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ABSTRACT

Detailed chemistry-based computational fluid dynamics (CFD) simulations are computationally expensive due to the solution of the underly-
ing chemical kinetics system of ordinary differential equations (ODEs). Here, we introduce a novel open-source library aiming at speeding
up such reactive flow simulations using OpenFOAM, an open-source software for CFD. First, our dynamic load balancing model by Tekg€ul
et al. [“DLBFoam: An open-source dynamic load balancing model for fast reacting flow simulations in OpenFOAM,” Comput. Phys.
Commun. 267, 108073 (2021)] is utilized to mitigate the computational imbalance due to chemistry solution in multiprocessor reactive flow
simulations. Then, the individual (cell-based) chemistry solutions are optimized by implementing an analytical Jacobian formulation using
the open-source library pyJac, and by increasing the efficiency of the ODE solvers by utilizing the standard linear algebra package. We dem-
onstrate the speed-up capabilities of this new library on various combustion problems. These test problems include a two-dimensional (2D)
turbulent reacting shear layer and three-dimensional (3D) stratified combustion to highlight the favorable scaling aspects of the library on
ignition and flame front initiation setups for dual-fuel combustion. Furthermore, two fundamental 3D demonstrations are provided on non-
premixed and partially premixed flames, viz., the Engine Combustion Network Spray A and the Sandia flame D experimental configurations,
which were previously considered unfeasible using OpenFOAM. The novel model offers up to two orders of magnitude speed-up for most of
the investigated cases. The openly shared code along with the test case setups represent a radically new enabler for reactive flow simulations
in the OpenFOAM framework.

VC 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0077437

I. INTRODUCTION

There is an urgent need to develop effective and accurate engi-
neering solutions to combat climate change. Reactive flow simulations
play an essential role in academic and industrial research on mitigating
harmful emissions. A number of computational fluid dynamics (CFD)
packages are available on the market, offering a variety of features
together with possible limitations. The major limitations related to
software distribution under commercial licenses are their affordability
and source code access. The imminent pace of climate change urges us
to broaden the use of the latest achievements in CFD beyond the limi-
tations of commercial software to all appropriate applications.
Unfortunately, the available open-source reacting flow solvers are cur-
rently limited. The most popular open-source general-purpose CFD
code—OpenFOAM—poses relatively poor performance for finite rate

chemistry simulations compared to commercial solutions, making it
impractical for large-scale industrial applications and thus limiting its
use to relatively simple academic cases. However, the importance of
open-source solutions was recently recognized at a governmental level.
For instance, there is a large ongoing project funded by the European
Union on optimizing the OpenFOAM code—exaFoam.1 In this work,
we proceed in a similar track and focus on the search for the bottle-
necks in reacting flow simulations within OpenFOAM with the aim of
significantly improving computational speed-up.

One of the most fundamental approaches for reactive flow
modeling is to use CFD with the direct integration of chemical kinet-
ics, referred to as finite-rate chemistry.2 In this approach, each compu-
tational cell is treated as an individual chemistry problem with
pressure (p), and a thermochemical state vector (U) comprising
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temperature (T) and species mass fractions (Yk). The rate of change of
the thermochemical state vector, @U=@t ¼ f ðU; tÞ, within a computa-
tional cell forms a stiff system of ordinary differential equations
(ODEs) that requires a specific class of algorithms for temporal
integration.

In reactive CFD applications, chemistry evaluation comprises
the most computationally demanding part of the simulation. With
the growing complexity of chemical kinetic mechanisms, the cost
of solving the chemistry problem often exceeds the cost of fluid
flow solution by up to two orders of magnitude.3 Nevertheless,
high-fidelity reactive flow simulations can be still feasible through
efficient usage of the provided computational resources, in addi-
tion to cell-based optimization of the chemistry solution.4 In gen-
eral, considerable efforts have been made in the literature to
improve the computational performance of CFD simulations
involving turbulence,5–9 shock waves,10 gas rarefaction,11 geomet-
rical parameterization,12 or chemical reactions13–16 through model
reduction, machine learning, or efficient parallelization.

In finite-rate chemistry simulations, the high computational cost
associated with the chemistry solution originates mainly from two fac-
tors. First, the cost of solving the system of ODEs depends on the sys-
tem stiffness, which is, to some extent, influenced by the local
thermochemical state. For example, an oxidation process comprising
different radicals at various chemical timescales may constitute a
greater computational challenge compared to the local state of burnt
mixture. Second, the cost of computing the rate of change of the ther-
mochemical state vector is directly proportional to the chemical mech-
anism size,17,18 which can reach up to thousands of species and even
more reactions.19,20

For the chemistry ODE problem, implicit solvers involving
Jacobian evaluation are usually preferred over explicit ones for stability
and accuracy reasons.21 The evaluation of the Jacobian, J ¼ @f =@U,
is a computationally demanding process within an ODE solution rou-
tine. ODE solvers often employ finite differencing methods for its eval-
uation, which may be an expensive operation depending on the
chemical mechanism size. Lu et al.17 reported that the computational
cost of numerical evaluation of Jacobian scales quadratically with the
number of reactions. It has been shown that using an analytically com-
puted Jacobian provides high performance gain when solving the
ODE system.17,22,23 There are various implementations of analytical
Jacobian matrix evaluation in the literature.23–25 Recently, Niemeyer
et al.26 introduced an open-source library pyJac, which generates C
subroutines for analytical Jacobian evaluation. They demonstrated its
accuracy and out-performance over the available analytical Jacobian
generators in the literature.

