Data-Driven Quest for Two-Dimensional Non-van der Waals Materials

Rico Friedrich,* Mahdi Ghorbani-Asl, Stefano Curtarolo, and Arkady V. Krasheninnikov

Abstract: Two-dimensional (2D) materials are frequently associated with the sheets forming bulk layered compounds bonded by van der Waals (vdW) forces. The anisotropy and weak interaction between the sheets have also been the main criteria in the computational search for new 2D systems, predicting ~2000 exfoliable compounds. However, some representatives of a new type of non-vdW 2D systems, without layered 3D analogues, were recently manufactured. For this novel materials class, data-driven design principles are still missing. Here, we outline a set of 8 rigorously screening criteria for exfoliability to be employed on large materials databases. These筛选 criteria in the computational search for new 2D systems, predicting thousands of vdW 2D systems and were used to set up computational databases. Two-dimensional (2D) systems can exist, gave rise to the discovery of many 2D materials with unique superconducting, electronic, magnetic, and topological properties. In addition to being testbeds for studying the behavior of systems in reduced dimensions, 2D materials hold great promise for various applications in optoelectronics, catalysis, and the energy sector. The research effort has been mainly concentrated on the systems which have bulk counterparts representing anisotropic crystals with layers held together by van der Waals (vdW) forces, with the most prominent example being graphene and graphite. The weak interlayer interaction leads to a natural structural separation of the 2D subunits in the crystals, therefore making the mechanical or liquid-phase exfoliation possible.

At the same time, the layered structure allows developing rigorous screening criteria for exfoliablility to be employed on large materials databases—outlining data-driven high-throughput investigations as an ideal tool for the discovery and design of 2D compounds. Such studies predicted several thousands of vdW 2D systems and were used to set up computational databases.

Unexpectedly, a new direction in the research on 2D systems was opened in 2018, after the experimental realization of atomically thin sheets from non-vdW bonded compounds by a special chemical exfoliation process. The first representatives of these non-vdW 2D materials were hematene and ilmenene obtained from the earth-abundant ores hematite (α-Fe₂O₃) and ilmenite (FeTiO₃), followed by other systems derived from chromite (FeCr₂O₄), magnetite (Fe₃O₄), pyrite (FeS₂), chromium sulfide, manganese selenide (α-MnSe₂), metal diborides, borocarbides, and diamond-like germanium (α-Ge).

While traditional vdW compounds have chemically saturated bonds at the surface of 2D subunits, the aforementioned materials show qualitatively new features. As they are obtained from nonlayered systems, they exhibit dangling bonds and surface states, making them more tunable by adsorbates. They have already shown great potential for electronic and optoelectronic applications and by exhibiting enhanced photocatalytic activity for water splitting and photoconductivity. Moreover, they may also offer a versatile playground for magnetism and spintronics in reduced dimensions. The first studies mostly focusing on hematene indicate, for instance, tunable magnetic ordering, as well as spin canting.

Although there have been significant experimental efforts to generalize recipes for their synthesis, computational...
design principles based on data-driven concepts for outlining non-vdW 2D materials are still missing. It is obvious that the descriptors developed for vdW-bonded systems are not applicable, since they rely on identifying layered subunits in the structure.

Here, we resolve this issue by screening the AFLOW database using the structure of the previously realized representatives as an input and identify 28 non-vdW potentially synthesizable 2D materials. We further show that they exhibit a vast range of promising electronic, optical, and magnetic properties, suggesting in particular spintronic applications. The oxidation state of the cations at the surface of the 2D slab is outlined as a key quantity determining the easy exfoliation of the systems, thus providing an enabling descriptor for the discovery of novel 2D materials.

