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A UAV-assisted Multi-task Allocation Method for
Mobile Crowd Sensing

Hui Gao, Jianhao Feng, Yu Xiao, Member, IEEE, Bo Zhang, Member, IEEE,
and Wendong Wang, Member, IEEE

Abstract—Mobile crowd sensing (MCS) with human participants has been proposed as an efficient way of collecting data for smart
cities applications. However, there often exist situations where humans are not able or reluctant to reach the target areas, due to for
example traffic jams or bad road conditions. One solution is to complement manual data collection with autonomous data collection
using unmanned aerial vehicles (UAVs) equipped with various sensors. In this paper, we focus on the scenarios of UAV-assisted MCS
and propose a task allocation method, called “UMA” (UAV-assisted Multi-task Allocation method) to optimize the sensing coverage and
data quality. The method incentivizes human participants to contribute sensing data from nearby points of interest (PoIs), with a limited
budget. Meanwhile, the method jointly considers the optimization of task assignment and trajectory scheduling. It schedules the
trajectories of UAVs, considering the locations of human participants, other UAVs and PoIs which are rarely visited by human
participants. In detail, UAVs take care of two tasks in our proposal. One is to calibrate the data collected by the human participants
whom the UAVs come across along their trajectories. The other is to collect data from the PoIs which are not covered by other UAVs or
human participants. We apply deep reinforcement learning to schedule UAVs moving trajectories and sensing activities in order to
minimize the overall energy cost. We evaluate the proposed scheme via simulation using two real data sets. The results show that our
proposal outperforms the compared methods, in terms of coverage completed ratio, calibrating ratio, energy efficiency, and task
fairness.

Index Terms—Mobile crowd sensing, UAV, multi-task allocation, reinforcement learning.
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1 INTRODUCTION

The rapid development of ubiquitous mobile devices
equipped with plenty of sensors over the past few years has
given rise to mobile crowd sensing (MCS) [1]–[3]. Compared
with traditional sensor networks, MCS reduces the deploy-
ment and maintenance cost by outsourcing sensing tasks to
individual participants [4]–[6]. In recent years, various MCS
applications have been developed in different fields, such
as indoor localization [7], public event reporting [8], road
and traffic monitoring [9]. Although the MCS campaign
provides useful information for several purposes, it still
faces crucial challenges to overcome, one of which is how
to allocate tasks to meet their requirements, e.g., coverage
and sensing data quality requirements.

Sensing coverage is of paramount importance in both the
spatial and temporal dimensions [10]. For example, road
traffic monitoring typically requires continuous sensing of
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interested road segments [11]. As another example, air
quality sensing applications usually require collecting the
air quality measurements from specific geographic areas in
different time instances for analytical and predictive pur-
poses [12]. In real practice, human participants’ self-planned
trajectories may fail to satisfy the platform’s spatio-temporal
coverage demand [13].

Collecting high quality sensing data is a fundamen-
tal requirement to guarantee the success of MCS applica-
tions [14]. The data quality measures the degree of de-
viation to the ground truth and is sometimes defined as
data noise [15]. Many factors can influence the sensing data
quality, one of which is the strategy of human participants
recruitment [16], [17]. It is a common challenge for most
MCS applications to identify credible human participants,
then to motive them to collect and contribute high quality
data [18]. Unfortunately, as human participants may report
less valuable sensing data when trying to minimize their
efforts, or have no idea how to collect valuable data, it
is difficult for the MCS applications to guarantee valuable
service [19]. Another factor that influences the sensing
data quality is the measurement error, which depends on
whether the sensors have been calibrated [20]. Although
the equipped sensors generally did device-level calibration
before deployment, such a calibration scheme fails to ac-
count for the post-deployment factors, e.g., non-ideal envi-
ronmental conditions and hardware aging [21]. In a word,
sensors may suffer from noise and drift over time. And
data sensed from the noise or drift suffered sensors may
not meet the accuracy requirement [22]. Thus, these sensors
require re-calibration to maintain data accuracy, which is a



IEEE TRANS. ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX 2

fundamental problem in wireless sensor networks.
Previous works mostly considered the single-task allo-

cation scenario [23], [24], where an available human partici-
pant is associated with one task at a time. In this paradigm,
if a human participant is willing to undertake multiple tasks
for rewards, he/she has to wait and interact with the MCS
platform for multiple rounds of assignments. Furthermore,
as more and more sensing tasks may be time sensitive
(such as traffic dynamic monitoring and pollution monitor-
ing at specified locations and time intervals), it is almost
indispensable to develop a generic mechanism supporting
multiple concurrent MCS task assignments, in order to meet
the requirements of all tasks [25], [26].

Recently, unmanned aerial vehicles (UAVs) have been
considered to bring a new dimension into MCS [27]–[29].
Particularly, UAVs allow autonomous MCS due to the ca-
pability of fast deployment and controllable mobility. Fur-
thermore, as the UAVs could be maintained frequently by
the MCS staff, it is easier to calibrate UAVs’ sensors than
that of human participants, data contributed by them are
more accurate and credible. It is a better option to only
employ UAVs to perform sensing tasks. However, as the
UAVs are forbidden in some cities, e.g., Beijing, Seoul and
Washington D.C., human participants are still needed to
keep MCS campaigns running.

Here we focus on the overall scenario illustrated in
Fig. 1. Imagine that several MCS tasks need to utilize
sensing information in a region, e.g., air quality [30], noise
level [31], traffic status [32]. For each task, there are several
points of interest (PoIs) spread over the region that needs
to be sensed by human participants or UAVs. The platform
could offer different amounts of rewards for each PoI of
a task. A human participant (hereafter referred to simply
as “participant”) who is interested in the task could apply
for the task. At the same time, the UAVs who act as the
supplementary part begin to cruise in order to contribute
sensing data or calibrate participants’ sensing data when
they meet participants.

Despite the attractive advantages, UAV-assisted MCS
systems face a major challenge: the on-board battery capac-
ity of UAVs imposes a limitation on their endurance capa-
bility and performance. Hence, energy efficiency is a critical
requirement for such UAV-assisted MCS systems [33]. In an-
other word, the trajectory of each UAV should be scheduled
carefully considering the locations of participants, other
UAVs and PoIs, when it senses or calibrates, to avoid
energy waste. Then how to allocate tasks to participants
and UAVs simultaneously has become the primary issue.
As the number of participants is much more than that of
UAVs, an offered reward method should be well designed in
order to recruit enough participants. On the other hand, the
UAVs complement the participants. The trajectory of each
UAV should be planned with the requirement of avoiding
resource waste that a place is sensed by both participants
and UAVs, but the sensing coverage should be considered.

In this paper, we propose a UAV-assisted multi-task
allocation method for MCS systems with the purpose of
meeting task coverage and sensing data quality require-
ments. The method consists of two parts, one of which is an
online incentive mechanism designed for recruiting credible
participants. The mechanism first calculates the maximum

Fig. 1. The overall scenario of the UAV-assisted MCS campaign.

offered reward according to the sensing data collection
condition and remaining budget. Then a task recommen-
dation method is proposed to recruit credible participants.
The other part is designed for scheduling UAV trajectories
to contribute data from rarely sensed PoIs. The scheduled
trajectories should avoid to sense PoIs that have been or are
going to be sensed by participants or other UAVs in order
to save energy. We leverage a deep reinforcement learning
method to schedule trajectories for UAVs. Furthermore,
UAVs are also used to calibrate sensing data contributed by
participants. Here the system-level calibration is employed
which aims to optimize the overall system performance by
tuning the sensing parameters of all the sensors in an MCS
network.