While the cost of integrating a single chemistry ODE problem
poses a performance challenge in reactive CFD simulations, there is a
secondary issue that is often left unaddressed. As previously men-
tioned, the computational cost of solving a chemistry ODE depends
on the local stiffness ofU. The difference in computational complexity
throughout the geometrical domain poses a load imbalance issue for
multiprocessor applications, where one process becomes the computa-
tional bottleneck and causes performance issues. There have been sev-
eral studies in the recent literature tackling this load imbalance issue
via utilizing dynamic load balancing algorithms, often using Message-
Passing Interface (MPI) routines. Antonelli et al.27 developed an MPI-
based model introducing a cell distribution-based load balancing

algorithm. Following this work, Shi et al.28 and Kodavasal et al.29 both
introduced stiffness detection-based load balancing algorithms and
employed them in reactive CFD simulations. Zirwes et al. developed
an MPI-based dynamic load balancing algorithm for chemistry prob-
lem distribution for OpenFOAM.30 More recently, Muela et al.31 pre-
sented a dynamic load balancing model, which also utilizes a stiffness
detection algorithm that chooses the optimal ODE integration method
for each computational cell. These methods introduced computational
speed-up around 3–5, depending on the application. We have recently
also introduced an open-source dynamic load balancing model called
DLBFoam for OpenFOAM, providing speed-up up to a factor of 10.4

In this work, we introduce a novel chemistry model that provides
speed-up in reactive flow simulations in OpenFOAM by targeting the
two major issues in reactive CFD simulations addressed above. We
further extend our dynamic load balancing model DLBFoam, and
focus on optimizing the cell-wise chemistry solution by introducing
two new features. First, we utilize an analytical Jacobian approach
using the pyJac library. Second, we make use of the standard linear
algebra library (LAPACK)32 to further improve the ODE solution pro-
cedure of the chemistry problem, by replacing the LU decomposition
and back substitution operations of the Seulex ODE integration algo-
rithm in OpenFOAM with more robust alternatives suitable for dense
Jacobian matrices. The effectiveness and robustness of the developed
model are demonstrated on two different academic dual-fuel (DF)
combustion setups: a two-dimensional (2D) reacting shear layer and a
three-dimensional (3D) stratified combustion configuration. After
that, the model is further demonstrated in two well-established experi-
mental flame configurations: a non-premixed n-dodecane flame
[Engine Combustion Network (ECN) Spray A] and a partially pre-
mixed methane–air flame (Sandia flame D).

The paper is outlined as follows. First, implementation details of
the developed model are presented in Sec. II. Then, in Sec. III we dis-
cuss the application of our model to different combustion simulations,
represented by the aforementioned test cases. Finally, conclusions are
provided in Sec. IV.

II. IMPLEMENTATION

In this section, the implementation details of our model are pre-
sented. We note that an earlier in-house version of this implementa-
tion was carried out by Kahila et al.,33 details of which can be found in
his thesis work.34 This section briefly discusses the DLBFoam model
introduced by Tekg€ul et al.4 as an improvement to our in-house code,
and further describes the efforts toward optimizing the solution of the
chemistry ODE problem by utilizing an analytical Jacobian formula-
tion (pyJac) together with efficient linear algebraic routines
(LAPACK).

A. Finite rate chemistry

In reactive CFD applications, we numerically solve the governing
equations for mass, momentum, energy, and species transport. The
total production or consumption rate of chemical species and the heat
release rate are represented as source terms in the species transport
equations and the energy equation, respectively. Due to the vast differ-
ence between the chemistry and flow timescales, commonly, an opera-
tor splitting procedure is utilized to separate the calculation of source
terms from the flow solution. These source terms define the change of
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the local thermochemical state resulting from solving a stiff, nonlinear
initial value problem described as follows:

@U=@t ¼ @T
@t

;
@Y1

@t
;
@Y2

@t
;…;

@YNsp�1

@t

� �>

¼ f ðU; tÞ;

Uðt ¼ 0Þ ¼ U0;

8>><
>>:

(1)

where Nsp is the number of species in the chemical mechanism. The
ODE system in Eq. (1) is integrated in each computational cell over
the CFD time step DtCFD in smaller chemical time steps DtODE
� DtCFD (see Part C for more information). The source terms are then
evaluated and used in species transport and energy equations. Further
details on this modeling approach can be found in the work of Imren
and Haworth.35

B. Dynamic load balancing: DLBFoam

Next, the previously developed DLBFoam library is briefly intro-
duced here as essential background information. As mentioned earlier,
the computational cost of solving the stiff nonlinear ODE may depend
on the local thermochemical conditions. In multiprocessor reactive
CFD simulations, the process with the highest computational load
may take longer to compute than the rest, hence creating a bottleneck
within the given CFD time step.

