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Abstract 18 

COVID19 pathogens are primarily transmitted via airborne respiratory droplets expelled from 19 

infected bio-sources. However, there is a lack of simplified accurate source models that can 20 

represent the airborne release to be utilized in the safe-social distancing measures and ventilation 21 

design of buildings. 22 

Although computational fluid dynamics (CFD) can provide accurate models of airborne disease 23 

transmissions, they are computationally expensive. Thus, this study proposes an innovative 24 

framework that benefits from a series of relatively accurate CFD simulations to first generate a 25 

dataset of respiratory events and then develop a simplified source model. 26 

The dataset has been generated based on key clinical parameters (i.e., the velocity of droplet 27 

release) and environmental factors (i.e., room temperature and relative humidity) in the droplet 28 

release modes. An Eulerian CFD model is first validated against experimental data and is then 29 

interlinked with a Lagrangian CFD model to simulate trajectory and evaporation of numerous 30 

droplets in various sizes (0.1 μm to 700 μm). A risk assessment model previously developed by 31 

the authors is then applied to the simulation cases to identify the horizontal and vertical spread 32 
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lengths (risk cloud) of viruses in each case within an exposure time. Eventually, an artificial neural 33 

network-based model is fitted to the spread lengths to develop the simplified predictive source 34 

model. The results identify three main regimes of risk clouds, which can be fairly predicted by the 35 

ANN model. 36 

Keywords: Tempo-spatial Risk Model, COVID19, airborne pathogen transmission, Eulerian-37 

Lagrangian-CFD, respiratory disease, artificial neural network 38 

1. Introduction 39 

The primary transmission mode of COVID19, as a rapidly spreading airborne disease, is 40 

understood to be in-person exposure to infected people’s respiratory secretions and bioaerosols 41 

expelled in various sizes (1). Before reaching an effective vaccine, social distancing remains the 42 

inevitable defensive measure during pandemics. Maintaining a physical distance between people, 43 

as one of the means of social distancing, is enforced by many governments worldwide, while the 44 

essence of such stipulated measures is adapted from early evidence regarding the release and 45 

environmental persistence of SARS-CoV2 (2).  46 

From fluid dynamics perspectives, COVID19 transmission mode via respiratory bioaerosols 47 

requires a thorough investigation of droplets’ number, size, and density distribution as well as 48 

their initial velocities (3). It is widely agreed that heavy droplets will deposit within less than a 49 

meter (4), while micron-size airborne droplets could travel to a much longer distance following the 50 

air stream (5). Nonetheless, the effectiveness of such physical distance policies is controversial 51 

on many occasions as the bioaerosol release mechanisms from respiration, sneeze, and coughs 52 

are chronically underestimated in past studies. 53 

Table 1. List of effective factors in bioaerosol release 54 

# Item [unit] Reported Interval Reference 

1 Bioaerosol size distribution [µm] 0.5 – 2,000  (4, 6) 
2 Number of bioaerosol/particles 5,000, 9×106 (6, 7) 
3 Environment property Walls, windows, partitions, etc.   
4 Local ambient air velocity[m/s] [0.25-1.5], 21.7, 0- 10 (7, 8) 
5 Local ambient air direction [deg]  (9) 
6 Local ambient air humidity [%] [20 – 60], 50 (6, 8) 
7 Local air temperature [oC] [17-23], 25, (7, 8) 
8 Temporal profile of exhalation flow rate (for C or S) [m3/s] Fig. 5(a) (8, 10, 11) 
9 Spatial profile of exhalation [-]  (12, 13) 
10 With or without facial mask [with or without] (11) 
11 Gender [-] Man, Woman (14) 
12 Age [year] 19 - 50 (15) 

The place of disagreement in contradictory findings associated with the disease transmission are 55 

in numerous strands, including carriage process of pathogens with droplets and aerosols from an 56 
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infected person to a new host (16), drying and evaporation processes of exhaled bioaerosols 57 

following with its properties (e.g., size, mucus), environmental conditions (e.g., relative humidity) 58 

(6, 17), and number and size of released bioaerosols in each activity mode (i.e., respiration, 59 

sneeze, and coughs) (8, 18, 19). As it has been broadly discussed in previous studies, one should 60 

add the importance of demographical characteristics (age, gender, ethnicity, etc.) on the 61 

bioaerosol release mode. Some of these understandings are summarized as 12 pivotal factors in 62 

Table 1. These are the effective parameters that may influence bioaerosol release and 63 

dispersion. Many of these parameters ultimately alter the volume and speed of respiratory 64 

droplets release and therefore can be represented by the velocity of two-phase respiratory flow 65 

at the mouth.  Hence, in this study, the effective parameters are shortlisted to three major ones 66 

to lower the computational costs and carry out the calculations in a practical timeline. 67 

The identified parameters in Table 1 are supported by careful experimental and observational 68 

studies from various methodological perspectives, including medicine, statistics, fluid dynamics, 69 

etc. For example, the National Institute for Occupational Safety and Health (20) constructed a 70 

cough aerosol simulator that produces a humanlike cough in a controlled environment based on 71 

coughs recorded from influenza patients. The total aerosol volume expelled during each cough 72 

was monitored to be 68 µL using aerosol generated from a cell culture medium. As another PIV 73 

study to measure coughing velocity, Kwon et al. (12) obtained the average initial coughing velocity 74 

of 15.3 m/s for males and 10.6 m/s for females while the average initial speaking velocity was 75 

measured around 4.07 m/s and 2.31 m/s, respectively; the angle of the exhaled air from coughing 76 

was reported around 38° for the males and 32° for the females while that of the exhaled air from 77 

speaking was around 49° and 78°, respectively. In another conditioned indoor environment, 78 

Zhang et al. (8) reported the distribution of generated aerosol from a horizontal coughing mode 79 

using a manikin in the presence of 16 diffusers mounted on walls. In another study, an 80 

experimental cough aerosol detection via laser diffraction system from 45 healthy people 81 

presented a demographic statistical analysis of bioaerosol size by sex and age (15). 82 

Respiration, speech, sneeze, and cough (RSSC) flows carry bioaerosols, the size of which 83 

significantly varies through the particles’ path line. Larger droplets (>50-100 µm) are mainly 84 

governed by gravity. The intermediate (10-100µm) and small (<5-10 µm) droplets are more 85 

affected by airflow and ventilation streams and may travel much further. At the same time, the 86 

evaporation process changes the intermediate size droplets of RSSC to become airborne and 87 

stay floating in the air, which particularly highlights the role of ventilation and air humidity. For 88 

instance, the drying times for 50μm and 100μm droplets at a 50% relative humidity are reported 89 
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to be 0.3 and 1.3s, respectively (36). Even after complete evaporation, the small dried aerosol 90 

particles can potentially carry viruses as the usual size of viral pathogens is 25 nm to 5 μm (5). 91 