The main contribution of this paper is summarized:

• We develop UMA, a multi-task allocation scheme
that jointly optimizes the sensing coverage and data
quality. The UMA allocates tasks to human partici-
pants and UAVs together, with the purpose of collect-
ing high quality sensing data under task deadlines
and budget constraints.

• In order to allocate tasks to human participants,
we design a learning-based online incentive mech-
anism that consists of a reward allocation step and
a task recommendation step. The mechanism learns
the reward offering strategy based on the law of
supply and demand, in order to maximize the num-
ber of participants while guaranteeing the coverage
requirement and budget constraint.

• We propose a deep reinforcement learning based
trajectory scheduling mechanism for UAVs, with the
purpose of meeting coverage requirements of all
tasks. The mechanism first takes locations of par-
ticipants, other UAVs and PoIs into account, then
schedules routes for each UAV to perform tasks
efficiently.

• We perform extensive simulations on four real data
sets. Compared with four task allocation methods,
the effectiveness, robustness and superiority of the
proposed algorithm have been extensively evaluated
in terms of diverse metrics.

The rest of this paper is organized as follows. We discuss
related research efforts in Section 2. The system model is
described in Section 3. We introduce the online incentive
mechanism in Section 4. And the UAV trajectory scheduling
and data calibration mechanism is described in Section 5.



IEEE TRANS. ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX 3

We present the simulation results in Section 6. Finally, we
conclude the paper in Section 7.

2 RELATED WORK

In this section, we review the related literature covering
four topics: task allocation methods for MCS, incentive
mechanism for MCS, learning-assisted MCS and system-
level calibration methods.

2.1 Task allocation methods for MCS
State-of-the-art research in task allocation methods for

MCS can be divided into two categories, i.e., single task allo-
cation and multi-task allocation methods. Zhu et al. [34] pro-
posed a single task allocation method that reduced the total
costs and improved the sensing data quality. The method
consisted of three steps that modeled information, estimated
cost and allocated task. Zhao et al. [35] argued that the plat-
form did not know participants’ ability to perform tasks in
advance, thus they proposed a single task allocation method
that modeled participant recruitment as a multi-armed ban-
dit game. Authors in [36] considered multi-dimensional task
diversity to design a task allocation method. They formu-
lated the platform-centric and participant-centric auction
incentive mechanisms to recruit participants and compute
payments. Wu et al. [37] designed a task recommend sys-
tem that recommended tasks to participants based on their
preference and reliability. Authors in [38] proposed a task
allocation method that recommended a task to participants
based on their preferences and reliability levels. Wang et
al. [39] argued that tasks of MCS were usually time-sensitive
and location-dependent. Therefore, they proposed a task
allocation task method that took task information, such
as time and location, into consideration. Authors in [40]
investigated a task allocation problem by considering the
competition of participants for tasks. They employed the
congestion game theory to improve participant satisfaction
by considering participant benefit, preference and designed
a competition congestion metric. Wang et al. [41] leveraged
the social network to recruit participants then allocate them
tasks. The platform first selected several participants then
influenced other participants using the influence propaga-
tion of the social network.

Yucel et al. [42] proposed a multi-task allocation method
that took participant preferences into account, which em-
ployed Matching Theory to find the matching between
participants and tasks. Wang et al. [15] argued that though
the overall utility of multiple tasks is optimized, the sensing
quality of individual task might poor. To deal with this prob-
lem, the authors proposed a multi-task allocation method
that introduced a quality threshold for every single task.
Authors in [43] proposed an online multi-task allocation
method that updated the task available list for each partic-
ipant in real-time. Dai et al. [44] designed a many-to-many
matching algorithm to deal with the multi-task allocation
problem, which took participants’ requested rewards and
sensing data quality into account.

2.2 Incentive mechanisms for MCS
As we know, participants need a reward to incentivize

them to contribute sensing data. For location-constrained

crowd sensing, Restuccia et al. [45] proposed that the ca-
pability of participants to execute sensing tasks depended
on their mobility pattern, which was often uncertain. They
designed an incentive mechanism that employed reverse
auction to recruit participants with uncertain mobility. Xu
et al. [46] presented a vehicular location-constrained crowd
sensing system. The system incentivized the participants
to match the sensing distribution of the sampled data to
the desired target distribution with a limited budget. They
formulated the incentivizing problem as a knapsack prob-
lem and proposed an algorithm named iLOCuS to solve
the problem. Fan et al. [47] proposed a joint trajectory
scheduling and incentive mechanism for spatio-temporal
crowd sensing systems. They designed an online incentive
mechanism that decided whether to recruit a participant
when he/she asked to contribute sensing data. Hu et al. [48]
designed a market-based incentive mechanism, which paid
participants monthly or immediately through blockchain.
Authors employed the Stackelberg game approach to ana-
lyze participants and task publishers’ incentive strategies.
The authors in [49] proposed an incentive mechanism that
formulated a Stackelberg game method to model the in-
teractions among the platforms and participants. Zhang et
al. [50] formulated the incentive model with maximizing
the reliability of collected sensing data and task coverage.
Authors in [51] investigated the problem of online incentive
mechanisms by considering time-sensitive tasks. They pro-
posed a method to determine a time-dependent threshold
to select participants and calculate payments.

2.3 Learning-assisted MCS
Machine learning techniques have been a new trend

to optimize the MCS campaigns. For example, Zhu et
al. [52] proposed an online participant selection method. The
method first employed a deep learning method to predict
participant mobility, then a greedy online algorithm was
proposed to recruit participants. Authors in [53] proposed
a deep reinforcement learning method to assign sensing
tasks to participants with the purpose of collecting high
quality sensing data and saving sensing costs. Hu et al. [54]
proposed a task allocation method that employed a rein-
forcement learning approach to jointly consider both the
previous coverage and participant current mobility pre-
dictability.

In this paper, we employ the deep reinforcement learn-
ing method to schedule the UAVs’ trajectories, which has
recently attracted much attention from both industry and
academia. In a pioneering work [55], the deep Q-learning
(DQL) method, a reinforcement learning framework, was
proposed to improve learning stability. Lillicrap et al. [56]
presented an actor-critic, model-free algorithm based on
the deterministic policy gradient that could operate over a
continuous action space. Based on this, Lowe et al. [57] pre-
sented another actor-critic method. The method considered
action policies of other agents and was able to successfully
learn policies that required complex multi-agent coordina-
tion.

2.4 System-level calibration methods
Several approaches to sensor calibration have been pre-

sented in the literature. For example, authors in [58] in-
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TABLE 1
List of Important Notations

Notation Explantation

T, Bt, Pt, Kt Set of tasks, budget of one task, set of
PoIs, set of timeslots

ηtp, η̂tp(kt) No. of requested pieces of sensing data,
No. of collected pieces of sensing data
until kt

Li, Lh
i cki , c(Li) Set of sensed PoIs, set of contributed high

quality sensing data, the required reward
during time slot k and the total offered
reward

vj(k
t), aj(kt) Vector velocity and acceleration of UAV j

ej(k
t), Ej Energy consumption and battery capacity

of UAV j
Lj , Lm

j Set of PoIs collected by UAV j, set of
calibration

ct, cp(kt), cfp(kt) Basic reward, floating reward and the
maximum offered reward in PoI p at
timeslot kt

P t
i (k

t) Probability of high quality sensing data
contributed by participant i

vestigated how the fusion of data taken by sensor arrays
could improve the calibration process. Lin et al. [59] pro-
posed a two-phase data calibration method and employed
two methods to train these two parts, respectively. The
work required a large amount of training data to learn
the calibration curve and thus could not provide real time
data results, which could be summarized as the offline
calibration method. Differing from the offline calibration
methods, we propose an online approach, which leverages
the historical calibration curve of mobile sensors to reduce
calibrating times and improve data accuracy.

