
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Pyhäranta, T.; Alipour, S.; Rezakhani, A. T.; Ala-Nissila, T.
Correlation-enabled energy exchange in quantum systems without external driving

Published in:
Physical Review A

DOI:
10.1103/PhysRevA.105.022204

Published: 01/02/2022

Document Version
Publisher's PDF, also known as Version of record

Please cite the original version:
Pyhäranta, T., Alipour, S., Rezakhani, A. T., & Ala-Nissila, T. (2022). Correlation-enabled energy exchange in
quantum systems without external driving. Physical Review A, 105(2), 1-6. Article 022204.
https://doi.org/10.1103/PhysRevA.105.022204

https://doi.org/10.1103/PhysRevA.105.022204
https://doi.org/10.1103/PhysRevA.105.022204


PHYSICAL REVIEW A 105, 022204 (2022)

Correlation-enabled energy exchange in quantum systems without external driving

T. Pyhäranta,1 S. Alipour ,1,* A. T. Rezakhani ,2 and T. Ala-Nissila 1,3

1QTF Center of Excellence, Department of Applied Physics, Aalto University, P. O. Box 11000, FI-00076 Aalto, Espoo, Finland
2Department of Physics, Sharif University of Technology, Tehran 14588, Iran

3Interdisciplinary Center of Mathematical Modelling and Department of Mathematical Sciences, Loughborough University, Loughborough,
Leicestershire LE11 3TU, United Kingdom

(Received 24 November 2021; accepted 18 January 2022; published 7 February 2022)

We study the role of correlation in mechanisms of energy exchange between an interacting bipartite quan-
tum system and its environment by decomposing the energy of the system to local and correlation-related
contributions. When the system Hamiltonian is time independent, no external work is performed. In this case,
energy exchange between the system and its environment occurs only due to the change in the state of the
system. We investigate the possibility of a special case where the energy exchange with the environment occurs
exclusively due to changes in the correlation between the constituent parts of the bipartite system, while their
local energies remain constant. We find sufficient conditions for preserving local energies. It is proven that under
these conditions and within the Gorini-Kossakowski-Lindblad-Sudarshan dynamics this scenario is not possible
for all initial states of the bipartite system. Nevertheless, since the sufficient conditions can be too strong, it is
still possible to find special cases for which the local energies remain unchanged during the associated evolution
and the whole energy exchange is only due to the change in the correlation energy. We illustrate our results with
an example.
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I. INTRODUCTION

Quantum thermodynamics is a nascent branch of physics
concerned with understanding the thermodynamic behavior
of quantum mechanical systems and generalizing the laws
of thermodynamics to quantum systems to account for the
impact of inherently quantum mechanical phenomena. Cor-
relation is one of the main features in composite quantum
systems and is considered as a resource for various applica-
tions. Within the framework of thermodynamics, it is possible
to study different correlations such as system-environment
correlation, correlation between different constituents of the
system itself, or even correlations within the environment. It
is known that system-environment correlation is an important
element in the system’s dynamical equation and accordingly
in the thermodynamic properties of the system, e.g., in energy
transfer [1–4]. In particular, in the strong coupling regime cor-
relation comes into play indirectly through interactions [5,6].
A direct approach for explicitly considering correlation has
been introduced in Refs. [7,8]. The effect of correlation in the
thermodynamic arrow of time has been studied in literature
and it has been shown that correlation can lead to reversal of
the direction of heat flow from cold to hot [9–11]. In Ref. [12],
the effect of intraenvironmental correlation in open-system
entropy production has been studied.

The second case, i.e., the role of inside-the-system or in-
trasystem correlations has been explored in different contexts
such as binding energy [3,13], latent heat [14,15], locality of
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temperature [16], and in the relation between the temperatures
of the two parts of a bipartite system [17]. Along these lines,
much recent attention has been paid on the energy consider-
ations of creating and destroying correlations in a bipartite
system. Most of such studies involve unitary evolution of
closed bipartite systems with driven Hamiltonians. Within this
framework, it has been shown that it is possible to extract
work from correlations by obtaining bounds on the extractable
work from globally correlated but locally thermal subsystems
[18–23]. The work cost of creating correlations in a system
with initially uncorrelated thermal subsystems has also been
studied in Refs. [24,25].

