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Background: Oxidative stress induced by radiation causes variable expression of
antioxidant enzymes in a tissue-specific manner. Testicular tissues carry out the
complex process of spermatogenesis, and studies indicate that testicular damages
due to irradiation require long-term recovery before complete resumption. Ionizing
radiation also causes oxidative stress in tissues, leading to testicular damage. Aims
and Objectives: This study measured differential expression of antioxidant enzymes
following administration of C. borivilianum root extract (CRB) in response to irradiation-
induced oxidative stress. The activity of various important endogenous enzymatic defense
systems was evaluated and correlated for strength of association.

Materials and method: Two forms of C. borivilianum (CB) extracts [CB alone and CB-
silver nanoparticles (AgNPs)] were administered at a dose of 50mg/kg body weight to
Swiss albino male mice for 7 consecutive days. After that, they were irradiated with 6 Gy
irradiation and further used to study various parameters of antioxidant enzymes.

Results: Results indicate a significant increase in the level of glutathione (GSH) and the
activity of GSH-related antioxidant enzymes in irradiated mice treated with CRE and CRE-
AgNPs (silver nanoparticles biosynthesized using C. borivilianum root extract) in
comparison to non-pretreated ones (groups I and II). Reciprocal elevation was
observed in related enzymes, that is, glutathione S-transferase activity (GST),
glutathione reductase (GR), and glutathione peroxidase activity (GPx). Elevation in the
activity of catalase (CAT) and superoxide dismutase (SOD) was also evident in both the
irradiated groups pretreated with CRE-AgNPs. However, expression of CAT in the CRE-
treated irradiated group was similar to that of the non-treated irradiated group. Higher
association among CAT-SOD, CAT-GPx, and GR-GST was observed.

Conclusion: Overall, it was observed that testicular cells post-irradiation in all groups go
through intense oxidative stress; however, groups pretreated with CRE or CRE-AgNPs
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indicated better toleration and resumption of antioxidant capacity. CRE or CRE-AgNPs
pretreated non-irradiated groups mostly remained within the control range indicating
stimulated expression of antioxidants.

Keywords: irradiation, oxidative stress, C. borivilianum, glutathione, glutathione-s-transferase, catalase, testicular
tissue

1 INTRODUCTION

Ionizing radiation induces oxidative stress, and, therefore, can
cause severe damage to tissues and genetic materials. Energy
formed due to ionizing radiation can make harmful changes in
the DNA, and if not repaired, it may result in cell death or
mutation. Ionizing radiation is found everywhere nowadays as it
is highly beneficial in ensuring hygiene, treatment of cancer,
smoke detectors, etc. At low doses, radiation exhibits some
beneficial effects in reducing oncogene-induced carcinogenesis
(Kim et al., 2015). Most apparent risk of ionizing radiation
exposure is through diagnostic medical examinations. There
are apprehensions that ionizing radiation in diagnostic
imaging is an initiator of carcinogenesis (CTRDMDP, 2011).
A study by Mettler et al. (2000) assumed that the theoretical risk
of fatal cancer from the first CT scan for a dose of 10 mSv is
estimated to be nearly 1 in 2000. In another way, CT examination
is ∼100 folds higher than X-ray examination; thus, risk of cancer
from CT scan is higher than that from X-ray diagnosis.

Increase of endogenous reactive oxygen species (ROS) is one
of the important factors that damage the body. Although ROS
benefit physiological processes, such as removal of infectious
pathogens, healing, and repair of tissues (Tovar-y-Romo et al.,
2016; Cavaillon, 2018), nevertheless, excessive levels can damage
tissues (Yu et al., 2015; Scialo et al., 2017). When exposed to
ionizing radiation for treatment, it does not only direct toward
tumor cells but also affects the surrounding microenvironment
(Haimovitz-Friedman et al., 2020). Indirect unspecified effects of
ionizing radiation may result in inflammatory responses (Fuks
et al., 1995; Paris et al., 2001; Mizrachi et al., 2016). Moeller et al.
(2004) indicated that ROS burst following radiation generate
waves of hypoxia/re-oxygenation.

Plants have a wide variety of bioactive compounds that adapt
to the constantly evolving environment. A previous study
provides strong evidence that some antioxidants in plants can
efficiently scavenge oxidative radicals and, thus, can protect from
various diseases (Hassan et al., 2017). A recent review on the role
of plants in radioprotection indicated that crude or fractionated
extracts, phytocompounds, and polysaccharides can provide
protection from ionizing radiation (Dowlath et al., 2021). This
study aimed to evaluate the radioprotective effect of
Chlorophytum borivilianum.

C. borivilianum Santapau and Fernandes (family: Asparagaceae;
sub family: Anthericoideae) (Santapau and Fernandes, 1955;
Govaerts, 1999) is known for its medicinal property against
various conditions such as inflammation or antimicrobial/
antifungal (Parveen et al., 2020), infertility, stress (Devi et al.,
2021), and cirrhosis (Singh et al., 2011; Tripathi et al., 2019; Kaur
and kaur, 2020). Recently, it has gained a well-established national

and international market for being the herbal alternative of
“Viagra” without any side effects. Various studies showed that
aqueous extract of dried roots of C. borivilianum enhances the
sexual arousal, vigor, and libido in Wistar rats along with a
significant increase in sperm count (Kenjele, et al., 2008).
Surprisingly, although C. borivilianum has been used for ages
by the herbal medical practitioners, the amount of research
conducted to understand its effects remains considerably low.

