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A B S T R A C T   

A Virtual power plant is defined as an information and communications technology system with the following 
primary functionalities: enhancing renewable power generation, aggregating Distributed Energy Resources and 
monetizing them considering the relevant energy contracts or markets. A virtual power plant also includes 
secondary functionalities such as forecasting load, market prices and renewable generation, as well as asset 
management related to the distributed energy ressources. Home energy management systems and building en
ergy management systems have significant overlap with virtual power plants, but these bodies of research are 
largely separate. Machine learning has recently been applied to realize various functionalities of these systems. 
This article presents a 3-tier taxonomy of such functionalities. The top tier categories are optimization, fore
casting and classification. A scientometric research methodology is used, so that a custom database has been 
developed to capture metadata from all of the articles that have been included in the taxonomy. Custom algo
rithms have been developed to generate infographics from the database, to visualize the taxonomy and trends in 
the research. The paper concludes with a discussion of topics expected to receive a high number of publications 
in the future, as well as currently unresolved challenges.   

1. Introduction 

The power grid is transitioning from a conventional centralized grid 
to a decentralized smart grid characterized by distributed renewable 
generation, electricity storage, and smart loads. Virtual Power Plants 
(VPPs) are systems for aggregating such distributed energy resources 
(DER), monetizing them as well as coping with the variability of 
renewable generation. Several reviews have addressed various aspects 
of VPPs from different perspectives. Liu et al. [1] reviewed the works on 
VPPs from an urban sustainability standpoint and identified some 
research gaps such as stakeholder involvement and urban environment 
dynamics. Yu et al. [2] identified that renewable generation, market 
prices, and load demand are the major uncertainties complicating the 
optimization task of VPPs. Adu-Kankam & Camarinha-Matos [3] studied 
VPPs through the lens of collaborative networks, which are heteroge
neous, autonomous and distributed systems collaborating toward shared 
goals. Mahmud et al. [4] discussed VPPs as an enabler of an Internet of 
Energy consisting of prosumers. Although machine learning (ML) is a 
potential technology for addressing these challenges, it has not been 

covered by the aforementioned recently published reviews, possibly due 
to the fact that an active body of research on ML applications for VPPs 
has emerged only over the last two years. A few very recent reviews on 
VPPs identify ML as an emerging technology or topic of future research 
in VPPs [5–7], still without performing an in-depth study of ML 
literature. 

In this article, a VPP is defined as an Information and Communica
tions Technology (ICT) system with the following primary functional
ities: enhancing renewable power generation, aggregating Distributed 
Energy Resources (DERs), and monetizing the DERs considering the 
relevant energy contracts or markets. A VPP also includes secondary 
functionalities such as forecasting load, market prices and renewable 
generation, as well as asset management related to the DERs. Home 
energy management systems (HEMS) and building energy management 
systems (BEMS) can be seen as systems with some VPP functionalities 
adapted to the energy resources at a home or building context. Research 
in the field of HEMS and BEMS is included in this taxonomy if it fits the 
above definition. Examples based on ML are as follows. Maximizing PV 
self-consumption is a typical HEMS functionality for enhancing 
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renewable power generation [8]. Participating in price-based demand 
response (DR) programs is an example of monetizing the DERs aggre
gated by the HEMS [8]. BEMS systems forecast building load [9] and 
diagnose faults in DERs [10]. 

Some ML-related reviews have recently been published in the HEMS 
and BEMS context. Wang et al. [11] focused on challenges in the 
deployment of ML solutions in the context of a BEMS. Fathi et al. [12] 
reviewed ML-based urban building energy performance forecasting ap
plications, which is different from short-term energy consumption 
forecasting that would be directly relevant to a VPP. Mason & Grijalva 
[13] reviewed the applications of ML to control problems in building 
energy management. These are low-level functionalities beyond the 
scope of a VPP. In summary, the main focus of these reviews was not on 
the functionalities of VPP as defined above. The goal of this article is to 
fill this existing gap by presenting a taxonomy of ML functionalities 
within the scope of the above definition of a VPP, covering works pub
lished in the VPP, HEMS and BEMS context. Thus, this article aims to 
integrate relevant research being carried out in these three fields. The 
scope of this article is limited to the operating phase of these systems. 

Most ML-related reviews in the energy domain, such as those refer
enced in this section, are understandable to ML practitioners. These 
reviews revealed that ML is emerging as a disruptive technology, so its 
impact and outlook needs to be understood by a broader community of 
energy practitioners. The primary target audience of this paper is energy 
practitioners who are not ML experts. Unlike the majority of reviews on 
ML applications to energy, this paper will not assume prior knowledge of 
ML, and neither will it provide any condensed presentation of ML the
ory. The key concepts of ML are introduced in a way that aims to be 
understandable to the target audience without needing to study a ML 
textbook. The perspective taken in this paper is the application of ML to 
realize VPP functions, rather than a detailed study of design decisions that 
were taken to implement them. 

This article is organized as follows. Section 2 provides an overview of 
VPP, BEMS, HEMS and ML technologies. Section 3 describes the 
research methodology, which organizes this review as a 3-level taxon
omy. Section 4 describes each tier of the taxonomy. Section 5 performs a 
cross-cutting analysis of the taxonomy, focusing on trends that are not 
evident from Section 4. Section 6 concludes the paper with a discussion 
of topics expected to receive significant research in the future, as well as 
key unresolved challenges. 

2. Technology overview 

2.1. Overview of virtual power plants and building/home energy 
management systems 

The terms VPP, aggregator, HEMS (Home Energy Management Sys
tem) and BEMS (Building Energy Management System) lack universally 
established definitions in the literature, so significant overlap exists. 
Fig. 1 illustrates the types of HEMS, BEMS and VPP systems investigated 
in this study:  

• HEMS: The HEMS coordinates resources in a single household within 
the framework of an electricity contract. Examples include 
rescheduling smart loads to utilize cheap electricity or maximizing 
self-consumption of rooftop photovoltaic (PV) by means of a battery. 
If the HEMS is managing and aggregating several homes, it could be 
considered a special case of the multi-site VPP.  

• BEMS: The BEMS is similar to a HEMS, but the scope is larger, such as 
a commercial building. If the BEMS involves market participation 
such as DR participation, it could be categorized as a single site VPP.  

• Single site VPP: The single site VPP is similar to a BEMS but has 
electricity market participation capability. It may be deployed to 
other kinds of sites instead of buildings, consisting of one or more 
DERs such as the following: PV farm, wind farm, factory with smart 
loads, battery or electric vehicle parking lot. The DERs are 
geographically co-located in a single site, which may have a micro
grid (e.g. [14]).  

• Multi-site VPP: The multi-site VPP consists of several single-site VPPs 
which coordinate among themselves or are coordinated by a 
centralized VPP. It can perform overall optimization of all of the 
resources at the various sites rather than local optimization, as in the 
case of a single site VPP. This can be done by pooling all resources 
regardless of their geographical location or by having a site-level 
local optimization function under the multi-site VPP [15]. The 
geographical scope of a multi-site VPP is often not explicitly defined; 
however, Fang et al. [15] assumed the scope of a distribution 
network.  