Recently, we introduced an open-source model called DLBFoam4

for OpenFOAM, aiming to mitigate this imbalance issue in multipro-
cessor reactive CFD simulations via dynamic load balancing. DLBFoam
uses MPI routines to redistribute the chemistry computational load
evenly between processes during the simulation. Figure 1 demonstrates
the computational imbalance caused by the direct integration of chem-
istry, and how it is mitigated by DLBFoam. In addition, DLBFoam
introduces a zonal reference cell mapping method, which further lowers
the computational cost by mapping a chemistry solution from a refer-
ence cell instead of explicitly solving it for ambient regions with low
reactivity. In total, we reported around a factor of 10 speed-up in 3D
reactive CFD simulations, compared to the standard OpenFOAM
chemistry model. Further implementation details on DLBFoam can be
found in our previous publication describing it in detail.4

C. ODE solver optimization and analytical Jacobian

The new development in the present paper introduces a coupling
of (1) the analytical Jacobian formulation introduced in pyJac library,
(2) standard linear algebra routines from LAPACK library for the
ODE solution, and (3) the DLBFoam library previously introduced by
Tekg€ul et al.4 Within a CFD time step, chemistry is treated as an inde-
pendent, stiff system of ODEs. Implicit and semi-implicit algorithms
for solving this system of stiff ODEs are usually preferred to ensure the
solution stability.21

The solution to the nonlinear initial value problem given by Eq.
(1) can be obtained using a variant of Newton iteration with the fol-
lowing discretized form:

Unþ1 ¼ Un þ
ðtnþDtODE

tn

ðfn þJ nðUnþ1 �UnÞ þOðDt2ODEÞÞdt

¼ Un þ fnDtODE þJ nðUnþ1 �UnÞDtODE þOðDt2ODEÞ;
(2)

which is then linearized by neglecting the higher-order terms. Here,
DtODE is a subinterval of the full integration interval DtCFD, which is
commonly determined by the underlying ODE solver using a combi-
nation of theoretical and heuristic relations. The direct solution of the
previous equation for Unþ1 requires the inverse of J , which is com-
monly avoided through matrix factorization (i.e., LU decomposition)
and back substitution techniques.

Commonly, in reactive CFD codes, the Jacobian of the system of
ODEs representing the chemistry is implemented via finite differenc-
ing to be used in ODE solver integration. However, using such an
approximation introduces a negative effect on the ODE solver accu-
racy and performance.26 Furthermore, calculating the Jacobian with
finite differencing is a computationally expensive procedure.17,26

FIG. 1. Top: the process-based computational imbalance in reactive CFD simula-
tions without DLBFoam. The process with the highest computational load (red) cre-
ates a bottleneck in the simulation. Bottom: same case with DLBFoam.
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Instead, utilizing a fully algebraic Jacobian is more efficient and it
improves the ODE solver accuracy and performance. Lu et al.17

reported that using an analytical Jacobian reduces its evaluation time
from the square of the number of species to a linear dependence.

OpenFOAM features a fully algebraic Jacobian implementation
to speed up the solution of chemical kinetics in its recent releases.36

However, we have found that the implemented algebraic Jacobian fails
to deliver a fast solution to chemistry ODE integration when high
ODE convergence tolerances are utilized. Instead, we utilize the
Python-based open-source software pyJac, introduced by Niemeyer
et al.26 The pyJac package generates C subroutines for the evaluation
of an analytical Jacobian for a chemical mechanism. They reported
that pyJac performs 3–7.5 times faster than the first-order finite
differencing approach. In our proposed model, OpenFOAM’s
Jacobian calculation subroutines are replaced with the subroutines
generated by pyJac.

The fully algebraic Jacobian utilization via pyJac speeds up the
Jacobian evaluation time and improves the solution convergence rate.
However, the ODE solution method itself is also particularly impor-
tant for obtaining faster chemistry solution. We observed that the
OpenFOAM’s native functions used for LU decomposition and back
substitution matrix operations of the chemistry ODE system are not
suitable for solving dense and small matrices (<500� 500). Therefore,
the LU decomposition and back substitution linear algebraic opera-
tions of OpenFOAM are replaced by more robust implementations
existing in the open-source library LAPACK.32 The LAPACK routines
utilized in our model are very efficient for dense and small matrices,
such as the fully dense Jacobian matrix created by the pyJac.

In this study, LAPACK functions were linked to a semi-
implicit extrapolation-based Euler method, denoted as Seulex.21,35

Seulex requires the specification of relative and absolute tolerances
of the solution along with an initial estimate of DtODE. As the solu-
tion progresses, the solver improves the estimate for DtODE at the
current thermochemical state using theoretical relations and heu-
ristics. The previous available value is then used as an initial value
for the following integration interval. Furthermore, a DtODE is
recursively split into a number of partitions and each partition is
then solved using a low-order method. Finally, the high-order
solution over the whole interval DtODE is recursively gathered from

solutions of the smaller partitions. If the solution does not satisfy
the tolerance criteria, partitioning continues until it is satisfied. A
more detailed explanation of the Seulex algorithm can be found in
the work by Imren and Haworth.35

As noted earlier, each computational cell has its own independent
ODE problem with a thermochemical state vector comprising only
intensive mixture properties. Furthermore, the ODE solver guarantees
that if the solution has converged, the error will lie within the user-
specified tolerance regardless of the width of the integration interval
DtCFD. However, errors related to the operator splitting technique
need to be taken care of. The assumption behind operator splitting is
that the chemistry timescales are orders of magnitude smaller than the
flow timescales or the CFD solver time step DtCFD. Nevertheless, the
time step DtCFD is to be chosen so that the species and temperature
transport effects over a time step are accounted for and the thermo-
chemical state vector is updated correspondingly. We note that in this
study we do not consider any chemical source term closures for the fil-
tered or averaged equations. Such turbulence–chemistry interaction
(TCI) models could significantly depend on the mesh parameters and
the CFD time step size and might require a separate treatment.

