
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Li, Xuebing; Cho, Byung; Xiao, Yu
Balancing Latency and Accuracy on Deep Video Analytics at the Edge

Published in:
2022 IEEE 19th Annual Consumer Communications & Networking Conference

DOI:
10.1109/CCNC49033.2022.9700636

Published: 01/02/2022

Document Version
Peer-reviewed accepted author manuscript, also known as Final accepted manuscript or Post-print

Please cite the original version:
Li, X., Cho, B., & Xiao, Y. (2022). Balancing Latency and Accuracy on Deep Video Analytics at the Edge. In
2022 IEEE 19th Annual Consumer Communications & Networking Conference (pp. 299-306). (IEEE Consumer
Communications and Networking Conference). IEEE. https://doi.org/10.1109/CCNC49033.2022.9700636

https://doi.org/10.1109/CCNC49033.2022.9700636
https://doi.org/10.1109/CCNC49033.2022.9700636


Balancing Latency and Accuracy on Deep Video
Analytics at the Edge

Xuebing Li, Byungjin Cho, and Yu Xiao
Department of Communications and Networking, Aalto University, Espoo, Finland

Email:{Xuebing.Li, Byungjin.Cho, Yu.Xiao}@aalto.fi

Abstract—Real-time deep video analytic at the edge is an
enabling technology for emerging applications, such as vulnerable
road user detection for autonomous driving, which requires
highly accurate results of model inference within a low latency.
In this paper, we investigate the accuracy-latency trade-off in the
design and implementation of real-time deep video analytic at the
edge. Without loss of generality, we select the widely used YOLO-
based object detection and WebRTC-based video streaming for
case study. Here, the latency consists of both networking latency
caused by video streaming and the processing latency for video
encoding/decoding and model inference. We conduct extensive
measurements to figure out how the dynamically changing
settings of video streaming affect the achieved latency, the quality
of video, and further the accuracy of model inference. Based
on the findings, we propose a mechanism for adapting video
streaming settings (i.e. bitrate, resolution) online to optimize
the accuracy of video analytic within latency constraints. The
mechanism has proved, through a simulated setup, to be efficient
in searching the optimal settings.

Index Terms—Video streaming, deep learning inference, object
detection

I. INTRODUCTION

The proliferation of deep learning and visual sensors has
populated deep video analytic. For mobile users, offloading
deep video analytic from mobile devices to the edge cloud has
been commonly applied for reducing the processing latency
and the energy consumption of mobile devices [1], [2]. Since
the accuracy of video analytic such as object detection is af-
fected by the quality of the video, it is desired to stream video
with high resolution and bitrate, which, however, would incur
high transmission and processing latency and consume more
network bandwidths, invalidating the overall latency constraint
for latency-intensive applications [3]–[5]. To address this issue,
it is essential to balance the trade-off between the latency and
the accuracy in the design of deep video analytics at the edge.

Existing work [1] balances the tradeoff with a data-driven
method: the control variables’ (e.g., resolution’s and bitrate’s)
effects on the performance metrics (e.g., latency and accuracy)
are modeled beforehand and the optimization problem is
solved based on the inferred model. However, the data-driven
method is not generic as it is tightly coupled with a concrete
setup, in terms of software, hardware, and network. In this
paper, we propose an online search algorithm that searches for
the best setting of control variables to fulfill the optimization
target without prior knowledge of the system in execution.
The proposed algorithm works by trying with a series of

settings in control variables, based on the observation that both
performance metrics are monotonic to the control variables, to
find out the one that maximizes the performance, i.e., having
the highest inference latency while guaranteeing the overall
latency smaller than a threshold.

To prove the effectiveness of the proposed algorithm, we
set up a deep video analytics testbed for case study. Web
Real-Time Communication (WebRTC) [6] and YOLO [7]
are chosen for video streaming and deep learning inference,
respectively. By experimenting with all settings of control
variables, we formulate each control variable’s effect on the
performance metrics in the given setup. Then, the formulation
is fed into a simulator, which runs the proposed algorithm
for verification. The evaluation result shows that the online
search algorithm is efficient in finding out the optimal setting
of control variables.

The contributions of this paper are summarized below:

• Deep analysis of the trade-off between latency and ac-
curacy and the impact from different control variables
through extensive measurement of real-time edge analytic
of video streams.

• An efficient online search algorithm that maximizes
the inference accuracy within latency constraints. The
proposed algorithm implemented in WebRTC proves to
achieve higher accuracy with lower latency, without prior
knowledge on the software/hardware setup and network
condition.

The rest of this paper is organized as follows: Sec. II
describes background knowledge, control variables, and per-
formance metrics that we focus on in this paper. In Sec. III, we
formulate the optimization problem and present our solution
to it. In Sec. IV, we present a case study with a concrete deep
video analytics application and, based on the measurement
result from it, we prove the effectiveness of the proposed
algorithm via simulation. Finally, we discuss related topics
in Sec. V and conclude our work in Sec. VI.

II. BACKGROUND, METRICS AND CONTROL VARIABLES

In this section, we explain the background of video stream-
ing and deep learning inference with the interest of perfor-
mance metrics and control variables.