C. borivilianum has been used for over 4,000 years, according to
the Hindu epic Srimad Bhagawat. It belongs to the “Vajikarana
Rasayana” group of Ayurvedic plants, which are utilized for
rejuvenation (Miraj et al., 2020; Verma et al., 2020) and
revitalization characteristics in order to improve sexual dynamics
(Puri, 2003) and alleviate sexual dysfunction. This is also the basis
for Kamasutra’s medical recommendations (Hooper, 2002). An
NCBI search result for the name “Chlorophytum borivilianum”
found only 200 results. Among those, most of the studies were only
of botanical importance (data retrieved on 08–11–2020). Moreover,
the Botanical Survey of India has identified it as an endangered
species in their “RedData Book of Indian Plants.” It is predicted that
the Indian forests may lose this valuable plant if conservation
measures are not adopted (Tripathi et al., 2012). Thus, due to
high and diversified commercial importance, it has been instigated
to reserve in the list of “threatened plants category.” Interestingly,
biosynthesized nanoparticles (CRE-AgNPs) not only decrease the
amount of dose required for the treatment but can also help to
reduce the day-to-day growing demand of it.

Therefore, considering the importance of this plant and owing
to environmental radiation and other lifestyle disorders, natural
radioprotectors are the need of the hour. In this study, benefits of
natural radioprotectors and nanoparticles are combined, thus
amplifying its positive effects. Furthermore, this study examines
alterations, if any, in the levels of antioxidative enzymes in
testicular tissues of mice following spells of gamma radiation.
Results of these were compared with the level of antioxidant
enzymes in mice following administration of crude C.
borivilianum root extract (CRE) and the same extract tagged
with silver nanoparticles (CRE-AgNP) against radiation to
examine potential amelioration. Moreover, to date, there is no
report on the biosynthesis of AgNPs using the C. borivilianum
root extract and their use as an antioxidant.

2 MATERIALS AND METHODS

2.1 Preparation of C. borivilianum Root
Extract
C. borivilianum root extract (CRE) was obtained commercially in
this study. However, it was identified (RUBL No. 19902) from the
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Department of Botany, the University of Rajasthan, Jaipur, India,
and also recognized as a plant of edible characteristics (Sharma
and Kumar 2012). In this study, a concentration of 1–5% was
prepared by mixing CRE into 250 ml of deionized water. The
extract was then filtered twice by using the Whatman No. 1 filter
paper to obtain a clear solution. This clear solution was then
refrigerated at 4°C in a 250-ml Erlenmeyer flask until further use.
The complete process of preparation of the extract was
maintained under sterile conditions.

2.2 Synthesis of Silver Nanoparticle
Tagged CRE
5 ml CRE was mixed with 95 ml of AgNO3

(−) for synthesis of
tagged molecules. Confirmation of formation of CRE-AgNPs was
ensured by the development of reddish brown color (α-β)
(Christensen et al., 2011). Morphological and structural
attributes were identified and recorded previously by
transmission electron microscopy (TEM) (Singh et al., 2018).

2.3 Test Animals
Swiss albinomice (Musmusculus) (6–8 weeks), weighing between
20 and 30 g, were used for the present experiment. These
random-bred male mice were maintained under continuous
observation of the departmental facility. Animals were
maintained at 24 ± 3°C with 12-h light and 12-h dark periods.
Commercially obtained pellet diet (Ashirwad Pvt. Ltd., India) was
provided to the experimental animals. Drinking water was
provided ad libitum. The ethical committee of the Department
of Zoology, Centre for Advanced Studies (CAS), the University of
Rajasthan, Jaipur, India, has approved the experimental protocol
(IAEC Approval No. 1678/90/re/S/12/CPCSEA dated June 16,
2017). All the experiments were performed according to ethical
guidelines.

2.4 Experimental Design
Based on our previous study, an optimal dose of CRE and CRE-
AgNPs was decided (Singh et al., 2018), and the characterization
and optimization of CRE-AgNPs were also performed (Singh
et al., 2018). Alterations in the activity of antioxidant enzymes
were observed in testicular tissues following gamma radiation.
Comparative differentiation was made between antioxidant
activities in animals based on pretreatment with CRE, with
CRE-AgNPs, and with respective controls.

Pretreatment with CRE and CRE-AgNPs was continued for
7 days, following which mice were irradiated with 6 Gy gamma
radiation. Briefly, the Cobalt Teletherapy Unit (ACT-C9)
(Bhabhatron-II TAW telecobalt machine) at the Cancer
Treatment Center, Radiotherapy Department, SMS Medical
College and Hospital, Jaipur, India, was used for irradiation.
Unanesthetized animals were restrained in a well-ventilated
perspex box, and the whole body was exposed to gamma
radiation. Dosimetry was then calculated as 1.07 Gy/min from
the source to surface distance of 80 cm.

Six groups were formed constituting the sham control,
negative control, positive control, and test groups. Following
7 days of pretreatment, antioxidant activities were observed for

30 days. The period of observation was further divided into four
parts, that is, day 1, day 7, day 15, and day 30. On each scheduled
observational day, 5 animals from each group were sacrificed by
cervical dislocation. Experimental groups consisted of 20
animals each, and the overall design of the study is presented
in Figure 1.

Group 1: Normal/Sham-irradiated (vehicle treatment): This
group was given double distilled water (DDW) through oral
gavages once in a day for 7 consecutive days (dose equivalent
to CRE).

Group 2: CRE treated (negative control): This group was
treated with 50 mg/kg body weight of CRE dissolved in
distilled water through oral gavages for 7 consecutive days
once daily.

Group 3: CRE-AgNPs treated (negative control): This group
was treated with 50 mg/kg body weight of CRE-AgNPs dissolved
in distilled water for 7 consecutive days once daily.

Group 4: Radiation-alone treated (positive control): This
group was given double distilled water (DDW) through oral
gavages once in a day for 7 consecutive days. On the 7th day, mice
were irradiated with 6 Gy gamma radiation.