OUTLINING MORE CANDIDATES

Hematite and ilmenite, Figure 1a,b—the first non-vdW materials with 2D analogues can be used as a template for screening the AFLOW-ICSD database containing ~60,000 compounds, Figure 1c. This library primarily incorporates materials realized experimentally. When closely investigating the structure of the hematite and ilmenite prototypes, one recognizes that the Fe−O bond lengths are strongly anisotropic. As indicated in Figure 1a, for hematite, there are three long (weak) bonds of 2.125 Å and three shorter (stronger) ones of 1.975 Å highlighted in magenta and green, respectively, for each Fe close to the exfoliation planes. When slicing the structure between the Fe cations as indicated by the blue dashed line, one only cuts through the weak (long) bonds. For any other surface termination, one would need to break stronger bonds. For FeTiO$_3$, the situation is similar exhibiting Fe−O bonds of 2.246 and 2.103 Å (see Figure 1b).

We believe that this natural separation of the bond strengths together with electrostatic considerations is key to the exfoliability of these materials. It is a characteristic of the outlined prototypes and thus reveals their particular suitability for the emergence of non-vdW 2D systems. (The Ti−O bond lengths in FeTiO$_3$ are also anisotropic amounting to 1.944 and 2.078 Å. Ti is, however, not the terminating ion at the surface of ilmenene as found consistently by experiment and calculations. This is related to its higher oxidation state (Ti$^{4+}$ vs Fe$^{2+}$), making this configuration energetically unfavorable as discussed in detail in the text below.) We thus look for other systems with the same structural prototype. Two structures are regarded to have the same prototype if their space group, Pearson symbol, and Wyckoff positions match, which are indicated for Fe$_2$O$_3$ (corundum) and FeTiO$_3$ in Figure 1.

The search yields the 8 binary and 20 ternary oxides (excluding P, As, and Sb, as these are not typical cation species) listed in Table 1. (Structural data are retrieved via the AFLOW APIs and web interfaces as well as the library of crystallographic prototypes.) We decided to focus on oxides since these are abundant materials and typically of high interest for technological applications. For each composition, the listed frequency of occurrence in the database (in brackets after the space group) gives a first indication how common the system is. These candidates are now investigated for the formation of the corresponding 2D sheets perpendicular to the [001] direction called [001] facets) in analogy to the template systems. This facet has been outlined as thermodynamically favorable for hematite. Here, the monolayer structures according to refs 29 and 30 and Figure 1a,b are considered, which are referred to as 2D systems in the following. This limit provides a first indication how common the system is.

Table 1. Binary and Ternary Compositions with the Same Structures as Hematite and Ilmenite

<table>
<thead>
<tr>
<th>composition</th>
<th>mag.</th>
<th>composition</th>
<th>mag.</th>
<th>composition</th>
<th>mag.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al$_2$O$_3$ (72)</td>
<td>no</td>
<td>MgTiO$_3$ (28)</td>
<td>no</td>
<td>CaSnO$_3$ (1)</td>
<td>no</td>
</tr>
<tr>
<td>Fe$_2$O$_3$ (63)</td>
<td>yes</td>
<td>FeTiO$_3$ (21)</td>
<td>yes</td>
<td>CdGeO$_3$ (1)</td>
<td>no</td>
</tr>
<tr>
<td>Cr$_2$O$_3$ (52)</td>
<td>yes</td>
<td>GeMgO$_3$ (7)</td>
<td>no</td>
<td>CdTiO$_3$ (1)</td>
<td>no</td>
</tr>
<tr>
<td>V$_2$O$_3$ (20)</td>
<td>yes</td>
<td>MgSiO$_3$ (7)</td>
<td>no</td>
<td>CoMnO$_3$ (1)</td>
<td>yes</td>
</tr>
<tr>
<td>Ti$_2$O$_3$ (15)</td>
<td>yes</td>
<td>GeMnO$_3$ (6)</td>
<td>yes</td>
<td>CaV$_2$O$_7$ (1)</td>
<td>no</td>
</tr>
<tr>
<td>Rh$_2$O$_3$ (4)</td>
<td>no</td>
<td>MnTiO$_3$ (5)</td>
<td>yes</td>
<td>GeZnO$_3$ (1)</td>
<td>no</td>
</tr>
<tr>
<td>Ga$_2$O$_3$ (3)</td>
<td>no</td>
<td>NiTiO$_3$ (5)</td>
<td>yes</td>
<td>MnNiO$_3$ (1)</td>
<td>yes</td>
</tr>
<tr>
<td>In$_2$O$_3$ (3)</td>
<td>no</td>
<td>AgBO$_3$ (2)</td>
<td>no</td>
<td>SiZnO$_3$ (1)</td>
<td>no</td>
</tr>
<tr>
<td>Bi$_2$O$_3$ (2)</td>
<td>yes</td>
<td>SnZnO$_3$ (1)</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoTiO$_3$ (2)</td>
<td>yes</td>
<td>TiZnO$_3$ (1)</td>
<td>no</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