A. Background

Fig. 1 gives an overview of typical architecture of edge-
assisted deep video analytic. A general video streaming
pipeline is composed of three stages: encoding, streaming, and
decoding. The User Equipment (UE) collects video frames
from its equipped webcam, encodes the frame via a video
codec, and sends it out over the network. On reception of a
frame, a mobile edge computing (MEC) node decodes it into
raw RGB format, which is the input of the inference program.
Video streaming. Due to lossy compression implemented in
the encoding/decoding process in video codecs, the amount
of data to be transmitted decreases at the expense of extra
processing delays at both the sender and receiver sides. Al-
though the encoding and decoding processes take more time
than the transmission process under a network, e.g., 5G [8],
they are indispensable because of the efficiency in reducing the
size of data sent over the network. In this paper, we propose
a generic online search algorithm that works with any video
streaming platform. Limited by the workload, we implement
the proposed algorithm in WebRTC, which is one of the most
popular video streaming platforms as its wide support by the
browsers and mobile operation systems [9], for evaluation. The
default setting of WebRTC is used: we use VP8 for encoding
and decoding a frame, Real-time Transport Protocol (RTP) for
data transmission, and google congestion control (GCC) [6]
for congestion control. Besides, we modify the source code
of WebRTC to control parameters, i.e., resolution and bitrate
and to collect performance metrics, i.e., encoding/decoding
latency, frame transmission latency.
Deep Learning Inference. Benefiting from the advance in
computer vision with the help of deep learning models such
as Deep Neural Networks (DNN), state-of-the-art inference
algorithms outperform human eyes for visual recognition prob-
lems [10] and are already widely used in autonomous driving,
such as vehicle and pedestrian detection [11] and traffic lane
detection [12]. All of them motivate deep video analytics for
improving driving safety. In this paper, we choose one of the
state-of-the-art object detection algorithm YOLOv5 [7] as case
study to verify the effectiveness of the proposed algorithm.
We use two pre-trained DNN models provided by YOLOv5,
which detects, but are not limited to, pedestrians, vehicles,
and bikes. YOLOv5 takes a raw RGB image, which is the
output of video streaming, as input and outputs several bound-
ing boxes of the detected objects. Internally, YOLOv5 uses
threshold filtering and non-maximum suppression to remove
low-confidence bounding boxes and repeated bounding boxes
of the same object, configurable via confidence threshold and
Intersection over Union (IoU) threshold, respectively.

B. Performance metrics

We consider two important performance metrics in the
process of deep video analytic, namely, latency and accuracy.
Latency. The latency is calculated as the time spent between
capturing a video frame on the UE and generating the in-
ference output on the MEC. As shown in Fig. 1, the overall
latency is composed with the following latencies:

Encoding

Transmission

WebRTC

Decoding

Receiving

WebRTC

Inference

YOLO

UE MEC

Fig. 1: Architecture of deep video analytics at the edge

• Encoding / Decoding latency. The time spent on convert-
ing the raw RGB image into a smaller size and vice versa,
which is CPU-intensive.

• Frame transmission latency. The time spent on sending
and receiving all of the packets of a frame, which is
network-intensive.

• Inference latency. The time spent on processing a frame
by the inference program, which is GPU-intensive.

Accuracy. The inference accuracy is measured by the
mean average precision (mAP) widely used in YOLO-related
works [7], [13]. Basically, the more objects are detected and
the closer the detection bounding box is to the ground truth,
the higher mAP is. The average of the frame mAPs gives the
video’s mAP. The ground truth is provided by the Waymo
dataset [14].

C. Control variables

There exist a number of variables that affect the perfor-
mance metrics in deep video analytics. How to tune these
parameters to get the best performance motivates our work.
Resolution. Resolution defines how many pixels are used
for representing a frame. In this case, a higher resolution
inevitably results in more data being stored in memory and
being processed in CPU/GPU. For video streaming, as bitrate
regulates the compressed size, given the same bitrate, a higher
resolution means that a higher compression ratio is required
when encoding and decoding a frame. For deep learning
inference, state-of-the-art DNNs use a convolutional neural
network (CNN) to traverse over all of the pixels in the input
frame [7]. So, a higher resolution means more computation is
required for processing a frame. So, both encoding/decoding
latency and inference latency are, at least, non-decreasing to
the resolution. On the other hand, more pixels in a frame
means more content is stored, giving DNN more opportunity
to have a good inference accuracy.
Bitrate. Bitrate regulates the amount of data encoded for a
unit of time. When the frame rate is constant, bitrate actually
controls the size of the encoded frame. Modern video codec
is based on frequency transforms [15], where spatial RGB
data is transformed into frequency domain and high-frequency
information are lost for compression. Visually, high-frequency
information represents details in an image and losing it makes
the image look blurry. So, a lower bitrate makes a frame
harder to recognise, even for human, and reduces the inference
accuracy. On the other hand, because less frequency transforms
are required, a lower bitrate also means a smaller processing
delay for both encoding and decoding.



Variables Description Metrics Description
b Streaming bitrate le Encoding latency
r Frame resolution ld Decoding latency
m DNN model lt Frame transmission latency
Γ Delay limit li Inference latency
Ω Frame rate a Object detection accuracy

TABLE I: Control variables and metrics. For differentiation,
r denotes the frame resolution used in video streaming and r′

denotes the frame resolution used in inference.

DNN model. Modern DNN models are composed of hundreds
or even thousands of layers [16]. Each layer requires a step
of computation in the prediction phase. So, more layers mean
that more time is spent on calculating the result, thus higher
inference latency. The benefit of deeper layers is that the
DNN can construct a more complex network, which helps
in understanding the context of an image. So, a heavier DNN
model usually means higher inference accuracy.