Group 5: CRE treated + radiation treatment: This group was
treated with 50 mg/kg body weight of CRE dissolved in distilled
water through oral gavages for 7 consecutive days once daily. On
the 7th day, mice were irradiated with gamma radiation (6 Gy).

Group 6: CRE-AgNP treated + radiation treatment: This
group was treated with 50 mg/kg body weight of CRE-AgNPs
dissolved in distilled water through oral gavages for 7 consecutive
days once daily. On the 7th day, mice were irradiated with 6 Gy
gamma radiation.

2.5 Assessment of Activity of Antioxidant
Enzymes in Testicular Tissues
The tissues were thawed and homogenized in 10% w/v ice-cold
0.05 m potassium phosphate buffer (pH 7.4). In total, 0.2 ml of
the homogenate was used for TBARS estimation, and 1.0 ml of
the homogenate was mixed with 10% trichloroacetic acid 175
(TCA) and centrifuged for tissue GSH estimation. The remaining
homogenate was centrifuged at 40,000 × g for 60 min, and the
supernatant was used for the estimation of superoxide dismutase
(SOD) and catalase (CAT). Protein concentration was estimated
according to Bradford (1976).

2.5.1 Glutathione
Reduced glutathione was measured fluorometrically using the
method of Hissin and Hilf (1976. Then a 250-mg testicular cell
pellet was suspended in a medium of 25% metaphosphoric acid
and potassium phosphate buffer (pH 8.0), and sonicated for
10 min. Then it was centrifuged at 30,000 × g for 30 min.
GSH assay fluorescence was determined with a fluorescence
spectrophotometer at 420 nm (excitation at 350 nm) after
incubating 0.2 ml of supernatant with 1.7 ml of potassium
phosphate-EDTA buffer (pH 8.0) and 0.1 ml of fluorescence
reagent o-phthaldialdehyde (1 mg/ml) for 15 min. The result of
assays was calculated against a standard calibration curve
for GSH.
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2.5.2 Lipid Peroxidase
Lipid peroxidation (LPO) levels were measured by the
thiobarbituric acid (TBA) reaction, following the method of
Ohkawa et al. (1979). Tissue supernatants (50 μL) were added
to test tubes containing 2 μL of butylated hydroxytoluene (BHT)
inmethanol. Next, 50 μL of an acid reagent (1 M phosphoric acid)
was added, and finally, 50 μL of the TBA solution was added. The
tubes were mixed vigorously and incubated for 60 min at 60°C.
The mixture was centrifuged at 10,000 × g for 3 min. The
supernatant was put into wells on a microplate in aliquots of
75 μL, and its absorbance was measured with a BIO RAD
Benchmark Plus plate reader at 532 nm. TBARS levels were
expressed as nmol/mg tissue.

2.5.3 Superoxide Dismutase
The level of SODwas estimated (Marklund andMarklund, 1974).
A weight of 2.85 g of Tris and 1.11 g of EDTA-Na2 were dissolved
in 1 L of distilled water. A weight of 0.252 g of pyrogallol was
dissolved in a solution of 0.6 ml of concentrated hydrochloric acid
diluted in 1 L of distilled water. Spectrophotometer was adjusted
to read zero using the Tris-EDTA buffer. Control and sample test
tubes were prepared and then pipetted into test tubes. Absorption
was read at the wavelength of 420 nm against the Tris-EDTA
buffer at zero time and after 1 min of the addition of pyrogallol.
One unit of SOD activity is defined as the amount of enzyme
required to cause 50% inhibition of pyrogallol autoxidation.

2.5.4 Glutathione-S-Transferase
The GST activity was measured by the method as described by
Habig et al. (1974). The reaction mixture containing 1 ml of
buffer, 0.1 ml of 1-chloro-2, 4-dinitrobenzene (CDNB), 0.1 ml of
homogenate, and 1.7 ml of distilled water was incubated at 37°C
for 5 min. The reaction was then started by the addition of 1 ml of
glutathione. The increase in absorbance was followed for 3 min at
340 nm. The reaction mixture without the enzyme was used as
the blank.

2.5.5 Glutathione Reductase
Glutathione reductase was assayed according to the method of
Beutler and West (1984). Glutathione reductase catalyzes the
reduction of oxidized glutathione (GSSG) by NADPH or
NADPH to reduced glutathione. The activity of the enzyme
was measured at 340 nm following the oxidation of NADPH.
GR is a flavin enzyme, and it has been found that it was not fully
activated by FAD in normal samples. Complete activation of
apoenzyme requires the pre-incubation of the enzyme with FAD.
This is done prior to the addition of GSSG or NADPH to the
reaction system.

2.5.6 Glutathione Peroxidase
GPx activity was determined according to the method given by
Wood (1970). It was assayed using a 1-ml cuvette containing
700 μL of phosphate buffered solution (75 mm; pH 7.0) to which
the following solutions were added: 25 μL of glutathione
reductase solution (100 μ/mL), 25 μL of sodium azide (0.12 m),
50 μL Na2 EDTA (0.15 mm), 50 μL of β NADPH (3 mm), and
50 μL aliquots of supernatant obtained after centrifugation at
14,000 × g for 25 min. The above reaction mixture was
equilibrated at 25°C after mixing thoroughly, and the reaction
was initiated by the addition of H2O2 (7.5 mm). The decrease in
absorbance was read at 340 nm at 1 min interval for 5 min for the
conversion of NADPH to NADP. The enzyme activity was
expressed as nmol NADPH oxidized/min/mg protein using
6.22 mm−1 cm−1 as the molar extinction coefficient.