• Multi-energy VPP: The multi-energy VPP (e.g., [16]) manages other 
energy carriers in addition to electricity, in particular natural gas 
delivered by a gas grid and heating or cooling through a hot or cold 
water piping network. The scope of the piping network may be on- 

Fig. 1. Overview of different kinds of VPPs.  
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site in case of micro-CHP (Combined Heat & Power) generation [17], 
or it may be a district heating network in the case of a central CHP 
plant, as in Fig. 1. The potential for optimizations is highest when 
each energy carrier has a variable price [17].  

• Off-grid VPP: The off-grid VPP does not have access to the grid, and 
thus there are no electricity contracts or market participation op
portunities. Diesel generators are frequently available as a last resort 
when the other DERs cannot keep electricity production and con
sumption in balance [18]. 

Although overlapping, VPP and HEMS systems also have notable 
differences. This is elaborated in Fig. 2. HEMS systems are only appli
cable to the residential sector, whereas VPPs are also able to manage 
DERs in the commercial and industrial sectors. HEMS systems have IoT 
(Internet of Things) capabilities for interfacing to the DERs. Schedulable 
DERs are actively managed through these capabilities, whereas infor
mation from non-schedulable DERs can be exploited for overall opti
mization of the energy consumption of the home. According to 
Subramanya et al. [19], VPPs do not have these capabilities and rely on 
subaggregators. As illustrated in Fig. 2, a HEMS could either function as 
such a subaggregator, or it can use its smart meter to interface to a 
utility, independently of a VPP, to exploit variable energy prices or 
participate in DR. These functionalities overlap with VPPs. However, 
HEMS systems do not aggregate resources beyond a single home for 
trading on electricity markets. 

Exemplary DERs are illustrated in Fig. 1. The types of DER being 
managed are of interest when assessing the generalizability and appli
cability of the proposed solutions, as well as the areas receiving high 
levels of research. To support the analysis in Section 5.2, a hierarchy of 
DER types has been defined in Fig. 3. The scope and level of detail of this 
hierarchy are designed for the sole purpose of capturing the types of 
DERs encountered in the articles that were selected for inclusion in this 
taxonomy. Only DERs that can be managed by VPP, BEMS or HEMS 
systems are included in the hierarchy. In particular, uncontrollable loads 
are not in the scope of the hierarchy. 

2.2. Key machine learning approaches for virtual power plants 

Before presenting the taxonomy, key ML concepts are presented here 
without assuming prior knowledge of ML from the reader. 

A reinforcement learning agent is trained by interacting with a model 
of the DERs. This model is known as the environment. The agent is trained 
to optimize one or more objectives such as energy cost, PV self- 
consumption, battery degradation or the quality of the indoor environ
ment. Thus, reinforcement learning is frequently used as a ML-based 
multi-objective optimization technique. The basic problem formula
tion involves a single agent. The state of the system captures information 
from the environment that is relevant for the agent to make its decision, 
and it can include, for example, energy prices, battery state of charge or 
load forecasts. The agent selects an action, which may be, for example, a 
bid on an energy market or a command to charge or discharge a battery. 
The action impacts the environment, which returns a reward to the 
agent. The reward quantifies how beneficial the action was. By repeated 
interactions with the environment, the agent learns to take actions that 
result in good rewards both in the short and long term. 

In some cases, a single agent problem formulation may not be 
adequate. In the case of DERs, several buildings or several microgrids, 
there may be several owners or operators involved, who may want to 
optimize their own gain rather than the system level gain. In these cases, 
the multi-agent reinforcement learning (MARL) formulation is applicable. 
Each DER, building or microgrid can be managed by one self-interested 
agent performing local optimization, while MARL ensures that system- 
level optimization objectives are met. Usually, MARL involves each 
agent seeing the state information of all of the other agents. Notable 
exceptions are settings that involve bidding, in which it is not permis
sible for a bidder to see the state of the other bidders. The reward can be 
separate for each agent, or a single reward for the entire system may be 
used. In some cases, several types of agents are defined, with different 
formulations for the state, action and reward. System-wide optimization 
targets can be explicitly specified either by using a single system-wide 
reward or by defining an upper-level agent to perform the system- 
level optimization. 

Regression approaches in ML determine a mapping from one or more 

Fig. 2. Similarities and differences between VPP and HEMS systems.  
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independent variables to a dependent variable. In VPPs, time-series 
forecasting is a typical regression problem. For example, in building 
energy consumption, examples of independent variables are occupancy, 
indoor temperature and outdoor weather, and the dependent variable to 
be forecasted is energy consumption. The supervised learning technique 
uses a historical dataset of the independent values as well as the correct 
corresponding values for the dependent variable. These correct values 
are known as labels. This training set is used to fit a ML model that 
predicts the dependent variable when given as input the values of the 
independent variable. After the fitting process, the model is able to make 
accurate predictions with values of independent variables that were not 
present in the training set. 

Classification methods are used to select a category from a finite set of 
predefined categories. In this taxonomy, classification is applied to 
detect or diagnose a fault state of a DER. If suitable labelled training data 
is available, supervised learning methods can be used to diagnose the 
type of fault. If labelled training data is not available, unsupervised 
learning methods can detect anomalies but cannot diagnose the specific 
type of fault. Semi-supervised learning can be used to make the best use of 
a training set in which only a minority of the data is labelled. 

2.3. Overview of power system impacts of VPP, BEMS and HEMS systems 

The ambitious goal toward carbon-neutrality has motivated re
searchers to focus more on energy sector coupling, and to this end, 
electrification plays a key role. However, electrification brings more 
challenges to the power system, and if not addressed adequately, it may 
ruin the whole decarbonization plan. VPPs, as stated earlier, can stra
tegically provide remedies for such challenges by enhancing power 
system flexibility and consequently offering a better hosting capacity for 
renewable energy, more effective DER aggregation, richer demand 
response programs via HEMSs or BEMSs and deferring heavy 

investments [20]. In the literature, some works have investigated the 
applications and effectiveness of using the VPP concept. A novel 
approach for the energy management system of a smart power grid was 
proposed by Azimi et al. [21], in which the VPP was formed by 
comprising fossil-fuel- and wind-based power plants, PVs, electric ve
hicles (EV), and DR programs. In this work, the authors showed that by 
considering DR in VPP, not only the operation costs will be reduced but 
also enhancements in peak shaving and EV’s parking installations are 
obtained. Liu et al. [22] investigated a server client-based VPP and 
revealed its effectiveness in providing technical support for massive 
loads participating to the spot market and consequently empowering 
power grid regulation by considering different stages such as access, 
operation-planning, and settlement. Alemany et al. [23] emphasized the 
role of VPPs in decentralized management of DERs, especially when the 
interaction between the distribution system operator (DSO) and the 
transmission system operator (TSO) is considered. Similarly, Gorostiza 
et al. [24] proved that forming a VPP as clusters of EVs results in a 
smooth TSO-DSO interaction and consequently enhances the frequency 
support. Naughton et al. [25] used the concept of a VPP to facilitate the 
participation of DERs in the electricity market and demonstrated the 
capability of VPPs in supporting local networks by providing voltage and 
reactive power provision. Moreover, HEMSs can positively contribute to 
the operation-planning decisions for small-scale [26] and large-scale 
systems [27], aiming at increasing the flexibility of power systems as 
well as enhancing social welfare. In the literature, there are some works 
addressing the role of VPP and HEMS on power system operation and 
planning. Lana et al. [27] considered a low voltage DC network con
nected to a medium-voltage AC network and showed the importance of 
HEMS in providing flexibility and supporting the functionality of a 
network-scale battery storage network as a part of VPP. Lotfi et al. [28] 
studied the possible aggregation of electric vehicles and photovoltaic- 
equipped parking lots as a VPP. It was shown that considering HEMSs 