One may find that all of the control variables have a
monotonic effect on the performance metrics: it is either
non-increasing or non-decreasing. However, the effect is not
easy to model. Firstly, the monotonic effect is not constant.
For example, increasing the bitrate from 1 Mbps to 2 Mbps
may increase the inference accuracy a lot but the effect may
be not observable if the bitrate is increased from 9 Mbps
to 10 Mbps, although the increment is the same for these
two cases. Secondly, a real-world application is so complex
that many other factors affects one control variable’s affect
on the performance metrics. For example, down-scaling the
resolution before inference may reduce the processing latency
a log on a moderate machine, but not on a powerful machine.
So, how to dynamically adjust the parameters on different
conditions to achieve the optimal point between latency and
accuracy is a challenging problem.

III. OUR ALGORITHMIC PROBLEM

This section describes the problem, our optimization frame-
work, and the algorithms to solve this optimization problem.

A. Problem

We aim to create a general optimization framework, where
any control variables’ effects on the performance metrics
are not well formulated beforehand, that helps edge-based
deep video analytics achieve the optimal balance between
latency and accuracy by tuning the control variables, including
i) the frame resolution r for video streaming, ii) both the
DNN model m and the frame resolution r′ for deep learning
inference, and iii) streaming bitrate b for both video streaming
and deep learning inference. The control variables’ effects
on the performance metrics are shown in Fig. 2. We try
to solve an optimization problem at the beginning of each
frame’s execution to determine the configuration parameters

Streaming
le, ld, lt 

MEC

Inference
li

UE

r, b r’, b, m

Fig. 2: Control variables’ impact on data flow

for deep learning inference. The optimization problem can be
formulated as below:

max
r′,b,m

a(r′, b,m) (1a)

s.t. le(r, b) + ld(r, b) + lt(b) + li(r
′,m) ≤ Γ (1b)

bmin ≤ b ≤ bmax (1c)
rmin ≤ r ≤ rmax (1d)
rmin ≤ r′ ≤ r (1e)

where the objective (1a) is to maximize the inference accuracy,
a(r′, b,m), determined by deep learning model, m and quality
of frame content controlled by high streaming bitrate, b and
high frame resolution, r′, i.e., better frame content with high
complexity interference model would achieve higher inference
precision but at the cost of delay which may occur in different
phases of offloading operations [1]. The constraint function in
(1b), referring to the overall latency of processing a single
frame, could not exceed a pre-defined threshold Γ, as a
common regulation in service-level agreements (SLAs) [17].
The overall latency consists of, as in Sec II-B, the following
components: i) encoding, le(r, b) ii) frame transmission, lt(b),
iii) decoding, ld(r, b), and iv) inference, li(r

′,m), each of
which is itself a function of some or all variables, r, b, r′,
and m. The effects of the parameters on the components in
the latency are described in Sec II-C. While the constraints in
(1c), (1d) and (1e) allow the application to define minimum
and maximum allowable values of bit rate, b, and frame
resolutions, r and r′, respectively, the constraint (1e) indicates
that the frame resolution for deep learning inference, r′, cannot
be chosen to exceed the one for video streaming, r, from which
the deep learning inference may further reduce the resolution
to save more time on image inference. All variables involved
in the problem (1) are denoted as shown in Table I.

Although the control variables’ effects on each performance
metric are intuitive, as what we described in Section II-C, there
is no easy way to formulate their relationship mathematically
because, as what we will show in Section IV-B, the formu-
lation is highly coupled with the system implementation. So,
it is in practice impossible to solve the optimization problem
directly. A brute-force solution is to exhaust all pairs of control
variables to find out the optimal solution. However, it is neither
practical nor efficient due to high complexity, especially in an
online environment.

B. Solution

To solve this problem, we propose an online search algo-
rithm to find the best settings of parameters. The proposed



Algorithm 1 Running on the MEC side
1: function PARAMETERTUNESERVER
2: while frame← ReceiveFrame() do
3: r′ = frame.r
4: while le + ld + lt + li(r

′,m) > Γ and frame.r >
rmin do

5: Decrease(r′)
6: end while
7: ProcessFrame(frame)
8: SendFeedback(r′)
9: end while

10: end function

Algorithm 2 Running on the UE side
1: function PARAMETERTUNECLIENT
2: b← bmin

3: r ← rmax

4: a← 0
5: while b ≤ bmax and r ≥ rmin do
6: frame← NextAvailableFrame()
7: feedback ← StreamFrame(frame, r, b)
8: if feedback.r′ < r then
9: Decrease(r)

10: else
11: Increase(b)
12: if feedback.a > a then
13: a← feedback.a
14: settingopt ← (r, b)
15: end if
16: end if
17: end while
18: return settingopt
19: end function

algorithm is composed of two parts, which run on the MEC
and the UE, separately.
MEC side algorithm. The purpose of Algorithm 1 is to guar-
antee that the overall latency of processing a frame is within
the latency constraint. Note that the output of video streaming
is the baseline of the input of deep learning inference. So,
in a real application, if a frame already spends lots of time
on streaming, the inference algorithm can further reduce the
resolution to save time on processing. Upon receiving and
decoding a frame, the algorithm calculates the time left for
further operation by deducing the latency spent in the previous
stages from the latency limit (line 4). Then, the algorithm
chooses the highest allowable setting in the resolution that can
be processed within the left time (line 5). After processing
(line 7), the receiver responds with the actual resolution in
use (line 8) to the sender as feedback. The feedback indicates
whether the current setting causes too much latency: if r′ < r,
the sender can reduce the streaming resolution to r′ to get
lower latency but does no harm to the inference latency, which
motivates the design of Algorithm 2.
UE side algorithm. The purpose of Algorithm 2 is to search

Client
(WebRTC Sender)