In this work, we focus on the effect of correlations between
the parts of an interacting bipartite system in energy exchange
with the environment. The main question of interest is whether
it is possible to exchange energy between the bipartite system
and its environment such that the only effect the process has
on the system is to change the correlation between the two
parts of the system. To this end, to avoid energy exchanges
due to driving the system Hamiltonian (or, equivalently, due
to external work applied on or performed by the system)
we consider cases where the system Hamiltonian is time
independent. In such cases, the whole energy change in the
system is environment induced, because there is no external
agent. Since the internal energy of the system is defined as
the expectation value of the system Hamiltonian, the whole
energy change in the system is due to the change in the state
of the bipartite system when the Hamiltonian is constant.

To investigate the role of correlation in energy exchange,
we need to clearly identify the contribution of correlation to
the internal energy of the system [3]. To this end, we use a
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decomposition of the system energy in terms of local-energy
and correlation-energy contributions. In a bipartite system,
the correlation energy is part of the internal energy which is
locally inaccessible and is defined as the difference between
the internal energy of the system and the internal energy
assigned to the uncorrelated counterparts of the system. Thus,
internal energy is divided into three parts: two parts related
to the internal energy of the subsystems and one part related
to the correlation between them. This implies that a spatially
bipartite system can behave energetically as tripartite, where
the correlation energy can be exchanged between the system
and the environment independently of the local energy of the
subsystems.

We use this energy decomposition to study the conditions
under which dynamics can be universally (i.e., for any ini-
tial state) local-energy preserving but not correlation-energy
preserving to allow energy exchange through the correlation
only. We obtain some sufficient conditions under which and
within the standard Gorini-Kossakowski-Lindblad-Sudarshan
(GKLS) dynamics, local-energy preservation can lead to
correlation-energy preservation (for universal extensions of
the GKLS dynamics see Ref. [7]). We also discuss a case
where the subsystems’ temperatures and local energies are
conserved while the total energy of the system changes due to
the change in correlation, hence the conservation of the local
energy does not entail the conservation of correlation energy.
This scenario facilitates the use of intrasystem correlation as
a resource for energy exchange.

II. MODEL

We consider an interacting bipartite quantum system with
density operator � and time-independent total Hamiltonian
H = HA + HB + V , comprising the bare subsystem Hamil-
tonians HA,B and an interaction term V . Each subsystem
is weakly coupled with a separate heat bath such that the
nonunitary effects of the baths on the system dynamics are
described by local Markovian Lindblad superoperators LA
and LB [26,27], and the system dynamics is described by the
summation of the local superoperators as the following (for a
discussion on adding dynamical generators see Ref. [28]):

�̇ = −i[H, �] + LA[�] + LB[�], (1)

where we have set h̄ = 1 and dot denotes time derivative.
Here,

LA,B[◦] ≡ ∑
μ

(
LA,B

μ ◦ LA,B†
μ − (1/2)

{◦, LA,B†
μ LA,B

μ

})
, (2)

with LA,B
μ denoting the (generally non-Hermitian) jump oper-

ators and {A, B} ≡ AB + BA the anticommutator, and we have
neglected the Lamb-shift corrections.