Fig. 3. Hierarchy of DERs.  
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in such VPP configuration significantly decreases the active power losses 
and the total energy supplied by the upstream grid without sacrificing 
the end-user comfort. The concept of VPP, comprising a sequential DR, 
was proposed by Gong et al. [29], and as a result, the ramp rate and peak 
power were reduced at the distribution level, while the HVAC system 
contributed in guaranteeing the end-users comfort level. Luo et al. [30] 
discussed the vision of building a VPP on distribution networks 
considering a central BEMS. Such a BVPP can provide adequate flexi
bility to support distribution system operation and enhance the effec
tiveness of DR, a large community of net zero energy homes, and their 
interconnection with the grid. Rosato et al. [31] stated the importance of 
ML-based approaches to develop a powerful management approach for 
energy clusters such as energy communities and VPP, and a reliable 
decision-making tool for practical power systems. 

3. Research method 

The search queries are presented in Table 1. One approach would 
have been to combine these into a single search string. In practice, it was 
observed that such a complex query missed some relevant papers that 
were found by one of the basic queries. Thus, each of the queries was 
performed separately in each of the databases in Table 1. The results of 
each query were sorted in order of relevance and the first 100 were 
studied manually. The number of selected papers is presented in Fig. 4. 
Further, conference papers were excluded from the IEEEXplore search to 
focus on the highest quality works. The search was limited to papers 
published since 2013. 

The criterion for selecting an article for inclusion in the taxonomy 
was that it described a ML-based solution that is applicable for realizing 
a VPP functionality, as defined in Section 1, regardless of whether the 
authors use the term VPP. The selection criteria are elaborated as 
follows: 

• The presented ML solution must be directly applicable for the pur
pose of implementing a VPP function. For example, day-ahead and 
week-ahead energy consumption forecasts are key functionalities of 
a VPP. However, predicting the annual energy consumption of a 
building [32] or predicting the Building Emission Rate (BER) 
resulting from retrofitting actions [33] are not generally considered 
to be VPP functionalities.  

• Articles that discuss machine learning methods, for example in the 
literature review [34] or future work section [35], but which did not 
implement a ML solution, were not selected. Review papers were not 
selected; however, the most relevant review papers have been cited 
in Section 1.  

• Articles on ML applications to low-level control (e.g. [36–38]) were 
not selected.  

• This taxonomy covers ML applications for realizing functionalities of 
a VPP. ML applications for modelling electricity markets involving 
VPPs (e.g., [39]) are outside of the scope of this article.  

• This taxonomy is only concerned with operating a VPP. Planning 
stage problems such as dimensioning, configuring and placing DERs 
[40] or selecting suitable DR customers [41] are out of scope.  

• VPP forecasting functionalities included in this taxonomy have been 
restricted to forecasts that are directly applicable to the decision- 
making of a VPP, namely forecasting of prices, load and genera
tion. Indirectly relevant forecasts such as building occupancy fore
casting [42] are excluded. As VPPs do not act on a very short time 
step, works on very short forecasting intervals such as one minute 
[43] are excluded. Similarly, optimization approaches at such very 
short intervals [44] are excluded.  

• This taxonomy only considers energy resources managed by a VPP. 
ML applications for managing other kinds of energy resources such as 
grid equipment [45] or batteries in IoT sensor nodes [46] are out of 
scope. 

Several recent reviews have employed a scientometric approach to 
generate infographics from the metadata obtained from the publications 
database. Typical metadata includes the year of publication, country of 
affiliation, keywords, the title of the journal and cited papers. An 
example of such a VPP review article is [1]. This results in charts such as 
the number of papers per country. It would be even more interesting to 
obtain richer infographics from additional metadata that is specific to 
this taxonomy. Then it would be possible, for example, to relate the 
contribution of each country to each category in the taxonomy. This 
article employs such a scientometric research method, exploiting custom 
metadata collected for the purposes of this taxonomy. 

The readers who are not concerned with our custom metadata 
management details can skip the rest of this section and proceed to 
Section 4. The rest of this section explains our scientometric method
ology based on custom metadata that has been manually collected from 
the articles selected for inclusion in this taxonomy. These details are 
sufficient for a person with working knowledge of relational databases 
to repeat the methodology. However, the presentation is aimed at a 
general audience. Fig. 5 is a UML (Unified Modelling Language) class 
diagram specifying the database that was designed to capture this 
metadata. The steps related to the research methodology of collecting 
the data to this database are underlined, and the rest of the text is for the 
benefit of readers not familiar with the UML class diagram notation as it 
applies to relational databases.  

• Each box is a table that defines the fields of information to be 
recorded from some entity. For example, the entity ‘Tier1’ is a top 
tier of our 3-tier taxonomy. The table has one row for each instance of 
that entity. For example, our taxonomy has three tier 1 categories: 
Optimize, Forecast and Classify, so there is one row for each of them.  

• The line between ‘Tier1’ and ‘Tier2’ is a relationship. The notation 1 
and * indicates a one-to-many relationship: a ‘Tier1’ category can 
have any number of ‘Tier2’ categories related to it, and a ‘Tier2’ 
category must be related to exactly one ‘Tier1’ category. Similarly, a 
‘Tier2’ category can have any number of ‘Tier3’ categories related to 
it, and a ‘Tier3’ category must be related to exactly one ‘Tier2’ 
category. The result is a hierarchical 3-tier taxonomy. A tier 2 cate
gory was subdivided to tier 3 categories only if a meaningful sub
division emerged from the reviewed papers. The rows of these tables 
and their relationships are configured before adding the articles in 
Fig. 4 to the database, thus first establishing the structure of the 3-tier 
taxonomy.  

• Each of the selected articles is inserted as a row into the ‘Article’ 
table. The ‘title’ and ‘year’ are fields that are filled for each article. 
Additionally, an article can be linked to any number of ‘Tier3’ cat
egories and each ‘Tier3’ category can be related to any number of 
articles. Thus, there is a many-to-many relationship between ‘Tier3’ 
and ‘Article’, which is implemented with the junction table 
‘Tier3_Mapping’.  

• The ‘Region’ table is populated with the following entries: ‘North 
America’, ‘Europe’, Asia-Pacific’ and ‘Rest of the World’. The 
‘Country’ table is populated with the countries of affiliation of the 

Table 1 
Search details.  