“Binary compositions with the same structural prototype as hematite ($α$-Fe$_2$O$_3$) and ternary compositions with the same structural prototype as ilmenite (FeTiO$_3$) from the AFLOW-ICSD database. The numbers in brackets after the compound formulas of each system indicate the frequency of occurrence in the database. Whether the structure was found to exhibit magnetic moments is also indicated.”

AFLOW APIs and web interfaces as well as the library of crystallographic prototypes. We decided to focus on oxides since these are abundant materials and typically of high interest for technological applications. For each composition, the listed frequency of occurrence in the database (in brackets after the formula) gives a first indication how common the system is. These candidates are now investigated for the formation of the corresponding 2D sheets perpendicular to the [001] direction (called [001] facets) in analogy to the template systems. This facet has been outlined as thermodynamically favorable for hematite. Here, the monolayer structures according to refs 29 and 30 and Figure 1a,b are considered, which are referred to as 2D systems in the following. This limit provides...
an upper energetic bound to obtain 2D sheets from a given material.30

A recent study in ref 57 demonstrated that the relation between the in-plane tearing energy and the out-of-plane peeling energy controls the length to thickness aspect ratio of liquid-exfoliated nanosheets, implying that layered materials with large mechanical anisotropy prefer to yield nanosheets with large aspect ratios. Similarly, one can expect that nonlayered materials with anisotropic bonding schemes can also be exfoliated into nonlayered quasi-2D materials according to this assessment.33,38 Such an exfoliation process might also lead to surface passivation due to the liquid environment.32

EXFOLIATION ENERGIES

The exfoliation energies ΔE_{exf} are computed as the energy difference between relaxed 2D and bulk systems in accordance with ref 59. This work demonstrated the strict equivalence of the binding energy between facets/layers in the bulk and the exfoliation energy from the surface of the material. The results are presented in Figure 2. They were obtained by relaxing both the ionic positions and the cell shape of the 2D sheets. In Figures S1 and S2, a comparison of the calculated exfoliation energies also including results from different functionals as well as from relaxing different degrees of freedom of the systems is presented showing that these 2D materials primarily gain energy due to the ionic relaxation (see also the paragraphs on structural properties below). For vdW bonded compounds, relaxations of 2D substructures could be omitted when calculating inter-layer binding energies,25 which is, however, not a good approximation for the present non-vdW systems. Note that, for the ternaries (Figure 2b), either of the two cation species can be at the surface of the 2D slabs. The graph includes the results for the energetically more stable termination, and the respective terminating element is underlined at the bottom axis. A plot comparing the exfoliation energies obtained with the different terminations is given in Figure S3.