Server
(WebRTC Receiver, 

YOLO)

1 Gbps

RTT < 1ms

Fig. 3: Experiment setup.

for the setting of control variables that achieves the optimiza-
tion target. Initially, the streaming bitrate is set to the minimal
value and the frame resolution is set to the maximum value
(lines 2-3). On the feedback of a sent frame (line 7), one may
check if the inference program has reduced frame resolution
(line 8) to save time. If so, it means that the current setting
consumes too much time in streaming and the resolution
should be decreased (line 9). Otherwise (line 10), it means
that more time can be spent on streaming to improve frame
quality and achieve higher inference accuracy. So, we increase
the bitrate for further probing (line 11). With different sets of
control variables, we record their corresponding performance
metrics and the optimal setting is found when the bitrate
reaches the maximum value, or the resolution reaches the
minimum value (lines 12-14).
How it works. The output of the algorithm is guaranteed
to be the optimal one because, for each given resolution,
the highest bitrate without violating the latency constraint is
examined. On line 11 in Algorithm 2, whenever the current
setting fulfills the latency requirement, it tries to increase
the bitrate until the latency constraint is no longer kept to
maximize the inference accuracy. Then, a lower resolution is
used for further examination. In this way, we get the optimal
setting of each resolution, and the best one among them is
actually the optimal setting for the current system.

In summary, with the help of receiver side feedback, the
sender goes through a searching path and picks the optimal
setting where the inference accuracy is maximized while the
overall latency is smaller than a threshold. During this period,
the overall latency is constantly below the threshold as the
receiver proactively controls the inference latency by down-
scaling input frames. Note that the bitrate increases from the
lowest value to the highest value in Algorithm 2 just like
congestion control algorithms raising sending rate during slow-
start [18]. The execution of the proposed algorithms can be
bounded with the transport layer’s bandwidth probing phase,
which happens just after connection establishment. When a
transport layer bandwidth is finally found by the congestion
control, Algorithm 2 also finds the best setting of the control
variables that optimizes the performance metrics.

IV. EXPERIMENTS

We conduct real-world measurements with the setup de-
scribed in Section IV, and estimate the formula of a(r′, b,m),
li(r
′,m), le(r, b), and ld(r, b) via empirical measurements.

The estimated formulas are further used to evaluate the ef-
fectiveness of the proposed algorithm in Section IV-C.



A. Experimental setup

The experiment setup is shown in Fig. 3. All of the machines
run 64-bit Ubuntu 20.04 LTS. The client is equipped with
an Intel Xeon E3-1230 CPU, 16 GB memory, and a Quadro
K2200 GPU. The server has two different specifications: one is
the same as for the client machine, denoted as MEC1, and the
other one is equipped with an Intel Xeon E3-1230 CPU, 16 GB
memory, and a Quadro P5000 GPU, denoted as MEC2. They
are connected to the same Ethernet switch with a capacity of
1 Gbps. The RTT between each two of them is smaller than 1
ms. The setup guarantees that the network is not the bottleneck
in the experiment.

One WebRTC instance runs on the server to receive video
frames and store them in shared memory. In a different
process, the YOLO program reads each frame from the shared
memory and performs object detection. Another WebRTC
instance runs on the client to stream frames to the server at
10 frames per second, e.g., Ω = 10, as the settings in [19].
The video source is fed from the Waymo open dataset.

In video streaming, we configure the bitrate by hard-coding
the corresponding parameter when invoking the encoder. The
video clips are adjusted to different scales to change the
resolution, from 320p to 1280p 1. To collect WebRTC’s latency
metrics, we modify its source code to log a timestamp at
each stage of execution and use the deduction of timestamps
as the measured latency. In object detection, it reads from
WebRTC receiver’s output and uses pre-trained models for
object detection.

B. Measuring control variables’ effects on performance met-
rics

Encoding/decoding latency. Frame encoding/decoding la-
tency is the most computationally intensive operation in video
streaming, taking up most of the time when sending and
receiving frames.

As shown in Fig. 4, both encoding and decoding latency
values increase w.r.t bitrate and resolution, in general. For
low resolution, it is observed that the codec latency keeps
unchanged even for higher bitrates. The reason is that the
codec has a built-in threshold for each resolution and it has
already contained all necessary information for the given
resolution. Thus, when the setting of bitrate exceeds this value,
the size of the encoded frame does not change anymore as in
Fig 5. The threshold is around 2 Mbps and 5.5 Mbps for 320p
and 480p, respectively. For higher resolution, the threshold
should also be higher but is not in our test case range.

One may also see in Fig. 4 that the encoding latency is
about 2 times greater than the decoding one, which is because
decoding algorithms is simpler than encoding ones in general.
Such higher-level encoding complexity is unfavorable for deep
video analytic, especially in task offloading scenarios where a
service requester has limited computing capacity.
Inference latency. It is known that inference latency of
a DNN-based system is typically affected by two factors:

1The aspect ratio is 3:2, so 1920p means 1920 x 1280 pixels.

operation counts and hardware performance [20]. In our ex-
periment, the operation count is configurable by tuning the
frame resolution, r and the DNN model, m.