Query Search string Science 
Direct 

IEEEXplore 

query1 “building energy” AND learning 4853 606 
query2 “home energy” AND learning 1296 182 
query3 “virtual power plant” AND learning 530 15 
query4 “building” AND “reinforcement learning” 5896 227 
query5 “home” AND “reinforcement learning” 2373 45 
query6 building AND learning AND (diagnosis OR 

detection) 
54,645 1292  
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first authors of the selected papers, and each country is related to one 
region.  

• The ‘Publisher’ table is populated with the publishers in Table 1.  
• Each article is related to one country (the country of affiliation of the 

first author) and to the publication database (one of the databases in 
Table 1).  

• The DER table has one row for each DER in Fig. 3. Each DER in Fig. 3 
is added as a row to the table ‘DER’. Each line between DERs in Fig. 3 
is added as a row to the junction table ‘DER_Relation’.  

• Each article in the table ‘Article’ is related to any number of primitive 
DERs by adding a row to the junction table ‘DER_Mapping’. 

The authors have designed algorithms and implemented them in the 
Python programming language for accessing the database and gener
ating the infographics in Sections 3–6 of this article. 

4. Hierarchical analysis of the taxonomy 

Fig. 6 shows the selected papers in each of the tier 1 categories: 
Optimize, Forecast and Classify. A paper has been categorized under 
more than one category, if it presented ML solutions for each of those 
categories. 

A sunburst chart of the 3-tier taxonomy is presented in Fig. 7. The 
angle corresponding to each category is in proportion to the number of 
papers in that category. The remainder of this section is structured ac
cording to the hierarchy in Fig. 7. 

The Sankey chart in Fig. 8 maps the countries of affiliation of the first 
author to the tier 3 categories. For most categories, the global academic 
community is engaged in the work. In a few cases, a regional focus is 
evident: for example, although Europe contributes about 30% of the 
research overall, it contributes the majority of the research on solar 
forecasting. The contribution of the country with the largest number of 
publications, China, is highlighted in red. (See Fig. 8.) 

Fig. 4. Selected articles per database, by year of publication.  

Fig. 5. Custom database for recording the metadata for this taxonomy.  
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4.1. Optimize 

Fig. 9 presents the breakdown of publications into tier 3 categories 
under ‘Optimize’. The years 2019–2021 indicate a possible shift of 

attention from price-based DR to incentive-based DR. A steady growth of 
publications in ‘grid support’ can be seen over the last three years. 
However, the ‘Local market’ category does not show evidence of sig
nificant growth, suggesting that the main thrust of the research remains 

Fig. 6. Selected papers in each tier 1 category.  

Fig. 7. Sunburst chart of the 3-tier taxonomy.  
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on existing markets. Unless otherwise specified, all of the works in the 
‘optimization’ category of the taxonomy use reinforcement learning. 

4.1.1. Cost 

4.1.1.1. Renewables time shift. If there is a possibility to sell to the grid, 
a storage resource can be used to shift sales of renewable energy to hours 
with higher prices. The basic formulation of this problem involves PV 
[47,48] or wind [49] and a battery, so the optimization aims to maxi
mize profits under a variable electricity price. In a multi-energy VPP, 
renewable generation can be complemented with local fossil fuel gen
eration [50,15]. The local generation can be within a building [51] or a 
microgrid [52]. These works assume that the utility has the same price 
for buying and selling electricity. Other authors use separate buying and 
selling prices under a Time-of-Use tariff [53,54] and a real-time pricing 
scheme [55–57]. Nakabi & Toivanen [14] additionally consider trans
mission costs. Although the majority of works use stationary batteries, 
Vehicle-to-Grid (V2G) [17,58] and heat storages [59] are other possible 
storage technologies. If the market requires that PV or wind generation 

capacity be traded ahead of time, reinforcement learning can be used to 
optimize the operation of the battery to cope with inaccuracies in the 
forecast [60]. 

4.1.1.2. DR (price-based). Price-based DR involves curtailing or 
rescheduling energy consumption based on electricity prices. A utility 
may set the prices with the intention to reduce consumption during 
anticipated times of peak load [61]. The main approaches involve 
managing Heating, Ventilation, and Air Conditioning (HVAC) systems so 
that the indoor environment remains within acceptable limits [62] or 
managing home appliances, which impacts occupants more directly 
[63]. Adverse impacts to occupants are usually handled by adding a 
penalty term to the reward of the reinforcement learning agent. 

Most price-based DR applications involve HVAC systems. Schreiber 
et al. [64] shift operations of a chiller to low price periods while 
penalizing according to deviations from an ideal temperature. Several 
authors minimize the electricity cost for an HVAC system, while mini
mizing violations of indoor temperature [65] and air quality [66] re
quirements. Ren et al. [8] and Li et al. [67] additionally include an EV 

Fig. 8. Sankey chart mapping the countries of affiliation (on the left) to the tier 3 categories of the taxonomy (on the right).  
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charger and also minimize user dissatisfaction resulting from the EV not 
being charged as planned. Proactively pre-heating or pre-cooling before 
a high price period reduces HVAC electricity consumption in that period 
[68,69]. In all of the works involving HVAC, the thermal mass of the 
building is exploited as a thermal energy storage, thus avoiding the need 
to invest in any separate energy storage DERs. Most works assume real- 
time electricity pricing, but Jiang et al. [69] assume a Time-of-Use tariff 
and peak demand charges. Whereas the other works use reinforcement 
learning, Kim [70] uses supervised learning to determine an optimal 
operating schedule for an air handling unit. A conventional optimization 
framework is used to calculate the optimal schedule for a historical time 
period (in which there is no uncertainty), and these values are used as 
the labels to train the supervised learning model. 

A variety of approaches are in use for capturing the user discomfort 
for DR involving home appliances. Chellamani & Chandramani [71] 
reschedule appliances to lower price hours under an Hourly Time-Of- 
Use tariff, and user discomfort is mitigated by learning the users’ con
sumption patterns. Bahrami et al. [72] define discomfort as the time 
difference between the desirable and rescheduled operation time of the 
appliance. Zhang et al. [61] reschedule or curtail home appliances and 
model the dissatisfaction arising from these actions. Lee & Choi [73] 
define a separate reinforcement learning agent type for each kind of 
DER, so that each type of agent has its own reward function that captures 
user dissatisfaction in a way that is relevant for the type of DER. Xu et al. 
[74] take a simpler approach with one function that captures dissatis
faction, with a coefficient that can be adjusted for each appliance type. 
Chung et al. [75] capture the user’s far-sightedness as the user’s will
ingness to take DR actions for which the benefits are realized several 
hours later – however, it is debatable whether this is a relevant 
consideration in a system that has automated the DR decisions. Gener
ally, customers have the option to override DR requests, and Wen et al. 
[76] argue that it is reasonable to assume that customers will make such 
decisions without considering price information. Usually, DR involves 
some form of peak shaving; however, Alfaverh et al. [77] additionally 
perform valley filling to shift consumption to times of low load. 