The values are presented for the two DFT methodologies, PBE+U and SCAN. The former is a standard approach for transition metal based systems, which has been used in several previous studies on hematene.25,40,44 The latter is a more sophisticated method, which has been demonstrated to provide accurate structures and energies for diversely bonded systems.60 Both approximations show similar trends and magnitudes of the exfoliation energy with SCAN generally giving higher values. As a reference, the ΔE_{exf} of graphene—well-known to be exfoliable—which is found to be \sim20 meV/Å2 by both theory and experiment,25,58,61 is also indicated. While for all binary systems in Figure 2a the exfoliation energy is considerably higher than for graphene, the value of 140 meV/Å2 computed for hematene with PBE+U nicely fits to previously reported values (after accounting for the different normalization by a factor of 2),40,44 employing slightly different computational parameters. Considering that hematene has been realized experimentally, all other systems are also likely exfoliable with Al$_2$O$_3$ being a potential exception. The systems with the lowest calculated exfoliation energies are close to the limit deemed “potentially exfoliable” (upper bound for ΔE_{exf} of 130 meV/Å2) in ref 25, albeit in this study vdW bonded materials were considered. A limit of \sim200 meV/atom for exfoliability has also been proposed,7 which corresponds to about 2/3 of the value calculated for hematene.

As evident from Figure 2b, the ternaries show in general smaller exfoliation energies in part even close to the graphene reference, suggesting the feasibility of mechanical peel-off. Importantly, the value becomes particularly small when the element at the surface of the slab is in a low oxidation state as indicated most prominently by AgBiO$_3$, BiNaO$_3$, and CuVO$_3$, where the surface Ag, Na, and Cu are in state +1. This pattern can be understood from the fact that smaller surface charges lead to weaker Coulomb-like interactions between facets. Also Zn- and Fe-termination is energetically favorable, while Mg-termination leads to the highest ΔE_{exf} among the investigated ternaries, albeit smaller than for hematene, for which exfoliation was achieved experimentally. This general behavior has a strong effect on the magnetic properties, since it results in the magnetic ions Mn$^{2+}$, Fe$^{2+}$, Co$^{2+}$, and Ni$^{2+}$ terminating the 2D materials.

In conclusion, when comparing the results for the whole set, the exfoliation energies vary by about an order of magnitude: The highest value is obtained for Al$_2$O$_3$ as 200 (250) meV/Å2 from PBE+U (SCAN), whereas the lowest is calculated for AgBiO$_3$ as 18 (34) meV/Å2. Thus, there is a pronounced difference in the (mechanical) effort to exfoliate these systems.

Figure 2. Exfoliation energies. Exfoliation energies of investigated (a) binary and (b) ternary systems for two different functionals. As a reference, the exfoliation energy of graphene,25,58 is indicated by the dashed horizontal black lines. For the ternaries, the data for the slabs with the energetically favorable termination are plotted, and the terminating element is underlined at the bottom axis. The inset indicates the two possible terminations. In the case of GeMnO$_3$ (marked by “*”), PBE+U favors Mn termination, while for SCAN Ge termination is preferred. Note that, for Al$_2$O$_3$, BiNaO$_3$, GeMgO$_3$, and MgSiO$_3$, PBE+U reduces to plain PBE. Data points for 2D systems realized experimentally,29,30 are highlighted. The dashed lines connecting the data points are visual guides.
appears to have a very small surface energy but is strictly deexfoliation and the reconstruction of the obtained sheets condition. The bonding between the atoms after the previously found structures, conreoptimized. In each case, the systems relax back to the also suggest exfoliability, this is a necessary, but not su
mechanism of this behavior can be understood fromFigure 3a,b. In order to compensate for the dangling bonds created at
y modiﬁcation into 2D
structural modiﬁcations for (c) binary and (d) ternary non-vdW materials upon exfoliation. The
 expansion correlates well with a corresponding vertical contraction. For Rh2O3, the structure compensates for the (smaller) vertical contraction by a twist of the coordination polyhedra rather than a lateral expansion.

ELECTRONIC PROPERTIES

A detailed presentation of all band structures and densities of states is located in the Supporting Information (Figures S3 to S32), and here the main focus shall be on the band gaps. Figure 4 shows the calculated band gap energies E_{gap} for all bulk and 2D systems. While it is well-known that DFT—even in the employed PBE+U scheme—in general has problems predicting absolute gap values, the overall trends and differences between similar systems are often still reliable.

