Alvarez, Silvana Palacios; Gomez, Pau; Coop, Simon; Zamora-Zamora, Roberto; Mazzinghi, Chiara; Mitchell, Morgan W.

Single-domain Bose condensate magnetometer achieves energy resolution per bandwidth below \(\hbar\)

Published in:
Proceedings of the National Academy of Sciences of the United States of America

DOI:
10.1073/pnas.2115339119

Published: 08/02/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY-NC-ND

Please cite the original version:
https://doi.org/10.1073/pnas.2115339119
We present a magnetic sensor with energy resolution per bandwidth $E_R < \hbar$. We show how a 87Rb single-domain spinor Bose–Einstein condensate, detected by nondestructive Faraday rotation probing, achieves single-shot low-frequency magnetic sensitivity of 72(8) fT measuring a volume $V = 1,091(30) \text{ mm}^3$ for 3.5 s, and thus, $E_R = 0.075(16)\hbar$. We measure experimentally the condensate volume, spin coherence time, and readout noise and use phase space methods, backed by three-dimensional mean-field simulations, to compute the spin noise. Contributions to the spin noise include one-body and three-body losses and shearing of the projection noise distribution, due to competition of ferromagnetic contact interactions and quadratic Zeeman shifts. Nonetheless, the fully coherent nature of the single-domain, ultracold two-body interactions allows the system to escape the coherence vs. density trade-off that imposes an energy resolution limit on traditional spin precession sensors. We predict that other Bose-condensed alkalis, especially the antiferromagnetic 23Na, can further improve the energy resolution of this method.

Quantum sensing | Magnetometry | Bose–Einstein condensates

Well-known quantum limits profoundly, but not irremediably, constrain our knowledge of the physical world. Uncertainty relations forbid precise, simultaneous knowledge of observables such as position and momentum. Parameter estimation limits, e.g., the standard quantum limit and Heisenberg limit, constrain our ability to measure transformations not subject to uncertainty relations, e.g., rotations (1, 2). Both these classes of quantum limits admit trade-offs: uncertainty principles allow an observable to be precisely known if one foregoes knowledge of its conjugate observable, and parameter estimation limits allow better precision in exchange for a greater investment of resources, e.g., particle number.

A qualitatively different sort of quantum limit is found in magnetic field sensing, where well-studied sensor technologies are known to obey a quantum limit on the energy resolution per bandwidth,

$$E_R \equiv \frac{(\delta B^2)VT}{2\mu_0}. \quad [1]$$

Here (δB^2) is the mean squared error of the measurement, V is the sensed volume, T is the duration of the measurement, and μ_0 is the vacuum permeability.

A limit on E_R constrains sensitivity when measuring the field in a given space–time region, without reference to any other physical observable, nor to any resource. In contrast to other quantum sensing limits, this allows nothing to be traded for greater precision; it means that details of the field distribution are simply unmeasurable. Known limits on E_R, derived from quantum statistical modeling, show that direct current (dc) superconducting quantum interference devices (dc SQUIDs) are simply unmeasurable. Known limits on E_R, derived from quantum statistical modeling, show that direct current (dc) superconducting quantum interference devices (dc SQUIDs) are known to obey a quantum limit on the energy resolution per bandwidth, $E_R \geq \hbar$. These limits, though, are imposed by technology-specific mechanisms, not by a universal constraint on all sensor technologies (10).

A variety of exotic sensing techniques, including noble gas spin precession sensors (11–13), levitated ferromagnets (14, 15), and dissipationless superconducting devices (16–18), have been proposed to achieve $E_R < \hbar$ by evading specific relaxation mechanisms (10). If $E_R < \hbar$ can be achieved, it will break an impasse that has held since the early 1980s, when $E_R \approx \hbar$ was reached in dc SQUID sensors (6, 19). In addition to resolving the question of whether $E_R \geq \hbar$ is universal, achieving $E_R < \hbar$ would open horizons in condensed matter physics (20) and neuroscience (21).

For example, to enable single-shot discrimination of brain events, a magnetometer would need $\delta B \sim 1$ fT sensitivity to $T \sim 10$ ms events when measuring in $V \sim (3 \text{ mm})^3$ volumes (22, 23), or $E_R \sim 1$.\hbar.