The effect of the optimized Jacobian evaluation is demonstrated
in Fig. 2 on a zero-dimensional (0D) homogeneous reactor simulation
with stoichiometric methane–air mixture at T ¼ 1200K and
p ¼ 13:5 atm. The GRI-3.037 chemical kinetic mechanism was used
and the absolute and relative ODE solver tolerances were set to 10�10

and 10�6, respectively. The integration interval (DtCFD) was fixed to
10�6 s, which corresponds to timescales relevant to reactive CFD
applications under engine-relevant conditions. From the figure, it is
observed that the time spent on Jacobian and derivative evaluations is
reduced by roughly one order of magnitude between Standard and
pyJac along the entire simulation time. Furthermore, the exact
Jacobian formulation increases the solution accuracy for every Newton
iteration, which reduces the amount of iterations required for conver-
gence. Next, with LAPACK we notice a further reduction in the ana-
lytical Jacobian retrieval and also less time for all operations only
within the sharp gradient zone. The reason is that with LAPACK, the
ODE solver uses wider sub-intervals in the stiff zone, hence, fewer
function calls for the Jacobian retrieval, and, consequently, fewer linear
algebraic operations.

FIG. 2. CPU time spent on different oper-
ations of ODE solution algorithm for a sin-
gle cell 0D problem involving CH4
chemistry using Standard, pyJac, and
pyJacþLAPACK models. Selected time-
frame represents the most computationally
demanding part of the problem. The GRI-
3.0 mechanism (53 species and 325 reac-
tions) is used in the benchmark.
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Figure 3 depicts the total execution times for the aforementioned
problem with varied absolute tolerances. It can be seen that while the
Jacobian retrieval using pyJac reduces the execution time by about one
order of magnitude, using LAPACK routines provides another order
of magnitude speed-up. The utilization of pyJac together with
LAPACK allows using much tighter ODE tolerances.

III. RESULTS
A. An overview of the test cases

After introducing the new features of our model in Sec. II, here
the combined effect of the DLBFoam library with pyJac and LAPACK
is investigated. Three different models are employed here for perfor-
mance benchmarking: (1) the standard OpenFOAM chemistry model
(referred to as Standard), (2) our original model with dynamic load
balancing and zonal reference mapping4 (referred to as DLBFoam),
and (3) our original model combined with the ODE-related improve-
ments utilizing pyJac and LAPACK routines (referred to as
DLBFoamþpyJac). We first demonstrate the computational perfor-
mance of DLBFoamþpyJac in two academic test cases (2D reacting
shear layer and 3D stratified combustion). After that, we demonstrate
its performance in two experimental flame configurations (ECN Spray
A and Sandia flame D). Schematic diagrams presenting the four test
cases are provided in Fig. 4.

For each case, we first use DLBFoamþpyJac to solve a full-scale
combustion problem. Then, for each problem we choose a time inter-
val that is considered computationally challenging—e.g., chemistry
ODE problem is stiff in parts of the domain due to ignition—and com-
pare the performance of DLBFoamþpyJac against DLBFoam and
Standard for a specific number of iterations. A summary of various
case-specific benchmark parameters along with the computational
speed-up is presented in Table I. Here, we have to limit the number of
iterations for benchmarking because of the poor performance of the
Standard model we highlighted in Sec. II. In fact, with the chosen strict
tolerance values, it is infeasible to carry out a full simulation with

Standard or even benchmark with a larger number of iterations than
those stated in the table for all of the studied test cases.

Regarding numerical schemes, a second-order spatial and tempo-
ral discretization is utilized for all test cases presented herein. The
reacting PISO (Pressure-Implicit with Splitting of Operators) algo-
rithm with two outer-loop correctors is utilized for pressure–velocity
coupling,40 i.e., the chemistry is solved twice within a single CFD time
step. The absolute and relative tolerances of the chemistry ODE solver
are set to 10�10 and 10�6, respectively. More details about the case
setup can be found in test case files, which are openly shared.41

All simulations and benchmarks were performed on the Mahti
supercomputer at CSC—Finnish IT Center for Science. Mahti has
1404 nodes, each with two 64-core 2.6GHz (boost up to 3.3GHz)
AMD Rome 7H12 CPUs. All nodes are connected to the inter-node
communication network with 200 GB/s links.42

B. 2D reacting shear layer

The first test case presents a simple, temporally evolving 2D
reacting shear layer that is computationally affordable even on a per-
sonal computer. The presented test case is fundamentally related to
the ignition and flame initiation of DF combustion in compression
ignition engines such as the reactivity controlled compression ignition
(RCCI) engine.33,43 We demonstrate the computational speed-up and
scaling effects of DLBFoamþpyJac with respect to the number of
cores.