2.5.7 Catalase
The catalase activity was determined according to the U.V. assay
method of Aebi (1974). In this method, 0.1 ml of hemolysate was
added to 5 ml of water, mixed, and allowed to stand for 5 min. In
a duplicate, 1 ml of phosphate buffer was added to 2 ml of
hemolyte, 1 ml of hydrogen peroxide (30 mm) solution was
added after the spectrophotometry, and the absorbance was
monitored at 750 nm for 3 min.

FIGURE 1 | Illustration of experimental design and groups along with measurement parameters.
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2.6 Statistical Analysis
Numeric values obtained from parametric evaluation for each group
were expressed as mean ± SE. One-way ANOVA along with Tukey’s
multiple comparison test was carried out to evaluate variance
(MINITAB, Pennsylvania, United States). p < 0.05 was considered
significant variance. Surface plots were used to represent high and low
peaks in activities of antioxidant enzymes. Comparative differences in
activities of antioxidant enzymes were measured among day 1, day 7,
day 15, and day 30 by stock plots (EXCEL, Microsoft, United States).
Pearson’s correlation was applied to identify strength of association
between variables of individual antioxidant activity against
irradiation-induced oxidative stress.

3 RESULTS

Antioxidant enzyme responses were separated into two parts for
better evaluation of oxidative stress, that is, groups 1–3 (non-
irradiated) and groups 4–6 (irradiated). Due to extremely
significant alterations in antioxidant activities following
irradiation, the level of significance in partitioned groups was
measured against group 1 and group 4 for non-irradiated groups
and irradiated groups, respectively. In most cases, CRE- and
CRE-AgNP–treated irradiated groups remained significantly
below the control range (group 1) (p < 0.05), and therefore,
activities of those antioxidants which resumed back to the control
range are mentioned in the text.

3.1 Glutathione Response
The activity of GSH reflected no alteration on day 1 in groups
1–3. However, as time progressed to day 7, a slightly higher level

of GSH was observed in group 3 (17.57±0.46 μM/g tissue) than in
group 1 (15.69±0.47 μM/g tissue) and group 2 (14.74±0.46 μM/g
tissue). On day 15, deviation in the level of GSH was clearer, as
group 2 indicated the highest level of GSH, and was recorded as
19.54±0.44 μM/g tissue. However, the GSH level in group 3 was
recorded as 16.33±0.50 μM/g tissue against 11.84±0.43 μM/g
tissue of group 1. On day 30, elevation in the level of GSH
was observed in group 1 which was recorded as 16.13±0.39 μM/g
tissue and was similar to that of group 2 (16.31±0.44 μM/g tissue).
However, the level of GSH in group 3 declined further to
12.41±0.39 μM/g tissue (Figure 2A).

In groups 4–6, radiation indicated substantial impact on the
level of GSH on day 1 and day 7. Similar patterns were observed
in all three groups exposed to radiation (Figure 2B). However,
the level of GSH depletion in groups 5–6 was at least 30–40%
lower than that in group 6 on day 1. Increase in the level of GSH
was observed in both groups administered with CRE and CRE-
AgNPs, but the rate of increase was measured to be higher in
group 6 than that in group 5 (Figure 2B). However, despite the
increase in GSH levels in group 5 and group 6, on day 30, the level
of GSH remained significantly lower than that of the control
group (Figure 2C).

3.2 Lipid Peroxide Response
Following withdrawal from the treatment of CRE (group 2) and
CRE-AgNPs (group 3), on day 1, all non-exposed groups
responded similar to that of the control group (group 1).
However, following 7 days of withdrawal, a slight deviation
between the groups was observed where group 1 to group 3
remained close (111.42±0.99 nM/mg tissue and 112.87±0.83 nM/
mg tissue, respectively), and significant decline in the level of LPO

FIGURE 2 | Response of reduced glutathione in non-irradiated (A) and irradiated (B) groups pretreated with CRE/CRE-AgNPs/sham. Gain/loss in the activity of
glutathione has been noted and presented through the box plot (C). * p < 0.05 significance level was measured against group 1. #p < 0.05 significance level was
measured against group 4.
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was observed in group 2 (108.9±0.89 nM/mg tissue). On day 15,
group 3 also depleted further to get close to group 2 and was
recorded as 107.85±0.89 nM/mg tissue. On day 30 of withdrawal
from treatment, a clear deviation was noted in groups 2 to 3 with
respect to the control. A slight elevation in the level of LPO was
recorded in group 3 with respect to the control, whereas, a gradual
decline in the level of LPOwas noted in groups 1 to 2 (Figure 3A).

Unlike in non-exposed groups 1 to 3, deviation in the level of
LPO was only observed on day 1 in radiation exposed groups
(groups 4–6) where group 4 was noted with the highest level of
LPO (198.31±1.15 nM/mg tissue), groups 5 and 6 remained close
to each other (149.23±0.68 nM/mg tissue and 140.17±1.8 nM/mg
tissue, respectively) and significantly lower than group 4. On days
7–30, a steep decline in groups 4 to 6 was observed (Figure 3B).
During 7, 15, and 30 days of investigation, a gradual decline in the
levels of LPO was observed in groups 5 and 6 with respect to
group 4. The level of LPO in groups 5 and 6 completely resumed
back to the control (group 1) range, whereas, despite a significant
decline in group 4 on day 30, it remained significantly higher than
the control group (group 1). The stock plot revealed that despite
the highest level of LPO on day 30, group 4 indicated maximum
depletion in the level of LPO from days 1–30, followed by group 5
and group 6 (Figure 3C).