For small droplets with a low Stokes number (St≪1), the sedimentation time is longer than the 92 

time needed for a complete evaporation process, and the small droplets become airborne. 93 

Therefore, they turn suspended in the air and move with the air stream, increasing the risk of virus 94 

transmission to a much longer distance. A schematic description of bioaerosols behaviour is 95 

shown in Figure 1. 96 

Yet, the role of airflow transport as the delivery route of pathogens in smaller size droplets (< 50 97 

µm) is not well investigated, while larger size droplets (> 50 µm) are commonly accepted to follow 98 

ballistic trajectories being mainly governed by gravity. More recently, lingering small size airborne 99 

droplets (<5 µm) is suggested to be another plausible root in airborne disease transmission (21). 100 

Although advanced methods, including particle image velocimetry (22, 23), and laser diffraction 101 

system (15), to trace particles have been around in-hand for years, these approaches were barely 102 

successful in extending the knowledge in tracing airborne disease transmission in buildings and 103 

the built environment. Due to the high expenses, time constraint of set up, and limitation of devices 104 

in monitoring smaller scale droplets, experimental studies only cover a limited spectrum of droplet 105 

size, number, injection velocities released from sources (i.e., the mouth of people). The movement 106 

of occupants in the room, due to its impact on airflow patterns inside the enclosed areas, was 107 

also a subject of several studies. Shih et al. (24) numerically investigated the impact of person 108 

movement and door opening and closing on flow distribution inside a hospital isolated room. They 109 

found that both movement and door sliding have temporal impacts on the flow distribution inside 110 

the room. In another study, Wang et al. (25) employed CFD to investigate the impact of walking 111 

on the dispersion of exhaled droplets in an isolated room. Their simulation results showed that 112 

the local environment around the person could be affected by walking. They also reported that 113 

increasing the walking speed decreases the concentration of suspended airborne particles. 114 

Computational Fluid Dynamics (CFD) is, therefore, a cheaper alternative, widely used to 115 

overcome the shortcomings of experimental and observational studies. In this respect, high-116 

fidelity CFD models validated against observational datasets have been developed on Lagrangian 117 

perspectives as flexible tools to further investigate the parameters impacting the release and 118 

spreading of bioaerosols (5), particularly the transport process of smaller scale droplets. Some of 119 

the numerical studies addressed the human respiration process and the transport of exhaled air 120 

by breathing, sneezing, and coughing, and their potential impact on the adjacent person (26), 121 

(25), (27), (28). Discrete and continuous models of droplets in multiphase turbulent buoyant 122 
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clouds are studied by (29) with suspended droplets of various sizes. These studies highlighted 123 

that cough and sneeze airflows are multiphase turbulent buoyant clouds with suspended droplets 124 

of various sizes. The droplets can remain suspended in the cloud until their settling speed 125 

matches that of the decelerating cloud. In addition, the 3D transient CFD model is used by (30) 126 

to predict personal exposure times to airborne pathogens and thus the infection risk in a 127 

displacement ventilated room. Authors showed that for short separation distances, the interaction 128 

between breaths is a key factor in the airborne cross-infection. Li et al. (31) studied the 129 

evaporation and dispersion of cough droplets by Lagrangian-Eulerian model in quiescent air, 130 

considering inhomogeneous humidity field, and demonstrated that evaporation-generated vapor 131 

and super-saturated wet air exhaled from the respiratory tracks forms a vapor plume in front of 132 

the respiratory tract opening. Interestingly, due to the droplet size reduction induced by 133 

evaporation, both the number density of airborne droplets and mass concentration of inhalable 134 

pathogens remarkably increased, which may increase the risk of infection. Moreover, the physics 135 

of aerosol and droplet dispersion and distribution of droplet aerosols were investigated from 136 

mouth coughing and nose breathing using LES by (5) and (8). It is reported that the typical size 137 

range of speech and cough originated droplets (d 20 µm) can linger in the air for hours so that 138 

they could be inhaled and rapid drying process of even large droplets, up to sizes O(100 µm), into 139 

droplet nuclei/aerosols was observed. Another critical parameter in the time-dependent 140 

dispersion of cough droplets, namely the effect of the human body by a 3D thermal manikin was, 141 

investigated by (32) while due to the buoyancy-driven thermal flow, both the vertical velocity and 142 

displacement of small droplets (≤20 μm) were completely reversed from descending to ascending. 143 

Also, another recent experimental and numerical study on the transport of droplet aerosols in a 144 

fever clinic showed that the best ventilation performance appeared for a patient sitting and 145 

coughing while the case of a patient lying and talking was the worst case (31). In another clinical 146 

experiment, the size of droplets were measured in an indoor environment, with an air temperature 147 

of 18 oC and relative humidity of 50%, the horizontal range of large respiratory droplets (diameter 148 

120 μm–200 μm) in speaking were between 0.16 m to 0.68 m, in coughing, between 0.58 m to 149 

1.09 m, and in sneezing between 1.34 m to 2.76 m. (32). Also, results from comparative studies 150 

on transport characteristics of contamination dispersion in a passengers’ local environments 151 

revealed significant increases of residence times (up to 50%) and extended travel distances of 152 

contaminants up to 200 μm after considering cough flow, whereas contaminants travel 153 

displacements still remained similar (33). 154 

Despite the necessity to employ Lagrangian CFD models to trace the small particles, as explained 155 

above, such models demand intensive computational resources, which hinder a comprehensive 156 
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investigation of the bioaerosol release process regarding its various affecting parameters. This 157 

implies that Lagrangian simulations are costly choices to be directly applied to represent humans 158 

as the source of bioaerosol release in many practical scenarios where multiple occupants interact 159 

in mechanically or naturally ventilated environments. Nonetheless, developing a reliable 160 

bioaerosol release source is vital for the design and control of ventilation design, space 161 

management, and social distancing, especially during pandemics. Hence, similar to many other 162 

simplified source term models of a human body such as the amount of heat or CO2 releases 163 

widely used in buildings’ design and control applications, a simplified airborne pathogen droplet 164 

release model is necessary to be applied as a source term to other models. 165 

To address this shortcoming in providing a deep insight related to virus-laden bioaerosol release 166 

from human sources in indoor and outdoor spaces, this study proposes a framework to develop 167 

a simplified model of droplets’ release from respiratory events (here sneeze and cough). This 168 

model encompasses a range of droplet release modes related to clinical (i.e., droplet release 169 

velocity from the bio-source mouth) and environmental (i.e., room temperature and relative 170 

humidity) distribution of bio-sources using an Eulerian-Lagrangian CFD model. The effective 171 