An alternative to using reinforcement learning is to use conventional 
optimization techniques with historical data to obtain labels to train a 
supervised learning model for deciding the optimal DR actions [66]. 

4.1.1.3. DR (incentive-based). Incentive-based DR involves a financial 
incentive mechanism that allows finer control of the users’ DERs. Only a 
minority of works consider the industrially accepted international 

standard OpenADR 2.0, which standardizes many aspects of automating 
incentive-based DR requests [79]. A straightforward approach is a 
contract between the consumer and the utility, permitting the utility 
[80] or VPP [81] to send requests to consumers to limit their energy 
consumption in a specified time window. In a commercial building, 
Zhang et al. [82] ensure that, upon receiving a DR signal, the required 
power reduction is achieved by separately adjusting air conditioners in 
different parts of the building to minimize discomfort. In a residential 
setting, incentive-based DR gives tools to provide unique incentives for 
each customer [83,84]. Kumari & Tanwar [85] have a reinforcement 
learning agent that sets monetary incentives in real-time for the users, 
while taking into account the wholesale market price. Kuang et al. [86] 
point out that psychological factors will be significant if customers are 
directly involved in the decision-making, so they define a risk attitude to 
capture this in the reward function of the reinforcement learning agent. 

4.1.1.4. Local market. MARL is a popular approach for defining novel 
local energy markets. Zhang et al. [87] manage queueing at an EV 
charging station with an auction market operated by the station. Zhu 
et al. [88] operate an auction market for microgrids to aggregate the 
DERs across these microgrids. Each microgrid has its own agent with its 
own reward, aiming to maximize the total revenue for the microgrid. 
The system-level reward is the sum of these rewards. In contrast, Samadi 
et al. [89] define different types of self-interested agents for consumers, 
energy suppliers and batteries, and an upper-level energy management 
agent that trades with the lower-level agents and maximizes system- 
level reward. With goodwill from the utility, a local market can use 
the utility grid to realize physical energy trading [90,91]. Zhou et al. 
[92] define a local market for an energy community, in which local PV 
production can be sold at a price that is higher than the Feed-in-Tariff 
and lower than the retail price. The works in this category do not 
discuss obstacles related to a possible lack of cooperation from the 
utility, and neither do they motivate their work from the perspective of 
the utility. 

4.1.1.5. Operating cost. A few miscellaneous works were found that 
minimize some aspects of operating cost but do not fit under renewables 
time shift, DR, or local markets. Wei et al. [93] exploit a battery at home 
with a real-time electricity pricing contract, charging during low prices 
and powering home appliances with the battery during high prices to 
minimize the electricity bill. Fang et al. [94] propose a concept that is 
otherwise similar to renewables time shift, but they assume constant 

Fig. 9. Publications in the tier 1 category ‘Optimize’, color-coded according to the tier 3 categories under ‘Optimize’.  

S. Sierla et al.                                                                                                                                                                                                                                    



Automation in Construction 136 (2022) 104174

10

electricity prices and seek to minimize the cost of interaction with the 
distribution network, without elaborating how this cost is formed. Zhao 
et al. [95] minimize the operating cost of a multi-energy VPP managing 
office buildings that can be heated either by district heating or an 
electricity-powered boiler under a Time-of-Use electricity tariff. The 
district heating network operator benefits from a more stable load to the 
network, but the financial compensation mechanism to the VPP is un
clear. Qin et al. [96] minimize the operating cost of an off-grid VPP with 
PV, battery storage and flexible loads, with fossil fuel-based distributed 
generators available if the load cannot be covered with the green DERs. 

4.1.2. Other 

4.1.2.1. PV self-consumption. Maximizing the self-consumption of local 
PV involves directing surplus generation to a storage resource, from 
which it can then be used later when the consumption exceeds PV 
generation. The storage can either be a stationary battery [8], thermal 
storage [97] or electric vehicle battery [98]. 

4.1.2.2. Grid support. A few works support the utility grid without 
specifying a mechanism for financial compensation for these services. 
Mbuwir et al. [99] use household batteries for congestion management 
in a microgrid, which they define as minimizing the net power exchange 
with the utility grid. Qiu et al. [58] apply MARL to operate a peer-to- 
peer market for homes with PV, batteries, V2G and smart loads. Each 
home is penalized for its contribution to the community’s peaks. Shang 
et al. [100] penalize for power tracking errors at the point of common 
coupling between the microgrid and distribution grid. Tuchnitz et al. 
[101] reschedule EV charging to times of low grid load but do not 
compensate the EV owners for this inconvenience. Totaro et al. [18] help 
an off-grid VPP to cope with a battery failure and to increase production 
from a fossil fuel generator without manual intervention. In a district 
heating grid, Solinas et al. [102] shave peak loads for the central CHP 
plant while keeping indoor temperatures within limits. 

4.2. Forecast 

As presented in Fig. 7, forecasting applications can be categorized 
under the tier 2 categories of market price forecasting, renewable gen
eration forecasting and load forecasting. The tier 3 categories under 
these and the numbers of publications in each of them are presented in 
Fig. 10. As can be seen, steady growth is noted under most categories. 
However, although forecasting of the loads of single buildings in the 

category ‘Building (Single)’ continues to attract a large amount of 
research, the exploitation of data across buildings for forecasting pur
poses in the category ‘Building (cross-site)’ has not yet emerged as a 
growing body of research. As is discussed further in Section 4.2.1.2, 
there are strong motivations for cross-site applications when the limi
tations of real-world data availability are taken into account. However, 
the reviewed research is not yet aiming at online deployments to real 
buildings, so these data availability issues are not yet a concern. The 
data for 2021 shows that the forecasting of load, in general, is attracting 
faster growth than the forecasting of load in buildings. This could be an 
indication of a shift of focus from BEMS and HEMS to VPPs. The latter 
are concerned with loads that can be abstracted and pooled so that 
several types of DER can be traded on energy markets as one large 
resource. This is discussed further in Section 5.2. 

With one exception, the forecasting works referenced in this section 
employ supervised learning. However, the reinforcement learning 
technique that has been mainly used for optimization has also been 
applied for time series forecasting, so that the reward to be minimized is 
the difference between the prediction and the actual value [103]. 

4.2.1. Load 

4.2.1.1. Building (single). Forecasting building energy consumption is a 
popular research problem. An hourly resolution is most common, 
although other resolutions such as half-hourly [104] and 15-min inter
val [105] are encountered. The forecasting is usually done day-ahead. 
The most common input data is weather data and historical energy 
consumption data [106], with some authors including additional data 
such as building automation system sensor data. Several authors present 
a solution based on data collected from physical buildings 
[107–113,9,114–118]. To select the most relevant nonredundant sets of 
sensor data, Eseye et al. [119] propose a feature selection method and 
validate its generality for building load forecasting. Tian et al. [120] 
generate additional artificial training data with a distribution that is 
similar to the sensor data from the building. The usage of such raw data 
has a bias, with the majority of training samples coming from working 
days, so Wang et al. [121] train separate models for working and rest 
days, whereas Zhang et al. [122] use a clustering decision tree algorithm 
to identify the different operating conditions to obtain a multi-model 
predictor that overcomes this problem. However, a bias can exist for 
various operating conditions, so Zhang & Wen [123] use active learning, 
in which the building energy management systems setpoints are actively 
changed to obtain the desired data from different operating conditions. 