We thus believe that the observed distribution of the gaps over a wide range (from below 1 eV to almost 6 eV) is noteworthy, pointing to the potential usefulness of these systems in, e.g., optoelectronics. For Al2O3, Cr2O3, Fe2O3, Rh2O3, and MgSiO3, the 2D gap is considerably smaller than that in the bulk parent system, which can be assigned to the emergence of surface states in the gap upon exfoliation. For the other systems, however, the two gaps are similar or the trend is reversed; i.e., the 2D gap is signiﬁcantly larger than the bulk one as observed for V2O3. This is likely associated with the strong structural relaxation described earlier. When the outer cations relax toward the planes of oxygen anions, Figure 3a,b, the electronic interaction is intensified, leading to larger level splittings and thus an opening of the gap. This interpretation is corroborated by the fact that for these three systems according to Figure 3d a particularly large out-of-plane contraction is found.

It shall also be highlighted that interesting linear band crossings, i.e., Dirac-like points, are observed in the band structures of 2D AgBiO3 and BiNaO3 at the high-symmetry K-point (see Figures S13 and S14), warranting further
investigations on the potential topological nature of these systems and other non-vdW 2D materials.

■ MAGNETISM

These mainly transition metal based 2D systems are especially interesting in terms of their magnetic properties as already reported for hematite and ilmenene.29,30 Table 1 also indicates for which of the bulk parent systems a finite magnetic moment is reported in the AFLOW database. Hence, 4 (7) of 8 (20) binary (ternary) systems are found to be magnetic. While the standard workflow of AFLOW might be biased toward ferromagnetic (FM) configurations with small magnetic moments, we have further investigated the preferred magnetic ordering according to the algorithm developed within the coordination corrected enthalpies (CCE) method67,68 (see Methods section for details). This ansatz reliably finds the antiferromagnetic (AFM) configurations of hematite and hematene reported previously.40 Note that, for the 2D systems, the size of the surface moments (outer moments) is generally not equal to the ones within the slab (inner moments), and hence the AFM configuration might have a small net moment. This is particularly evident for ternary systems with two different magnetic ions such as CoMnO₃ and MnNiO₃. The spin configurations found are indicated in Figure 5a−e, and additional results including the energy difference ΔE = E_{AFM} − E_{FM} between the lowest energy AFM and FM ordering and magnetic moments also including bulk reference data are summarized in Table 2. Results for SCAN are included in Section VI in the Supporting Information. The 2D materials are primarily AFM with the exception of Cr₂O₃, which becomes FM (Figure 5a) upon confinement to 2D as noted previously, albeit for oxygen terminated slabs.46 For Fe₂O₃, the...
moments of the inner ions are antialigned to the ones at the bottom and top, Figure 5b. On the contrary, for Ti$_2$O$_3$ and V$_2$O$_3$ also the inner moments show AFM ordering, resulting in the top and bottom moments being antialigned (Figure 5c). For ternaries, only two types of magnetic configurations are observed (Figures 5d,e). If two magnetic species are present as for CoMn$_2$O$_4$ and MnNiO$_3$, the inner moments are AFM to the outer ones. For the other cases with only one magnetic species, the spins at the top and bottom are AFM. The surface moments generally reduce by up to ∼0.2 μ_B when compared to their bulk references. The only exception is Cr$_2$O$_3$, for which they are slightly enhanced.

Even with most systems being AFM, the preferred termination of the 2D materials by the species in the lower oxidation state causes the magnetic ions of the ternary systems, i.e., Mn$^{2+}$, Fe$^{2+}$, Co$^{2+}$, and Ni$^{2+}$, to be at the surface. This outlines an ideal playground for spintronics since the spin polarization at surfaces can be accessed by techniques such as spin-polarized scanning tunneling microscopy (STM) and tuned by, e.g., adsorbates. While the 2D systems themselves are found to be insulating, it has already been demonstrated that, due to weak interactions, the electronic and magnetic properties of hematene were well preserved on Au(111)—a prototypical substrate in surface science.