The schematic of the present numerical setup is illustrated in
Fig. 4(a). The setup contains a high reactivity n-dodecane jet stream that
mixes with the surrounding oxidizer consisting of premixed methane,
oxidizer, and exhaust gas recirculation (EGR). The simulation domain is
a square box with a side lengthD ¼ 1:5mm. The number of grid points
in both directions is 300, which is based on the pre-estimated laminar
flame thickness for n-dodecane–methane premixed flame at the
corresponding most reactive mixture fraction, p ¼ 60 bar, and
Treactants ¼ 800K (df � 50lm) to resolve the flame by 10 grid points.
A hyperbolic tangent function is used to generate the shear layer
between the n-dodecane and oxidizer streams. The n-dodecane jet is ini-
tially set to 700K whereas the methane/air mixture is set to 900K at a
constant pressure of 60bar. The initial conditions corresponding to the
ambient premixed mixture are similar to our previous DF spray stud-
ies33,43–47 as reported in Table II. The n-dodecane jet moves initially
with a relative velocity of 10m/s to the methane/air stream and develops
a Kelvin–Helmholtz instability. A skeletal chemical mechanism (54 spe-
cies and 269 reactions) developed by Yao et al.38 for n-dodecane com-
bustion is used. The performance of this mechanism in DF context has
been already demonstrated in our earlier studies.33,44,46

Figure 5 highlights the DF ignition process in the shear layer,
where the n-dodecane jet ignites the surrounding mixture. It is
observed that the first-stage ignition from low-temperature chemistry
develops primarily within the n-dodecane jet near the mixing layer.
Next, the ignition front initiates in the n-dodecane region at the most
reactive mixture fraction and propagates toward the ambient
mixture. Here, the mixture fraction describes the mixing extent of the
n-dodecane fuel stream and the premixed methane, oxidizer, and
EGR. Finally, a premixed flame front is established, which completes
the combustion of the ambient methane.

Next, we report the computational speed-up and the parallel effi-
ciency provided by our model for different processor counts, as

FIG. 3. Dependency of the execution time on the absolute tolerance (Nsample¼ 10)
for a single cell 0D problem involving CH4 chemistry with different ODE conver-
gence tolerances. The GRI-3.0 mechanism (53 species and 325 reactions) is used
in the benchmark.
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depicted in Fig. 6. The domain is decomposed into 8, 16, and 32 pro-
cessors to demonstrate the scaling capabilities of the model. All speed-
up tests are carried out for 100 constant CFD time steps of 2� 10�7 s
after the DF ignition. The following observations are made from the
analysis: (1) the standard model demonstrates a poor parallel scaling
efficiency due to the load imbalance. While the strong scaling

FIG. 4. Schematic diagrams of the dem-
onstrated test cases. (a) 2D reacting
shear layer, (b) 3D stratified combustion,
(c) ECN Spray A, and (d) Sandia flame D.

TABLE I. List of parameters used in performance benchmarks. Computational time refers to the full-scale simulation using DLBFoamþpyJac. Computational speed-up is
reported for DLBFoamþpyJac against Standard. Computational time for ECN Spray A reports the case with Tamb ¼ 900 K and simulation time of 1.5 ms.

2D shear layer 3D stratified combustion ECN Spray A Sandia flame D

Chemical mechanism Yao38 Yao Yao DRM1939

Number of cells 90 000 16.78M 39M 1.99M
Number of processors 8–32 1152 1920 768
Benchmarking samples (CFD iterations) 100 7 65 100
Computational speed-up 24–38 �400 256 13.5
Computational time (CPU-hr) 65 15 000 128 500 24 500

TABLE II. Initial conditions in molar fractions and corresponding equivalence ratio for
premixed ambient mixture in 2D shear layer and 3D stratified combustion cases.

CH4 % O2 % CO2 % H2O % N2 % /CH4

3.750 15 5.955 3.460 71.835 0.5

Physics of Fluids TUTORIAL scitation.org/journal/phf

Phys. Fluids 34, 021801 (2022); doi: 10.1063/5.0077437 34, 021801-6

VC Author(s) 2022

https://scitation.org/journal/phf


FIG. 5. Temporal evolution of n-dodecane (top row), temperature (middle row), and CH3 (bottom row) fields of the 2D reacting shear layer simulation, where the n-dodecane
jet initiates the flame and then burns the premixed ambient.

FIG. 6. Left: mean execution times over 100 iterations for the 2D reacting shear layer for different number of processors. Here, vsu is the speed-up factor of DLBFoam or
DLBFoamþpyJac compared to Standard. Right: speed-up values for different number of processors relative to the case with eight processors.

Physics of Fluids TUTORIAL scitation.org/journal/phf

Phys. Fluids 34, 021801 (2022); doi: 10.1063/5.0077437 34, 021801-7

VC Author(s) 2022

https://scitation.org/journal/phf


efficiency of DLBFoam and DLBFoamþpyJac is almost linear
(>95%), the Standard shows a scaling efficiency around 75% for the
investigated processor counts. This explains the increased speed-up
value for DLBFoam and DLBFoamþpyJac for higher processor
counts. (2) The DLBFoam model provides speed-up by a factor of
1.71–2.89 for different processor counts, compared to Standard. (3)
The DLBFoamþpyJac model provides speed-up by a factor of
23.98–38.07 compared to Standard.