Fig. 10. Publications in the tier 1 category ‘Forecast’, color-coded according to the tier 3 categories under ‘Forecast’.  
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A practical disadvantage of this method is that building operators and 
inhabitants may be unwilling to allow such experimentation for data 
collection purposes. Such problems can be avoided by using a building 
energy simulator, which can generate the training data for supervised 
learning purposes without disturbing systems and inhabitants in a 
physical building [124–126]. Kim et al. [127] note that this approach 
has the benefit of avoiding privacy issues in collecting occupancy- 
related data. 

If the VPP is managing individual apartments, as in a HEMS context, 
the load is forecasted at the level of an apartment [128–130]. The 
forecasting of specific types of loads is possible when data is available. 
Datasets from volunteer homes have been used to forecast cooling load 
[131] and appliances load [132]. However, deployment of the solution 
beyond the volunteer homes may be problematic if such data is not 
available at the premises. Aurangzeb et al. [133] note the computational 
infeasibility of training forecasting models for each home, so they cluster 
homes with similar consumption profiles. Thus, one ML model can be 
trained for each cluster. 

In residential contexts, the available data is usually smart meter data, 
which is the aggregated consumption of all of the loads. Numerous pa
pers have proposed disaggregation methods to extract the consumption 
of individual loads such as lighting or a specific type of appliance. 
Disaggregation in itself is not a VPP functionality. However, a VPP could 
perform disaggregation to obtain a richer set of input features for fore
casting [134] and a HEMS could do it to forecast the consumption of 
specific appliances [135,136]. 

In addition to the above-mentioned works on electricity consump
tion, Eseye and Lehtonen [137] propose a forecaster for district heating 
energy consumption, which is of relevance to the multi-energy VPP. 

4.2.1.2. Building (cross-site). Cross-building forecasting can overcome 
the problem of inadequate historical data at the building of interest, as 
most buildings have deployed smart meters only recently [138]. 
Transfer learning is applied such that the training of the forecaster is 
started with data from other buildings and finalized with the available 
data from the building of interest [139,140]. Ma et al. [141] specifically 
address different scenarios for missing data, namely: random missing, 
continuous missing, and large proportionally missing. Ribeiro et al. 
[138] remove seasonal and trend components to improve the applica
bility of the historical data across buildings. Xu et al. [142] use social 
network analysis to predict energy consumption for buildings based on 
nearby reference buildings for which there is an accurate machine 
learning forecaster. 

4.2.1.3. Load (general). A typical difference between a BEMS and a VPP 
is that the former predicts the load of a building and the latter often 
predicts an aggregated load, while being agnostic to the types of DERs 
that comprise the load [143,31,144,87]. A VPP also handles loads not 
generally in the scope of BEMS, such as V2G chargers [78]. The load 
forecasts reviewed in this taxonomy are, in general, offline applications, 
so practical issues may need to be solved to obtain online applications 
[89], as required by a VPP. 

4.2.2. Generation 
Renewable generation forecasts in a VPP context are usually day- 

ahead, as that is usually a sufficient timeframe for making decisions 
on energy markets. The works reviewed in this section involve day- 
ahead or week-ahead prediction. 

4.2.2.1. Wind. Wind forecasting capabilities include wind speed [143] 
and wind power generation [16,90,144,145]. Sharifzadeh et al. [146] 
provide a thorough discussion on the pros and cons of each approach. 
Ultimately, a VPP is concerned with power generation. Nabavi et al. 
[147] forecast wind speeds and convert these to wind power generation 
estimates based on data sheets of the turbine and grid-tie inverter 

manufacturer. However, such datasheets are based on tests in controlled 
conditions of a wind tunnel, whereas the power generation of a wind 
farm depends on wind speed and direction at several locations and 
altitudes. 

4.2.2.2. Solar. PV generation related forecasts are either solar irradi
ance forecasts [145] or PV power generation forecasts [16,90,148]. 
Most forecasts are hourly, although there can be great variations during 
a one-hour period if the cloud cover changes. Rapidly changing cloud 
cover can cause very rapid fluctuations in PV generation, so a longer 
interval can even out these fluctuations and reduce the forecasting error. 
Thus, Hafiz et al. [92] argue that a 15-min interval is reasonable due to 
considerations of data availability and computation. This is also a 
reasonable interval for a VPP to operate. Suresh et al. [149] forecast at 
10-min intervals, and unlike most works, do not use solar irradiance 
forecasts but rather the measured irradiance and other locally measured 
data from the two previous timesteps. PV forecasts with significantly 
shorter forecasting intervals, known as nowcasting (e.g., [93]), have not 
been included in this taxonomy, since VPPs generally do not operate at 
such a very short timescale. Forecasting PV generation at a single site is 
error-prone, and improved accuracy can be achieved by sharing data 
among the forecasters of all the generation sites under a multi-site VPP 
[150,24]. 

4.2.3. Price 

4.2.3.1. Day-ahead. In many countries, day-ahead electricity trading 
occurs at hourly intervals. VPPs can optimize electricity bills and reve
nues from generation by considering the hourly changing prices and 
possibilities to curtail or reschedule generation or consumption or use a 
local energy storage. Thus, forecasting the day-ahead price is a key 
capability of a VPP [143,144]. 

4.2.3.2. Intraday. Mashlakov et al. [90] present a forecaster that can be 
adapted for both day-ahead and intraday market forecasting. A VPP can 
trade on an intraday market to manage the effects of day-ahead de
cisions that turned out to be suboptimal, due to the uncertain informa
tion that was available day-ahead. Intraday markets vary between 
different countries. However, they often involve a price that changes 
every half hour [95] or hour [96]. Forecasts of such prices for the next 
market interval are useful for a BEMS [95] or HEMS [96] that manages 
flexible loads to optimize the energy bill. 

4.2.3.3. Frequency reserve. Frequency reserve markets compensate 
DERs for standing by and modifying their power generation or con
sumption in response to power grid frequency deviations. Several types 
of reserve markets with different activation requirements and trading 
rules usually exist in a single region. Further, the markets differ across 
geographic regions and are usually operated by an ISO (Independent 
System Operation) or a TSO (Transmission System Operator). Sadeghi 
et al. [144] forecast several reserve markets operated by the California 
ISO. 

4.3. Classify 

Fig. 11 presents the research in tier 2 categories under the tier 1 
category ‘Classify’. Due to the limited number of articles, the tier 2 
categories were not further decomposed to tier 3 categories. The 
reviewed articles detect or diagnose faults that do not prevent DERs 
from performing its function, but which reduce their capacity to 
generate energy [151] or adjust consumption [97], thus reducing the 
capacity available for a VPP, HEMS or BEMS system. 