To underscore this point, Figure 5f–k presents the surface spin polarization on an isosurface of the charge density for CoTiO$_3$, GeMn$_2$O$_4$, and MnTiO$_3$. We decided to use the total spin polarization on an isosurface of the charge density for STM, outlines an ideal playground for spintronics since the spin energy interval (as sampled by STM). For this, we have strongly spin-polarized and not just a part of it within a certain energy unit, and absolute magnetic moments for the inner and outer magnetic ions of the slab in μ_B for the bulk and corresponding [001] facets. For ternaries, the A element is the first cation species in the formula while the B element corresponds to the second. The terminating elements of the slabs (outer ions) are underlined.

Table 2. Magnetic Properties

<table>
<thead>
<tr>
<th>formula</th>
<th>mag. order type</th>
<th>ΔE</th>
<th>μ_{bulk}</th>
<th>μ_{2D}</th>
<th>μ_{inner}</th>
<th>μ_{outer}</th>
<th>formula</th>
<th>mag. order type</th>
<th>ΔE</th>
<th>μ_{bulk}</th>
<th>μ_{2D}</th>
<th>μ_{inner}</th>
<th>$\mu_{\text{outer}}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr$_2$O$_3$</td>
<td>AFM</td>
<td>FM</td>
<td>-0.044</td>
<td>0.013</td>
<td>2.91</td>
<td>2.97</td>
<td>3.04</td>
<td>CoMn$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.024</td>
<td>-0.062</td>
<td>2.77</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.489</td>
<td>-0.479</td>
<td>4.18</td>
<td>4.20</td>
<td>4.01</td>
<td>CoTiO$_3$</td>
<td>FM</td>
<td>FM</td>
<td>0.004</td>
<td>-0.111</td>
<td>2.79</td>
</tr>
<tr>
<td>Ti$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.893</td>
<td>-0.984</td>
<td>0.87</td>
<td>0.89</td>
<td>0.74</td>
<td>FeTiO$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>0.003</td>
<td>-0.007</td>
<td>3.72</td>
</tr>
<tr>
<td>V$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.013</td>
<td>-0.090</td>
<td>1.83</td>
<td>1.84</td>
<td>1.67</td>
<td>GeMn$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.041</td>
<td>-0.014</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.054</td>
<td>-0.147</td>
<td>3.07</td>
<td>1.73</td>
<td>3.13</td>
<td>MnNiO$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>0.001</td>
<td>-0.018</td>
<td>4.60</td>
</tr>
</tbody>
</table>

†Energetically preferred magnetic ordering type, energy difference $\Delta E = E_{AFM} - E_{FM}$ between lowest energy AFM and FM ordering in eV/formula unit, and absolute magnetic moments for the inner and outer magnetic ions of the slab in μ_B for the bulk and corresponding [001] facets. For ternaries, the A element is the first cation species in the formula while the B element corresponds to the second. The terminating elements of the slabs (outer ions) are underlined.

CONCLUSIONS

We have outlined a new set of non-vdW 2D materials by employing data-driven concepts and extensive calculations. By filtering the AFLOW-ICSD database according to the structural prototype of the two first systems realized experimentally, we have obtained 8 binary and 20 ternary candidates. The oxidation number of the cations at the surface of the 2D slab is identified as a suitable descriptor for exfoliability, i.e., indicating easy exfoliation in the case of a low oxidation state—a principle of likely high value for future 2D materials discovery. In terms of the structure, the 2D systems show a strong vertical contraction and lateral expansion as compared to the bulk parents. The band gaps are distributed over a large range, and potential topological features are exhibited by several candidates. The magnetic properties are especially appealing: while most spin-polarized systems show AFM ordering, the magnetic ions are at the surface, which leads to a very diverse set of surface spin polarizations, foreshadowing potential applications in spintronics. Eventually, surface functionalization by appropriate molecular adsorbates can be a fruitful future direction to selectively enhance the properties of the outlined compounds. We thus anticipate that our study will prove useful for the discovery of new non-vdW 2D systems and will unravel the potential of this class of novel materials.