Compared with the existing research mentioned above,
we propose a task allocation method for MCS systems
that employs the UAVs and participants to jointly collect
data. The coexistence of multiple concurrent tasks is taken
into consideration, which makes our system more complex
but more efficient. Fig. 2 illustrates the framework of our
proposed approaches. In order to meet the coverage and
data quality requirements of tasks, we design an incentive
mechanism that calculates the maximum offered reward of
each PoI and allocates the task to participants. If a PoI is
rarely sensed, a higher price will be given to encourage par-
ticipants to contribute sensing data. A task recommendation
method helps the platform recommend tasks to credible par-
ticipants who may contribute high quality sensing data. On
the other hand, differing from all the above research work,
the UAVs are not only employed as the supplementary
part to contribute data from PoIs which are rarely sensed
by participants or other UAVs, but also they are used to
calibrate low precision sensor collection data of participants.
The trajectory of each UAV is scheduled efficiently consider-
ing the locations of participants, other UAVs and the rarely
sensed PoIs, with the purpose of avoiding energy waste. In
addition, we propose a calibration approach, which could
reduce the meeting times to calibrate.

3 SYSTEM MODEL

We consider an MCS system that provides services for
smart cities every day. There are a set of T concurrent tasks

Fig. 2. The workflow of proposed approaches.

denoted by T = {t|t1, t2, . . . , tT }. Each task is associated
with certain task budget Bt and a set of P PoIs that is de-
noted by Pt = {pt|pt1, pt2, . . . , ptP }. Furthermore, the whole
sensing campaign is divided into K time-slots with equal
duration Λ, that Kt = {kt|kt1, kt2, . . . , ktK}. Normally, the
platform selects several pieces of sensing data contributed
by participants for one PoI to get more accurate results. Each
PoI needs to be sensed no more than ηtp times by participants
or 1 time by a UAV during one time-slot, and η̂tp(k

t) denotes
the number of times PoI p has been sensed until time-slot kt.

For a participant i who prepares to perform the task in
one time-slot, he/she will claim his/her location and re-
quested a reward at the very beginning of the time-slot. The
platform will select several participants according to their
requested rewards and locations, and the task requirement.
Each participant has a requested reward which is denoted
by cti for a task t ∈ T. The final set of PoIs sensed by partic-
ipant i is denoted by Li =

{
xi(k

t, pt), kt ∈ Kt, pt ∈ Pt
}

,
where xi(k

t, pt) = 1 denotes participant i contributes a
piece of sensing data for task t at PoI pt when timeslot
is kt, otherwise xi(k

t, pt) = 0. And the corresponding
final reward of the recruited participant i is denoted by
c(Li). The set of high quality sensing data is denoted by
Lh
i =

{
yi(k

t, pt), kt ∈ Kt, pt ∈ Pt
}

, where yi(kt, pt) = 1

denotes participant i contributes a piece of high quality
sensing data for task t at PoI pt when time-slot is kt,
otherwise yi(kt, pt) = 0.

We consider sensing tasks as that all UAVs fly around
to cover PoIs. In the beginning, a UAV j that is with
a fully charged battery moves with the vector velocity
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vj(k
t) =

(
θvj (kt), dvj (k

t)
)
j∈J

, where |vj(kt)| ∈ [0, |vmax|],
θj(k

t) ∈ [0, 2π) is a direction and dj(kt) is speed. The vector
velocity is controlled by the vector acceleration, which is
denoted by aj(kt) = (θaj (kt), daj (kt))j∈J . Here, we consider
the energy consumption ej(k

t), which is simply propor-
tional to flying distance, i.e., ej(kt) = γdj(k

t). And the
battery capacity is denoted by Ej . The final coverage set
is denoted by Lj =

{
xj(k

t, pt), kt ∈ Kt, pt ∈ Pt
}

, where
xj(k

t, pt) = 1 denotes a UAV j contributes a piece of high
quality sensing data for task t at PoI pt when timeslot is kt,
otherwise xj(kt, pt) = 0. The set of calibration is denoted
by Lm

j =
{
yj(k

t, i), kt ∈ Kt
}

, where yj(kt, i) = 1 denotes
that a UAV j calibrates sensing data for participant i when
timeslot is kt, otherwise yj(kt, i) = 0.

The frequently used notations are summarized in Ta-
ble 1.

The target of this paper is to maximize the number of
collected high quality sensing data in order to meet the
coverage requirement under the consideration of the budget
and UAV energy constraints, which can be formulated as

maximize:
T∑
t=1

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Lh
i

∣∣∣∣∣+

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣ ∗ ηtp
ηtp ∗ |Pt| ∗ |Kt|

subject to:
T∑
t=1

K∑
kt=1

I∑
i=1

c(Li) ≤
T∑
t=1

Bt,

T∑
t=1

K∑
kt=1

ej(k
t) ≤ Ej ,

(1)

where I and J is the number of recruiting participants and

UAVs, respectively.

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Lh
i

∣∣∣∣∣ +

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣ ∗ ηtp
denotes the total contributed high quality sensing data for
task t. ηtp is the number of required times sensed from a PoI.
ηtp ∗ |Pt| ∗ |Kt| denotes the number of required high quality
sensing data of task t. The range of the problem formulation
is [0, 1], where 0 means there is no high quality sensing
data contributed. On the contrary, 1 means the coverage
requirement of the task has been fully satisfied.

Lemma 1. The target of this paper is an NP-hard problem.

Proof. The budget limited maximum coverage problem has
been proved to be an NP-complete problem, which can
be described as follows: given a collection of sets S =
{S1,S2, . . . ,Sm} with associated costs {ci}mi=1 is defined
over a domain of weighted elements X = {x1, x2, . . . , xn}
with associated weights {ωi}ni=1. The goal is to find a collect
of sets S

′ ⊆ S, such that the total cost of sets in S
′

does not
exceed L, and the total weight of elements covered by S

′
is

maximized.
We prove the lemma by reducing the previous problem

to an instance of (1). Imagine there is only one task per-
formed one time-slot. And the task requires one piece of
data from a PoI, that T = 1, K = 1 and ηp = 1. For

simplicity, we also assume that only participants perform
the task. Then (1) could be formulated as

maximize:

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Lh
i

∣∣∣∣∣
|P|

subject to:
I∑
i=1

c(Li) ≤ B.

(2)

For a collection PoI sets of L = {L1,L2, . . . ,Lm}. Each
element Lm ∈ L contains several numbers of PoIs, and
the domain of PoIs is denoted by P = {p1, p2, . . . , pn}
with associated maximum offered reward {cfp}np=1. The total
offered reward of Lm is denoted by cm. The target of (2) is
to find a set of participants under budget constraints with
the purpose of covering the maximum number of PoIs. In
another word, the target is to find a collection of PoI sets
L′ ⊆ L, where L′ =

⋃
i∈{1,2,...,I}

Lh
i , in order to maximize

|L′|/|P| under the budget B.
As demonstrated above, the budget limited maximum

coverage problem is as complex as the simplified (2), which
means that the proposed maximum target (1) is also NP-
complete, and then completes the proof.