4.3.1. Detection 
All of these works in this category detect that the DER is in some kind 

S. Sierla et al.                                                                                                                                                                                                                                    



Automation in Construction 136 (2022) 104174

12

of abnormal condition, but the detection methodology is not able to 
identify what that condition is. Choi & Yoon [25] use unsupervised 
learning to detect whether or not an abnormal operating condition exists 
in the district heating water substation system of a building. Hosseini 
et al. [99] perform anomaly detection for home appliances with super
vised learning, due to concerns about the accuracy of unsupervised 
learning methods. The detection is done by observing the energy con
sumption. Li et al. [100] detect sensor faults in ground source heat pump 
systems. Yun et al. [152] perform fault diagnostics of an air handling 
unit with supervised learning. However, they note that in real opera
tional systems, fault conditions may occur that do not correspond to any 
of the preconfigured fault types, in which case the supervised learning 
system is prone to perform a misclassification. To avoid this, the authors 
detect an undefined fault. 

4.3.2. Diagnosis 
Fault diagnosis methods are able to select one of a number of pre

configured categories for a DER. The categories include the normal 
category and several different fault categories. For example, Han et al. 
[10] detect faults in a water-cooled chiller and diagnose them as 
refrigerant leak/undercharge, condenser fouling, reduced condenser 
water flow, non-condensables in the refrigerant, reduced evaporator 
water flow, refrigerant overcharge and excess oil. Liu et al. [101] 
address the same problem and use the following fault categories: 
leakage, overcharge or reduced evaporator water flow; each fault has 
two severity levels. Guo et al. [102] diagnose the following faults for an 
air-source heat pump system: four-way reversing valve fault, the out
door unit fouling fault, refrigerant undercharge and overcharge faults. A 
number of similar works exist for rooftop units [26], boilers [153] and 
air handling units [154]. Gharsellaoui et al. [104] diagnose faults un
related to equipment malfunction, namely: unexpected occupancy and 
opening windows when the heating is on. 

Whatever the type of DER, the ML model for performing the diag
nosis can be trained either with actual faults from operational DERs 
captured in building automation systems [105], data from fault sce
narios generated with an energy simulator [106] or faults that were 
physically created in the experimental setup and measured by the 
available sensors [107]. The problem with collecting real fault data for 
operational DERs is that getting a large training set of data from different 
fault conditions is very difficult. The other approaches for artificially 
generating the data by inserting faults into simulators or experimental 
setups are labor-intensive and may not reflect real operating conditions. 
In order to obtain solutions that can be scaled up from individual DERs 
or buildings, with acceptable manual effort, transfer learning and semi- 
supervised learning have been used. 

Transfer learning involves training a ML model with data from other 
DERs with rich data and then completing the training with the DER of 

interest, for which limited data may be available. This has been done for 
chillers [101,155]. 

In real-world DER deployment, large quantities of unlabeled data are 
available from automation systems, but generally, only a relatively small 
quantity of this is labelled, as the labelling requires expert workforce. 
Several authors have argued that semi-supervised learning is well suited 
in this environment. Zhao et al. [151] use semi-supervised learning to 
generate a large, classified dataset of faults for a PV array. The PV-ar
ray’s current and voltage measurements at the maximum power point 
are received from the inverter. In order to achieve better clustering, 
these are normalized using current and voltage measurements from a PV 
reference module. The contribution of the semi-supervised learning 
technique is that unlabeled datapoints within a cluster are given the 
same label as a labelled datapoint in that cluster. Li et al. [97] train a 
generative adversarial network to generate fake samples with a similar 
distribution as labelled as well as unlabeled real samples of HVAC data. 
An innovative fault diagnosis classifier training method is proposed, 
which combines the labelled, unlabeled and generated samples. Fan 
et al. [108] and Yan et al. [156] first train a ML model with the available 
labelled data from an air handling unit, using supervised learning 
techniques. The trained model is used to label the unlabeled data, which 
is then added to the set of labelled data, but with a lower confidence 
value. The training process is iterated with this expanded set of labelled 
data. 

5. Cross cutting analysis of the taxonomy 

5.1. Combination works in involving several categories of the taxonomy 

The heatmap in Fig. 12 presents the number of articles that were 
categorized under several tier 2 categories. For example, the intersection 
of the row ‘Forecast: Generation’ and the column ‘Forecast: Load’ has a 
value of 11, meaning that 11 articles were categorized as presenting 
solutions for forecasting load and generation. The heatmap is symmetric 
across the diagonal from the top-left corner to the bottom right corner. 
Since the values throughout the top two rows are zero, none of the 
detection or diagnosis works are being exploited in conjunction with 
forecasting or optimization functionalities. Rows 3–5 and columns 3–5 
are the load, generation and price forecasting works. The intersection of 
these rows and columns shows that a significant number of researchers 
have developed general-purpose forecasting solutions. The second row 
from the bottom shows that some cost optimization works are exploiting 
forecasts of load, generation and prices. 

The heatmap in Fig. 13 is similar to Fig. 12, but at the level of tier 3. 
The intersection of the ‘Forecast: Generation: Solar’ column with the 
‘Forecast: Generation: Wind power’ row is the brightest yellow square in 
Fig. 13, meaning that this was the most common combination of any two 

Fig. 11. Publications in the tier 1 category ‘Classify’, color-coded according to the tier 2 categories under ‘Classify’.  
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tier 3 categories. This combination was encountered in the following 
works: [16,145], and [31,146], which additionally forecast ‘Load 
(general)’. Another common combination is the forecasting of ‘Solar’ 
and ‘Building (single)’ [92,147,128,148]. Both forecasts are obviously 
useful for any further work on exploiting rooftop PV locally in a build
ing. A few works forecast renewable generation, load and market prices 
[143,90,144], demonstrating the potential for versatility. 

In Fig. 13, there are some combinations of DR or renewables time 
shift with forecasting approaches. Price-based DR approaches have 

made use of forecasts of load [78], the day-ahead price [65] and 
intraday price [96]. Incentive-based DR has been optimized using 
forecasts of day-ahead price and load [83,84]. Wen et al. [84] addi
tionally forecast PV generation. Harrold et al. [49] optimize renewables 
time shift using forecasts of day-ahead price, load, wind and PV 
generation. 

In Fig. 13, the most common combination of two different optimi
zation approaches is between renewables time shift and price-based DR. 
The basic concept involves exploiting the flexibility of DR capable loads 
to reschedule surplus PV sales to the grid to a more profitable market 
interval [55]. Liu et al. [54] make an unpractical assumption that con
sumption and PV generation are known exactly ahead of time. Xu et al. 
[74] is similar, with an hourly changing real-time price which is fore
casted, so that the forecast is made available for the reinforcement 
learning agent performing the optimization. Systems with price-based 
DR and renewables time-shift capability have been additionally cate
gorized under grid support if they perform peak shaving [56,58] and 
under a local market when such a market mechanism was proposed 
[89]. 