parameters on droplet release from bio-sources are initially synthesized to define a series of 172 

airborne pathogen release scenarios (35 cases). These scenarios are then simulated with a series 173 

of computationally intensive Eulerian-Lagrangian CFD simulations to construct a repository 174 

dataset. The dataset is then fed into a risk assessment model (RAM) previously developed by 175 

authors (35) to account for the tempo-spatial risk analysis of the respiratory event rather than the 176 

instantaneous release of droplets. In a later step, the tempo-spatial risk data is fitted to an artificial 177 

neural network model capable of predicting the risk cloud expansion of a bio-source throughout 178 

time. It should be noted that the background airflow of the studied enclosed space is assumed as 179 

still air condition, so that the initial behavior of droplets’ transport can be observed. The human 180 

source is considered to have a fixed position in the room, and its movements are not taken into 181 

account in this study. Nonetheless, the proposed framework demonstrates the flexibility to add 182 

any complex background airflow that may be caused by bio-source movement, ventilation 183 

systems, etc. 184 

In addition, to develop artificial intelligence (AI) to predict numerical results of CFD simulation, the 185 

powerful branch of AI, namely multi perceptron feedforward version of artificial neural network, is 186 

adopted with deep learning to generate an accurate prediction for unseen conditions. Its code is 187 

developed in Python program language, and the number of neurons, as well as other settings 188 

such as learning rate, are tuned, and tailored for this specific work. 189 
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Regarding the structure of this paper, Section 2 describes the methods used to develop the 190 

Eulerian-Lagrangian CFD model risk assessment model. It also briefly explains the risk 191 

assessment model. Section 3 presents the scenarios designed to cover a range of airborne 192 

pathogen release modes. Finally, Section 4 provides the results, followed by the discussions and 193 

conclusion sections.  194 

  195 

 

Figure 1. Airborne pathogen respiratory droplet release mechanism in an enclosed 
environment 
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2. Method 1 

2.1. Proposed Framework of Airborne Pathogen Respiratory Aerosol Release Model 2 

As stated before, comprehensive Eulerian and Lagrangian CFD modeling of airborne pathogen 3 

respiratory aerosol release takes intensive computational cost even after using high-performance 4 

and cluster computing resources. Furthermore, as addressed in Table 1, the bioaerosol release 5 

has been found to depend on several parameters. Thus, reaching a comprehensive model, 6 

undertaking airborne pathogen respiratory droplets release rate of any individual, is an impractical 7 

approach, following the existing methods in the literature. Hence, this study proposes an 8 

innovative approach to substantially decrease the computational burdens while underpinning the 9 

necessary complexities of such phenomena. The proposed framework benefits from different 10 

tools to systematically develop a simplified model to be used for ventilation design or social 11 

distancing control in spaces. 12 

 13 

 
Figure 2. The framework of simplified CFD-based demographical model for COVID19 virus-

laden respiratory aerosol release 

For this purpose, as depicted in the framework of Figure 2, four steps are considered to generate 14 
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acceptable level while fast due to its low and yet precise enough number of cells. At this stage, 21 

parameters of Table 1 have been analyzed and shortlisted to the three most important ones (i.e., 22 
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bio-source velocity, room temperature, and room RH). Thirty-five scenarios have been generated 1 

to cover a wide range of rooms’ conditions and bio-source release velocities related to sneeze 2 

and cough modes. It should be noted that due to the extensive computational cost of a potential 3 

high-resolution CFD model, a comprehensive study is firstly conducted to find a model with a 4 

coarser mesh size, which can simultaneously provide a fair level of accurate results. 5 

Within Step-3, a risk assessment model previously developed by authors (34) is implemented to 6 

translate the CFD simulations to a time series of airborne pathogen disease transmission risk in 7 

the vicinity of the bio-source. The RAM model, thus, provides the tempo-spatial risk of infection in 8 

the studied room. This implies that the maximum horizontal and vertical distances from the 9 

infected bio-source with a considerable level of risk calculated by RAM are assumed as the risk 10 

cloud of that case study. 11 

Eventually, in Step-4, the calculated maximum distances (risk clouds) of all case studies 12 

generated in the previous step are used to train a simplified model using the artificial neural 13 

network (ANN) technique. In this model, the release velocity, room temperature, and RH are the 14 

inputs, and the tempo-spatial risk cloud is the output. 15 

2.2. Eulerian CFD Model 16 

An Eulerian method is applied to model the unsteady incompressible flow field using Navier-17 

Stokes as the governing equations for mass, momentum, and energy equations: 18 

𝜕𝑈𝑖

𝜕𝑥𝑖
= 0 (1) 

𝜕𝑈𝑖

𝜕𝑡
+

𝜕(𝑈𝑗𝑈𝑖)

𝜕𝑥𝑗
= −

1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+

𝜕

𝜕𝑥𝑗
(𝜗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) (2) 

𝜕𝑇

𝜕𝑡
+

𝜕(𝑈𝑗𝑇)

𝜕𝑥𝑗
=

1

𝜌𝐶𝑝

𝜕

𝜕𝑥𝑗
(𝑘

𝜕𝑇

𝜕𝑥𝑗
+ (𝜗

𝜕𝑈𝑖

𝜕𝑥𝑗
− 𝑢𝑖

′𝑢𝑗
′̅̅ ̅̅ ̅̅ ) 𝑈𝑖) (3) 

where 𝑢𝑖
′𝑢𝑗

′̅̅ ̅̅ ̅̅  is the Reynolds stress tensor, which is modeled by the Boussinesq hypothesis. SST 19 

k-ω is also used as the turbulence model (40). 20 

2.3. Lagrangian Discrete Phase Model 21 

Particles are modeled based on a Lagrangian-Eulerian approach using SimcenterSTAR-22 

CCM+Ver. 13.06.12 (double precision), where the conservation equations of mass, momentum, 23 
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and energy for the dispersed phase are derived for each particle in a Lagrangian form to calculate 1 

their trajectories. 2 

2.3.1. Equations of Motion for Particles 3 

As a general method for particle, droplet, and bubble, the trajectories of discrete phases (i.e., 4 

respiratory droplets) are resolved by integrating a force conservation equation on each particle, 5 

written in a Lagrangian reference frame: 6 

𝑑𝑢𝑝

𝑑𝑡
= 𝐹𝐷(𝑢 − 𝑢𝑝) + 𝑔𝑖

(𝜌𝑝 − 𝜌)

𝜌𝑝
+ 𝐹𝑖 

(4) 

where “i” is the coordinate direction (i =x,y, or z), and subscript “p” represents particles. u and 𝜌 7 

are the fluid phase velocity and density, respectively. 𝐹𝑖 is the force per unit particle mass 8 