Fig. 6 shows the inference latency over different resolutions
on MEC1 and MEC2 when using YOLOv5s and YOLOv5x.
The inference latency on MEC2 is lower than the one on
MEC1, and YOLOv5s results in much lower latency than
YOLOv5. These observations are based on the fact that i) the
computational capability of GPU on MEC2 is much stronger
than the one in MEC1, and ii) YOLOv5x has a deeper neural
network than YOLOv5s 2. As shown in Fig. 6 (a), while, for
both DNN models on MEC1, the inference latency increases
w.r.t resolution in general, YOLOv5x is more sensitive to
the change in resolution. YOLOv5s requires around 23.2 ms
more for processing 1920p frames than 320p frames. With
YOLOv5x, the additional delay increases to 137.5 ms. This is
because both higher resolution and more complex DNN model
increase the number of operations to be executed in the GPU,
resulting in an increased processing delay.

Such resolution-dependent bias can be still captured on
MEC2, but there is a slightly different behavior concerning
resolution as shown in Fig. 6 (b). With YOLOv5s, the impact
of resolution is minimal, resulting in more or less 10 ms of the
inference latency for all available resolutions. This is because
the computational capability of GPU on MEC2 is powerful
enough such that most computing operations are executed in
parallel, which may not increase a processing delay. Thus,
base on this, the CPU-intensive tasks, e.g., memory copy
work, become a dominant factor for the inference delay.
Similarly, the inference latency does not change much at lower
resolutions with YOLOv5x as it does not have enough com-
puting operations to saturate the GPU’s parallel computation
capability. But, at higher resolutions, the number of computing
operations exceeds the GPU’s parallel capability, making the
inference latency increase linearly as the number of operations.

Comparing MEC1 and MEC2, both of them prove that the
inference latency (li) is non-decreasing to the resolution (r).
However, their relationship varies a lot on different hardware
platforms, making it impossible to have a formula describing
li(r,m) for all of the cases.
Network transmission latency. As measured in [8], we set
RTT to 4ms and bandwidth to 300 Mbps (uplink), respectively.
So, when the bitrate is set to 8 Mbps, the frame transmission
latency is estimated as 6.7 ms. While this estimation may
not be always applicable for complex real-world networks, we
focus on measurement-based analysis of processing behaviors
primarily on two ends, mobile user and edge computing
node assumed to be connected in a stable 5G network where
handling the dynamics of network performance in a wireless
network is not considered as in [21], left for future work.
Inference accuracy. The accuracy of computer vision tasks
on video streams is determined by the effectiveness of two do-
mains: data input and data processing, i.e., high-quality video

2The number of neural network layers with YOLOv5x and YOLOv5s are
607 and 283, respectively.



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 9.0 10.0
Bitrate (Mbps)

1280p

1120p

960p

800p

640p

480p

320p

Re
so

lu
tio

n
33 36 37 39 40 41 42 44 45 47 47 48 50 51 52 52

38 39 41 43 45 47 48 49 51 51 52 53 56 56 58 58

37 39 41 42 44 46 48 49 51 50 51 53 54 56 57 58

26 28 29 30 32 32 33 33 34 36 35 37 40 40 42 43

20 22 23 25 25 26 26 27 28 28 29 30 32 33 34 34

14 16 18 19 18 20 20 21 22 23 24 25 23 24 23 24

13 15 17 17 18 18 18 17 17 18 18 18 18 18 18 19

(a) Encoding latency (ms)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 9.0 10.0
Bitrate (Mbps)

1280p

1120p

960p

800p

640p

480p

320p

Re
so

lu
tio

n

15 19 22 25 27 28 29 32 37 34 32 36 39 39 35 38

11 18 19 23 27 26 28 27 30 31 31 31 34 35 37 36

11 17 20 23 26 26 27 27 28 31 32 33 34 36 35 37

10 13 15 17 17 20 23 22 24 25 25 26 28 28 29 30

7 11 14 16 17 16 21 19 20 23 22 24 25 27 27 29

7 10 12 13 12 16 18 17 19 21 19 20 21 19 21 21

8 9 12 13 13 13 14 13 14 14 15 14 14 14 15 13

(b) Decoding latency (ms)

Fig. 4: Resolution and bitrate’s impact on encoding latency and decoding latency.

2 4 6 8 10
Bitrate (Mbps)

50

100

En
co

de
d 

siz
e 

(K
B)

320p
480p
640p

Fig. 5: Relationship between bitrate and a frame’s encoded
size.

0.25 0.50 0.75 1.00
Resolution scale

0

100

200

La
te

nc
y 

(m
s) yolov5s

yolov5x

(a) MEC1, moderate spec

0.25 0.50 0.75 1.00
Resolution scale

20

40

La
te

nc
y 

(m
s) yolov5s

yolov5x

(b) MEC2, high spec

Fig. 6: Inference latency over different resolutions.

input allows for extracting explicit attributes, and advanced
inference algorithm allows for learning the faithful character-
istics of the data input. With the increased accessibility to
large computing capability, the qualities of the data input and
data processing end up influencing the inference accuracy in
various vision applications [22]. In the following, we study
how the respective domains, i.e., quality of input image and
deep inference algorithm, affect the inference accuracy. Mean
average precision (mAP) is used as the indicator for object
detection accuracy.

