 and selected values of 𝑡. All samples compressed in 𝑥1 (left column) fail by elastic buckling
of bar 1, whereas those compressed in 𝑥2 (right column) fail by elastic buckling of bar 2. The instant when each photograph was taken is indicated in Fig. 9a, b. For scale, all
bars have a length of 10 mm. The deformation modes obtained from FE simulations using beam elements are also included for comparison.

of the can be obtained by dividing Eq. (5) by (13), which yields:

𝐸1
𝐸2

= 8𝑡 + 1
9

. (30)

Therefore, the anisotropy ratio 𝐸1∕𝐸2 varies linearly with 𝑡. This rela-
tionship is plotted in Fig. 15 and it is reasonably well corroborated by
our experiments. Recall that conventional triangular lattices with 𝑡 = 1
are transversely isotropic, 𝐸1 = 𝐸2 [44,45,70]. Introducing 𝑡, however,
expands the design space and allows us to create lattices with a wide
range of 𝐸1∕𝐸2, see Fig. 15. Unfortunately, this advantage is limited
to the triangular lattice since 𝐸1 = 𝐸2 for the hexagonal lattice, see
Eq. (20) and (27).

Finally, it is important to note that even though our analysis focused
on triangular and hexagonal lattices, the concept proposed in this paper
is applicable to other topologies. For example, we show in Supple-
mentary material how the same approach can be applied to a kagome
lattice. The concept could also be extended to three-dimensional lattices
such as the octet truss. For 3D topologies, all bars in a given plane
would have a diameter 𝑑1 whereas others would have a diameter 𝑑2,
and therefore, the properties could be adjusted by controlling the ratio
𝑑1∕𝑑2.

7. Conclusions

We examined the performances of prismatic lattices with cell walls
having two different thicknesses. The ratio of these two thicknesses
introduced a new design parameter 𝑡. The influence of 𝑡 on the mechani-
cal properties of triangular and hexagonal lattices was first investigated
analytically. Then, these analytical expressions were (i) validated us-
ing finite element simulations, and (ii) corroborated by experiments
conducted on polymer samples produced by additive manufacturing.

The results showed that this new parameter 𝑡 can be used to vary
the properties of a lattice while keeping its relative density fixed.
The thickness ratio also controlled the degree of anisotropy: varying
𝑡 typically increased the properties in one direction but reduced them
in the perpendicular direction. Our analysis indicated that this trade-
off can be advantageous since the increase in one direction is often
more important than the reduction in the other direction. For example,
the elastic modulus of the triangular lattice increased by 80% in one
direction and decreased by only 35% in the perpendicular direction,
when 𝑡 was increased from 1 to 3. In conclusion, the thickness ratio 𝑡
introduced in this paper offers a new way to tailor the properties of
prismatic lattices. Our analysis focused on triangular and hexagonal
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Fig. 11. Photographs showing the failure modes of a hexagonal lattice with �̄� = 0.10 and selected values of 𝑡. Samples compressed in 𝑥1 (left column) and in 𝑥2 (right column) are
included. All specimens failed by plastic collapse of bar 2, except 𝑡 = 0.5 compressed in 𝑥1 which failed by elastic buckling of bar 1. The instant when each photograph was taken
is indicated in Fig. 9c,d. For scale, all bars have a length of 10 mm. The deformation modes obtained from FE simulations using beam elements are also included for comparison.

lattices, but the approach presented here can be extended to other
topologies.
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Appendix A. End constraint factor

The elastic buckling strength of hexagonal lattices has been studied
extensively for in-plane uniaxial [44,68,73–75] and biaxial [47,48,76–
80] compression. The approach employed here is based on a small
strain analysis of a perfect periodic unit cell, as in [44,68], and provides
an upper bound for the buckling load [76]. Our analysis is similar to
that of Fan et al. [68] who derived analytically the end constraint factor
𝑛 for different prismatic lattices. Their work, however, was limited to
lattices with 𝑡 = 1, and here we extend their study to capture the
influence of 𝑡 on the end constraint factor 𝑛.