To obtain the dynamics of each subsystem, we note that the
system density operator can be decomposed as

� = �A ⊗ �B + χ, (3)

where the correlated part χ , satisfying the partial-trace con-
dition TrA,B[χ ] = 0 with respect to either subsystem, is the
difference between the state of the total system � and the
tensor product of the subsystem states �A,B ≡ TrB,A[�]. Sub-
stituting this decomposition into Eq. (1) and tracing out the

excess degrees of freedom yields [3]

�̇A,B = −i[ĤA,B, �A,B] + LA,B[�A,B] − i TrB,A[[V, χ ]], (4)

where

ĤA,B ≡ HA,B + TrB,A[V �B,A] − αA,B Tr[V �A ⊗ �B]I, (5)

are effective local Hamiltonians, with αA,B constants satisfy-
ing αA + αB = 1. The total Hamiltonian can be recast in terms
of the effective Hamiltonians as

H = ĤA + ĤB + V̂ , (6)

where V̂ ≡ V − TrA[V �A] − TrB[V �B] + Tr[V �A ⊗ �B]I is
the effective interaction Hamiltonian. It should be noted that
the effective local and interaction Hamiltonians are time de-
pendent due to their state dependence.

III. ENERGY DECOMPOSITION

Using the state decomposition (3), it can be seen that the
total energy U = Tr[�H] of the system contains local energy
U⊗ and correlation energy Uχ contributions. The local part is
given by

U⊗ ≡ Tr[�A ⊗ �BH] = Tr[�AĤA] + Tr[�BĤB] ≡ UA + UB,

(7)

where UA,B are the internal energies assigned to the sub-
systems. The local-energy part can be obtained by locally
measuring the effective Hamiltonians. The correlation energy
is then naturally given by Uχ = U − U⊗ = Tr[(� − �A ⊗
�B)H], which becomes

Uχ = Tr[χH] = Tr[χV ], (8)

where in derivation of the last term we have used the vanishing
partial trace properties of χ . The correlation energy depends
on the correlation operator and the interaction Hamiltonian
and is independent of the local Hamiltonians and states. This
part of the energy is not accessible to the local subsystems
and could only be measured globally on the total system. We
observe that in the sense of energy, correlation thus behaves
as an independent entity in addition to the subsystems, Fig. 1.

Since H is time independent, the total energy variation
of the system is only due to the energy exchange with the
environment through the change in the state of the system as
dU = Tr[d� H] = dU⊗ + dUχ . This is related to changes in
local states, leading to local-energy change as

dU⊗ = Tr[d (�A ⊗ �B)H] = Tr[d�AĤA] + Tr[d�BĤB], (9)

and change in the correlated part of the state, which is related
to change in the correlation energy as

dUχ = Tr[V dχ ]. (10)

In the following, we investigate whether it is possible to
find a set of microscopic conditions for the dynamics under
which for any given initial state the local energy is conserved
while the correlation energy is not, so that the whole system
energy exchange with the environment is only through corre-
lation.
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FIG. 1. Schematic of releasing energy by changing correlation.
In addition to the two subsystems, correlation functions as the third
part in the energy-exchange mechanisms in the subsystems. (a) The
two subsystems A and B, with Hamiltonians HA and HB, interact
through a Hamiltonian V . The energy levels of each Hamiltonian
are shown. The subsystems A and B are initially at equilibrium with
a hot (red) bath and cold (blue) bath, respectively. The gray chain
connecting the subsystems represents correlation. The thickness of
an energy level represents the population of that level. The purple
arrow shows a transition in the V levels, which is only related
to the change in correlation (this can be seen using the relation
Tr[�V̂ ] = Tr[χV̂ ] = Tr[χV ]). (b) Transition to the lower level of V
is accompanied by correlation removal and releasing energy into the
bath (shown in yellow) without any transitions in the local energy
levels.

IV. CONDITIONS FOR LOCAL ENERGY CONSERVATION

To explore whether open-system dynamics given by
Eq. (1) can be in general local-energy preserving, we
modify the condition dU⊗ = 0 by inserting d�A,B from
Eq. (4) into dU⊗ of Eq. (9). We then use the cyclic prop-
erty of trace to obtain Tr[ĤA,B[V, χ ]] = Tr[[ĤA,B,V ]χ ] and
TrA,B[ĤA,BLA,B[�A,B]] = TrA,B[L#

A,B[ĤA,B]�A,B], where the
Hilbert-Schmidt adjoints L#

A,B are defined by

L#
A,B[◦] ≡

∑

μ

LA,B†
μ ◦ LA,B

μ − (1/2)
{◦, LA,B†

μ LA,B
μ

}
. (11)