Fig. 7 shows the object detection accuracy w.r.t bitrate and
resolution. In general, the larger the bitrate and resolution are,
the higher the accuracy is. Comparing the horizontal lines, the
inference accuracy increases rapidly on low bitrates but keeps
stable when the bitrate reaches a certain value. It is because a
large amount of visual information is lost when the video is
compressed into a low bitrate, causing performance downgrad-
ing on the inference accuracy. When the bitrate is high enough,
increasing bitrate does not add much detail to the decoded
frame, so its effect on the inference accuracy is limited. To
further analyze how bitrate affects inference accuracy at a
given resolution, we compare the highest achieved accuracy

r′ 480p 720p 960p 1200p 1440p 1680p 1920p
a 0.304 0.409 0.497 0.523 0.558 0.574 0.591
a′ 0.288 0.390 0.479 0.509 0.536 0.554 0.571
b95 1.0 1.5 1.5 1.5 2.5 2.0 2.5
b98 1.5 3.0 3.0 3.5 3.5 4.0 4.0

TABLE II: The inference accuracy of the original dataset as
a baseline and the best accuracy after codec, a and a′ (mAP),
and the minimal bitrates for achieving 95% and 98% of the
best accuracy, b95 and b98 [Mbps], w.r.t resolution, r′.

after video streaming with the original video (denoted as
baseline accuracy) in Table II. It shows that the inference
accuracy on streamed video frames is worse than processing
the original video directly, with a loss in mAP of about 0.02
in all of the cases. We attribute the reason to the fact that
video coding is lossy and high-frequency features in a frame
are dropped, no matter how large the bitrate is set. On the
other hand, we show that a relatively low bitrate is sufficient
for getting a high inference accuracy. For instance, in 1920p,
4 Mbps is sufficient for achieving an accuracy no worse than
98% of the best value. The requirement on bitrate is even as
small as 2.5 Mbps if we are satisfied with an accuracy of
95% of the best value. Comparing the vertical lines in Fig. 7,
it is observed that it is always beneficial on using a higher
resolution at a given bitrate, regarding inference accuracy.
The reason is that down-scaling algorithms are usually not as
efficient as video codecs on retaining high-priority information
when compressing a frame.

C. Performance evaluation

In this subsection, we firstly analyse the tradeoff between
latency and accuracy based on the above mentioned measure-
ment results and then evaluate the proposed algorithm based
on the measurement data.
Latency vs accuracy. Fig. 8 shows the correlation between
latency and accuracy by experimenting with different settings
of control variables. As mentioned above, the resolution ranges
from 320p to 1280p and the bitrate ranges from 0.5 Mbps
to 10 Mbps. The latency threshold (Γ) is set as 100 ms [2].
Comparing Fig. 8a and Fig. 8b, MEC2 is, in general, of better
performance, i.e., higher accuracy and lower latency, as its



0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 9.0 10.0
Bitrate (Mbps)

1280p

1120p

960p

800p

640p

480p

320p

Re
so

lu
tio

n
0.35 0.38 0.43 0.45 0.46 0.47 0.48 0.48 0.49 0.49 0.49 0.49 0.49 0.50 0.49 0.50

0.35 0.40 0.43 0.45 0.46 0.46 0.47 0.47 0.47 0.47 0.48 0.47 0.48 0.48 0.48 0.47

0.31 0.36 0.40 0.41 0.42 0.43 0.43 0.44 0.43 0.44 0.44 0.44 0.45 0.45 0.45 0.44

0.32 0.37 0.40 0.40 0.41 0.41 0.42 0.42 0.42 0.42 0.42 0.43 0.43 0.43 0.42 0.43

0.30 0.34 0.35 0.36 0.37 0.37 0.37 0.37 0.38 0.37 0.37 0.37 0.37 0.38 0.37 0.38

0.26 0.28 0.29 0.29 0.29 0.29 0.29 0.30 0.30 0.30 0.29 0.29 0.30 0.30 0.30 0.30

0.21 0.22 0.22 0.22 0.23 0.23 0.22 0.22 0.22 0.23 0.23 0.23 0.22 0.23 0.22 0.23

(a) YOLOv5s

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 7.0 8.0 9.0 10.0
Bitrate (Mbps)

1280p

1120p

960p

800p

640p

480p

320p

Re
so

lu
tio

n

0.41 0.45 0.50 0.52 0.54 0.55 0.56 0.56 0.56 0.57 0.57 0.57 0.57 0.57 0.56 0.57

0.40 0.47 0.51 0.52 0.53 0.54 0.54 0.54 0.55 0.55 0.55 0.55 0.55 0.55 0.55 0.54

0.38 0.44 0.48 0.50 0.51 0.51 0.52 0.53 0.53 0.53 0.53 0.54 0.54 0.53 0.53 0.53

0.39 0.46 0.47 0.49 0.49 0.50 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.50 0.50

0.38 0.44 0.45 0.46 0.47 0.47 0.47 0.47 0.48 0.48 0.47 0.48 0.48 0.48 0.48 0.48

0.34 0.37 0.38 0.38 0.38 0.38 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39 0.39

0.27 0.28 0.28 0.29 0.29 0.28 0.29 0.29 0.28 0.29 0.28 0.29 0.28 0.29 0.28 0.29

(b) YOLOv5x

Fig. 7: Inference accuracy over different resolution and bitrate. Using different YOLO models.

50 75 100 125 150
Overall latency (ms)

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

YOLOv5s
YOLOv5x

(a) MEC1

50 75 100 125 150
Overall latency (ms)

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

YOLOv5s
YOLOv5x

(b) MEC2

Fig. 8: Latency versus Accuracy over various settings of video
streaming variables.

0 5 10
Frame sequence

320p
480p
640p
800p
960p

1120p
1280p

Re
so

lu
tio

n

5

10

Bi
tra

te
(M

bp
s)

(a) YOLOv5s

0 5 10
Frame sequence

320p
480p
640p
800p
960p

1120p
1280p

Re
so

lu
tio

n

5

10

Bi
tra

te
(M

bp
s)

(b) YOLOv5x

Fig. 9: Timeline of searching for the optimal setting

hardware is more powerful. And, one both machines, there
exist lots of settings which are worse than another one in
terms of both accuracy and latency. So, finding the best setting
of control variables is essential in maximizing the system
performance.
Simulation. We simulate the executions of Algorithm 1 and
Algorithm 2 in the testbed with MEC2 as the server. The
resolution and bit rate parameters selected for different frames
are shown in Fig. 9, and their corresponding accuracy and
latency values are plotted in Fig. 10.