Here we study an exotic magnetometer technology, the single-domain spinor Bose–Einstein condensate (SDSBEc), that freezes out relaxation pathways due to collisions, dipolar

Significance

Energy resolution per bandwidth E_R is a cross-technology figure of merit that quantifies the combined spatial, temporal, and field resolution of a magnetic sensor. Today’s best-developed magnetometer technologies, including superconducting quantum interference devices, spin-exchange relaxation-free Rb vapors, and nitrogen-vacancy centers in diamond, are limited by quantum noise to $E_R \geq \hbar$. Meanwhile, important sensing applications, e.g., noninvasive discrimination of individual brain events, would be enabled by $E_R < \hbar$.

This situation has motivated proposals for sensors operating by new physical principles. Our result, $E_R = 0.075(16)$,\hbar, far beyond the best possible performance of established sensor technologies, confirms the potential of this class of proposed sensors. The result opens horizons for condensed matter, neuroscience, and tests of fundamental physics.

Author contributions: S.P.A. built the apparatus and performed the experiments with help from S.C., P.G. and C.M. analyzed the data and performed the TWA simulations; R.Z.Z. performed Gross-Pitaevskii equation simulations; M.W.M. supervised the work and developed the TWA analysis; and S.P.A and M.W.M. wrote the manuscript with input from all authors.

The authors declare no competing interest.

This article is a PNAS Direct Submission.

This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).

1To whom correspondence may be addressed. Email: morgan.mitchell@icfo.eu.

Published February 7, 2022.
interactions, and also spin diffusion (24) and domain formation (25, 26), which occur in unconfined condensates. With a \(^{87}\)Rb SDSBEC, we find \(E_R = 0.075(16)\,\text{h}\), far beyond what is possible, even in principle, with established technologies (10, 27). Our results demonstrate the possibility of \(E_R \ll h\) sensors and motivate the study of other exotic sensor types.

To understand how the SDSBEC evades the h limit, it is instructive to first show why other spin precession sensors, which include NVD and alkali vapors, obey such a limit. The principle of operation of a spin precession sensor is represented in Fig. 1A: An ensemble of \(N\) atoms is first initialized with its net spin \(\mathbf{F}\) along the magnetic field \(\mathbf{B}\) to be measured. The spin is then tipped by a radiofrequency pulse, making \(\mathbf{F}\) orthogonal to \(\mathbf{B}\). The spins are allowed to precess for a time \(T\) before the resulting precession angle \(\theta = \gamma BT\) is detected, where \(\gamma\) is the gyromagnetic ratio of the atomic species and \(B = |\mathbf{B}|\) is the magnitude of the field. The resulting energy resolution per bandwidth is

\[
E_R = \frac{V(\langle \delta \theta^2 \rangle_F)}{2\mu_0 \gamma^2 T} + \frac{V(\langle \delta \theta^2 \rangle_R)}{2\mu_0 \gamma^2 T},
\]

where \(\langle \delta \theta^2 \rangle_F\) and \(\langle \delta \theta^2 \rangle_R\) are the angular variance due to intrinsic uncertainty of \(\mathbf{F}\) and readout noise, respectively.

Readout noise can in principle be arbitrarily reduced using projective measurement, so we focus on the intrinsic spin noise. This scales as \(\langle \delta \theta^2 \rangle_F \propto N^{-1}\) and is minimized at the optimal readout time \(T \approx T_2/2\), where \(T_2\) is the transverse relaxation time. The quantum noise contribution to Eq. 2 thus scales as \(1/(nT_2)\), where \(n = N/V\) is the number density of spins. In ordinary spin systems, the relaxation rate \(1/T_2\) will grow proportionally to \(n\) due to two-body decoherence processes, e.g., spin destruction correlations in vapors (8) or magnetic dipole-dipole coupling in NVD (9, 10). This density-coherence trade-off ensures that \(E_R\) has a finite lower bound (Energy Resolution Limit for Markovian Spin Systems).