It can be seen that dU⊗ can vanish regardless of the in-
stantaneous state of the bipartite system when the following
sufficient conditions are met (Appendix: (i) For any instanta-
neous state, we must have [ĤA + ĤB,V ] = 0 at all times. For
example, if V = OA ⊗ OB, for some observables OA and OB,
such that [HA + HB, OA ⊗ OB] = 0, it can be seen that condi-
tion (i) is satisfied independently of the state of the bipartite
system. (ii) We must also have L#

A[HA + V ] + L#
B[HB + V ] =

0. Condition (ii) implies that local-energy conservation leads
to total-energy conservation, which gives a negative answer
to our main question about having energy exchange with the
environment through the correlation energy only. This can be
seen through a detailed proof in Appendix. Note that condition
(i) is state dependent and should hold for any instantaneous
state (given any arbitrary initial state), whereas condition (ii)
is state independent. Extending these discussions to the case
where the environment acts globally on the subsystems is
straightforward. In summary, we have:

Theorem: Local-energy conservation [in the sense of con-
ditions (i) and (ii) above] in an open bipartite system with
a GKLS dynamics leads to the conservation of total energy.
In other words, under these conditions, no energy can be
exchanged between the system and the environment.

However, conditions (i) and (ii) that ensure local-energy
conservation (i.e, dU⊗ = 0) are only sufficient conditions, not
necessary. That is, they can be too strong, because local en-
ergy can be preserved without having these conditions. Along
this line, in the following example we discuss a case in which
condition (i) is always satisfied, whereas condition (ii) does
not hold, and still local energy is preserved while total energy
is not.

V. EXAMPLE: THERMALIZING DYNAMICS

We assume that both parts of the system weakly interact
with separate heat baths at different inverse temperatures βA
and βB. The system dynamics is given by Eq. (1), and the
jump operators LA

mn ≡ |m〉A〈n| and LB
mn ≡ |m〉B〈n| describe

transitions between different eigenstates |m〉A,B and |n〉A,B of
the corresponding bare subsystem Hamiltonians HA,B. The
dissipative parts of the dynamical equation are given by

LA,B[◦] =
∑

m �=n

γ A,B
mn

(
LA,B

mn ◦ LA,B†
mn − (1/2)

{
LA,B†

mn LA,B
mn , ◦})

,

(12)

where γ A,B
mn are jump rates. We consider here the case where

the dissipators have thermal steady states [29]. To this end,
we assume that the transition rates satisfy the detailed-balance
condition

γ A,B
mn = γ A,B

nm e−βA,B(EA,B
m −EA,B

n ), (13)

where we have denoted the eigenvalues of the bare local
Hamiltonians by EA,B

n . Assuming that HA,B have nondegen-
erate spectra, this guarantees that πA ≡ e−βAHA/ZA and πB ≡
e−βBHB/ZB are the unique steady states of LA and LB, respec-
tively, where ZA,B ≡ TrA,B[e−βA,BHA,B ]. In the cases where the
condition [HA + HB,V ] = 0 holds, we get that

πA ⊗ πB = e−βAHA/ZA ⊗ e−βBHB/ZB (14)

is the unique steady state of the dynamics (1). Let us now
assume that the system is initially prepared in the state �(0) =
πA ⊗ πB + χ (0). Bearing in mind that πA ⊗ πB is the steady
state of the dynamics (1), only the correlation part of the total
density operator �(t ) = πA ⊗ πB + χ (t ) evolves in time. This
leads to a change in the total energy, while the local energy re-
mains conserved. Accordingly, the energy exchanged is fully
determined by the changes in the nonlocal contributions to the
internal energy, given simply by

�Uχ (t ) =Tr[V (χ (t ) − χ (0))]. (15)