4 ONLINE INCENTIVE MECHANISM

we design an online incentive mechanism that consists
of a reward allocation step and a task recommendation step.
For the reward allocation step, we decide the maximum
offered reward considering the data collecting situation. For
the task recommendation step, we predict which tasks are
good for a participant for performing.

4.1 Maximum offered reward decision mechanism

Following the former work [60], the reward paid for
sensing acts as a signal to reflect sensing data supply and
demand, which depends on the demand of the platform and
the supply of participants. Here we employ the maximum
offered reward to decide the maximum reward offered to
the participants. The maximum offered reward of every
time-slot is denoted by cfp(k), which consists of the basic
offered reward ct and floating reward cp(k). For the sake of
simplicity, hereafter we drop the task index t and treat all
tasks equally.

The basic offered reward indicates the ideal fixed cost
if the amount of requested sensing data is collected under
budget constraints. The floating reward exists to make the
maximum offered reward higher or lower, based on the
number of participants or data collected consideration. For
example, the maximum offered reward could be higher for
a PoI, if there is less amount of sensing data collected.

The deep reinforcement learning based method is em-
ployed to calculate the floating reward offered for one piece
of sensing data in every PoI at each timeslot. Coarsely
speaking, the proposed method involves a decision agent
that repeatedly observes the current states of the participant
recruitment, then takes an action among the available ac-
tions allowed in that state. After, the agent will transfer to a
new state and obtain the corresponding reward.
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1) State Space: N , {nk = (Nk
1 , N

k
2 )} denotes the state

that indicates whether the participant is recruited or not.
2) Action Space: A , {ak|a ∈ V} denotes the action set.
3) Probability Distribution and State Transition: F : N ×

A × N → [0, 1] denotes the probability distribution
P{nk+1|nk, {ak}k∈K} of a state transition, in which the
current state is nk and when action ak is chosen, the state is
transitioned to a new state nk+1.

4) Reward Function: N × A → R expresses the expected
immediate reward received after the state is transitioned
from nk to nk+1, due to taking the action ak, which is de-
fined as: rk = ea

k

/
∑Z
Z=1 e

vz . Here we employ the softmax
value to calculate the reward.

5) Problem Formulation: When state transition F and re-
ward function rkp , p ∈ P, is predetermined, for each timeslot
k, our problem can be formulated as

Qp(n
k) = max

akp

[
rkp(nk, akp)

+ γ

∫
nk∈N

F (nk, akp,n
k+1)Qp(n

k+1)
]
,

and the optimal strategies of the floating reward is given by

cp(k) = arg max
akp

[
rkp(nk, akp)

+ γ

∫
ns∈N

F (nk, akp,n
k+1)Qp(n

k+1)
]
.

(3)

Based on (3), the floating reward can be decided in
PoI p at time-slot k. Here a special phenomenon is also
considered, that the budget could not afford the sum of
maximum offered reward of all PoIs. For this reason, some
rarely sensed PoIs are more important. Therefore, a method
is needed to help the platform recruit participants preferen-
tially from these PoIs under the limited budget. Here the
Shapley method is employed to identify which PoIs are
important, which is shown as

λp(k) =
∑

P′⊆P\{p}

|P′|!
(
|P| − |P′| − 1

)
!

|P|!
f
(
P′
⋃
{p}
)
, (4)

where f
(
P′
⋃
{p}
)

is the marginal value, which is shown as

f
(
P′
⋃
{p}
)

=

ηp(k)∑
τ=1

((
1−
‖
[
η1(k), η2(k), . . . , η|P′|(k), ηp(k)− τ

]
‖F

η
√
|P′

⋃
{p}|

)
−
(
1−
‖
[
η1(k), η2(k), . . . , η|P′|(k)

]
‖F

η
√
|P′|

))
,

where ηp(k) = ηp − η̂p(k), p ∈ P is the number of pieces of
sensing data that has not been collected yet, and ‖ · ‖F is the
Frobenius norm, which is mathematically used to measure
the spatial length of a matrix, to quantify the difference
between the required and attained values.

The maximum offered reward decision mechanism is
presented in Algorithm 1. Firstly the basic reward is calcu-
lated in Line 2. Then the mechanism calculates the floating
reward for each PoI at one timeslot, and the maximum
offered reward (Line 4 - Line 8). Finally, the Shapley method
is used to rank all of PoIs in descending order (Line 9 - Line
10).

Algorithm 1 Maximum Offered Reward Decision Mecha-
nism

Input: Budget Bt, sensing requirement ηp, time-slot Kt

Output: The new sensing ranges of PoIs and the maximum offered reward of
every PoI cfp(kt) at timeslot kt

1: /*Calculating the basic offered reward*/
2: ct = Bt/(P ∗ ηp);
3: /*iterating through all of PoIs*/
4: for l = 1, . . . , P do
5: Calculate the floating reward candidate by (3);
6: /*Calculating the maximum offered reward*/
7: cfp(kt) = ct + cp(kt);
8: end for
9: Calculate Shapley value λp(kt) by (4);

10: Rank PoIs using λp(kt) in descending order;

4.2 Task recommendation method

Several tasks need to be issued along a participant’s
trajectory. Before recommending the participant tasks, it is
essential to predict which tasks are good for him/her, with
the purpose of collecting high quality sensing data. The
quality of data is denoted by qti,n, which is contributed by a
participant i for task t ∈ T in the nth time. Here, we also
drop the task index t for the same reason. Following our
previous work [60], the quality of sensing data contributed
by a participant is modeled as a semi-Markov with discrete
time.

The kernel part of semi-Markov is defined in (5).Wuh
i (k)

denotes the probability that a participant i contributes high
quality sensing data in nth time at a timeslot k, given
he/she contributed unusable quality sensing data in the
(n− 1)th time. fi(k) ≤ Λ means the participant contributes
sensing data in the time duration Λ. Here we assume that
a participant will contribute sensing data before the end of
the timeslot.

Wuh
i (k) = P (qi,n = h, fi(k) ≤ Λ|qi,n−1 = u). (5)

Next, the probability that a participant i contributes
high quality sensing data at the nth time while he/she
contributes unusable quality data at last time, before time
duration Λ, is denoted by Zuhi (·), which is shown as

Zuhi (Λ) = P (fi(k) ≤ Λ|qi,n = h, qi,n−1 = u)

=
Λ∑
x=1

P (fi(k) = x|qi,n = h, qi,n−1 = u).
(6)

The probability that a participant i contributes high qual-
ity sensing data at the nth time, when he/she contributes
unusable quality data at the (n− 1)th time is calculated by

Puhi = P (qi,n = h|qi,n−1 = u) =
numuh

i

numu
i

, (7)

where numuh
i is the number of times data quality con-

tributed from unusable to high quality, while numu
i is the

number of times unusable data contributed.
We rewrite (5) based on (6) and (7), which is shown as

Wuh
i (k) = P (qi,n = h, fi(k) ≤ Λ|qi,n−1 = u)

= Zuhi (Λ)Puhi .
(8)
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Algorithm 2 Task Recommendation Mechanism
Input: Budget Bt, uncollected data ηp(kt), time-slot Kt

Output: Recommended PoI set L′
i

1: kt = 1;
2: /*iterating through all of time-slots*/
3: while kt ≤ K do
4: Calculating the new sensing range of PoIs with the maximum offered

rewards in Algorithm 1;
5: pt = 1;
6: /*Starting to allocate tasks*/
7: while pt ≤ P && pt is in the sensing range of participant i do
8: if Bt − cfp(kt) ≥ 0&&ηp(kt) > 0 then
9: Calculate P t

i (kt) by (9);
10: num = 1 with probability P t

i (kt);
11: if num == 1 then
12: {kt, pt} → L′

i ;
13: end if
14: end if
15: /*For the next PoI*/
16: pt = pt + 1;
17: end while
18: /*For the next time-slot*/
19: kt = kt + 1;
20: end while

Based on (8), the probability that a participant i con-
tributes high quality sensing data at a timeslot k is shown
as

Pi(k) =
Wuh
i (k) +Whh

i (k)

Wuh
i (k) +Wuu

i (k) +Whu
i (k) +Whh

i (k)
. (9)

The task recommendation method is shown in Algo-
rithm 2, correspondingly we describe the main processes
as follows.