To circumvent this limit, we implement a spin precession sensor with an SDSBEC. This ultracold sensor differs from the above in three important ways. First, because it is so cold, inelastic two-body interactions, including both short-range hyperfine-changing collisions and long-range dipole–dipole interactions, are energetically forbidden for a sensor operating in the ground hyperfine state (28). Second, because of quantum degeneracy, the elastic two-body interactions (spin-independent and spin-dependent contact interactions) produce a coherent dynamics that does not raise the entropy of the many-body spin state (29). Third, in the single-domain regime, these coherent dynamics cannot reduce the net polarization through domain formation, as happens in extended SBECs (30). As we will show, \(1/T_2\) then contains no contribution \(\propto n\), and we escape the density–coherence trade-off.

To understand the SDSBEC sensitivity\(^1\), we compute \(\langle \delta \theta^2 \rangle_F\), including quantum statistical effects due to collisional interactions, which can importantly modify the spin distribution from its mean-field behavior (33). We employ the truncated Wigner approximation (TWA) (34, 35), previously applied to study spatial coherence in BECs (36). In the single-mode approximation (SMA), the quantum field describing the condensate factorizes into a spatial distribution \(\phi_N(r)\) and a spinor field operator \(\chi\) describing all atoms in the condensate.

\[
\chi \equiv (\hat{a}_{\uparrow,1}, \hat{a}_{\uparrow,0}, \hat{a}_{\downarrow,1})^T,
\]

where \(\hat{a}_{\uparrow,0}\) are bosonic annihilation operators, such that \(N \equiv \chi^\dagger \chi\) is the atomic number operator. \(\phi_N(r)\) is the ground-state solution to the spin-independent part of the Hamiltonian in the Thomas–Fermi approximation and with \(N\) atoms. We normalize \(\phi_N\) such that \(I_2 = 1\), where \(I_2 \equiv \int d^3r |\phi_N(r)|^4\).

The spinor field \(\chi\) evolves under the SMA Hamiltonian (37)

\[
H_{\text{SMA}} = \frac{g}{\chi} \chi^\dagger \mathbf{F}_X \cdot \chi \mathbf{F}_X + q \chi^\dagger \mathbf{I}_2 \chi,
\]

where \(g \equiv q I_2 N^{-3/5}\) describes the spin-dependent interaction strength and the \(q\) term describes the quadratic Zeeman

\[^1\] A direct measurement of the sensor’s equivalent magnetic noise could in principle be made by placing the magnetometer in a shielded environment with magnetic noise below that of the sensor. To our knowledge, shielding at the required level, ~50 fT/√Hz at sub-Hz frequencies, has never been implemented in a cold-atom experiment and appears intrinsically challenging. As described below, the single-shot, optimized SDSBEC is sensitive to frequencies below \(f = 1/T_2 \approx 0.29\,\text{Hz}\), while multishot measurements would still be slower. At these low frequencies, magnetic shielding is limited by the innermost shield’s thermal magnetization noise, with power spectral density \(\sim 1/f\) and typical values \(\langle \delta \theta^2 \rangle T = f^{-1}100\,\text{Hz}^2\) (31). For this reason, we base our sensitivity estimates on a combination of measured readout noise and calculations of the quantum noise dynamics in the SDNB using measured parameters. Due to the very clean nature of the BEC system, such calculations have been reliable in other contexts (32).
shift, including contributions from the external field and from microwave or optical fields. The combined action of the q and g terms induces a shearing of the condensate’s spin noise distribution from its initial coherent-state distribution. Losses occur at rate $dn'/dt = -\Gamma_1 N - \Gamma_3 n^{3/2}$, where Γ_1 describes the rate of collisions with background gas and Γ_3 is proportional to the three-body loss cross section. The evolution of the many-body spin state ρ is described by the master equation $d\rho/dt = [H_{\text{SMA}}, \rho]/(i\hbar) + L[\rho]$, where $L[\rho]$ is the Liouvillean

$$L[\rho] = \sum_i \kappa_i \left(2 \rho \hat{O}_i \rho - \rho \hat{O}_i \rho - \rho \rho \hat{O}_i \right),$$

and the jump operators \hat{O}_i, with associated rates κ_i, describe the various loss processes (Mode Shape, Interaction Strengths, and Jump Operators and Quantum Noise Evolution).