The resolution and bitrate are initially set to the maximum
and minimum available values, respectively. For each frame,
the sender uses the current parameter setting to stream the
video and checks if the receiver uses the same resolution
for inference. If so, it means that the current setting does
not violate the overall latency constraint and the algorithm
continues to increases bitrate for improving accuracy. This can
be observed in Fig. 9a that the bitrate follows a steady slope.

In Fig. 10a, both the accuracy and the latency increases
for the first few frames. This is because the algorithm is
increasing the bitrate while keeping the resolution. At the 9th

60 80 100 120
Overall latency (ms)

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 (m
AP

)

Trace of settings
Optimal point
Start point

(a) YOLOv5s

60 80 100 120
Overall latency (ms)

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 (m
AP

)

Trace of settings
Optimal point
Start point

(b) YOLOv5x

Fig. 10: Trace of the searching for the optimal setting, starting
from the red dot, each dot represents a frame sequence in Fig. 9

frame, the overall latency is above the latency limit and the
algorithm starts to reduce resolution but holds the bitrate. After
that, the overall latency in Fig. 10a starts to decrease until
getting smaller than the threshold. Finally, the best possible
accuracy and latency smaller than 100 ms are reached, as
denoted with the cross mark in Fig. 10, which is of the highest
accuracy among those having a latency below 100 ms in Fig. 8.
This observation verifies the effectiveness of the proposed
algorithm, finding the best possible parameter values for
each frame. While, in a real-world application, the inference
accuracy cannot be obtained in an online manner due to the
lack of ground truth labels, one may use probabilistic logic
approaches to estimate the inference accuracy as proposed
in [23], which is left for future work.

V. RELATED WORK

Streaming’s impact on DNN. Some measurement studies
have been conducted to understand how the quality of the
video itself, e.g., resolution, affects the accuracy of deep object
detection [24], [25]. For example, Dodge and Karam [25]
figured out that the inference accuracy is susceptible to blur
and noise distortions while being resilient to compression
artifacts and contrast. In addition, Ran et al. [1] measured
how the accuracy changes as a function of latency for videos
at a fixed resolution and bitrate. Modern video streaming
protocols support adaptation of bitrate for visual quality, our
work takes one step further to investigate how the adaptation
of video streaming parameters affects jointly the latency and
the inference accuracy.



Latency vs accuracy in edge computing. There exist in the
literature also several frameworks for deep video analytic at
the edge [1], [2]. A key design criterion for such frameworks
is to optimize the accuracy of video analytic while minimizing
the latency. As most of them apply a data-driven solution, their
optimal algorithm is limited to only a single software and hard-
ware setup and is not applicable to other scenarios. Comparing
with the existing works, the novelty of our work resides in a
generic optimization framework, where no prior knowledge of
the application software and hardware is required.
Server-driven video streaming. Traditional video streaming
applications focus on visual quality, which adapts bitrate
based on network conditions to retain the most visual details
for a frame. However, with the emerge of AI applications,
where video frames are used for inference instead of visual
playback, the application’s quality of service (QoS), e.g., in-
ference accuracy, becomes the key metrics in video streaming.
So, server-driven video streaming is proposed to optimize
streaming for AI application’s QoS. For example, DDS (DDN-
Driving Streaming) proposes to stream low-quality video at
first and let the server determine where to re-send with higher
quality [4]. In this paper, we use inference accuracy as a
criteria for deciding the best combination of control variables,
i.e., streaming bitrate and resolution. Taking advantage of the
use of real-time server feedback, our solution works without
prior knowledge on the system setup.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an online algorithm that searches
for the optimal settings of video streaming parameters, with
the aim of maximizing the inference accuracy within a latency
constraint. Compared to data-driven methods, the proposed
algorithm is adaptive and works without any prior knowledge
on the streaming/inference software or the execution hardware.
Moreover, our proposal has been proven to converge fast
to optimal video streaming settings. In the future, we plan
to integrate the proposed algorithm with the transport layer
congestion control to maximize application QoS during the
change on sending speed.

ACKNOWLEDGEMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation program under
grant agreement No. 825496, and Academy of Finland under
grant number 317432 and 318937.

REFERENCES

[1] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “DeepDecision: A Mobile
Deep Learning Framework for Edge Video Analytics,” in Proc. IEEE
INFOCOM, Apr. 2018, pp. 1421–1429.

[2] T. Tan and G. Cao, “FastVA: Deep Learning Video Analytics Through
Edge Processing and NPU in Mobile,” in Proc. IEEE INFOCOM, Jul.
2020, pp. 1947–1956.

[3] M. Ali, A. Anjum, M. U. Yaseen, A. R. Zamani, D. Balouek-Thomert,
O. Rana, and M. Parashar, “Edge Enhanced Deep Learning System for
Large-Scale Video Stream Analytics,” in Proc. IEEE ICFEC, May 2018,
pp. 1–10.

[4] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoffmann, and
J. Jiang, “Server-Driven Video Streaming for Deep Learning Inference,”
in Proc. ACM SIGCOMM, Jul. 2020, pp. 557–570.