Step 1: At the beginning of each time-slot kt, the maxi-
mum offered reward of every PoI is calculated by Algorithm
1 in Line 4, along with the new sensing range.

Step 2: The platform begins to allocate tasks to partici-
pants. For a PoI of each task which is in the sensing range of
participant i. If the rest budget could afford the maximum
offered reward, and there is still several amount of sensing
data needed to be collected, then the PoI has a chance to
be sensed (see Line 8). After that, the platform calculates
probability P ti (kt) to decide whether the PoI pt could be
performed by the participant i. If the result is positive, the
platform collects the PoI for recommendation (see Line 9-
13).

Step 3: The crowd sensing campaign will be ended when
one of the three conditions is met:

• The last sensing time-slot is finished.
• The required amount of sensing data is met.
• The budget is exhausted.

5 UAV TRAJECTORY SCHEDULING AND DATA
CALIBRATION MECHANISMS

In this section, we first introduce a UAV trajectory
scheduling mechanism, which directs the UAVs to con-
tribute sensing data from PoIs which are rarely accessed
by participants. Then a sensing data calibration method is
proposed to improve the quality of data collected by par-
ticipants. It is worth noting that both trajectory scheduling
and data calibration methods are calculated by the platform
which is typically run on a cloud server. The UAVs receive
and follow commands. More details are introduced in the
sections below.

5.1 Learning-based UAV trajectory scheduling mecha-
nism

As we mentioned in Section 1, there are two purposes for
UAVs, i.e., data collection and calibration. Here we present
the proposed Learning-based UAV trajectory scheduling
mechanism for achieving these two purposes. We formulate
our problem as a Markov Decision Process. It is noted that
we also drop the task index t for the same reason.

1) State space and observation space: S = {sk|k ∈K}
denotes the state set of an MDP, where sk consists of
four parts. The first part is the state set of all UAVs that
{(xkj , ykj ), ekj }j∈J , where (xkj , y

k
j ) denotes the current po-

sition of a UAV j in time k. ekj ∈ [0%, 100%] denotes
the remaining energy of a UAV j that is expressed by a
percentage. The second part is the state set of all participants
that {(xki , yki ),mk

i }i∈I , where (xki , y
k
i ) is the position of a

participant i in time k, and mk
i is the accumulated number

of calibrating times with UAVs. The third part is the obstacle
position that {(xo, yo)} that UAVs should avoid hitting. The
forth part is the state set of all PoIs that {(xp, yp), fkp }, where
(xp, yp) denotes the position of PoI p. And fkp denotes the
sensing requirement completion percentage of PoI p in time
k that can be expressed as

fkp =

{
η̂p(k)
ηp

, if η̂p(k) ≤ ηp
1, otherwise

.

However, each UAV only knows a part of information of
the state space which is called observation. The observation
space is denoted by Ok = {okj |j ∈ J, okj ⊆ sk}.

2) Action space: The action set is denoted by A = {akj =
(θaj (k), daj (k))j∈J|θaj (k) ∈ [0, 2π), daj (k) ∈ [0, dmax]}, where
θaj (k) and daj (k) is direction and acceleration value of UAV
j at time k, respectively.

3) Probability distribution and state transition: F : S ×
A × S → [0, 1] denotes the probability distribution
P{sk+1|sk, {akj }j∈J} of a state transition, in which the
current state is sk and when action akj is chosen, the state
is transitioned to a new state sk+1.

4) Reward function: S × A → R expresses the expected
immediate reward received after the state is transitioned
from sk to sk+1, due to taking the action {akj }j∈J , which

is defined as: rkj =
(
µokj + (1− µ)lkj

)
/ej(k) − gkj , where

okj is the amount of data collected by a UAV j at timeslot
k, lkj is the number of calibrating (meeting) times with
participants. And µ ∈ [0, 1] is a parameter to decide the
higher priority between data collection and calibration cam-
paign. The platform can adjust the value of µ for adapting
to different scenarios and task requirements. When UAV
hits an obstacle or moves out of the area border in the
timeslot k, the penalty gkj should be taken off. Therefore, the
reward definition rkj ,∀j can be considered to incorporate
three objectives, data collection amount, times of calibration
and energy consumption.

5) Problem formulation: When state transition F and re-
ward function rkj , k ∈ K, j ∈ J is predetermined, for each
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stage s, our problem can be formulated as

Qj(s
k) = max

akj

[
rkj (sk, akj )

+ γ

∫
sk+1∈S

F (sk, akj , s
k+1)Qj(s

k+1)
]
,

and the optimal strategies of a UAV j is given by

πj = arg max
akj

[
rkj (sk, akj )

+ γ

∫
sk+1∈S

F (sk, akj , s
k+1)Qj(s

k+1)
]
,

where γ ∈ (0, 1) represents the discount factor, which shows
the importance between the future reward and present
reward.

Obviously, it is a continued control problem that can-
not be solved via the conventional dynamic programming
method. In addition, since our scenario is fully distributed
as a multi-agent environment, a UAV’s reward is affected
by the actions of many other UAVs. Hence, we employ
the Multi-Agent Deep Deterministic Policy Gradient (MAD-
DPG) approach to find the suboptimal solution.

In our proposed solution for the UAV trajectory schedul-
ing problem, each UAV j has its policy decision network,
which is divided into three parts: CNN extracts features of
the observation okj , actor network decides the action and
critic network estimates the action, where the design and
implement of actor network and critic network are based on
MADDPG. Firstly, we utilize the CNN to extract features
from the observation okj , in order to help each UAV to
make decisions, including: (a) the related positions with
PoIs/obstacles/participants, (b) the distribution of PoIs that
do not meet the number of sensing requirements, (c) the
distribution of the meeting times with each participant. We
next utilize the observation feature results extracted from
the CNN, action and reward to train the actor model and
critic model. The actor model decides the action of UAV
j according to the observation, and the critic model will
unite with the action of other UAVs and the overall state
to estimate its action, aiming to prove the overall reward.
It is noted that, in our solution, a UAV has its policy to
collect data or calibrate sensors, which is more suitable to
our scenario compared with methods that the UAVs use the
same policy.