3.3 Superoxide Dismutase Response
Non-exposed groups 1 to 3 showed relatively similar response for
the activity of SOD in testicular cells. However, a slightly lower
but stable activity was observed in group 2 with respect to group 1
(Figure 4A).

Main changes in the activity of SOD were observed in the
irradiated groups. Although, on day 1, similar activities were

recorded in all the three irradiated groups (4–6), by day 7, a clear
deviation was recorded in all three groups. The lowest SOD
activity was observed in group 4 (3.58±0.52 U/mg protein),
whereas the maximum activity was observed in group 6
(5.49±0.41 U/mg protein) on day 7. All the three exposed
groups indicated a gradual increase in the activity of SOD
from day 7 to day 30. Group 5 indicated a significantly
higher activity than group 4. Group 6 maintained a
maximum activity from day 7 to day 30. However, the SOD
activity on day 30 was still lower than that of the control (group
1) (Figure 4B). The stock plot indicated a maximum gain in the
SOD activity in group 6 followed by group 5 and group 4
(Figure 4C).

3.4 Glutathione-S-Transferase Response
Non-exposed groups 1 to 3 indicated a similar response for the
GST activity in testicular tissues. The GST activity in group 1
ranged between 21 and 28 CDNB-GSH/min/mg protein during
the period of investigation (i.e., days 1–30). On day 30, groups 2
and 3 indicated significant elevation in the activity of GST in
comparison to group 1. Although an elevated activity was
observed in groups 2 and 3 on day 30, it was still within the
control range (Figure 5A). Irradiated groups 4 to 6 showed a
distinct pattern in the activity of GST. Group 4 invariably
showed a significantly lower activity throughout the days of
investigation. On day 30, group 4 was measured with 12.07±0.54
CDNB-GSH/min/mg protein, which was at least two-folds
lower than that of group 1. The GST response in group 5
was in parallel to the response of group 4 with slight
elevation until day 15. On day 30, a significant elevation was
observed, which was recorded as 14.99±0.72 CDNB-GSH/min/

FIGURE 3 | Variation in lipid peroxidation (LPO) in non-exposed (A) and exposed groups (B). The stock plot indicates highest and lowest peroxidation levels from
day 1 to day 30 (C). The white box indicates the gain in peroxidation, whereas the black box indicates the loss in peroxidation. *p < 0.05 significance level was measured
against group 1. #p < 0.05 significance level was measured against group 4.
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mg protein. However, the GST activity in group 6 was
consistently higher during the periods of investigation (on
days 1–30). Group 6 also noticed a gradual increase in the
activity and was estimated as 18.85±0.72 CDNB-GSH/min/mg
protein on day 30 (Figure 5B). The stock plot clearly indicated a
maximum gain in the activity in group 6 followed by group 5
and group 3 (group 4C).

3.5 Glutathione Reductase
No significant variation was observed in groups 1 to 3 for the GR
response. The activity of GR in control testicular cells was noted
in the range of 22 and 27 nmol NADPH oxidized/min/mg protein
throughout the days of investigation (Figure 6A). In irradiated
groups 4 to 6, a similar response of the GR activity was observed
until day 7. In group 6, it uniquely elevated constantly from day 1

FIGURE 4 | Alteration in the activity of superoxide dismutase (SOD) in CRE/CRE-AgNP pretreated animals. (A) Non-irradiated groups. (B) Irradiated groups. (C)
Gain/loss in the activity of superoxide dismutase. *p < 0.05 significance level was measured against group 1. #p < 0.05 significance level was measured against group 4.

FIGURE 5 | Animals pretreated with CRE/CRE-AgNPs indicated differential activity of glutathione-S-reductase (GST) in non-irradiated (A) and irradiated (B)
groups. Change in activity from day 1 to day 30 was expressed in the box plot where black indicates the loss of activity and the white box indicates the gain in activity (C).
*p < 0.05 significance level was measured against group 1. #p < 0.05 significance level was measured against group 4.
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(measured weekly); however, a significant increase in the GR
activity was observed from day 15 onward. GR activity in group 6
on day 15 and day 30 was estimated as 16.59±0.62 and
18.91±0.76 nmol NADPH oxidized/min/mg protein,
respectively. Group 5 indicated similar GR response to that of
group 4, which remained significantly lower than the control

(group 1) (Figure 6B). The stock plot indicated a maximum gain
in the activity of GR in group 6 followed by group 3 (Figure 6C).

3.6 Glutathione Peroxidase Response
The response of GPx activity in testicular tissues of non-exposed
(groups 1–3) indicated a similar response. However, on day 30, a

FIGURE 6 | Activity of glutathione reductase (GR) in non-exposed (A) and exposed (B) animals pretreated with CRE/CRE-AgNPs. Gain and loss in activity is
indicated with white and black boxes, respectively (C). *p < 0.05 significance level was measured against group 1. #p < 0.05 significance level was measured against
group 4.

FIGURE 7 | Variation in the activity of glutathione peroxidase (GPx) in non-exposed (A) and exposed (B) groups based on pretreatment with CRE/CRE-AgNPs. (C)
indicating the stock plot indicating the gain/loss of activity on GPx from day 1 to day 30 of investigation. *p < 0.05 significance level was measured against group 1. #p <
0.05 significance level was measured against group 4.
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slightly higher activity in group 3 was observed, which was
recorded as 4.27±0.49 nmol/min/mg protein. However, the
GPx activity in group 1 was recorded as 3.83±0.84 nmol/min/
mg protein on day 30 (Figure 7A). In exposed groups 4 to 6, a
distinct differentiation in the GPx activity was observed. Where
the maximum activity was observed in group 6, groups 4 and 5
indicated significantly lower and invariably similar values during
all periods of investigation (i.e., days 1–30). A 50% decline in the
activity of GPx was recorded in group 4, which remained stagnant
throughout the period of investigation. Groups 5 and 6, however,
showed better tolerance against irradiation with respect to group
4. Nevertheless, comparatively group 4 showed the minimal
elevation as the days progressed from day 7 to day 30. The
maximum activity of GPx was observed in group 6 on day 30,
which was recorded as 4.05±0.19 nmol/min/mg protein; this
activity was comparable to the control (group 1) (Figure 7B).
Greatest gainer among all groups was group 6 followed by group 3
and group 5 (Figure 7C).