Fig. 2 shows the evolution of the spin noise contribution to E_{SN} over time as computed by TWA. For a given trapping potential and finite Γ_1, q, and/or Γ_3, the energy resolution shows a global minimum with T. To understand the in-principle limits of this T-optimized noise level, we note the following: 1) Γ_1 can in principle be arbitrarily reduced through improved vacuum conditions, while q can also be made arbitrarily small by compensating the contribution of the external field with microwave or optical dressing, leaving Γ_3 as the sole factor to introduce spin noise. 2) The noise effects of Γ_3, which are a strong function of density, can also be made arbitrarily small by increasing τ_{TF} and N to give a large, low-density condensate. 3) The corresponding increase in V is more than offset by the increase in T_2, such that $E_{\text{SN}} \propto V/T_2$ tends toward zero. 4) At the same time, the SMA and TWA approximations become more accurate in this limit. We conclude that a low-density SBEC in a loose trapping potential can operate deep in the single-mode regime, suffer small three-body losses, and achieve $E_{\text{SN}} \ll h$.

We now show that an SDSBEC magnetometer can in practice operate with E_{SN} well below h. The experimental configuration is illustrated in Fig. L and described in detail in Palacios et al. (29). In brief, a pure condensate of 87Rb atoms in the $F = 1$ manifold with an initial atom number $N_0 = 6.8(5) \times 10^4$ is produced by forced evaporation in a crossed-beam optical dipole trap. The condensate is initially fully polarized along B by evaporation in the presence of a magnetic gradient, tipped by a radiofrequency pulse to be orthogonal to B, then allowed to precess for a time T before readout, as depicted in Fig. 1C. A probe light tuned 258 MHz to the red of the $F = 1 \rightarrow F' = 0$ transition of the D_2 line is used for nondestructive Faraday rotation measurement of the collective spin of the condensate (Fig. 1D).

Atom number is measured by time-of-flight absorption imaging. From atom-number decay we observe $\Gamma_1 = 8.6(31) \times 10^{-2} \text{s}^{-1}$ and $\Gamma_3 = 1.0(6) \times 10^{-5} \text{atom}^{-4/3} \text{s}^{-1}$ one-body and three-body collision rates, respectively. The very small three-body loss rate allows us to approximate atomic losses as exponentially decaying with lifetime $7.1(2)$ s. In this approximation the resulting rate dn'/dt never differs by more than 4% from the numerical solution when both Γ_1 and Γ_3 are included. The coherence time is found to be equal to the atomic lifetime in the trap and therefore $T_2 = 7.1(2)$ s.

The curvature of the trapping potential is determined from the measured SBEC oscillation frequencies. We find $\omega_1/2\pi = 67.2(10)$ Hz, $\omega_2/2\pi = 89.0(7)$ Hz, and $\omega_3/2\pi = 97.6(9)$ Hz, where the subscripts index the principal axes of the trap. For our number of atoms $N = 6.8(5) \times 10^4$ these correspond to Thomas–Fermi radii $r_{\text{TF}}^{(1,2,3)} = 7.0(1)$ μm, 6.20(9) μm, and 6.00(9) μm in the Thomas–Fermi approximation (Mode Shape, Interaction Strengths, and Jump Operators). This parabolic geometry defines the volume containing the entire condensate $V = 4\pi r_{\text{TF}}^{(1,2,3)} r_{\text{TF}}^{(1,2,3)}/3 = 1.091(30) $ μm3.

As shown in Fig. 1D, measurements of the spin precession can be taken over several precession cycles with little damage to the polarization, allowing the precession angle to be estimated with readout noise $(\Delta \theta)^2_{\text{RNO}} = 1.08(24) \times 10^{-4} \text{rad}^2$ at the time of optimal readout $T = T_2/2$ (Readout Noise). We note that $(\Delta \theta)^2_{\text{RNO}}$ could be further reduced through improved probe–atom coupling and/or squeezed light (38, 39).