C. 3D stratified combustion

After providing speed-up benchmarks along with scaling tests in
Sec. III B, we next present another academic test case in this section,
i.e., 3D stratified combustion (Fig. 7). This case cannot be even tested
for ten iterations using Standard within a reasonable computational
time. Hence, the purpose here is mainly to show that it is possible to
investigate 3D ignition/combustion problems using DLBFoamþpyJac.
This DF test case has close relevance to combustion mode design in
modern engines such as RCCI.

This test case is conceptually similar to the previous 2D setup by
Karimkashi et al.48 As shown in the schematic of Fig. 4(b), the compu-
tational domain is a 3D cube with periodic boundary conditions and a
side length D ¼ 1mm. The grid size is 4lm with 256 grid points
along each direction, to capture the flame with at least ten grid points
within the laminar flame thickness (df � 40 lm). The initial pressure
is set at 60 bar and the initial temperature is homogeneous within the
entire computational domain at 800K, which is relevant to the
estimated temperature at the most reactive mixture fraction for DF
methane/n-dodecane based on 0D simulations.44,46,47,49 Here, pure
n-dodecane is initially constrained in a blob in the middle of the
domain with a diameter d ¼ D=3. The ambient gas consists of pre-
mixed methane, oxidizer, and EGR at /CH4

¼ 0:5, similar to the previ-
ous test case, with the composition reported in Table II. As in the
previous test case, Yao’s mechanism is used.

Turbulence is initialized using the Taylor–Green–Vortex (TGV)
structure, which is generated in a separate non-reactive 3D simulation
with an initial velocity U ¼ 50m=s and reference length Lref ¼ D=2p.
We let the initialized TGV to evolve in time until the gradient of total

FIG. 7. Temporal evolution of temperature (top row), n-dodecane (second row), methane (third row), and OH (bottom row) is shown in cut-planes taken from the 3D
stratified combustion simulation around the second-stage ignition time. With gradual temperature rise, ignition kernels are formed at different locations. Consistently, the fuels
(n-dodecane and methane) are consumed and deflagrative-like fronts are formed and finally merged.
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kinetic energy reaches its peak and then, the velocity and pressure
fields are mapped to the reactive case as initial fields. The estimated
Reynolds number at the start of reacting simulation is Re � 1000. In
this case study, the interactive roles of convection, diffusion, and reac-
tion are investigated. First, the initial n-dodecane is mixed with the
ambient gas at early simulation time instances, long before the second-
stage ignition (s2). Here, s2 � 0:28ms is defined as the first time
instance when T > 1500K. At s2, the stratified mixture ignites at the
most reactive mixture fractions. The ignition front propagates and
finally forms laminar premixed flame fronts, which complete the com-
bustion in the standard deflagration mode. The present observations
in 3D are in close agreement with the observations made in our previ-
ous study in 2D.48

Figure 7 depicts 2D cut-planes for the temporal evolution of
temperature (top row), n-dodecane (second row), methane (third
row), and hydroxyl radical OH (bottom row) wherein time is nor-
malized by s2. It is observed that a stratified mixture of n-dodecane
and methane/oxidizer is formed before any significant temperature
rise in the system (t ¼ 0:7s2). Closer to the ignition time, hot spots
emerge (t ¼ 0:9s2) and deflagrative-like fronts develop at a moder-
ate rate with various wrinkled surfaces (t ¼ 1:1s2). Slightly after
the ignition time, the fronts evolve (t ¼ 1:3s2) as clearly observed
from the OH cut-plane. Finally, the fronts merge (t ¼ 1:8s2) and
combustion is almost complete. We note that at t ¼ 1:8s2, only
small fractions of n-dodecane and methane are left in the system,
which are convected from other iso-surfaces to the displayed cut-
plane in Fig. 7.

In this case study, a speed-up gain by a factor of 2–3 orders of
magnitude is observed with DLBFoamþpyJac compared to
Standard. Therefore, it would not be possible to benchmark this
problem using Standard for 100 iterations. In particular, we evaluate
the speed-up of our model against Standard by restarting the simu-
lation from the first-stage ignition time (0.2ms) and using the same
number of processors (1152 processors) and identical tolerances.
While Standard simulation proceeds only 7 iterations in �76 000 s
of clock time, the respective time is only about 200 s with
DLBFoamþpyJac; i.e., speed-up by a factor of �400 with
DLBFoamþpyJac compared to Standard is achieved. As a final note,
the total clock time for simulating this case using DLBFoamþpyJac
with 1152 processors for 0.5ms simulation time is �13 h. Hence,
DLBFoamþpyJac is a key enabler to study such 3D reactive flow
configurations with OpenFOAM.

D. ECN Spray A

At this point, it is clear that DLBFoamþpyJac offers great advan-
tages over Standard. In particular, DLBFoamþpyJac was shown to
scale almost linearly with the number of processors in an academic
case and enable 3D reactive simulations with a relatively large chemi-
cal kinetic mechanism and tight solver tolerances. Next, we move on
to a more realistic 3D configuration, i.e., the Engine Combustion
Network Spray A test case with experimental validation data. Spray A
represents an igniting non-premixed diffusion flame under engine-
relevant conditions. Hence, it is an optimal test case for reactive CFD
large eddy simulation (LES) code validation.