3.7 Catalase Response
Unlike any other antioxidant enzymes evaluated in this study, the
CAT response for non-exposed groups 1 to 3 was distinctively
different. The activity of CAT in groups 1 and 2 was similar until
day 15. However, on day 30, group 1 indicated elevation in the
activity of CAT (5.13±0.36 U/mg protein), whereas on day 30, the
activity of CAT in group 2 further declined and was recorded as
4.91±0.55 U/mg protein. Group 3 consistently indicated a
significantly higher activity of CAT than the control group
(group 1) (Figure 8A).

Irradiated groups 4 to 6 indicated significantly lower activity
of catalase on day 1 than the control group (group 1). Group 5
indicated a similar CAT response to that of group 4. There was

no significant alteration in the activity of CAT from day 1 to day
30. However, the activity of CAT in group 6 not only tolerated
irradiation better than group 4 and group 5 but also invariably
elevated until day 30. The activity of CAT in group 6 was
recorded as 4.52±0.58, 4.96±0.22, and 5.26±0.37 on day 7, day
15, and day 30, respectively. The activity of CAT in group 6
resumed back to the control range from day 7 onward
(Figure 8B). The stock plot clearly showed that group 6 was
the highest gainer of the activity of CAT, followed by group 4
and group 5 (Figure 8C).

3.8 Strength of Association Between
Variations in the Activity of Antioxidant
Enzymes
Pearson’s correlation analysis indicated strong association
between antioxidant enzymes. Strong association between
antioxidant enzymes suggested synchronization against a
common cause. LPO indicated negative correlation with all
other antioxidants investigated in this study. However, the
degree of association was still moderately strong. Among all
associations, few indicated extremely high degree of
associations, such as between GR and GST (r � 0.979), CAT
and SOD (r � 0.954), and CAT and GPx (r � 0.909) (Table 1).
Based on these observations, when a surface plot was drawn, it
clearly showed that the common variable among CAT, SOD, and
GPx was the performance of group 3 and group 6. With common
ranges, CAT and GPx revealed a similar activity around days
15–30 for group 2 and group 3. Association between CAT and
SOD does not reflect any obvious pattern; however, activities of
these antioxidants appeared to be maximum and resumed back to
control on day 30 of investigation, whereas activities of GR and

FIGURE 8 | Response of catalase (CAT) in pretreated CRE/CRE-AgNP–treated non-exposed (A) and exposed (B) animals. Groups indicating the gain/loss in
activity of catalase (C) during the duration of investigation. *p < 0.05 significance level was measured against group 1. #p < 0.05 significance level was measured against
group 4.
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GST for experimental groups 1 to 6 were strikingly similar to each
other (Figures 9A–E).

4 DISCUSSION

The ancient Indian literature describes C. borivilianum with
various names such as Bhavaprakash nighantu and Rasendra
Sarsangrah (Grover, 2021). It is largely used as an ethnic medicine
for the treatment associated with immunomodulation,
immunostimulation, and as adaptogenic (Kirtikar and Basu,
1956; Triveni 1977; Sharma et al., 2001). A study by Thakur
et al. (2007) examined this claim by administering the extracts on
Candida albicans–infected albino rats. Results indicated increase
in phagocytosis delayed-type hypersensitivity response and
neutrophil adhesion. Authors observed a higher
immunostimulant activity by C. borivilianum extract than
sapogenins. There is an interlinking mechanism behind
immunomodulation that is controlled by oxidative stress or
vice versa (Ajith et al., 2017). Likewise, radiation leads to
persistent oxidative stress that has implications with early and
late effects of radiation (Datta et al., 2012). According to a study,
nearly 40% of cancer patients receive at least 1 course of
radiotherapy (Lalani et al., 2017). This technique still harbors
both early and late side effects (Bentzen, 2006). To effectively
mitigate radiation-related side effects, interventions toward a
biological cascade must be performed in such a way that it
does not lose its beneficial impact but simultaneously regulates
its harmful effects on other tissues (Namoju et al., 2021).

This study hypothesized that if extracts of C. borivilianum
have immunomodulatory effects, it should potentially regulate
antioxidant enzymes. Therefore, an attempt was made to evaluate
the differential expression of antioxidant enzymes in response to
with and without radiation. This study also examined alterations
in the bioavailability of theC. borivilianum root extract by tagging
the extract particle with silver nanoparticles. Results indicated
distinct differentiation between groups those were irradiated and
those which were not. The study was observed for a maximum of

30 days, and the observations were made on the basis of
expressions witnessed during four intervals, that is, day 1, day
7, day 15, and day 30. In most cases on day 1, the response of
antioxidants in non-exposed groups was similar; however, in
exposed groups, CRE-treated animals in groups 5 and 6 indicated
slightly better toleration against radiation than those in group 4.
Our previous study recorded lower histological damages in
testicular architecture of those irradiated animals pretreated
with the C. borivilianum root extract (Vyas et al., 2020). Thus,
better toleration on day 1 was indicative of quicker resumption
until day 30.