(acceleration), and the term 𝐹𝐷(𝑢 − 𝑢𝑝)represents an additional acceleration (force per unit 9 

particle mass) in which 𝐹𝐷 is calculated as: 10 

𝐹𝐷 =
18𝜇

𝜌𝑝𝑑𝑝
2

𝐶𝐷 𝑅𝑒

24
 

(5) 

where𝜇 is the molecular viscosity of the fluid, and 𝑑𝑝 is the particle diameter. Also, 𝑅𝑒 is the 11 

relative Reynolds number, which is calculated as: 12 

𝑅𝑒 = 𝜌(𝑢 − 𝑢𝑝)𝑑𝑝/𝜇 (6) 

Since the dispersed droplets are volatile, the mass transfer occurs between the phases 13 

accompanied by an interphase heat transfer. Hence, heat transfer occurs because of the 14 

interphase temperature differences, and the interphase mass transfer changes the sizes of the 15 

droplets as described in the following sub-sections. 16 

2.3.2. Particle Mass Balance 17 

The equation related to the conservation of mass of a particle can be expressed as: 18 

𝑑𝑚𝑝

𝑑𝑡
= 𝑚̇𝑝 (7) 

where 𝑚𝑝 denotes the mass of the particle, and 𝑚̇𝑝 represents the rate of mass transfer to the 19 

particle. The latter is a non-zero value for the simulations, which include the evaporation process. 20 

2.3.3. Droplet Evaporation 21 
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The multi-component droplet evaporation model used in this study assumes droplets to be 1 

internally homogeneous, consisting of an ideal mixture of liquid components subject to 2 

vaporization. Moreover, the model assumes inert components in both the droplet and the gas. 3 

Regarding the evaporation of multi-component droplets, 𝑚̇𝑝𝑖 is defined as the rate of change of 4 

mass of each transferred component due to quasi-steady evaporation: 5 

 6 

where 𝑔∗ represents the mass transfer conductance, and 𝐵 is known as the Spalding transfer 7 

number. Also, “i" is the index of each component in the mixture, and 𝜀𝑖 represents the fractional 8 

mass transfer rate for which the sum of all N components complies with the following equation: 9 

∑ 𝜀𝑖

𝑖=1..𝑁

= 1.0 (9) 

 

2.3.4. Particle Energy Balance 10 

As a basic assumption for material particles, one can assume that particles are internally 11 

homogeneous. From a thermal point of view, this is equal to a low Biot number (<0.1). The 12 

equation of conservation of energy will be: 13 

𝑚𝑝𝑐𝑝

𝑑𝑇𝑝

𝑑𝑡
= 𝑄𝑡 + 𝑄𝑟𝑎𝑑 + 𝑄𝑠 (10) 

where 𝑄𝑡 is the rate of convective heat transfer to the droplets from the continuous phase, 𝑄𝑟𝑎𝑑 14 

represents the rate of radiative heat transfer, and 𝑄𝑠 is related to other heat sources. 15 

2.4. CFD Domain, Mesh, and Boundary Conditions 16 

The computational domain has a size of 3.5m × 3.5m × 6m, as shown in Figure 3Error! 17 

Reference source not found., representing a room without ventilation. Droplets with different 18 

diameters from 0.1μm to 700μm, caused by the exhalation, were released from a circular area 19 

with a diameter of 1.2 cm located at the center of a 3.5m × 3.5m wall (30). It is worth noting that 20 

the mouth diameter (1.2 cm) has been chosen slightly smaller than the value of 1.5 cm that was 21 

used by Chao et al. (44) for the average mouth diameter of eight university students (under 30 22 

years old). While these two values are in the same range, the smaller mouth diameter in the 23 

present research assumes the respiratory event might be released by patients of younger ages 24 

or smaller body sizes.   25 

𝑚̇𝑝𝑖 = −𝜀𝑖𝑔∗𝐴𝑠𝑙𝑛 (1 + 𝐵) (8) 
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The dimensions of this domain have been selected after a series of preliminary simulations, 1 

ensuring the adequacy of the room dimensions for analysis of airborne behavior of the droplets 2 

where the exhalation jet reaches a velocity value in the order of 2cm/s (less than 1% of the jet 3 

velocity) before it reaches the wall in the front of the side of the mouth (located at x=6m) (41). The 4 

results implied that after simulating an adequate physical time, droplets with the diameter of 10μm 5 

or below linger in a range up to 6m from the releasing surface with a velocity below 2cm/s while 6 

droplets with the diameter of 100μm are deposited in smaller distances of about 1m from the jet 7 

inlet. 8 

 9 

 
Figure 3. Mesh distribution around the jet centerline 

To ensure the final size of the utilized mesh in a reasonable time frame, different grid 10 

resolutions with hexahedral cells were tested, ranging from 189k cells to 4.5M cells. The optimal 11 

mesh was identified as the 189k-HYB case, which has minimum and maximum cell sizes of 0.06m 12 

and 0.2m, respectively, with a surface growth rate of 2.0. It should be noted that a conic volume 13 

with a length of 1 m dense cells was generated around the mouth of the bio-source, as seen in 14 

Error! Reference source not found.. All surfaces were considered as solid walls with no-slip 15 

boundary conditions (see Table 2). Wall treatment is based on an adaptive approach. The other 16 

boundary conditions of the model are presented in Error! Reference source not found..  17 
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Proper simulation of exhalation activity requires reliable data on the size distribution of 1 

droplets and transient exhaled airflow profile. Error! Reference source not found. presents air 2 

velocity profiles and droplet size distributions of sneeze and cough, resulting from massive 3 

measurements on people of different ages and gender. 4 

Table 2. Droplet and background air properties 5 

Droplet properties Mass fraction 

[%] 

Density 

[kg/m3] 

Specific heat 

capacity [J/Kg-K] 

Saturation 

pressure [Pa] 

Non-evaporative  3 (42) 1280.8 2404.6  

Evaporative 97 (42) 997. 6 4181.7 3170.3 

Air Properties Dynamic 

viscosity [Pa-s] 

Molecular weight 

[Kg/Kmol] 

Specific heat capacity 

[J/Kg-K] 

 1.855 ×10-5 28.97  1003.6 

Droplet size and number Profiles in Error! Reference source not 

found.Error! Reference source not 

found. 
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(c) (d) 

 

Error! Reference source not found.. Extracted velocity profile of (a) cough (8), and (b) 
sneeze (43) and droplet size histogram of (c) cough (44), and (d) sneeze (45) 