A schematic of the computational setup is demonstrated in
Fig. 4(c), where the domain volume corresponds to that of ECN com-
bustion vessel by Sandia. Liquid n-dodecane at a temperature of 363K
and pressure of 150MPa is injected from a 90lm nozzle (i.e., Spray
A) into a hot quiescent ambient gas of density 22:8 kg=m3 and mix-
ture composition (15% O2, 75.15% N2, 6.23% CO2, and 3.62% H2O)
based on the molar fractions. The simulations are performed for four
reacting cases with varied ambient temperature (900, 1000, 1100, and
1200K) and a single non-reacting case at 900K. The domain is discre-
tized with a static mesh of 62lm cell size in the innermost refinement
layer to resolve the turbulent mixing and the quasi-steady lifted flame,
as shown in Fig. 8, resulting in a total of 25–39 � 106 cells depending
on the particular case. Moreover, the implicit LES (ILES) approach is
employed for turbulent subgrid-scale (SGS) modeling, consistent with
our previous spray combustion works,27,44–47,50,51 while the no-
breakup model approach is used for droplet atomization, which is fur-
ther discussed by Gadalla et al.51 The volume-rendered spray flame
shown in Fig. 8 for ambient T¼ 900K indicates the mixing and evapo-
ration zone, the low-temperature combustion zone, and the ignition
and high-temperature combustion region wherein a fully developed
diffusion flame is observed.

The present case demonstrates the capability of our new model
to match the well-known ECN Spray A benchmark. First, in Fig. 9(a)
liquid and vapor penetrations are validated against experimental data
up until 1.5ms under non-reacting conditions at 900K. Then, the sim-
ulation is repeated in the reacting mode and the pressure rise is moni-
tored in Fig. 9(b) against experiments for the same temporal interval.
In Fig. 9(c), the formaldehyde (CH2O) planar laser-induced fluores-
cence (PLIF) false color images obtained by Skeen et al.52 at various
snapshots are compared against the corresponding LES data using the
new solver. Here, the LES data are circumstantially averaged for each

FIG. 8. Volume rendering of the ECN
Spray A diffusion flame of ambient
T¼ 900 K after 1.5 ms. The inset in the
top left corner presents a 2D projected
cut-plane of the OH radical mass fraction.
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sampling point in the axial-radial plane, which are then compared
with the experimental data set. This comparison verifies the global
trends for Spray A baseline including ignition onset, cool flame, and
quasi-steady flame liftoff. Finally, validations of ignition delay times
(IDTs) and flame liftoff lengths against experimental data at various
temperature levels are presented in Fig. 9(d).

After that, we demonstrate in Fig. 10 the gained speed-up using
DLBFoamþpyJac within 100 time steps after 0.3ms of the simulation
and using a constant step size of 2� 10�7 s. The load imbalance in
this test case is rather high. It originates from the large number of
ambient cells that are computationally less stiff than those in the igni-
tion region. This imbalance is further increased with reference

mapping so that ambient cells become mostly idle, hence improving
the performance gain of dynamic load balancing, which results in a
factor of 38 speed-up, compared with Standard. After that, a further
speed-up by a factor of 6.7 is attributed to the analytical Jacobian
retrieval and the robust linear algebra, i.e., DLBFoamþpyJac, hence a
total speed-up by a factor of 256 as compared to Standard.

E. Sandia flame D

The ECN Spray A case demonstrated excellent performance for
the LES of non-premixed Spray flame using DLBFoamþpyJac. The
last test case is the Sandia flame D53 representing a piloted partially

FIG. 9. Validations of the ECN Spray A at ambient T¼ 900 K for (a) liquid and vapor penetrations under non-reactive conditions, (b) pressure rise in the combustion vessel
after ignition, (c) formaldehyde fields at various snapshots, and (d) ignition delay time and flame liftoff length (FLOL) at varied ambient temperature levels of the mixture.
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premixed methane–air flame. Sandia flame D is a well-known configu-
ration from the TNF workshop flame series, which is often studied in
the literature, e.g., Refs. 54–57. Therefore, it is considered as a useful
benchmark for reactive CFD LES code validation for gas burner flame
investigations.

A schematic of the Sandia flame D setup is provided in Fig. 4(d).
The main jet is a mixture of CH4 and air at equivalence ratio
/CH4

¼ 3:17. It is injected with a bulk velocity of 49.6m/s and tem-
perature of 294K to the domain from a nozzle of diameter
D ¼ 7:2mm. The flame is stabilized with a pilot jet, which is a hot
(1880K) lean mixture of C2H2, H2, air, CO2, and N2. The inner and
outer diameters of the pilot nozzle are 7.7 and 18.2mm, respectively,
and the flow velocity is 11.4m/s. Jet inlets are surrounded by air co-
flow with an inner diameter of 18.9mm. A Cartesian mesh is used,
and a refinement zone with cell size of 0.75 � 0.368 � 0.368mm
defined from the nozzle exit until 15D is realized, resulting in a total
of 2 � 106 cell count. Velocity fluctuations in the form proposed by
Pitsch and Steiner54 are superimposed on the main jet inlet velocity
profile to induce turbulent jet behavior. Here, the purpose is to dem-
onstrate that the code produces first-order statistics for this flame con-
figuration. Hence, we do not focus on the turbulence–chemistry
interaction modeling but use the ILES approach as a SGS scale model,
consistent with the previous test cases. A reduced chemical kinetic
mechanism DRM1939 with 21 species and 83 reactions is used. The
simulation is performed for 100ms after which the fields are averaged
for another 150ms, where the flame becomes statistically stable.