Reduced glutathione is one of the most abundant non-protein
thiols and present in all mammalian tissues. A review by Bump
and Brown (1990) mentioned that radiation induces self-
destructive damages in tissues, and most of such damages
were initiated by oxidative radicals. Authors suggested that
following radiation competing reactions were very rapid, thus
requiring high concentrations of antioxidant enzymes. Under
hypoxic conditions, the availability of GSH highly affects the
radiosensitivity. Our results indicate that concentration of GSH in
testicular tissues was better from day 1 itself. Besides the increase
in the rate of GSH biosynthesis, a constant weekly elevation in the
level of GSH was evident in both CRE- and CRE-
AgNP–administered groups. The level of GSH was higher in
CRE-AgNP–administered animals, which was indicative of
higher bioavailability. It is to be noted that nanonization
provides enhanced bioavailability and therapeutic effectiveness
(Jia, 2005).

A xenobiotic substrate presenting GST activity is important in
understanding the resulting GSH level in testicular tissues. This
study noted that animals pretreated with CRE and CRE-AgNPs
responded with better resumption in the activity of GST than
irradiated animals not treated with the C. borivilianum root
extract. The activity of GST is dependent on the availability of
GSH in the testicular tissues. Therefore, observations for the
group-wise activity of GST are completely justified with the level
of GSH observed in CRE- and CRE-AgNP–treated animals.
Likewise, GR is an important enzyme for recycling GSH from

TABLE 1 | Strength of association between variables for individual antioxidant enzymes.
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glutathione disulphide (GSSG) (Deponte, 2013). The activity of
GR can effectively regulate the level of GSH in the testicular cells.
Results of this study indicate that the activity of GR in exposed
groups was variably dependent on the type of treatment given
before irradiation. Exposed animals treated with CRE-AgNPs
indicated maximum recovery on day 30 of investigation followed
by CRE treatment and non-treatment. The maximum level of
GSH in CRE-AgNP–treated animals is justified as the activity of
GR was also the highest among other groups.

Another important enzyme in GSH recycling and
simultaneous reduction of lipid hydroperoxides and hydrogen
peroxides is GPx. The activity of GPx decides production of
GSSG, a precursor to GSH (Bhabak and Mugesh, 2010;
Muthukumar et al., 2011). For cells to have abundant GSH,
the presence of GSSG and GR is critical. This study indicates
the reciprocal activity of GPx. CRE-treated animals indicated a
significantly higher activity of GPx than exposed non–CRE- or
CRE-AgNP–treated animals. The maximum activity of GPx was
observed in exposed animals, pretreated with CRE-AgNPs, which

corresponded to the availability of GSH in testicular cells. Despite
distinct differences in the response of CRE-treated animals
following irradiation, there was a similar response of
glutathione-related enzymes in non-exposed groups. It was
confirmed that the administration of the C. borivilianum root
extract maintains homeostasis of GSH and GSH-related enzymes.
In response to the gamma radiation, a substantial increase in the
level of GSH and related enzymes, that is, GST, GR, and GPx,
were observed, with respect to the sham control.

Lipid peroxidation is a process where lipid molecules lose
electrons to free radicals, leading to further downstream
reaction(s) causing damage to the plasma membrane. A
detailed study by Kiang et al. (2012) proposed that LPO is one
of the main causes of cell death following ionizing irradiation.
Our study indicated that animals which were administered with
CRE and CRE-AgNPs had lower LPO levels than irradiated
animals not treated with CRE. A study by Govindarajan et al.
(2005) reported a lower level of LPO inmale Sprague–Drawley rat
administration with the C. borivilianum extract. A gradual

FIGURE 9 | Surface plot indicating alteration in the activity of antioxidants from day 1 to day 30 of most cause-and-effect–related antioxidants. Irrespective of
individual numeric values, different colors indicate group-wise distribution of variation. Red color indicates the lowest and purple the highest. The alteration in the activity
of SOD is the highest compared to the rest of the four antioxidant responses. Among all, GPx showed the lowest variation, whereas GR and GST indicated a similar
response.
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decline in the level of LPO was observed in this study following
day 1 to day 30. However, it was striking that irradiated animals
those that were not pretreated with the C. borivilianum root
extract also rapidly revived, indicating the maximum depletion in
LPO levels following irradiation. Previous studies have noted
rapid adjustment of antioxidants following a short-term exposure
to radiation (Borek, 2004; Okunieff et al., 2009).

Superoxide dismutase is an important enzyme for dismutation
of superoxide radicals. Isoforms of SODs such as EcSOD and
MnSOD have been studied widely for their antitumor and redox
homeostasis effects (Griess et al., 2017; Ighodaro and Akinloye,
2018). SOD is considered radioprotectant. If SOD is injected
intravenously hours before whole body radiation, it can
significantly reduce the impact of irradiation (Petkau and
Chelack, 19784). Post-irradiation, the activity of SOD can
decide the amount of damage triggered through radiation.
This study noted a distinct level of activity between exposed
animals pretreated with CRE, CRE-AgNPs, and those without
treatment. This study also indicated the lowest activity in
radiation-alone groups, whereas animals pretreated with CRE-
AgNPs indicated a maximum activity. Animals pretreated with
CRE also revealed better recovery through all days of
investigation. A study by Giribabu et al. (2014) reported that
activity of SOD increased and resumed back to normal in CRE-
treated diabetic rats with proven depletion in the activity of SOD.
Nonetheless, in this study, the activity of SOD did not resume
back to the control range, except for CRE-AgNP–treated animals.
Animals pretreated only with CRE remained significantly lower
than control animals. The difference in observation of CRE-led
SOD resumption in diabetic rats and irradiated mice could be due
to the type of oxidative stress generated by individual conditions.
Where oxidative stress in diabetes is generated through metabolic
abnormalities and mitochondrial overproduction of superoxide
(Giacco and Broeniee, 2010), ionizing radiation causes radiolysis
of water molecules, leading to extreme surge of superoxide
radicals (Datta et al., 2012).