The method used to calculate 𝑛 relies on the stiffness matrix of a
single bar. Consider a bar of length 𝑙 loaded by an axial compressive
force 𝑃 , as shown in Fig. A.1a. Next, assume that small rotations 𝜃𝑎
and 𝜃𝑏 are imposed at ends 𝑎 and 𝑏, respectively, and a small transverse
displacement 𝛥 is prescribed, see Fig. A.1b. The corresponding bending
moments 𝑀𝑎 and 𝑀𝑏, and shear force 𝑉 are given by [67]:
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, (A.1)

where 𝐸𝑠 is the elastic modulus and 𝐼 is the second moment of area of
the bar. In addition, �̄� and 𝑠∗ are:

�̄� = 𝑠(1 + 𝑐) and 𝑠∗ = 2�̄� − 𝑃 𝑙2

𝐸𝑠𝐼
, (A.2)
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Fig. 12. Comparison between the measured compressive strength and our analytical predictions. Results are given for a triangular lattice with (a) �̄� = 0.17 and (b) �̄� = 0.29; and
(c) a hexagonal lattice with �̄� = 0.10.

Fig. 13. Properties of the triangular lattice compressed 𝑥1: (a) normalised elastic modulus and (b) normalised strength, both as a function of the relative density �̄� (𝐸𝑠 = 2.4GPa
and 𝜎𝑦𝑠 = 41MPa).
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Fig. 14. Properties of the hexagonal lattice compressed 𝑥2: (a) normalised elastic modulus and (b) normalised strength, both as a function of the relative density �̄� (𝐸𝑠 = 2.4GPa
and 𝜎𝑦𝑠 = 41MPa).

Fig. 15. Anisotropy ratio 𝐸1∕𝐸2 as a function of 𝑡 for the triangular lattice. Experimental data points represent the average value of 𝐸1 divided by the average value of 𝐸2. For
error bars, the upper limit is the maximum value of 𝐸1 divided by the minimum value of 𝐸2, whereas the lower limit is the minimum value of 𝐸1 divided by the maximum value
of 𝐸2..

in which parameters 𝑠 and 𝑐 vary depending on the axial load 𝑃 . When
the bar is loaded in compression (𝑃 > 0), 𝑠 and 𝑐 are given by:

𝑠 =
𝜆(sin 𝜆 − 𝜆 cos 𝜆)

2 − 2 cos 𝜆 − 𝜆 sin 𝜆
, (A.3)

and

𝑐 = 𝜆 − sin 𝜆
sin 𝜆 − 𝜆 cos 𝜆

, (A.4)

where

𝜆 =
√

𝑃
𝐸𝑠𝐼

𝑙. (A.5)

Otherwise, when the bar is under tension (𝑃 < 0), 𝑠 and 𝑐 have the
form:

𝑠 = 𝑠1 =
𝜆1(𝜆1 cosh 𝜆1 − sinh 𝜆1)
2 − 2 cosh 𝜆1 + 𝜆1 sinh 𝜆1

, (A.6)

𝑐 = 𝑐1 =
sinh 𝜆1 − 𝜆1

𝜆1 cosh 𝜆1 − sinh 𝜆1
, (A.7)

𝜆1 =
√

-𝑃
𝐸𝑠𝐼

𝑙, (A.8)

where the subscript 1 is used simply to differentiate these expressions
from those in (A.3)–(A.5). Finally, when the bar carries no axial load
(𝑃 = 0), the parameters 𝑠 and 𝑐 are:

𝑠 = 4 and 𝑐 = 0.5. (A.9)

The approach to find the end constraint factor 𝑛 is as follows. First,
the periodic buckling shape with the longest wavelength is identified
for each topology and for each loading direction. Then, equilibrium
conditions and Eq. (A.1) are combined to form a constitutive equation
from which 𝜆 can be solved. Once 𝜆 is known, it is straightforward to
compute the end buckling constraint since 𝜆 = 𝜋𝑛.