Combining the above we have volume $V = 1.091(30)$ μm3, readout noise $(\Delta \theta)^2_{\text{RNO}} = 1.08(24) \times 10^{-4} \text{rad}^2$, and spin quantum noise $(\Delta \theta)^2_{\text{SP}} = 1.46(100) \times 10^{-5} \text{rad}^2$. For an optimum readout time of $T = 3.5$ s, these give a magnetic sensitivity of $72(8)$ nT and $E_{\text{SN}} = 0.075(16)$ h (Duty Cycle). This is a factor of 17 better than any previously reported value (24, 40, 41) and well beyond the level $E_{\text{SN}} \approx h$ that constrains the most advanced existing technologies.

In applying the TWA, we assumed the validity of the SMA. To check this, we integrate in time the three-dimensional Gross–Pitaevskii equation (Description of the Condensate) on a graphical processing unit, as described in refs. 42, 43. Spatially resolved polarization column densities are shown in Fig. 1B and E and indicate fractional polarization defects at the 10^{-5} level. The defect $N - F_{\text{SN}}$ of the condensate as a whole is of order 1 atom. By vector addition, the contribution to the variance of the azimuth spin component F_ϕ is then no larger than the projection noise $(\Delta F_\phi)^2_{\text{PN}} = N/2$ and could be far smaller. These mean-field results, together with coherence measurements reported in (29), give a quantitative justification for the use of the SMA.

We extend the analysis to other $F = 1$ alkali species and find that some could perform still better than the 87Rb system studied here. Two considerations are relevant here. First, we note the conditions for single-mode dynamics: $r_{\text{TF}}/\xi \ll 1$ and $r_{\text{TF}}/\lambda \ll 1$, where ξ is the spin-healing length (37) and λ is the threshold wavelength for spin wave amplification (44) (SMA Validity Conditions). In Fig. 3 we show max$(r_{\text{TF}}/\xi, r_{\text{TF}}/\lambda)$ versus V and Q and note that 87Rb and 23Na remain single-domain for smaller volumes and for stronger fields than do 7Li and 21Na. We note also that the dynamical condition $r_{\text{TF}}/\lambda \ll 1$ favors antiferromagnetic interactions, giving 23Na a marked advantage by this criterion. The second consideration concerns
the three-body recombination rate (45) $\Gamma_3 \propto h\omega_0^3/M$, where ω_0 is the s-wave scattering length for the channel of total spin zero. Relative to 87Rb, this rate in 7Li, 23Na, and 41K is a factor 25, 4, and 2 smaller, respectively, suggesting an advantage for these species when limited by three-body losses.

In conclusion, we have shown that an appropriately confined, quantum degenerate Bose gas, i.e., an SDBSEC, has a qualitative advantage over the best existing magnetic sensors as regards temporal, spatial, and field resolution, as summarized in the energy resolution per bandwidth E_B. Whereas the best-developed approaches to superconducting, hot vapor, and color center magnetometers are limited to $E_B \gtrsim h$, the SDBSEC, which retains a strong global response to an external field, while freezing out internal interactions that would otherwise produce depolarization, can operate with E_B far below h. With a 87Rb SDBSEC, we have demonstrated $E_B = 0.075(16)\,h$, a factor of 17 improvement over the best previously reported (24, 40, 41) and well beyond the level that limits today’s most advanced magnetic sensors. E_B in the demonstrated 87Rb system could be reduced with better light-atom coupling. Other alkali SBECs could also achieve smaller values for E_B. The results show the promise of a new generation of proposed sensors, including noble gas magnetometers (11–13), levitated ferromagnets (14, 15), and dissipationless superconducting devices (16–18), that operate by similar principles.