Catalase is not only the most common endogenous antioxidant
enzyme in living cells but also has the highest turnover numbers. A
study by Xiao et al. (2015) estimated radiation-induced apoptosis
in hematopoietic stem cells and progenitor cells. Authors revealed
that CAT treatment markedly inhibits irradiation-induced
apoptosis in hematopoietic stem cells. Previous studies have
noted that overexpression of CAT can protect tissues against
oxidative insults (Shen et al., 2012; Liao et al., 2013; Miao et al.,
2013). The present study is in accordance with the above reports,
and results indicate a significant increase in the level of CAT in
those animals pretreated with CRE-AgNPs. However, CRE-treated
animals responded similar to that of the irradiation-alone group.
Unlike other antioxidants, administration of CRE alone was not
significantly effective in increasing the activity of CAT following
irradiation. It was not understood why the efficacy of CRE was
lower than that of CRE-AgNPs, and it was hypothesized that
AgNPs or the size of CRE particles may have contributed in
altering the CAT expression.

Oxidative stress and antioxidant enzymes have significant
roles in the functioning of reproductive system. Testicular
tissues consist of various nursing cells, germ cells, and

spermatozoa; the functional performance of which defines
fertility success. The complex process of spermatogenesis
requires adequate number of antioxidants to protect against
sperm dysfunction. According to a study, nearly 30–40% of
infertile men have elevated levels of ROS in their reproductive
system (Lanzafame et al., 2009). Another study by Maiorion and
Ursini (2002) explained that ROS production and depletion of
glutathione in the germ cell are prerequisites for functional
maturation and capacitation of spermatozoa. They further
stressed that the role of hydrogen peroxides, selenium, and
oxidation of protein sulfhydryl groups during the last stage of
spermatogenesis is extremely crucial.

Irradiation affects the process of spermatogenesis greatly, and
it causes azoospermia in those who receive higher doses (Okada
and Fujisawa, 2019). Although sperm count resumes back to
normal, it may take as long as 2 years following irradiation
(Meistrich and van Beek, 1990). This study explored cause and
effect variation between each antioxidant investigated, and
revealed that antioxidants such as CAT and SOD, GR and
GST, and CAT and GPx are extremely associated. Though
association between GR and GST is understood, as both
antioxidants are complementary to the recirculation of GSH,
strength of association between CAT-SOD and CAT-GPx is
noteworthy. Many studies have reported that SOD, GPx, and
CAT are the main endogenous enzymatic defense systems in all
aerobic cells (Halliwell and Gutteridge, 2007; Fisher-Wellman
et al., 2009). A previous study indicated that these three
antioxidants provide protection by scavenging superoxide
directly (Milic et al., 2009). Although statistically these three
antioxidants are likely to be interconnected, the surface plot
showed a pattern in the activities of enzymes in response to
two distinct variables, that is, CRE/CRE-AgNPs and irradiation.
This indicated highest alteration in SOD followed by CAT and
GPx. It justifies the general antioxidant protocol, which describes
that SODs convert superoxide into H2O2 and molecular oxygen,
whereas CAT and GPx convert H2O2 into water (Weydert and
Cullen, 2010). Therefore, this study confirmed a coordinated
elevation in the activity of antioxidants following irradiation in
those animals treated with CRE and CRE-AgNPs.

Thus, this study shows that CRE-AgNPs have an edge over the
C. borivilianum root extract alone against irradiation exposure.We
used a comparatively low dose of the C. borivilianum root extract
and CB-AgNPs in this study and received some unanticipated
results from animals administered with CRE-AgNPs. The overall
performance of CRE-AgNPs was equivalent to results of earlier
studies which used daily doses as high as 800 mg/kg body weight.
We are aware that nano-molecules have greater bioavailability and
are able to cross cellular barriers without being metabolically inert
or excreted. With CRE-AgNP mice exposed to irradiation, results
showed improved retaliation and the rate of improvement through
period of investigations. Therefore, biosynthesis of nanoparticles
not only increases their efficacy and bioavailability but also reduces
the dose required; thereby, it can also be helpful in replenishing the
loss of natural biodiversity of C. borivilianum. Exposure to
radiations either ionizing or non-ionizing may have several
harmful effects on the brain and the reproductive system
(Kesari et al., 2013; Kesari et al., 2018). However, the use of
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plant-derived biomolecules or phytochemicals especially from
Indian ethnomedicines may play a major role in the treatment
of severe diseases (Kesari et al., 2020; Fatima et al., 2021) which
may be caused by mutagenic factors (chemical, physical, and
biological). Moreover, this study not only establishes CRE and
CRE-AgNPs as radioprotectors but also opens the door for more
detailed research on CRE-AgNPs and whether they can be
exploited for pharmacological properties like antioxidant,
antidiabetic, antitumor, or aphrodisiac.

Furthermore, the present study confirmed that antioxidant
enzymes in non-irradiated groups mostly remained under the
control range. However, after irradiation, these enzymes
performed better against induced oxidative stress in
testicular tissues of those animals treated with CRE or CRE-
AgNPs. In irradiated groups, a slightly better toleration on day
1 was observed. By day 30, most antioxidants elevated
significantly as compared to day 1. However, the elevation
was extremely maximum in those animals treated with CRE-
AgNPs. Although CRE has differential expression of
antioxidants post-irradiation, the effects were limited.
Nonetheless, it can be concluded affirmatively that CRE-
AgNPs have distinct overexpression of antioxidants
following irradiation-induced oxidative stress.
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