As a simple demonstration, we consider two
qubits with bare Hamiltonians HA = ωAσz ⊗ IB and
HB = ωBIA ⊗ σz, where ωA,B � 0, coupled through
an interaction V = gσz ⊗ σz, where g is the coupling
constant and σz = |0〉〈0| − |1〉〈1| is the Pauli operator
in the z direction. Assume that LA

10 = |1〉〈0| ⊗ IB,
LA

01 = |0〉〈1| ⊗ IB, γ A
01 = e−βAωA , and γ A

10 = eβAωA . Similarly,
LB

10 = IA ⊗ |1〉〈0|, LB
01 = IA ⊗ |0〉〈1|, γ B

01 = e−βBωB , and
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γ B
10 = eβBωB . We prepare the system in a correlated state

�(0) = e−βAωAσz ⊗ e−βBωBσz/(ZAZB) + χ (0), with ZA =
Tr[e−βAωAσz ], ZB = Tr[e−βBωBσz ], and χ (0) = c σA

z ⊗ σB
z ,

where the range of validity of the parameter c should be
consistent with the positivity of the total density operator;
hence, c ∈ [−e−βAωA−βBωB , min{e−βAωA+βBωB , eβAωA−βBωB}].
Substituting the jump rates and operators into Eq. (1), it is
straightforward to see that subsystems A and B remain intact
and in thermal equilibrium with their respective heat baths,
while the correlation operator evolves as

χ (t ) = e(LA+LB )t [χ (0)] = e−λtχ (0), (16)

where λ = γ A
01 + γ A

10 + γ B
01 + γ B

10. Since λ is real and posi-
tive, the correlation operator vanishes in the long-time limit:
χ (∞) = 0. It is important to note that in this special case
both UA and UB remain separately constant, whereas during
the evolution we get from Eq. (15) that the correlation energy
varies as

�Uχ (t ) = 4gc(e−λt − 1). (17)

Since sign[�Uχ (t )] = −sign[gc], if gc > 0 the system re-
leases energy to the environment through the change in its
correlation operator; and if gc < 0, the system absorbs energy
from the environment. In the asymptotic limit where the sys-
tem state becomes uncorrelated, we obtain �Uχ (∞) = −4gc,
which implies that removing correlation can be both energy
consuming or energy producing depending on the microscopic
details of the system and the sign of gc.

VI. REMARK

According to the conventional definitions of heat and work
given by δQ = Tr[d� H] and δW = Tr[� dH] [30,31], respec-
tively, when the Hamiltonian is time independent the whole
energy exchange is only of the heat type. In the entropy-based
definitions [32,33], however, heat is assigned to the energy
change due to the change in the eigenvalues of the state and
work is assigned to the energy change due to the change in the
eigenvectors of the state as well as the change in the system
Hamiltonian. In the above example, �Uχ is thus heat in the
sense of both conventional [30] and entropy-based definitions

[32] as the Hamiltonian is constant and the eigenvectors of the
state of the system remain constant in time.

VII. SUMMARY AND CONCLUSIONS

By decomposing the internal energy of an interacting
bipartite system into local-energy and correlation-energy con-
tributions, we have shown that a spatially bipartite system
can have three contributions to the total energy. To show that
the correlation energy can vary independently of the local-
energy changes, we have studied sufficient conditions under
which local energy remains intact during dynamics. We have
proven that a GKLS master equation of the bipartite system,
satisfying these sufficient conditions, cannot universally (for
any arbitrary initial state) preserve the local energy without
also preserving the correlation energy. However, we have also
demonstrated that by special preparation of the initial state
of the system, we can direct the evolution such that energy
exchange with the environment occurs only through the cor-
relation change.