METHODS

The ab initio calculations for the exchange-correlation functionals LDA, PBE, SCAN, and PBE+U74–76 are performed with AFLOW77,78 and the Vienna Ab-initio Simulation Package (VASP)79–81 with settings according to the AFLOW standard80 and the internal VASP precision set to ACCURATE. For calculations with SCAN, projector-augmented-wave (PAW) pseudopotentials 82 of VASP version 5.4 are used, and nonspherical contributions to the gradient of the density in the PAW spheres are explicitly included for SCAN and PBE+U. The [001] monolayer 2D facets are constructed from the bulk standard conventional unit cell with the respective AFLOW commands,83 resulting in structures with 10 atoms, and at least 20 Å of vacuum perpendicular to the slabs are included. For the facets, both the ionic positions and the cell shape are allowed to relax unless stated otherwise. The AFLOW internal automatic determination of k-point sets is used, and for the calculations of the 2D facets, the setting for the number of k-points per reciprocal atom is reduced to 1000, resulting in Γ-centered 10 × 10 × 1 grids.

Nano Letters

pubs.acs.org/NanoLett

Letter

Table 2. Magnetic Properties

<table>
<thead>
<tr>
<th>formula</th>
<th>mag. order type</th>
<th>ΔE</th>
<th>μ_{bulk}</th>
<th>μ_{2D}</th>
<th>μ_{inner}</th>
<th>μ_{outer}</th>
<th>formula</th>
<th>mag. order type</th>
<th>ΔE</th>
<th>μ_{bulk}</th>
<th>μ_{2D}</th>
<th>μ_{inner}</th>
<th>μ_{outer}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr$_2$O$_3$</td>
<td>AFM</td>
<td>FM</td>
<td>-0.044</td>
<td>0.013</td>
<td>2.91</td>
<td>2.97</td>
<td>3.04</td>
<td>CoMn$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.024</td>
<td>-0.062</td>
<td>2.77</td>
</tr>
<tr>
<td>Fe$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.489</td>
<td>-0.479</td>
<td>4.18</td>
<td>4.20</td>
<td>4.01</td>
<td>CoTiO$_3$</td>
<td>FM</td>
<td>FM</td>
<td>0.004</td>
<td>-0.111</td>
<td>2.79</td>
</tr>
<tr>
<td>Ti$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.893</td>
<td>-0.984</td>
<td>0.87</td>
<td>0.89</td>
<td>0.74</td>
<td>FeTiO$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>0.003</td>
<td>-0.007</td>
<td>3.72</td>
</tr>
<tr>
<td>V$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.013</td>
<td>-0.090</td>
<td>1.83</td>
<td>1.84</td>
<td>1.67</td>
<td>GeMn$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.041</td>
<td>-0.014</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn$_2$O$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.054</td>
<td>-0.147</td>
<td>3.07</td>
<td>1.73</td>
<td>3.13</td>
<td>MnNiO$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>0.001</td>
<td>-0.018</td>
<td>4.60</td>
</tr>
<tr>
<td>MnTiO$_3$</td>
<td>AFM</td>
<td>AFM</td>
<td>-0.027</td>
<td>-0.018</td>
<td>4.60</td>
<td>0.02</td>
<td>0.00</td>
<td>4.55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