 1 

2.5. CFD Setting 2 

In the present transient CFD simulations, the background air was simulated as a non-reactive 3 

ideal gas composed of standard air and some amount of water vapor, depending on the relative 4 

humidity of each case (see Table 2). The results of the simulations, conducted within 60 seconds, 5 

implied that the droplets with a diameter of 10 μm or below had become airborne, traveling not 6 

more than 5 m from the mouth, while droplets with a diameter of 100 μm fell at short distances of 7 

about 1 m from the jet inlet.  8 

The droplets were simulated as discrete phases using the Lagrangian model and were 9 

assumed to have spherical shapes. To mimic realistic pathogenic droplets, they were assumed 10 

to be initially composed of 3% non-evaporative and 97% evaporative mass fractions. The density 11 

of the non-volatile fraction was 1280.8 kg.m−3 with a specific heat transfer of 2404.6 J.Kg−1.K−1 at 12 

the standard state temperature of 298.15 K. On the contrary, the evaporative portion was 13 

assumed as water with a density of 997.6 kg.m−3 and a specific heat transfer of 4181.7 J.Kg−1.K−1 14 

at the same standard state temperature. In addition, the saturation pressure of this evaporative 15 

fraction (water) was set to 3170.3 Pa. The mass-weighted mixture was used for the calculation of 16 

the density and specific heat of each droplet. For each droplet’s outer surface, it was assumed 17 

that the droplets would stick to any wall surface of the room as they reached them. As an averaged 18 

value, periodicity of cough and sneeze were considered 0.6 second. At each simulation, cough 19 
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or sneeze were modelled by a normal breathing velocity of about 1 m/s and intermittence of 5 1 

times a minute. 2 

Similar to the Lagrangian model, the weighted mixture method for the Eulerian model was 3 

employed for the calculation of the air-water mixture in the background air. Finally, the 4 

aerodynamic interaction between the particles and the air has been simulated using drag force 5 

calculated by Schiller–Naumann's drag force coefficients and the pressure gradient force. 6 

The turbulence is modelled using Realizable k-epsilon model with “All y+ wall treatment” 7 

option in STARCCM, making the model suitable for the coarse and fine meshes. In should be 8 

noted that the Realizable k-epsilon is classified under High Reynolds Number turbulence models, 9 

and its Y+ can be 100 or even higher. In the present simulations, the Y+ was about 10, which is 10 

out of the critical range [11.04~30]. In addition, the "two-layer, all Y+ wall treatment" option in 11 

STARCCM adjusts the wall functions for any Y+ in areas near the mouth with smaller Y+ [40]. It 12 

is also worth mentioning that since the present does not work with any flow details near the walls 13 

and flow velocity near the walls was almost zero, we believe that the expansion ratio equal to 2 14 

would be a good choice and does not affect the accuracy of problem for the still flow as the air 15 

velocity is zero.  16 

The discretization scheme is a second-order one for momentum equations. The energy 17 

equation is activated to include the evaporation of the droplets. All simulations proceeded as 18 

transient simulations with a timestep of 0.01 second and 20 inner iterations. Due to the high 19 

computational cost of the transient solution, the level of convergence was set not smaller 20 

than10−4. Yet, each case was taken about 16 hours for a typical simulation time for 60 [s] using 21 

the computer cluster at Sogang University with 24 computational cores with Xeon(R) 2.20GHz 22 

CPUs. 23 

 24 
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Figure 4.The secondary mesh and pathogen droplets passing through the vertical planes’ cells 1 

2.6. Risk Assessment Model 2 

When performing Lagrangian simulations, CFD solvers normally report instantaneous data of 3 

droplets such as position, velocity, and diameter. While the infection risk at each position of the 4 

room is associated with the accumulated number of droplets passing from that point within a 5 

specific time interval. On the other hand, medical science suggests that a disease transmission 6 

with airborne pathogens happens when a person inhales a certain dosage of infected droplets. 7 

A previously developed risk assessment model (RAM) by authors thus calculates the 8 

accumulated droplet passing at each space location. For this purpose, RAM generates a uniform 9 

coarse mesh inside the domain, known as secondary mesh (shown in Figure 4), and according 10 

to available output data of droplets generated by the CFD solver at each time-step, it predicts the 11 

position of droplets at previous time-steps and consequently computes the accumulated number 12 

of particles at each cell of the secondary mesh within the time-span of the simulation. RAM 13 

includes multiple steps to count the number of droplets with different droplet sizes from sub-14 

micron to hundreds-micron released from respiratory jet and passing through a specific location 15 

of an enclosed space. Therefore, this leads to a 3D temporal profile, which shows a temporal risk 16 
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cloud being expanded around a bio-source. Details of RAM developed by authors and applied 1 

algorithm can be found in (34). 2 

2.7. Artificial Neural Network 3 

A deep ANN with feed-forward multi-layer perceptron architecture has been used in this study 4 

(46). A back-propagation learning paradigm was employed to build the surrogate model. The 5 

continuous nonlinear sigmoid function with smooth gradient was employed in the model due to its 6 

proven capability in making clear distinctions on predictions. A comparison was conducted among 7 

five different architecture of ANN in terms of hidden layers and number of neurons to find the best 8 

architecture that delivers the best predictive results. The analysis was performed under the 9 

circumstances that the ANN was fully unsighted on all 60 values (secondly-basis CFD data for 10 

one minute) within each two test cases. As shown in Table 3, the 10×10 ANN was eventually 11 

selected due to showing the least averaged testing error among other architectures. More hidden 12 

layers can potentially result in overfitting due to the nature and size of the data. 13 

Table 3. The averaged ANN training and testing error after 20,000 iterations 14 

NN Architecture Averaged ANN  
training error 

Averaged ANN  
testing error 

5×5 ANN 13.3% 34.2% 

9×9 ANN 11.5% 31.6% 

10×10 ANN 9.25 % 29.6% 

20×20 ANN 10.12% 32.1% 

30×30 ANN 12.9% 33.7% 

3. Case Study 15 

3.1. Airborne Pathogen Release Scenarios 16 

Eulerian-Lagrangian CFD simulations are computationally cumbersome tasks to be conducted 17 

for many scenarios related to various airborne pathogen droplet releases from human sources. 18 

However, by implementing the design of experiment (DoE) technique, the intensive computational 19 

burden related to the number of needed simulations is substantially reduced. For this purpose, 12 20 

parameters (e.g., droplet size, number of droplets, the temporal, and spatial profile of cough) are 21 

initially identified as the effective parameters (see Table 1). After scrutinizing a comprehensive 22 

literature review and implementing further assumptions when data does not exist, three 23 

parameters, including droplet release velocity from bio-sources, room temperature, and room’s 24 

relative humidity, are utilized as the effective parameters while considering a minimum of three 25 

levels for each parameter. Each parameter is then varied with three increments to initially populate 26 
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27 cases, as presented in Table 4. After analyzing the data as presented in the results section, 1 

eight additional cases were added to improve the training of the ANN model. As mentioned in 2 

Section 2.6, each case has an array of 60 values on a secondly-basis that shows the evolution of 3 

vertical spread over 60 s. Furthermore, two cases were used only to validate the model and were 4 

not included in the training steps. Although considering 35 cases is not ideal for three main 5 

identified parameters, the ANN results shown in the following sections reveal the capability of the 6 

model to capture a relatively correct vertical and horizontal spread, which satisfies the main aim 7 

of this study to develop a simplified model in recognizing such distances. 8 

Table 4. Respiratory cough and sneeze simulation scenarios 9 

Main cases  

Case ID Max. Velocity 

(m/s) 

Room Temp. 