A.1. Triangular lattice

First, consider the triangular lattice compressed in the 𝑥1 direction.
For this scenario, Fan et al. [68] demonstrated that the periodic buck-
ling shape illustrated in Fig. A.2a is the one associated with the lowest
load. By equilibrium, the bending moment at joint 𝑎 should be zero,
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Fig. A.1. (a) A bar of length 𝑙 subjected to a compressive load 𝑃 . (b) The end rotations
𝜃𝑎 and 𝜃𝑏 generate bending moments 𝑀𝑎 and 𝑀𝑏, respectively, and the transverse
displacement 𝛥 causes the shear force 𝑉 .

Fig. A.2. Periodic buckling shapes for a triangular lattice compressed in (a) 𝑥1 and
(b) 𝑥2 directions.

and this can be expressed as:

𝑀𝑎𝑏 +𝑀𝑎𝑐 +𝑀𝑎𝑑 = 𝑚𝑎𝑏𝜃 + 𝑚𝑎𝑐𝜃 + 𝑚𝑎𝑑𝜃 = 0, (A.10)

where the notation 𝑀𝑖𝑗 denotes the bending moment in bar 𝑖𝑗 at
end 𝑖. The stiffness coefficients are obtained from Eq. (A.1) and are:

𝑚𝑎𝑏 =
2𝐸𝑠𝐼𝑎𝑏

𝑙
(𝑠 − 𝑠𝑐), (A.11)

𝑚𝑎𝑐 =
2𝐸𝑠𝐼𝑎𝑐

𝑙
(4 − 2), (A.12)

𝑚𝑎𝑑 =
2𝐸𝑠𝐼𝑎𝑑

𝑙
(4 + 2). (A.13)

Note that 𝑚𝑎𝑏 includes parameters 𝑠 and 𝑐 since the bar is loaded in
compression. In contrast, 𝑠 = 4 and 𝑐 = 0.5 for bars 𝑎𝑐 and 𝑎𝑑 since
they carry no load, see Eq. (3). Here, the second moments of area are:

𝐼𝑎𝑏 =
𝑏𝑡13

12
and 𝐼𝑎𝑐 = 𝐼𝑎𝑑 =

𝑏𝑡23

12
, (A.14)

where 𝑏 is the out-of-plane dimension. Substituting Eqs. (A.11)–(A.14)
in (A.10) returns:

𝑡3 ⋅
𝜆(2 sin 𝜆 − 𝜆 cos 𝜆 − 𝜆)
2 − 2 cos 𝜆 − 𝜆 sin 𝜆

+ 8 = 0. (A.15)

This equation was solved numerically and the end buckling constraint
𝑛 = 𝜆∕𝜋 is plotted as a function of 𝑡 in Fig. A.3. The value of 𝑛 decreases
from 2 to 1 as 𝑡 increases from 0 to 5. When the diagonal bars are
significantly thicker than the horizontal bars, 𝑡 → 0, the rotation 𝜃,
depicted in Fig. A.2a, is prevented and 𝑛 → 2. On the other hand, when
the diagonal bars are markedly thinner than the horizontal bars, the
nodes behave as pin joints and 𝑛 → 1.

Next, consider the triangular lattice loaded in compression along
the 𝑥2 direction. In this case, Fan et al. [68] showed that the lattice
collapses according to the periodic buckling shape shown in Fig. A.2b.

Fig. A.3. End constraint factor 𝑛 as a function of 𝑡 = 𝑡1∕𝑡2 for a triangular lattice
compressed in 𝑥1 (red line) and 𝑥2 (black line). (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Again, the bending moment at joint 𝑎 should be equal to zero; therefore
Eq. (A.10) remains valid, but the stiffness coefficients become:

𝑚𝑎𝑏 =
2𝐸𝑠𝐼𝑎𝑏

𝑙
(𝑠1 + 𝑠1𝑐1), (A.16)

𝑚𝑎𝑐 =
2𝐸𝑠𝐼𝑎𝑐

𝑙
(𝑠 − 𝑠𝑐), (A.17)

𝑚𝑎𝑑 =
2𝐸𝑠𝐼𝑎𝑑

𝑙
(𝑠 − 𝑠𝑐). (A.18)