Materials and Methods

Energy Resolution Limit for Markovian Spin Systems. We describe an ensemble of N spin-F atoms by the collective spin operator \mathbf{S}, i.e., the sum of the vector spin operators for the individual atoms. \mathbf{S} is initialized in a fully polarized state orthogonal to the magnetic field \mathbf{B}. The spin angle precesses at a rate $\theta = T\mathbf{B}$, where T is the gyromagnetic ratio. It is convenient to work with spin components in a frame rotating at the nominal Larmor frequency, such that a small change in angle can be expressed as $d\theta = T\mathbf{B}d\mathbf{B}/T\mathbf{B}$, where \mathbf{B} is the azimuthal component and \mathbf{F} is the lever arm of spin component orthogonal to the axis of rotation and thus orthogonal to \mathbf{B}. If a measurement of \mathbf{F}_z is made at time t to infer θ and thus \mathbf{B}, the equivalent magnetic noise is $\langle \Delta B_z^2 \rangle = \langle \delta B_z^2 \rangle / (\gamma^2 T^2)$, by propagation of error. If \mathbf{F}_z experiences Markovian relaxation, then \mathbf{F}_z at the time of measurement is $F_z(T) = N\exp[-T/T]\mathbf{F}_z$, where T is the transverse relaxation time and N is the initial full polarization. The initial, fully polarized state has azimuthal spin noise $\langle \Delta F_z^2 \rangle = F_z(2)$, i.e., the standard quantum limit. If N does not decrease during the evolution (as is the case for color center and vapor phase ensembles), this describes a minimum noise for \mathbf{F}_z during the evolution. We thus find $\langle \Delta B_z^2 \rangle \geq \exp[2T/T]\langle \Delta F_z^2 \rangle / (2T^2)$. Choosing T to minimize the right-hand side of this inequality, we find $T = T_z/2$ and thus $\langle \Delta B_z^2 \rangle \geq \exp[1/(2T^2)F_N]\langle \Delta F_z^2 \rangle$. Including the sensor volume V, the energy resolution is lower-bounded by $E_B \geq \exp[1/(4\gamma^2 T^2F_N)]$, where $n = N/V$ is the number density.

Writing the relaxation rate as $1/T_z = A_m^2 + A_n^2 + \ldots + A_d^2$, d-body interactions contribute to the A_d term. When A_d is nonzero, $E_B \propto A_m+n + A_n^2 + \ldots$ is manifestly lower-bounded. First principle calculations for immobilized spin precession sensors (4) and models including measured spin relaxation rates for optimized Rb vapor magnetometers (8) show that these lower bounds are within a factor of 2 of $E_B = h$.

Description of the Condensate. A $F = 1$ spinor condensate with weak collisional interactions is well described by a three-component field $\psi_n(t)$ evolving under the Hamiltonian

$$H = H_{mb} + H_{SO},$$

where H_{mb} and H_{SO} are the spin-independent and spin-dependent parts, respectively. Summing over repeated indices, and omitting position dependence for clarity, these are

$$H_{mb} = \int d^3r \left(\hat{\psi}_n^\dagger \left(\frac{\hbar^2\nabla^2}{2M} + U \right) \hat{\psi}_n + \frac{g_1}{2} \hat{\psi}_n^d \hat{\psi}_n^d \right),$$

$$H_{SO} = \int d^3r \left(\frac{2}{3} \hat{\psi}_n^d \hat{\psi}_{n+1} \hat{\psi}_n + \hat{\psi}_{n+1} \hat{\psi}_n \right).$$

Here f_n is the matrix representing the single-atom spin projection operator onto the axis n. In H_{mb}, the terms are ferromagnetic interaction, linear Zeeman, and quadratic Zeeman energies, respectively; $p = h\mathbf{B}$, and $q = (h^2\mathbf{B})/E_B$, where B is the field strength and E_B is the hyperfine splitting energy. S-wave scattering contributes the state-independent and state-dependent contact interactions, characterized by $g_1 = 4\pi\hbar^2(a_0 + 2a_2)/(3M)$ and $g_2 = 4\pi\hbar^2(a_0 - a_2)/(3M)$, respectively. Here M is the atomic mass and a_0, a_2 are the s-wave scattering lengths for the channels of total spin 0 and 2, respectively (46). We neglect the magnetic dipole–dipole interaction, which in 87Rb is orders of magnitude weaker than the contact interactions and vanishes identically for a single-mode spherical distribution.