 (℃) 

Room RH  

(%) 

1, 2, 3 18 15 20, 50, 80 

4, 5, 6 22 20, 50, 80 

7, 8, 9 29 20, 50, 80 

10, 11, 12 34 15 20, 50, 80 

13, 14, 15 22 20, 50, 80 

16, 17,18 29 20, 50, 80 

19, 20, 21 50 15 20, 50, 80 

22, 23, 24 22 20, 50, 80 

25, 26, 27 29 20, 50, 80 

Additional cases 
 

Case ID Max. Velocity 

(m/s) 

Room Temp. (℃) Room RH (%) 

28 34 29 60 

29 34 15 10 

30 25 25 65 

31 18 18.5 50 

32 34 29 70 

33 34 29 75 

34 25 15 50 

35 25 15 20 

Validation (test) 

cases 

T1 50 22 80 

T2 34 18.5 50 

 10 
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4. Results and Discussion 1 

4.1. Mesh Sensitivity Analysis 2 

Since the most crucial parameter for particle dispersion is air velocity, before the main 3 

simulations, a mesh sensitivity analysis has been performed to ensure that the final mesh and the 4 

velocity field are independent of the element size. For this part, the flow velocity in the far-field 5 

zone (i.e., the distance where y/d0 > 20 from the mouth) was investigated, and the results were 6 

later validated against the experimental by [39]. The inlet velocity had spanwise (along with 7 

discharge hole radii) as well as streamwise (centreline) velocity profiles with the maximum value 8 

of 20 m/s. For this purpose, four meshes with different resolutions with hexahedral cells were 9 

generated, containing a total mesh number of 189k, 627k, 3.7M, and 4.5M. 10 

After this preliminary study, it was observed that a minimum number of 3.7M cells was 11 

required for an independent mesh resolution. However, since this research needed a large 12 

number of simulations and this could result in an unaffordable computational cost, and also 13 

aligned with the aim of this study to develop a simplified model, the viable solution was to generate 14 

a mesh, which is relatively fast and also provides results with a fair level of accuracy. 15 

Hence, after several attempts, a new mesh arrangement of 189-Hyb with a zonal 16 

improvement just before the mouth location was generated that could accurately follow the result 17 

of the models with 3.7M and 4.5M cells (Figure 6). This optimal mesh, 189k-HYBcase, had 18 

minimum and maximum cell sizes of 0.06 and 0.2 m, respectively, while its surface growth rate 19 

was 2.0. This resulted in a dense mesh within 0.8 m from the mouth at the central part of the 20 

domain. Table 5 summarizes the applied boundary conditions for the validation test. 21 

Table 5. The boundary conditions of the validation case. 22 

Boundary 
Type 

Boundary 
Condition 

Boundary 
Value 

Air 
Density 

Air 
Dynamic 
Viscosity 

Inlet Velocity inlet 20 m.s−1 1.184 
kg.m−3 

1.855 × 10−5 
Pa.s Outlet Outlet pressure 1 bar 

Walls No-slip - -  

 23 
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Figure 5. Centreline velocity of CFD model compared to the experimental results by (39, 

47) 

 1 

4.2. Validation of Eulerian CFD Model 2 

The first step in the framework of Figure 2 is to validate the CFD model. For this purpose, an 3 

experimental study by (39) was used for the validation process due to its resemblance to the CFD 4 

model. Due to the lack of reliable experimental data on buoyant air jets in the literature, the 5 

validation case used in this research work represents an isothermal non-buoyant jet which helped 6 

validating the numerical setup applied to the continuum phase (air). The isothermal free turbulent 7 

jet experiment provides the spanwise and streamwise velocity profiles at its inlet location with a 8 

maximum value of 8.3 m/s. As expected, the Eulerian CFD model of the background flow is in a 9 

fair agreement with the experimental results reported by (39) as demonstrated in Figure 5 while 10 

the air velocity at the centerline from the nozzle entrance (y=0) up to the downstream distance of 11 
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y=50𝑑0 is compared. Since the risk assessment model is more informative in far distances from 1 

the bio-source, it can be concluded that for such distances from the jet source (𝑦 𝑑0⁄ ) > 10, the 2 

results are in general in a better agreement when are compared to the experimental data. As 3 

mentioned before, poor predictions of 189k and 672k meshes at (𝑦 𝑑0⁄ ) < 10 regions, was 4 

successfully resolved using a coarse mesh, but carefully adjusted size at different regions of the 5 

domain (189-HYB). As a result, the maximum error observed at (𝑦 𝑑0⁄ ) > 10 region increases 6 

from 7% to 10% as it is switched from 4.5M cell mesh to 189-HYB. Thus, this mesh size 7 

considerably reduces CPU time from order of months to order of weeks where performing 8 

numerous numerical simulations were needed. The validation study with more details using 9 

multiple metrics can be found in (34).  10 

Another similar set of experimental data reported by (47) is depicted in Figure 5 to better evaluate 11 

the numerical simulation. It should be noted that the maximum velocity of the recently mentioned 12 

research work is 56.2 m/s. Although numerical simulations show a higher deviation compared 13 

with experimental data of (47), the trend is still satisfactory with a smaller decrease in the 14 

downstream ((𝑦 𝑑0⁄ ) > 30).  15 

4.3. RAM model 16 

The third step of the proposed framework is investigated in this section. As introduced in Table 17 

4, 35 scenarios were simulated in this study, covering wide range of respiratory droplet release 18 

events. As explained earlier, the RAM model (34) syntheses the CFD output data to generate an 19 

accumulative temporal status of droplets in front of a bio-source. The model counts droplets of 20 

any size at any location around the bio-source within the simulation time frame and marks that as 21 

a risky location when the number exceeds a defined critical threshold. Here, this value is defined 22 

as 100 following a study by (48). Nonetheless, the model can be promptly adjusted to any other 23 

suggested numbers.  24 

RAM is an effective tool to monitor the risk cloud expansion through time in a specific 25 

environmental and background flow condition. As seen in a base case of Figure 6a, the vertical 26 

and horizontal spread of risk cloud are separately illustrated after one minute of droplets’ release 27 

of cough while the tendency of the risk cloud expansion is toward the ceiling. While the relative 28 

humidity of 20% is an extreme condition in a typical room temperature of 22℃, such information 29 

is handy to decide on the environmental control, HVAC design, and social distancing standards. 30 