†Energetically preferred magnetic ordering type, energy difference $\Delta E = E_{AFM} - E_{FM}$ between lowest energy AFM and FM ordering in eV/formula unit, and absolute magnetic moments for the inner and outer magnetic ions of the slab in μ_B for the bulk and corresponding [001] facets. For ternaries, the A element is the first cation species in the formula while the B element corresponds to the second. The terminating elements of the slabs (outer ions) are underlined.
The bulk and 2D candidate systems containing potentially magnetic elements such as Ti, V, Cr, Mn, Fe, Co, Ni, and Rh are rigorously checked for magnetism, using the algorithm developed within the CCE method,\(^{67,68}\) i.e., investigating all possible FM and AFM configurations in the structural unit cell for five different sizes of induced magnetic moments each. The analysis is only applied to other systems when the standard workflow of AFLOW\(^{69}\) resulted in finite magnetic moments after the relaxation. Ferrimagnetic configurations, i.e., having one moment antialigned to the other three in the unit cell, are only checked for the bulk binary systems but never resulted in the lowest energy configuration; hence, they are not considered for the 2D facets and ternary systems. In each case, the lowest energy magnetic state is used for the further calculations.

The exfoliation energy is computed as

\[
\Delta E_{\text{exf}} = \frac{E_{\text{slab}} - E_{\text{bulk}}}{A}
\]

(1)

where \(E_{\text{slab}}\) and \(E_{\text{bulk}}\) indicate the total energies of the relaxed 2D material and bulk, respectively, and \(A\) is the in-plane surface area according to the relaxed bulk unit cell. As pointed out in ref 59, the exfoliation energy from the surface of the material is exactly equal to the binding energy between layers/facets in the bulk.

The spin polarization is defined as

\[P = \frac{n_1 - n_\uparrow}{n_1 + n_\uparrow} \]

(2)

where \(n_1\) and \(n_\uparrow\) correspond to up spin and down spin densities, respectively. For the relaxed 2D systems, a static electronic calculation on \(2 \times 2\) supercells was carried out. FM and AFM in-plane magnetic ordering was considered with the size of the magnetic moments induced according to the lowest energy magnetic configuration found for the structural unit cell. In each case, due to the weak in-plane magnetic coupling, the forces on the atoms and stress on the supercell were found to be negligibly small in each case.

Numerical data for the exfoliation energies, structural parameters, and magnetic properties are included in Section VI in the Supporting Information.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03841.

Exfoliation energies for additional functionals and from relaxing different degrees of freedom, exfoliation energies for different terminations for ternaries, change of structural parameters for SCAN, band structures for all binaries and ternaries, and tables with numerical data. (PDF)

AUTHOR INFORMATION

Corresponding Author

Rico Friedrich — Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Center for Autonomous Materials Design, Duke University, Durham, North Carolina 27708, United States; orcid.org/0000-0002-4066-3840; Email: r.friedrich@hzdr.de

Authors

Mahdi Ghorbani-Asl — Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; orcid.org/0000-0003-4369

Stefano Curtarolo — Center for Autonomous Materials Design, Duke University, Durham, North Carolina 27708, United States; Materials Science, Electrical Engineering, and Physics, Duke University, Durham, North Carolina 27708, United States; orcid.org/0000-0003-8238

Arkady V. Krasheninnikov — Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany; Department of Applied Physics, Aalto University, Aalto 00076, Finland; orcid.org/0000-0003-0747-7588

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.nanolett.1c03841

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the HZDR Computing Center, HLRS, Stuttgart, Germany, and TU Dresden Cluster “Taurus” for generous grants of CPU time. R.F. acknowledges support from the Alexander von Humboldt foundation under the Feodor Lynen research fellowship. A.V.K. thanks the German Research Foundation (DFG) for the support through Project KR 4866/2-1 and the collaborative research center “Chemistry of Synthetic 2D Materials” SFB-1415-417590517. R.F. thanks Marco Esters, Corey Oses, David Hicks, Silvan Kretschmer, and Xiomara Campilongo for fruitful discussions.

REFERENCES