Some miscellaneous approaches combining tier 3 categories are 
noted as follows. When there is no possibility to sell surplus generation 
to the grid, one can optimize DR and PV self-consumption [8]. This 
approach is more effective with a PV generation forecast [73]. Price- 
based DR has been applied in innovative local markets for EV 
charging stations [87] and a VPP that aggregates several HEMS systems 
[75]. Shang et al. [100] propose a renewables time shift solution for 
microgrids, in which there are constraints for power flow at the point of 
common coupling (PCC) between the microgrid and the utility grid. A 
form of grid support has been designed that mitigates power tracking 
errors at the PCC. 

Fig. 12. Heatmap counting the number of articles that were classified under 
two different tier 2 categories. 

Fig. 13. Heatmap counting the number of articles that were classified under two different tier 3 categories.  
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5.2. Mapping of the taxonomy to types of distributed energy resources 

The Sankey chart in Fig. 14 relates the tier 3 categories on the left to 
our hierarchy of DERs (Fig. 3). The width of each flow from a tier 3 
category to a top-level DER type (fossil, renewable, load or storage) is 
proportional to the number of articles in that tier 3 category, which 
involved such a DER. Flows toward fossil fuel burning DERs are colored 
in gray in Fig. 14, whereas the other DERs are considered green energy 
solutions. 

Fig. 14 reveals the level of abstraction at which loads are being 
modelled. The most abstract level ‘Load, general’ has been employed in 
a moderate number of publications. The majority of publications use a 
medium level of abstraction: ‘Hvac, general’, ‘Building, general’ or 
‘Home general’. A moderate number of articles were categorized under 
‘Home, appliance’, which involves constraints on how the loads can be 
curtailed or rescheduled. A few articles addressed specific types of HVAC 
equipment such as chillers, air handling units, heat pumps or rooftop 
units. The highest level of abstraction (‘Load, general’) is required to 
enable a VPP to aggregate the DERs. The level of abstraction of data 

modelling in a commercial VPP is discussed in detail by Subramanya 
et al. [19]. Sub-aggregators must handle the special requirements that 
constrain the use of particular types of DER. BEMS and HEMS systems 
are strong candidates to serve as such sub-aggregators, but further 
research is needed to integrate them into VPPs. Chung et al. [75] is a 
good example of a VPP that has been integrated into HEMS systems in a 
sub-aggregator role. Although a VPP needs to access DERs through an 
interface at a high level of abstraction, the underlying forecasting, 
optimization or classification solutions need to model the DERs at an 
appropriate level of detail. As an example of inadequate detail, a rein
forcement learning environment for optimizing HVAC can define indoor 
temperature as a linear function of outdoor temperature and HVAC 
power [67,57]. This approach only maintains the average indoor tem
perature of the building within thermal comfort limits, whereas appli
cations for real buildings must achieve this separately in every zone of 
the building. Further, it is unclear if a reinforcement learning agent 
trained in a linear environment could generalize to handle non-linear 
dynamics of real-world HVAC systems and a much larger state and ac
tion space with temperature measurements and HVAC actuators in 

Fig. 14. Sankey chart relating the tier 3 categories (on the left) to the types of DERs encountered in this review.  
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several zones of the building. 
A mention of a specific type of DER does not guarantee that the re

ported performance can be realized in a real building. For example, 
works on heat pumps do not capture the non-linear phenomena in 
compressors, expansion valves, condensers and evaporators [60,99]. In 
particular, compressors are the key electricity-consuming component in 
common HVAC equipment such as heat pumps and chillers. Generally, 
the reviewed literature does not distinguish between kW of power 
consumption of the compressors and the kW of cooling or heating pro
vided to the building. None of the papers tried to optimize the load so 
that the compressor could operate at a high coefficient of performance. 

Fig. 14 shows that storages and renewable generation resources are 
all modelled as a specific type of DER. Differences in fidelity have been 
observed related to how battery degradation has been modelled and 
included in the optimization. Renewable generation optimization ap
proaches do not discuss how the proposed optimization may interfere 
with maximum power point tracking, possibly causing adverse effects on 
energy extraction. 

According to Fig. 14, the majority of the DERs investigated in the 
articles of this taxonomy are located in buildings. Building automation 
systems often employ a 15 min control time step. Thus, a RL agent can 
only take actions and gain experiences at this interval. Such an interval 
is very long compared to other major applications of RL such as robotics 
and self-driving cars. Several of the articles studied in this paper avoid 
this problem by using a building energy simulator as the RL environ
ment, running a sufficient number of episodes in this environment. An 
unresolved problem with this approach is that there are challenges in 
keeping the simulator updated, for example when building occupancy 
patterns change or when retrofits to the building are made. A topic for 
further research would be to investigate the use of a building digital twin 
to overcome these issues. 

6. Conclusion 

6.1. Areas expected to receive significant research in the future 

The focus of the reviewed research according to the six types of VPP 
in Fig. 1 is as follows. A significant body of research exists for HEMS and 
BEMS. The boundary of single-site and multi-site VPPs is not clear cut, as 
many articles are not explicit about whether all the DERs are in the scope 
of a microgrid or utility grid. A small body of research is emerging for 
multi-energy VPPs with connections to district heating grids or gas grids. 
Only two publications were found for off-grid VPPs [96,18]. 

Forecasting of load, generation and prices has established itself as an 
active area of research. In the absence of benchmarks, it is difficult to 
identify which works are contributing performance improvements to the 
state of the art. An emerging body of research is combining such fore
casts with optimizations using reinforcement learning. Reinforcement 
learning is emerging as a potentially disruptive technology for opti
mizing HEMS, BEMS and VPP systems. Its strength is in obtaining heu
ristic solutions to complex optimization problems under uncertainty. 
The further development and increased penetration of renewable energy 
and intelligent loads and storages is likely to generate a greater need for 
such solutions, so both the forecasting and optimization trends identi
fied in this taxonomy are expected to attract a large amount of publi
cations in the future. 

6.2. Key unresolved challenges 

Significant unaddressed potential issues have been identified, should 
the approaches reviewed in this paper eventually be deployed to real 
buildings:  

1. Simplifications are commonly made in the environments and state 
and action spaces of reinforcement learning agents. It is unclear if the 
agents that have been trained in these environments could generalize 

to the operating environment in a real building, which many sensors 
and actuators.  

2. Forecasting solutions generally are customized for a single building 
or load, and require significant labelled training data for supervised 
learning. A few authors note that this approach is not scalable, due to 
lack of data and the high level of manual work. To overcome these 
problems, they propose transfer learning or grouping buildings to 
clusters that can be serviced with a single ML model.  

3. Forecasting and optimization solutions tacitly make the unpractical 
assumption that DERs are always in full health. Although the 
research in the classification branch of the taxonomy provides so
lutions to detect and diagnose DERs that perform sub-optimally, 
these are not exploited in the optimization and forecasting branches.  

4. The majority of the optimization research is under the tier 2 category 
‘Cost’, which fits well with the purpose of a VPP to monetize DERs. 
The works under the tier 2 category ‘Other’ are vague about who 
would invest in the solutions and who would get the financial ben
efits. These are areas in need of further research, before the solutions 
are ready for deployment. 
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