Mode Shape, Interaction Strengths, and Jump Operators. In the Thomas–Fermi approximation (47), a pure condensate in a spherical harmonic potential has the mode function

$$|\phi(r)|^2 = \frac{15}{8\pi \mu r_T} \left(1 - \frac{r^2}{r_T^2} \right)^\frac{5}{2},$$

for $r \leq r_T$ and zero otherwise, where r_T is the radial coordinate, $r_T = [15\pi^2N/(4\pi M^2)]^{1/5}$ is the Thomas–Fermi radius, and ω is the trap angular frequency. Because $r_T \propto N^{1/5}$, the integrals I_q that determine the effective strength of two- and three-body interactions are $I_q \propto N^{-3/5}$ and $I_q \propto N^{-4/5}$, respectively. The rate of three-body collisions can then be written $I_{0,5} N^{4/5}$, such that atom losses are described by

$$\frac{dN}{dt} = -\Gamma_0 N - \Gamma_1 N^{4/5}.$$

We note that in this model, losses are independent of internal state. While this is well established for one-body losses, for three-body losses the state dependence is, to our knowledge, unknown. Two-body losses due to magnetic dipole–dipole scattering and spin–orbit interaction in second order (28) are energetically forbidden in the low-field scenario of interest here.

We use a set of jump operators that reproduces Eq. 9 while also respecting the symmetry of the loss process: one-body losses are described by $O_{1,0}^{(M)} = \hat{a}_m$, $m \in \{-1, 0, 1\}$, where \hat{a}_m annihilates an atom in internal state m, with strengths $\sigma_{1,0}^{(M)} = 1/2$, while two-body losses are described by $O_{2,0}^{(M)} = N^{-3/5}\hat{a}_m \hat{a}_n \hat{a}_m \hat{a}_n$, $m, n \in \{-1, 0, 1\}$, where $\hat{N} \equiv \hat{a}_m^\dagger \hat{a}_m + \hat{a}_n^\dagger \hat{a}_n + \hat{a}_m^\dagger \hat{a}_n + \hat{a}_n^\dagger \hat{a}_m$, with strengths $\sigma_{2,0}^{(M)} = 5\Gamma_1/24$.

Quantum Noise Evolution. We use the TWA (32, 48) to compute the evolution of the spin distribution arising from the master equation $d\rho/dt = [H_{mb}, \rho] / (i\hbar) + c\rho$. Our treatment follows that of Opanchuk et al. (49), restricted to a single spatial mode. In the TWA, the Wigner–Moyal equation describing the time evolution of the Wigner distribution is truncated at second order, such that an initially positive Wigner distribution remains positive, and the Wigner–Moyal equation becomes a Fokker–Planck equation.

The approximation is believed valid for noncritical systems in which each simulated mode contains on average many particles (36, 50). This condition is very well satisfied here.

Fig. 3. Comparison of alkali atoms with $F = 1$ ground states as SDBSEC sensors. The SMA will be valid for $r_{TF}/\lambda \ll 1$ and $r_{TF}/\xi_\parallel \ll 1$, where λ is the threshold wavelength for spin wave amplification and ξ_\parallel is the spin healing length. Graphs show max$(r_{TF}/\lambda, r_{TF}/\xi_\parallel)$ versus volume V (shown also as number density n) and q (shown also as field strength B) for $N = 6.8 \times 10^4$.

Single-domain Bose condensate magnetometer achieves energy resolution per bandwidth below \hbar.

Palacios Alvarez et al.
The Fokker–Planck equation describes the evolving probability distribution of a particle undergoing Brownian motion and as such can be described by a stochastic differential equation that is straightforward to integrate numerically. We identify a complex-valued vector \(\mathbf{c} = (c_1, c_2, c_3, c_4) \) with the spinor field \(\chi \) and \(m \)-number functions \(\Omega^{(m)} = c_m, m \in \{-1, 0, 1\} \). To account for the uncertainty of the initial state, a collection of starting points are chosen with values \(c_0 = (z_1, z_0, z_1, z_0)/\sqrt{2} \), where \(c_0 = (1, 1, 2, 1)/\sqrt{2} \) is the initial, fully \(F \)-polarized state, \(z_0 = x_0 + y_0 + z_0 \), and \(x_0 \), \(x_0 \), and \(y_0 \) are zero-mean unit variance Gaussian random variables. For the simulations shown in Fig. 2, we used \(5,000 \) starting points. Each initial point evolves by the (t)=σα∂t∂α−∂∂cα∂cαdξbreak, with variance \(dξ \) and the atomic contribution to the angular mean squared error is simply

\[\langle \delta T^2 \rangle_\text{F} = \langle \delta T^2 \rangle_\text{H} \]