[5] H. Zhang, G. Ananthanarayanan, P. Bodik, M. Philipose, P. Bahl, and
M. J. Freedman, “Live Video Analytics at Scale with Approximation
and Delay-Tolerance,” in Proc. USENIX NSDI, 2017, pp. 377–392.

[6] G. Carlucci, L. De Cicco, S. Holmer, and S. Mascolo, “Analysis and de-
sign of the google congestion control for web real-time communication
(WebRTC),” in Proc. MMSys, May 2016, pp. 1–12.

[7] G. Jocher, A. Stoken, J. Borovec, NanoCode012, ChristopherSTAN,
L. Changyu, Laughing, tkianai, yxNONG, A. Hogan, lorenzomammana,
AlexWang1900, A. Chaurasia, L. Diaconu, Marc, wanghaoyang0106,
ml5ah, Doug, Durgesh, F. Ingham, Frederik, Guilhen, A. Colmagro,
H. Ye, Jacobsolawetz, J. Poznanski, J. Fang, J. Kim, K. Doan, and L. Y.
, “ultralytics/yolov5: v4.0 - nn.SiLU() activations, Weights & Biases
logging, PyTorch Hub integration,” Jan. 2021.

[8] D. Xu, A. Zhou, X. Zhang, G. Wang, X. Liu, C. An, Y. Shi, L. Liu, and
H. Ma, “Understanding Operational 5G: A First Measurement Study on
Its Coverage, Performance and Energy Consumption,” in Proc. ACM
SIGCOMM, 2020, pp. 479–494.

[9] C. Cola and H. Valean, “On multi-user web conference using WebRTC,”
in Proc. IEEE ICSTCC, Oct. 2014, pp. 430–433.

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Delving Deep into Rectifiers:
Surpassing Human-Level Performance on ImageNet Classification,” in
Proc. IEEE ICCV, 2015, pp. 1026–1034.

[11] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified,
Small, Low Power Fully Convolutional Neural Networks for Real-Time
Object Detection for Autonomous Driving,” in Proc. IEEE CVPR, 2017,
pp. 129–137.

[12] X. Pan, J. Shi, P. Luo, X. Wang, and X. Tang, “Spatial As Deep: Spatial
CNN for Traffic Scene Understanding,” in Proc. AAAI Conf. Artificial
Intelligence, 2018, pp. 7276–7283.

[13] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,”
arXiv:1804.02767 [cs], Apr. 2018, arXiv: 1804.02767. [Online].
Available: http://arxiv.org/abs/1804.02767

[14] P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui,
J. Guo, Y. Zhou, Y. Chai, B. Caine, V. Vasudevan, W. Han, J. Ngiam,
H. Zhao, A. Timofeev, S. Ettinger, M. Krivokon, A. Gao, A. Joshi,
Y. Zhang, J. Shlens, Z. Chen, and D. Anguelov, “Scalability in Per-
ception for Autonomous Driving: Waymo Open Dataset,” in Proc.
IEEE/CVF Conf. Comp. Vision Pattern Recognition, 2020, pp. 2446–
2454.

[15] Y. O. Sharrab and N. J. Sarhan, “Detailed Comparative Analysis of VP8
and H.264,” in Proc. IEEE International Symposium on Multimedia,
Dec. 2012, pp. 133–140.

[16] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-
Time Object Detection with Region Proposal Networks,” IEEE TPAMI,
vol. 39, no. 6, pp. 1137–1149, 2017.

[17] E. Kapassa, M. Touloupou, A. Mavrogiorgou, and D. Kyriazis, “5G &
SLAs: Automated proposition and management of agreements towards
QoS enforcement,” in Proc. IEEE ICIN, Feb. 2018, pp. 1–5.

[18] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson,
“BBR: Congestion-Based Congestion Control: Measuring bottleneck
bandwidth and round-trip propagation time,” Queue, vol. 14, no. 5, pp.
20–53, Oct. 2016.

[19] G. Prabhakar, B. Kailath, S. Natarajan, and R. Kumar, “Obstacle de-
tection and classification using deep learning for tracking in high-speed
autonomous driving,” in 2017 IEEE Region 10 Symposium (TENSYMP),
Jul. 2017, pp. 1–6.

[20] A. Canziani, A. Paszke, and E. Culurciello, “An Analysis of Deep Neural
Network Models for Practical Applications,” arXiv:1605.07678 [cs],
2016.

[21] M. F. Tuysuz and M. E. Aydin, “QoE-Based Mobility-Aware Collab-
orative Video Streaming on the Edge of 5G,” IEEE Transactions on
Industrial Informatics, vol. 16, no. 11, pp. 7115–7125, Nov. 2020.

[22] T. Na, M. Lee, B. A. Mudassar, P. Saha, J. H. Ko, and S. Mukhopadhyay,
“Mixture of Pre-processing Experts Model for Noise Robust Deep
Learning on Resource Constrained Platforms,” in Proc. IEEE IJCNN,
Jul. 2019, pp. 1–7.

[23] E. A. Platanios, H. Poon, T. M. Mitchell, and E. Horvitz, “Estimating
Accuracy from Unlabeled Data: A Probabilistic Logic Approach,” May
2017. [Online]. Available: http://arxiv.org/abs/1705.07086

[24] M. Aqqa, P. Mantini, and S. K. Shah, “Understanding How Video
Quality Affects Object Detection Algorithms,” in Proc. VISIGRAPP,
2019, pp. 96–104.

[25] S. Dodge and L. Karam, “Understanding how image quality affects deep
neural networks,” in Proc. IEEE QoMEX, 2016, pp. 1–6.