The prospect of injecting energy from a quantum sys-
tem into a heat bath, or vice versa, without increasing the
temperature of local subsystems has profound implications.
For example, it is possible to store/extract heat in/from a
bipartite system without changing the local temperatures of its
constituents [17]. In particular, our results should be relevant
for quantum computers, where the control of heat and tem-
perature is a crucial issue for maintaining their performance.
In addition, combining our results and previous studies in
the literature, which indicate the possibility of reverse heat
flow due to correlation [11] suggests that correlation can in
principle be employed as a knob to control the direction of
energy flow, e.g., to realize energy transistors [34]. Finally,
we note that the derivation of our result does not require
quantumness of the correlation, raising the question whether a
similar effect can also occur in classical stochastic many-body
systems.
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APPENDIX: DETAILS OF THE PROOF OF THE THEOREM

The change in the local energy is given by

dU⊗ = dUA + dUB

= Tr[d�AĤA] + Tr[d�BĤB]

= TrA[
(−i[ĤA, �A] − iTrB[V, χ ] + LA[�A]

)
ĤA]dt + TrB[

( − i[ĤB, �B] − iTrA[V, χ ] + LB[�B]
)
ĤB]dt

(4)= TrA[
(−iTrB[V, χ ] + LA[�A]

)
ĤA]dt + TrB[

( − iTrA[V, χ ] + LB[�B]
)
ĤB]dt

= −iTr[[ĤA,V ]χ ]dt − iTr[[ĤB,V ]χ ]]dt + TrA[LA[�A]ĤA]dt + TrB[LB[�B]ĤB]dt

= −iTr[[ĤA + ĤB,V ]χ ]dt + Tr[LA[�A ⊗ �B] HA]dt + Tr[LB[�A ⊗ �B] HB]dt

+ TrA[LA[�A] TrB[V �B]]dt + TrB[LB[�B] TrA[V �A]]dt
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= −iTr[[ĤA + ĤB,V ]χ ]dt + Tr[LA[�A ⊗ �B] HA]dt

+ Tr[LB[�A ⊗ �B] HB]dt + Tr[LA[�A]V �B]dt + Tr[LB[�B]V �A]dt

= −iTr[[ĤA + ĤB,V ]χ ]dt + Tr[LA[�A ⊗ �B] HA]dt

+ Tr[LB[�A ⊗ �B] HB]dt + Tr[LA[�A ⊗ �B]V ]dt + Tr[LB[�A ⊗ �B]V ]dt

= −iTr[[ĤA + ĤB,V ]χ ]dt + Tr[LA[�A ⊗ �B] (HA + V )]dt + Tr[LB[�A ⊗ �B] (HB + V )]dt

= −iTr[[ĤA + ĤB,V ]χ ]dt + Tr[L#
A[HA + V ] �A ⊗ �B]dt + Tr[L#

B[HB + V ] �A ⊗ �B]dt . (A1)

Thus it is seen that dU⊗ can be rewritten as

dU⊗ = −iTr[[ĤA + ĤB,V ]χ ]dt + Tr[(L#
A[HA + V ] + L#

B[HB + V ]) �A ⊗ �B]dt . (A2)

According to the above equation, to have a local-energy-preserving dynamics, it is sufficient that the following two conditions
are satisfied at all times for all states:

[ĤA + ĤB,V ] = 0, (A3)

L#
A[HA + V ] + L#

B[HB + V ] = 0. (A4)

From the second condition above we obtain

Tr[L#
A[HA + V ] + L#

B[HB + V ]�] = Tr[(HA + V )LA[�] + (HB + V )LB[�]]

= Tr[(H − HB)LA[�] + (H − HA )LB[�]]

= Tr[H (LA[�] + LB[�])] − Tr[HBLA[�] + HALB[�]]

= Tr[H (−i[H, �] + LA[�] + LB[�])] − Tr[HBLA[�] + HALB[�]]

= Tr[H �̇] − Tr[HBLA[�] + HALB[�]]

= U̇ − Tr[HBLA[�]] − Tr[HALB[�]], (A5)

where on the fourth line we have added the vanishing term Tr[H (−i[H, �])] ≡ 0. The second term on the last line vanishes due
to the cyclicity of partial trace over subsystem A and trace-preserving property of LA. The third term vanishes with a similar
argument for subsystem B. Hence it is seen evidently that satisfaction of the second condition (A4) reduces to conservation of
the total energy.
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