5.2 Sensing data calibration method

As we mentioned in Section 1, sensors suffer from noise
and drift over time. Here we adopt the sensing data cali-
bration method to calibrate contributed sensing data from
these sensors. It is worth noting that the proposed method
is a system-level calibration method that works for data
of air quality, environment noise and GPS location, etc.
For a task t ∈ T, inspired by dimension projection [61],
we project the measurements of mobile sensors into high
dimensional space. Then, we adopt the linear regression
model in matrix form as xi(o) = Φi(o)wi + ei(o), where
o is a two dimensional matrix o ⊆ K × P. Φi(o) =[
φ(ypi (k)), {k, p} ∈ o

]T , and ypi (k) is the measurement of
sensing data contributed by a participant i in PoI p at
timeslot k. wi is the vector of calibration curve of participant

i, that wi =
[
ωi1 ω

i
2 ... ω

i
P

]T
. ei(o) is the matrix of noise

εpi (k), that ei(o) =
[
εpi (k), {k, p} ∈ o

]T .
Let p(wi) be the prior distribution of wi, that p(wi) =

N(wi|µi,Σi), where µi and Σi are the prior mean vector
and prior covariance matrix of wi, respectively. N(·) de-
notes the probability density function of Gaussian distribu-
tion. The noise εa,lm (t) is also supposed to follow Gaussian
distribution, where p(εpi (k)) = N(εpi (k)|0, βi). Then, the
probability density function of xi(o) is shown as

p(xi(o)|wi) =
∏

{k,p}∈o

p(xpi (k)|wi)

=
∏

{k,p}∈o

N(xpi (k)|wT
i φ(ypi (k)), βi),

where xi(o) =
[
xpi (k), {k, p} ∈ o

]T .
Next, we first prove that the posterior mean vector µ̂i

and covariance matrix Σ̂i of wi can be updated by The-
orem 1 and 2. Then, x̂i(o) can be estimated by x̂i(o) =
Φi(o)µ̂i.

Theorem 1. The posterior mean vector µ̂i of wi can be updated
by (10).

µ̂i =(
1

βi
Φi(o)TΦi(o) + (Σi)

−1)−1×

(
1

βi
Φi(o)Txi(o) + (Σi)

−1µi),

∀o ⊆K ×P. (10)

Proof. we denote the posterior distribution of wi

by p(wi|xi(o)), then we have that p(wi|xi(o)) ∝
p(xi(o)|wi)p(wi), where ∀o ⊆ K × P. The results in the
log-likelihood function which is shown as

L(wi,o) , ln p(xi(o)|wi)p(wi)

= −|o|+ P

2
ln 2π − |o|

2
βi −

1

2
ln |Σi|

− 1

2βi
(xi(o)− Φi(o)wi)

T (xi(o)− Φi(o)wi)

− 1

2
(wi − µi)T (Σi)

−1(wi − µi),

The posterior mean vector of wi, µ̂i, can be calculated
by µ̂i = arg max

wi

L(wi,o). Taking the derivative of log-

likelihood function in respect to wi that

∂L(wi,o)

∂wi
=

1

βi
Φi(o)T

(
xi(o)− Φi(o)wi

)
− (Σi)

−1(wi − µi),

∀o ⊆K ×P. (11)

Theorem 1 is proved, when ∂L(wi,o)/∂wi = 0.

Theorem 2. The posterior covariance matrix Σ̂i of wi could be
updated by (12).

Σ̂i =(
1

βi
Φi(o)TΦi(o) + (Σi)

−1)−1,

∀o ⊆K ×P. (12)

Proof. According to the Bayesian Cramér-Rao bound [62],
the mean square error matrix Σ̂i is bounded from below by
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the inverse of the Fisher information matrix J(wi), which can
be formulated as Σ̂i � J(wi)

−1, where

Σ̂i = E[(wi − µ̂i)(wi − µ̂i)T ],

and

J(wi) = E[−∂2
wi

ln p(xi(o),wi)],

where ∂2
wi

denotes the Laplacian or second-order differen-
tial operator with respect to wi.

Based on the results of (11), we have

J(wi) = −E[∂2
wi
L(wi,o)]

= E[
1

βi
Φi(o)TΦi(o) + (Σi)

−1]

=
1

βi
Φi(o)TΦi(o) + (Σi)

−1,

∀o ⊆K ×P, (13)

The expectation is in respect to wi. According to [63], µ̂i
is the best linear unbiased estimator which can achieve
the Cramér-Rao lower bound J(wi) under linear Gaussian
condition. Thus, we have

Σ̂i = J(wi)
−1 = (

1

βi
Φi(o)TΦi(o) + (Σi)

−1)−1,

which proves Theorem 2.

It should be noted that, Σ̂i only shows how well can
we estimate wi. To illustrate how well can we estimate
xi(o), we next evaluate the expected value of the mean
square error matrix between the ground truth xi(o) and
the estimation x̂i(o) by Theorem 3.

Theorem 3. The expected value of the mean square error matrix
between the ground truth xi(o) and the estimation of the ground
truth x̂i(o) can be calculated by (14).

E
[
(x̂i(o)− xi(o))T (x̂i(o)− xi(o))

]
= Φi(o)Σ̂iΦi(o)T + βiI. (14)

Proof. As mentioned before, wi and xi(o) conditioned on
wi are Gaussian distributed, which can be shown as

p(wi) = N
(
wi|µ̂i, Σ̂i

)
,

p
(
xi(o)|wi

)
= N

(
xi(o)|Φi(o)wi, βiI

)
.

Then, based on the affine transformation property of
multivariate Gaussian distributions, the joint distribution of
wi and xi(o) is given by

p(wi,xi(o)) = N

((
wi

xi(o)

) ∣∣∣∣ ( µ̂i
Φi(o)µ̂i

)
,Σ∗

)
= N

((
wi

xi(o)

) ∣∣∣∣ ( µ̂i
x̂i(o)

)
,Σ∗

)
,

where

Σ∗ =

(
1
βi

Φi(o)TΦi(o) + (Σ̂i)
−1 − 1

βi
Φi(o)T

− 1
βi

Φi(o) 1
βi

)−1

=

(
Σ̂i Σ̂iΦi(o)T

Φi(o)Σ̂i Φi(o)Σ̂iΦi(o)T + βiI

)
.

(a) (b)

Fig. 3. Data sets that were employed in the simulation experiments. (a)
GPS points inside the region. (b) PoIs and obstacles inside the region
(dots for PoIs, red blocks for obstacles).

Thus, we have

E
[
(x̂i(o)− xi(o))T (x̂i(o)− xi(o))

]
= Φi(o)Σ̂iΦi(o)T + βiI,

∀o ⊆K ×P,

which proves Theorem 3.

6 PERFORMANCE EVALUATION

In this section, we first present detailed experimental set-
tings including the necessary parameters. Next, we compare
with four commonly used baselines and discuss the results.

6.1 Setup
Four real data sets are used for the simulation. We em-

ploy a taxi mobility traces data set as the participants’ trajec-
tories in an MCS campaign, which is collected in Rome, Italy.
In the data set, GPS coordinates of approximately 320 taxis
are recorded over 30 consecutive days [64]. Each trajectory
is marked by a sequence of timestamped GPS points that
contain taxi driver ID, timestamp (date and time), and taxi
drivers’ position (latitude and longitude).

The map offset correction data1 is used as sensing data
contributed by participants. Map offset is a value that indi-
cates the value gap between GPS coordinates in the real-
world (i.e., accurate values) and those in a digital map,
which is employed as “data quality” in our experiment.

The other two data sets employed for the data calibrating
simulation are all air quality monitoring data, one of which
is downloaded from OpenSense Zurich Data set [65], and
the other one is collected by the Beijing Municipal Environ-
mental Protection testing center, China2.