This implies any person who stays one minute in the 1.0m vicinity of the bio-source can be subject 31 
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to the infection. As shown in the following figure, time is a key in the airborne pathogen 1 

transmission, and while it is well understood, it is neglected in many risk-assessment studies.  2 

 

 

 

 

(a) Velocity=18 m/s, Temp.=22oC, RH=20% (b) Velocity=34 m/s, Temp.=22oC, RH=80% 

  

(c) Velocity=50 m/s, Temp.=29oC, RH=20% (d) Velocity=18 m/s, Temp.=29oC, RH=80% 

Figure 6. RAM model performance for a wide range of parameter variations; (a) Case 4, (b) 

Case 15, (c) Case 25, and (d) Case 9 after 60 seconds 

When two out of three of the selected parameters are varied, as depicted in Figure 6b to Figure 3 

6d, the risk cloud can drastically change. An example is Figure 6b, where a sneeze event is 4 

shown in an RH of 80%. Once again, a person should not stay in a 1.9m vicinity of an infected 5 

bio-source for one minute and more. As shown in Figure 7c, a sneeze in a hot and dry climate 6 

can even cause a stronger risk cloud horizontally and vertically. Inversely, as initially suggested 7 

by many studies (49, 50), a humid climate (e.g., RH>60%) can yet be a safer environment in 8 

terms of disease transmission via airborne means. This marginal pattern of risk cloud expansion 9 
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can be seen in Figure 6d, consistent with the former studies. The following sections will present 1 

the time evolution of these clouds in more detail.  2 

In order to demonstrate the effects of ambient relative humidity on the variations of the plume and 3 

the movement of the droplets, the velocity fields and particle dispersions of cases 4 and 15 are 4 

shown in Error! Reference source not found.. Both cases have identical temperature, while the 5 

relative humidity and the sneeze velocity are different. As it can be seen, the locations of the fallen 6 

heavier droplets depend on the sneeze velocity (the initial velocity of the particles). However, 7 

since the locations of the airborne droplets are relatively the same, one can conclude that that the 8 

transmission of these droplets is mainly affected by the relative humidity rather than the initial 9 

velocity. This finding can be explained by considering the fact that small droplets lose their initial 10 

momentum because of the drag force, and then cannot travel much dissimilar from each other as 11 

the large droplets can. Since the initial sneeze velocity for these two cases are different, the small 12 

airborne droplets will follow different velocity fields created by two sneezes, leading to two 13 

different droplet dispersions.  14 

 
(a) 
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(b) 

Figure 7.Time-dependent behaviour of exhaled droplet and the background flow contour for 1 

cases (a) Velocity=18 m/s, Temp.=22℃, RH=20% and (b) Velocity=34 m/s, Temp.=22℃, 2 

RH=80% 3 
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Figure 8. Temporal performance of RAM model for Case 4(Velocity=18 m/s, Temp.=22oC, 

and RH=20%) 

As shown in Figure 8, a cough case study with a typical room temperature of 22℃ and low RH 1 

of 20% is again demonstrated for time snapshots of 10s, 20s, 50s, and 60s. While the risk cloud 2 

reaches 1.0m only in few seconds, it is mainly vertically expanded from few centimeters to about 3 

the ceiling height. For this specific case, and as an example where extractors are ceiling mounted, 4 

RAM can help to attain similar environmental conditions in this room. Inversely, Figure 9 shows 5 

a sneeze case (Case 27) with a temperature of 29℃ and a low RH of 80%, where the risk cloud 6 

is quickly expanded toward the ground and almost remains temporally the same. Therefore, if a 7 

room has a ventilation system with a floor-mounted extractor, controlling the environmental 8 

condition toward achieving the same risk cloud expansion can be a better solution while enacting 9 

a 2.4m distance rule between occupants. 10 
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Figure 9. Temporal performance of RAM model for Case 27 (Velocity=50 m/s, Temp.=29oC, 

and RH=80%) 

4.4. Predictive Model 1 

The synthesized vertical and horizontal spread of RAM profiles of data cases in Table 4 is 2 

depicted in Figure 10. As stated before, thirty-five training cases are simulated with the CFD 3 

model in addition to two testing cases.  4 

Regarding the horizontal spread of the exhaled droplets for these 35 different conditions, as 5 

depicted in Figure 10a, many of the curves are overlapped and cannot be distinguished from 6 

each other. Consequently, until t=30 s, all cases can be classified into six groups in which no 7 

horizontal progress can be observed. It should be mentioned that in the horizontal risk 8 

measurement, the distance between two successive horizontal planes is 0.1 m. From the 9 

beginning of the numerical experiment (t=1s), the horizontal spread of droplets starts at minimum 10 

values of 1m for V=18 m/s. As the exhalation velocity increases, the initial horizontal spread also 11 

increases such that for V=50 m/s, the horizontal spread at the initial time step reached 1.8 m/s. 12 

In most cases, no evolution of the risk cloud on the horizontal spread is detected, mainly because 13 

of the particle dynamics due to drag and buoyant forces that progressively become significant in 14 

the vertical direction and change droplets to upward direction. 15 

Regarding to the vertical expansion as illustrated in Figure 10b, three main regimes can be 16 

identified in the data as highlighted in the graph. Regime I is associated with a sudden vertical 17 

expansion of the risk cloud (below 30s) when small droplets are affected by the buoyant plume of 18 

the exhaled jet. It should be noted that depicted lines represent the vertical spread of droplets, 19 

which does not necessarily reflect the air stream pathways. The upward motion of droplets is 20 
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caused by the lifting up carrier phase and buoyancy, which is caused by the temperature 1 

difference between the exhaled flow and room temperature. An example is a cold and dry climate 2 

of Case 19 (temperature of 15℃ and RH of 20%), where the jet plume is expected to push many 3 

of the droplets upward, undergoing quick evaporations while being broken to smaller droplets. 4 