Figure 11 depicts time-averaged mixture fraction, temperature
and species mass fraction profiles compared to the experimental
data53 and an instantaneous snapshot of the temperature field. The
close agreement between experiments and the predicted mixture frac-
tion and temperature profiles along the center axis indicates that the
coupled influence of turbulent mixing and flame heat release is
resolved adequately in the core of the jet flame. Minor species profiles,
CO and OH, also correspond well with the experiments. The predicted
OH mass fractions show correct trends; however, the maximum value
is overpredicted compared with the measured data. Overall, mass frac-
tion prediction of short-lived species like OH is a challenging task due

FIG. 10. Mean execution times over 65 iterations for the ECN Spray A after 0.3 ms
of the simulation. vsu is the speed-up factor of DLBFoam or DLBFoamþpyJac com-
pared to Standard.

FIG. 11. Top: instantaneous temperature field of Sandia flame D at t ¼ 0:1 s.
Note that the data attributed to the refined grid are only available to x=D ¼ 15 in
order to limit the computational cost. Bottom: validations of the Sandia flame D
for mean mixture fraction, temperature, and species mass fraction at centerline
and x=D ¼ 15.
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to the nonlinear evolution of the species,55–58 and it is beyond the
scope of the present study. In the radial direction, the reactions mostly
occur in the shear layer between the main jet and co-flow (r=D ¼ 1),
which is evident in the peaks of the mass fraction profiles. The radial
profiles agree well with the experimental data on the rich side.
However, mixing is overpredicted in the lean region (r=D > 1). Close
to the nozzle and away from the central axis, the reaction zone may
still be considered relatively laminar.54 Therefore, the overpredicted
profiles in the lean region could be explained by the utilized unity
Lewis number assumption. Moreover, the temperature and species
profiles also follow the same trend as the mixture fraction in the flame
on the rich and lean sides.

Next, a speed-up test is carried out for a stabilized flame for 100
iterations with a constant time step of 1� 10�6 s. The results are pre-
sented in Fig. 12. The DLBFoam provides speed-up by a factor of 4.52,
which is significantly lower than with ECN Spray A. This can be
explained by a relatively low number of mapped cells due to the loca-
tion of the refinement zone in the core of the jet. The optimized ODE
solver routines pyJac and LAPACK bring additional speed-up by a fac-
tor of 2.99. Here, the lower speed-up is a consequence of the use of the
reduced mechanism, which as discussed earlier significantly reduces
the computational cost of the chemistry problem. However, the com-
bined effect of DLBFoamþpyJac is significant and brings about 1
order of magnitude speed-up to this case.

IV. CONCLUSIONS

In this work, an open-source dynamic load balancing library for
OpenFOAM, namely DLBFoam, with reference mapping feature was
re-introduced and improved. In particular, the feature was extended
with optimized chemistry ODE solution routines. First, the Jacobian
evaluation procedures in OpenFOAMwere replaced with an analytical
implementation provided by the open-source package pyJac. This step
resulted in one order of magnitude speed-up in a 0D homogeneous
reactor test case. Then, in order to fully utilize the benefits of the new
fully dense Jacobian, LU decomposition and back substitution routines
were replaced with more robust ones from the open-source library

LAPACK, resulting in even higher speed-up especially for tighter
ODE tolerances.

The improvements were tested in two academic cases and then
applied to two experimental flame cases. First, the model was tested in
a 2D reacting shear layer problem, demonstrating almost perfectly lin-
ear scaling. Speed-up by a factor of �30 was demonstrated in the 2D
case for DLBFoam with pyJac and LAPACK. Second, 3D stratified
combustion was studied, which was not even computationally feasible
to benchmark with the Standard model due to 2–3 orders of magni-
tude performance difference. Last, two 3D flames were investigated—
ECN Spray A and Sandia flame D—showing speed-up factors of�256
and �13:5, respectively, for DLBFoam with pyJac and LAPACK. We
also note that the reported speed-up numbers in comparison to
Standard were achieved with fixed ODE tolerances, specific time step
sizes, and chemical kinetic mechanisms. It is worth acknowledging
that changing those parameters may affect the speed-up estimates.
However, the promising results herein indicate that the improvements
to DLBFoam offer an avenue to model complex combustion phenom-
ena in OpenFOAM with increased accuracy and computational effi-
ciency. Further investigations in a broader user community could
result in more in-depth analysis and development of the present test
cases for different combustion models and chemical mechanisms. As
future work, more test cases could be established around the proposed
reactive CFD approach to account for a broader variety of turbulent
combustion conditions. Finally, the source code and the case setup files
used in this work are openly available41,59
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