Table 2 summarizes the parameter settings in our exper-
iments. We adopt the following procedures to set up our
simulation platform:

• For the first data set, which is used as the simulation
area for the considered data collection campaign. As
all traces are recorded in different parts of Rome.
We find an area of about 1 000 × 1 000m2 as our

1. (Baidu, Google) map latitude and longitude GPS offset correction.
Available: https://www.programering.com/a/MTO1IzNwATg.html

2. http://zx.bjmemc.com.cn/?timestamp=1612083804887
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TABLE 2
Parameter of Settings

Parameters Value

No. of participants Range from 20% to 100% of
the total number of 98 par-
ticipants, the default setting
is 98

No. of UAVs Range from 1 to 5, the de-
fault setting is 5

Sensing range Range from 12m to 16m, the
default setting is 15m

No. of PoIs Range from 200 to 300, the
default setting is 300

No. of tasks Range from 1 to 6, the de-
fault setting is 6

The amount of budget Range from 1 200 to 2 200
units, the default setting is
2 000 units

No. of time-slots 17
No. of requested data of
each PoI 5

Amount of request reward Range from 11 to 13 units
Randomly

simulation region, Fig. 3(a) shows the GPS points of
30 days inside the region. We randomly select the
data recorded in 1 day as locations of participants
that perform tasks on the ground. Fig. 3(b) shows
the PoIs and obstacles, which are shown as dots and
red blocks, respectively.

• We employ the map offset values to indicate a partic-
ipant’s sensing data quality. The map offset of use is
nonlinear, in the range of [300, 500] miles. We collect
those in the same latitude into a set.

• For the air quality monitoring data set, we employ
one subset of data collected by an air quality moni-
toring station as ground truth, and another subset as
participants’ sensing data that needs to be calibrated.

• We simulate the UAV as DJI Mavic 23, which in an
ideal situation, the maximum speed is 20m/s and
the max flight distance is 18 000m. The energy cost
in this ideal situation includes the necessary signal
receiving cost of a UAV. As we described in Section
5.1, the speed and direction of a UAV are decided
by the vector acceleration, which is in the range of
[0, 5]m/s2.

• The experiments are performed by an Ubuntu 18.04.3
X64 server with an Intel(R) Xeon(R) Gold 5122 CPU
(4 cores @3.60Ghz), 62GB memory, and 4 Nvidia
GeForce RTX 2080Ti graphics cards. The proposed
method is implemented by Python 3.7 and Py-
torch 1.7.0. To evaluate the performance of our pro-
posed method, we design the simulation environ-
ment based on OpenAI Gym [66], which is a toolkit
for developing and comparing reinforcement learn-
ing algorithms.

• There are 98 candidates in the selected area who pre-
pare to contribute sensing data. We set the number of
UAVs as 5, and the sensing range is 15m. The number
of PoIs is 300 with 6 tasks. The total budget is 2 000
units. The number of time-slots is set to 17.

3. https://www.dji.com/be/mavic-2/info#specs

Fig. 4. UAV trajectories (lines for UAVs trajectories, red blocks for obsta-
cles, and dots for PoIs and participants).

We employ the following four metrics to measure our
performance.

• Coverage completed ratio (CCR): The CCR is calcu-
lated using Equation (1) to show the ratio between
the number of sensed PoIs and the required PoIs of
all tasks. The coverage completed ratio is defined as

CCR =
T∑
t=1

∣∣∣∣∣ ⋃
i∈{1,2,...,I}

Lh
i

∣∣∣∣∣+

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣ ∗ ηtp
|Pt| ∗ ηtp ∗ |Kt|

• Calibrating ratio (CR): The CR is calculated as a
ratio between the number of effectively calibrated
times and the maximum effectively calibrated times
Ψ. The maximum calibrated times are decided by
experiences in Section 6.2. The calibrating ratio is
defined as

CR =
T∑
t=1

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lm
j

∣∣∣∣∣
Ψ

• Task fairness (TF): The TF is to show how evenly a
task associated with PoIs is sensed by participants
and UAVs when all tasks are completed. The task
fairness is defined as

TF =

(∑T
t=1

∑Kt=K
kt=1

∑P
p=1 η̂

t
p(k

t)
)2

∑T
t=1

∑P
p=1 (ηtp)

2 .
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• Energy efficiency (EE): The EE is calculated as a ratio
between the number of sensed PoIs and calibration
times divided by the energy cost of UAVs. The en-
ergy efficiency is defined as

EE =
T∑
t=1

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lj

∣∣∣∣∣+

∣∣∣∣∣ ⋃
j∈{1,2,...,J}

Lm
j

∣∣∣∣∣∑J
j=1 ej(k

t)
.

To compare with our proposed algorithm, we first employed
a single sensing medium to contribute data, i.e., UAVs
or participants, which is referred to as “UAV only” and
“Participant only”, respectively. Next, we used five baselines
to compare with our proposed algorithm. The first one
is MADDPG [57], which is a state-of-the-art solution by
OpenAI for multi-agent deep reinforcement learning in the
competitive and cooperative environment (referred to as
“MADDPG”). The state, action, reward function definitions
are the same as UMA. In order to allocate tasks jointly
to UAVs considering energy cost, the second method [33]
transformed the joint optimization problem into a two-sided
two-stage matching problem. The method firstly solve the
route planning problem based on either dynamic program-
ming or genetic algorithms, then the task assignment prob-
lem is addressed by exploring the Gale–Shapley algorithm
(referred to as “TARP”). The third method takes an action
that maximizes the number of sensed PoIs (referred to as
“PoI M”). The fourth one is a greedy approach that navi-
gates a UAV to sense a PoI or meet a participant which could
maximize the immediate reward (referred to as “Reward
M”). The fifth one allows UAVs to take action randomly
(referred to as “Random”).

6.2 Simulation Results

We first show moving trajectories for 1, 2, 3, 5 UAVs in
Fig. 4. As we described before, there are two responsi-
bilities for UAVs, that is, sensing data from rare sensed
PoIs, and calibrating data contributed by participants. As
shown in Fig. 4(a) and (b), 1 or 2 UAVs learned to mainly
move around in half of the area, responsible for its data
collection or calibration, which could potentially maximize
their reward. It is worth noting that the blue UAV moved
two different trajectories in Fig. 4(a) and (b), as it learned
to collaborate with other UAVs. With the increase in the
number of UAVs, we observe that trajectories of each UAV
are changed. For example, the green one moved a smaller
area when a red UAV started to work, as shown in Fig. 4(b)
and (c). As we described in Section 5, each UAV has limited
observation which is only a part of information of the state
space, it has to respond for the limited maximum reward
based on the observation. Therefore, the blue and green
UAV worked in the upper left and lower right corner, which
is shown in Fig. 4(b) and (c), respectively. Furthermore, from
Fig. 4(d) we observe that each UAV took responsibility to
sense a local region because enough UAVs were deployed
and they had learned to collaborate but not to go farther
places of other’s area. Finally, we see that all UAVs success-
fully avoid obstacles and never go beyond the border.