Nonetheless, it should be mentioned that it is not a straightforward procedure to draw a general 5 

conclusion on the expansion pattern of cloud risk. This further justifies the necessity of developing 6 

models similar to RAM to predict safe distances in complex environmental conditions. Regime II 7 

is a more frequent pattern for the risk cloud movement as droplets tend to gradually elevate toward 8 

the ceiling. The pattern is again very complex to be generalized. Eventually, Regime III states 9 

those few cases mainly with a temperature of 29℃ and RH of 80% (e.g., 9, 18, 27). The rate of 10 

evaporation in these cases is very low, and the plume is not very strong due to a lower 11 

temperature difference between jet and room. Hence, a horizontal spread of the risk cloud can be 12 

seen in Figure 10a. 13 
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Figure 10. Synthesized (a) vertical and (b) horizontal spread of RAM profiles of data cases of 
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Eventually, two samples from Regimes I and II are selected to show the performance of the 1 

training process after 1M iterations using the backpropagation method. Regime III was omitted 2 

as its behavior is clearer to be predicted without using a complex predictive model. As mentioned 3 

before, the ANN inputs are velocity, temperature, humidity, and time where the output of the ANN 4 

is spread of droplets in the vertical or horizontal direction. Also, the criteria to stop the training 5 

iteration of ANN was the discrepancy of the predicted value with respect to the CFD value to 6 

reach below a small value, namely 0.001. Moreover, it should be mentioned that the below-7 

chosen test cases are considered extreme prediction cases in which ANN did not priory include 8 

any of the temporal vertical spread evolution. 9 

As seen in Figure 11a, the expected values are plotted against ANN output predicted values in 10 

addition to lines of ±10% error. Figure 11b shows the transient evolution of the vertical risk cloud 11 

predicted by the ANN model. The averaged relative error of all test cases calculated by averaging 12 

60 data samples in each training case is about 9.2% (i.e., 2,100 training data samples), which 13 

can be considered a fair relative error over the used datasets. Some cases in regime I 14 

demonstrate higher relative errors (e.g., Case 24 with 14.2% error) due to the sudden change in 15 

the data pattern as the role of both buoyant and drag forces are simultaneously significant and 16 

challenging to be projected. 17 

  

(a) (b) 

Figure 11. (a) Training performance of ANN for actual values versus predicted values, and 

(b) the comparison of ANN model with the CFD simulation for Case 34 (Velocity=25 m/s, 

Temp.=15oC, and RH=50%) 
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Figure 12a shows the performance of ANN in the prediction of Case T1 as it adapts itself with 1 

the CFD data through the risk cloud spread in the vertical direction within one minute. The ANN 2 

model demonstrates a fair prediction up to 50s. In contrast, after this range, even though the CFD 3 

data within the time interval between 50s and 60s shows a monotonically increasing behavior, 4 

the ANN predicts nearly constant values at this range. The reason lies within several training 5 

cases that have these characteristics in which, in a pretty long period of the last seconds, the 6 

vertical spread has a constant maximum value. This long period of constant height for the risk 7 

cloud can also be seen in the second test case (Case T2). As seen in Figure 12b, the same 8 

issue and even more severe remains for the temporal prediction of Case T2. 9 

Nonetheless, the ANN model can reasonably predict the final vertical expansion of the risk cloud, 10 

as it can be seen in and Figure 12b. In both parts of Figure 13, ANN not only could follow the 11 

trend, but it could precisely predict the exact value. However, where there is a rapid and sharp 12 

gradient, ANN shows a less precision. In general, the ANN performance on the prediction of both 13 

validation cases can be considered satisfactory as the average error for the vertical spread 14 

prediction of risk cloud is about 29.6%. This implies that the developed model can anticipate the 15 

temporal variation of risky distances even though the model underperforms for some intervals. 16 

This flaw can be mitigated by increasing the dataset size though the main aim of this paper is to 17 

conduct a feasibility study to develop an early model to simply estimate the temporal risk cloud 18 

expansion. 19 

  

(a) (b) 

Figure 12. ANN performance in prediction of (a) Case T1 and (b) Case T2 
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The step-by-step growing of the training cases’ population and its effect on the averaged ANN 1 

training error is depicted in Table 6. For each step when the number of cases is increased, it is 2 

possible to evaluate the ANN training error. As the population of the training cases grows, the 3 

overall performance of the employed ANN increases while there is a decrease in the average and 4 

maximum values of the relative error for all cases.  5 

Table 6. ANN relative error for different number of training cases. 6 

Number of Training Cases Averaged Relative Error  Maximum Relative Error 

5 27.9 % 59.4% 
15 18.3 % 45.8% 
25 13.7 % 31.5% 
35 9.2 % 26.7% 

 7 

5. Conclusion 8 

Safe distance against airborne pathogen transmission is a parameter of space and the exposure 9 

time to various sizes of virus-laden droplets released from a bio-source. This paper proposes a 10 

framework to develop a surrogate model to be assigned to bio-sources instead of running 11 

intensive CFD simulations, to predict risk clouds released from them. Thus, a CFD model is first 12 

developed to simulate a range of parameters, covering many aspects of respiratory events, 13 

including clinical factors such as droplet release velocity, number and distribution of droplets, 14 

evaporation of droplets, and environmental factors, including room temperature and humidity. 15 

Then, 35 case studies have been defined and simulated to generate a comprehensive dataset. 16 

The CFD results have been analyzed based on a tempo-spatial-based risk assessment model 17 

(35) previously developed by the authors, which determines the vertical and horizontal spread of 18 

respiratory droplets. The surrogate model based on an artificial neural network is then fitted to 19 

data to successfully predict the size of the risk cloud around a bio-source under different climatic 20 

and clinical conditions. 21 

According to the simulated cases, the vertical spread of droplets can be divided into three regimes 22 

with different trends. Some cases are under strong impact of plume while others are mildly or not 23 

influenced. This is beneficial since it is an indication of generalization in the behavior of the 24 

exhaled jets. Thus, it is expected that the trained ANN to also reflect such generalization in its 25 

predictions. Consequently, as the thermal plumes and ventilation systems are not considered in 26 

this study, these parameters are among the limitations of this research. 27 
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Moreover, thet results suggest that it is possible to apply ANN to a series of simplified CFD cases 1 

to generate a simplified calculation model for estimating safe social distances and ventilation 2 

designs under different environmental situations, which is more practical for non-experts to use.  3 

Although the predicted results calculated by ANN are satisfactory for the test cases, successful 4 

implementation of the ANN tool to real cases needs more comprehensive CFD models that 5 

include background airflow, movement of subjects, a higher number of case studies, and also 6 

precise clinical data on the infective dosages. Hence, this study is an early step toward developing 7 

simplified models, and the developed CFD and RAM models can be subject to continuous 8 

improvements from the viewpoint of accuracy. 9 

Future works should include other parameters such as background airflow impacted by occupants 10 

and ventilation means (mechanical and natural). Also, more simulations can be undertaken to 11 

enhance the performance of the predictive model. Eventually, more clinical data shall be collected 12 

to enhance the quality of the CFD model. 13 
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