The parameters 𝑠 and 𝑐 now appear in 𝑚𝑎𝑐 and 𝑚𝑎𝑑 since the diagonal
bars are in compression. In contrast, the horizontal bars are under
tension, and consequently, the factors 𝑠1 and 𝑐1 appear in 𝑚𝑎𝑏. In
addition, 𝜆1 = 𝜆∕

√

2 since the magnitude of the axial force in the
horizontal bars is half of that in the diagonal bars, see Eq. (10).
Substituting Eqs. (A.16)–(A.18) in (A.10) returns:

𝑡3 ⋅
𝜆(𝜆 cosh(𝜆∕

√

2) − 2
√

2 sinh(𝜆∕
√

2) + 𝜆)

8 − 8 cosh(𝜆∕
√

2) + 2
√

2𝜆 sinh(𝜆∕
√

2)
+

𝜆(sin 𝜆 − 𝜆 cos 𝜆)
2 − 2 cos 𝜆 − 𝜆 sin 𝜆

= 0.

(A.19)

This equation was solved numerically and the end buckling constraint
𝑛 = 𝜆∕𝜋 is plotted as a function of 𝑡 in Fig. A.3. Clearly, 𝑛 increases
from 1 to 2 as 𝑡 increases from 0 to 5. For this loading scenario, the
rotation 𝜃, shown in Fig. A.2b, is prevented when the horizontal bars
are significantly thicker than the diagonal bars.

A.2. Hexagonal lattice

When compressed in the 𝑥1 direction, the hexagonal lattice buckles
in a swaying mode as shown in Fig. A.4 [44]. Equilibrium dictates that
the total bending moment and shear force at joint 𝑎 should be zero.
These two equilibrium equations are:

𝑚𝑎𝑏𝜃 + 2𝑚𝑎𝑐𝜃 + 𝑘𝑎𝑏𝛥 = 0, (A.20)

2𝑘𝑎𝑏𝜃 + 𝑘𝑠𝑎𝑏𝛥 = 0, (A.21)

where

𝑚𝑎𝑏 =
𝐸𝑠𝐼𝑎𝑏

𝑙
(𝑠 + 𝑠𝑐), (A.22)

𝑚𝑎𝑐 =
𝐸𝑠𝐼𝑎𝑐

𝑙
(4 − 2), (A.23)
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Fig. A.4. Periodic buckling shapes for a hexagonal lattice compressed in 𝑥1 direction.

Fig. A.5. End constraint factor 𝑛 as a function of 𝑡 = 𝑡1∕𝑡2 for a hexagonal lattice
compressed in 𝑥1 direction.

𝑘𝑎𝑏 =
𝐸𝑠𝐼𝑎𝑏
𝑙2

�̄�, (A.24)

𝑘𝑠𝑎𝑏 =
𝐸𝑠𝐼𝑎𝑏
𝑙3

𝑠∗. (A.25)

Using Eq. (A.21), it is straightforward to express 𝛥 as a function of 𝜃 and
then substitute the result in Eq. (A.20). With the coefficients given in
(A.22)–(A.25), and provided that 𝐼𝑎𝑏∕𝐼𝑎𝑐 = 𝑡3, the governing equation
becomes:

𝑡3 ⋅ 𝜆(cos 𝜆 − 1) + 4 sin 𝜆 = 0. (A.26)

Solving this equation numerically returns the end constraint factor
𝑛 = 𝜆∕𝜋, which is plotted in Fig. A.5 as a function of 𝑡. When 𝑡 → 0,
the horizontal bar behaves like a column clamped at both ends but free
to translate in the transverse direction, and consequently, 𝑛 → 1. The
rotation 𝜃, shown in Fig. A.4, increases with increasing 𝑡 and this leads
to a reduction of the end constraint factor 𝑛. Finally, note that when
𝑡 = 1 we find 𝑛 = 0.686, which is the same value obtained by Gibson
and Ashby [44].

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ijmecsci.2022.107079.
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