The performance results compared with a single sensing
medium are shown in Fig. 5. UMA consistently outperforms

Fig. 5. Impact of (a) & (d) number of PoIs, (b) number of tasks, (c) sens-
ing range of UAVs, (e) number of UAVs and (f) number of participants
on coverage completed ratio, energy efficiency and task fairness.

the other two conditions. For example, in Fig. 5(a) we
observe that UMA gains 90.1% more than that of Participant
only when the number of PoIs is 200, in terms of coverage
completed ratio. Fig. 5(c) shows that UMA gives 13.3% more
than that of UAV only when the sensing range of UAVs
is 12m, in terms of energy efficiency. We present the time
consumption of Algorithm 1 and UMA in Table 3, where
Algorithm 1 costs 1.45ms and the UMA consumes 333.43ms
when there are 200 PoIs needed to be sensed. Although the
values of time consumption rise with the increase of the
number of PoIs, the Algorithm 1 and UMA only consume
2.86ms and 336.77ms, when there are 400 PoIs needed to be
sensed.

We present the impact of UAV sensing range, budget,
number of UAVs, number of PoIs, number of tasks and
number of participants on coverage completed ratio, as
shown in Fig. 6. Here we fix five parameters described in
Section 6.1 and observe the performance of algorithms with
the changing of the other one parameter. For example, we
fixed the number of UAVs, the total amount of budget,
number of PoIs, the number of tasks and the number of
participants, while changing the sensing range from 14m to
18m with a step size of 1m (see Fig. 6(a)).

From Fig. 6, we can make the following observations:
UMA consistently outperforms all baselines in terms of
coverage completed ratio. For example, in Fig. 6(a), we
observe that UMA gives 11.0% more than that of TARP and
25.0% more than that of Reward M, when the number of
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TABLE 3
Time consumption of Algorithm 1 and UMA

Number of PoIs 100 175 200 225 250 275 300 375 400 1 000 10 000 100 000
Algorithm 1 (ms) 0.77 1.31 1.45 1.59 1.87 2.07 2.16 2.76 2.86 7.19 79.28 950.32

UMA (ms) 327.18 330.20 333.43 332.28 332.75 333.75 333.91 337.57 336.77 358.33 689.47 6048.28

Fig. 6. Impact of (a) number of PoIs, (b) number of UAVs, (c) sensing
range of UAVs, (d) number of tasks, (e) budget and (f) number of
participants on coverage completed ratio

PoIs is 200 and 280, respectively. In Fig. 6(b), we can see
that the coverage completed ratio of all methods increases
monotonically with the number of UAVs. This is because
more UAVs represent better data collection capability. UMA
also shows the best performance, e.g., it gives 54.2% more
than that of MADDPG. In Fig. 6(c), UMA improves 18.9%
of coverage completed ratio if compared to that of PoI M,
when the sensing range is 15m. In Fig. 6(d), we observe
that UMA improves 58.1% if compared to that of Ramdom,
when the number of tasks is 5. Last, in Fig. 6(e), when the
total budget of 6 tasks is 1 300 units, UMA gives 18.8% more
than that of Reward M. Finally, in Fig. 6(f), UMA achieves
a coverage completed ratio of 21.8% if compared to that of
PoI M, when there are 60% of total participants.

Next, we present the breakdown results for the other
three metrics. Firstly, the impact of the number of UAVs,
UAV sensing range, the number of participants, and budget
on calibrating ratio are shown in Fig. 7. We observe that
UMA outperforms all baselines in terms of calibrating ratio.
For example, in Fig. 7(a), we see that calibrating ratio given
by UMA rises more intensely than four baselines with a

Fig. 7. Impact of (a) the number of UAVs, (b) sensing range of UAVs, (c)
the number of participants, and (d) budget on calibrating ratio.

Fig. 8. Estimation error results after calibrating, where (a) is the exper-
iment with OpenSense Zurich data set, and (b) is the experiment with
Beijing air quality monitoring data set.

larger sensing range. For example, UMA improves 56.9% of
calibrating ratio if compared to that of PoI M and Reward
M, when the number of UAVs is 5. In Fig. 7(b), when the
sensing range is 14m, UMA gives a calibrating ratio of
60.7% more if compared to that of PoI M. In Fig. 7(c) and
(d), we observe that the calibrating ratio of UMA decreases
slightly with more participants and budget.

Two data sets are employed to verify the performance
of the proposed system-level calibrating method. Here we
employ a method as proposed in [67] to be the compared
approach (referred to as “GMR approach”), which uses
geometric mean regression to calibrate sensing data. As
shown in Fig. 8, with the number of calibrating times
increasing from 2 to 8, the estimation errors given by both
the proposed and GMR approaches decrease. However,
the proposed method performs much better than that of
the compared approach. For example, when the number
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Fig. 9. Impact of (a) number of UAVs, (b) sensing range of UAVs, (c)
number of tasks, and (d) number of PoIs on energy efficiency.

Fig. 10. Impact of (a) number of UAVs, (b) sensing range of UAVs, (c)
number of tasks, and (d) number of PoIs on task fairness.

of calibrating times is 2, the proposed method decreases
69.4% of estimation error compared with that of the GMR
approach in Fig 8(a). And the accuracy improves 36.7%
on average, compared with that of the GMR approach. On
the other side, Fig 8(b) shows that the proposed method
decreases 18.2% of estimation error, compared with that of
the GMR approach when the number of calibrating times is
4. And the accuracy improves 33.3% on average, compared
with that of the GMR approach.

Fig. 9 shows the impact of number of UAVs, sensing
range of UAVs, number of tasks, and number of PoIs on
energy efficiency. In Fig. 9(a) and (b), We observe that energy
is consumed more efficiently with the number of UAVs and
sensing range, respectively. While the energy efficiency in
Fig. 9(c) and (d) barely changes.

The impact of number of UAVs, sensing range of UAVs,

Fig. 11. Resource utilization of CPU and memory for performing the
proposed method.

number of tasks, and number of PoIs on task fairness is
shown in Fig. 10. Similar to Fig. 9(a), task fairness of UMA
increases monotonically with the number of UAVs. And the
task fairness increases slightly with the number of partic-
ipants and PoIs. It is worth noting that, with the number
of tasks increasing, task fairness decreases. However, we
observe that UMA still outperforms all baselines in terms
of task fairness.

Finally, we record the resource utilization for performing
the proposed method UMA under the condition of 5 UAVs,
2 000 units budget and 300 PoIs. As shown in Fig. 11, the
range of CPU utilization is between 225.7% and 237.7%
where the total utilization is 400% when the 4 cores are fully
utilized. The memory utilization is stable at 6.7%.

7 CONCLUSION AND FUTURE WORK

In this paper, we explicitly consider the problem of
UAV-assisted multi-task allocation for MCS to maximize
sensing coverage. To deal with the problem, we proposed
a novel method “UMA”. On one hand, the method incen-
tivized participants to contribute high quality sensing data,
with a limited budget. On the other hand, the UAVs were
employed to sense data from rarely sensed PoIs. In the
meanwhile, they were also employed to calibrate for sen-
sors of participants. The results well justified the efficiency
and robustness of UMA in terms of four metrics, coverage
completed ratio, calibrating ratio, task fairness and energy
efficiency, compared with the state-of-the-art.

In the future, we plan to propose a method that deter-
mines the number of PoIs and pieces of sensing data, to
mitigate data collection redundancy. Besides the budget and
maximum offered reward, the task quality requirement is
also considered to calculate the number of pieces of data
to be sensed from a PoI. Normally higher quality sensing
data requires more sensing data. We attempt to leverage the
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confidence interval to quantify the sensing data quality re-
quirement. In practice, when the confidence interval is short,
more data should be collected from the PoI in question. A
reinforcement learning method may be employed to find out
the relationship between the value of the confidence interval
and the amount of the required sensing data.
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