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ABSTRACT This paper introduces a new intelligent integration between an IoT platform and deep learning
neural network (DNN) algorithm for the online monitoring of computer numerical control (CNC) machines.
The proposed infrastructure is utilized for monitoring the cutting process while maintaining the cutting
stability of CNC machines in order to ensure effective cutting processes that can help to increase the quality
of products. For this purpose, a force sensor is installed in the milling CNC machine center to measure the
vibration conditions. Accordingly, an IoT architecture is designed to connect the sensor node and the cloud
server to capture the real-time machine’s status via message queue telemetry transport (MQTT) protocol.
To classify the different cutting conditions (i.e., stable cutting and unstable cuttings), an improved model of
DNN is designed in order to maintain the healthy state of the CNC machine. As a result, the developed deep
learning can accurately investigate if the transmitted data of the smart sensor via the internet is real cutting
data or fake data caused by cyber-attacks or the inefficient reading of the sensor due to the environment
temperature, humidity, and noise signals. The outstanding results are obtained from the proposed approach
indicating that deep learning can outperform other traditionalmachine learningmethods for vibration control.
The Contact elements for IoT are utilized to display the cutting information on a graphical dashboard and
monitor the cutting process in real-time. Experimental verifications are performed to conduct different
cutting conditions of slot milling while implementing the proposed deep machine learning and IoT-based
monitoring system. Diverse scenarios are presented to verify the effectiveness of the developed system,
where it can disconnect immediately to secure the system automatically when detecting the cyber-attack and
switch to the backup broker to continue the runtime operation.

INDEX TERMS Deep learning, industry 4.0, Internet of Things, smart machines, milling process.

I. INTRODUCTION
Nowadays, the internet of things (IoT), artificial intelligence
(AI), and big data analysis are three exciting technology

The associate editor coordinating the review of this manuscript and

approving it for publication was Kan Liu .

innovations that play a core role and drive the industry
4.0 implementation. Typically, those technologies accelerate
the global manufacturing industry to transform it into
intelligence factories by integrating smart sensors, data
analysis, and information security [1]. Manufacturers can
implement the industrial IoT topology using smart automated
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equipment, cloud techniques, data analytics, and manage-
ment to make promptly respond to market demands [2]–[4].
Meanwhile, obtaining precision parts using metal cutting
processes as well as raising awareness about cyber-attack are
the motivations of decision-makers andmanufacture planners
to develop new efficient strategies to ensure stable and secure
computer numerical control (CNC) operation in almost all
industries. Improving the productivity of CNC machine tools
with high precision and good surface quality takes great
attention from many manufacturers and it is the current trend
in the modern cutting industry. Interestingly, a promising
IoT technology could play a key role to monitor and control
CNC status [5]. The development of cutting productivity
is considered the most important issue of manufacturing
technology, where the usage of traditional and manual cutting
is unlikely [6]. The improvement of cutting productivity is
important to increase the material depth of cutting, feed, and
spindle speed. However, undesired cutting vibrations may be
caused at highmetal cutting speeds and high cutting depth [7].
The tool will be excited by itself and vibrate at a certain
frequency called chatter frequency. This phenomenon was
introduced by Budak, and Altintas [8]. When the chatter
vibration appears during the cutting, it will destroy the
finished surface of the part, affect dimensional accuracy,
and reduce the tool life, particularly with the small tool [9].
Therefore, detection of chatter vibration and control is very
important to maintain stable cutting and improve productivity
and product quality.

Many monitoring and diagnostic systems for the cutting
process have been developed to deal with this problem,
in which the cutting signals have been used for chatter
identification, but most of them are offline systems [10]–[12].
Traditionally, the chatter monitoring process consists of
data collection, processing of cutting signals, and applying
statistical methods and model training for chatter detec-
tion [13], [14]. Recently, machine learning approaches have
been recognized to be an effective method for classification
and recognition problems [15]–[17]. Many studies also
applied these techniques for monitoring machining stability
successfully. Traditionally, machine learning-based chatter
detection consists of signal collection, data acquisition,
feature extraction, feature selection, and classification [18].
This approach usually relies on how to determine the set
of features that are relevant to cutting stability. Feature
extraction and feature selection are therefore required to
find out the most important features within the dataset. The
irrelevant and redundant features will reduce classification
accuracy and increase the computation time, it is expected
to remove those features from the data set. Besides that,
traditional feature learning required deep expertise and
knowledge for signal processing to design and select the
best features within the dataset. Those drawbacks can be
overcome by applying the deep learning method because
it can learn the pattern and extract representative features
automatically within the dataset without defining the feature
extraction and selection [19]. Deep learning is a special

type of machine learning; it is able to discover features
from a large volume of data using a neural network
with multiple layers. Artificial intelligence approaches were
shown promising results to automate optimization, detec-
tion, and classification [20]–[25]. However, those methods
usually involve signal processing that may require a deep
understanding and knowledge of signal processing. Important
chatter indicators need to be defined to build an accurate
chatter detection model [26], [27]. With the development of
technology innovation, recently, deep learning is considered
to be a powerful approach for classification problems.
The deep learning approach can learn the representative
features automatically within the input signals instead of
manually extracting and selecting the significant features as
the limitations of the conventional machine learning methods
previously [28]. The approach shows a promising tool for
chatter detection with high accuracy of classification [18].
An architecture of a deep learning-based chatter detection
approach has been developed based on a convolutional
neural network (CNN) and time-frequency images [14]. The
long short-term memory (LSTM) method has been applied
for online chatter detection based on the current signal
without additional sensors [29]. This can well distinguish
the unstable state from stable cutting conditions and deep
learning outperformed other traditional approaches.

The development of Industry 4.0 leads to automation in
cutting processes that are required with online condition
monitoring systems for improving the quality of products.
The industrial IoT architecture consists of smart machine tool
attached sensors, connectivity system, cloud management,
and application layer [30]. In which, sensor data management
and big data analytics are the main issues, especially for
real-time monitoring of the IoT system [31], [32]. The IoT
systems can help to accelerate manufacturing efficiency.
It enables the manufacturers to see the cutting condition
in real-time and give a quick response to the machine
tool with proper adjustments [33]. An IoT platform for
intelligent chatter suppression was conducted by Chang
et. al. [34]. The system could collect the cutting data,
analyze the vibration, and upload it to the cloud for remote
monitoring with reference to the stability lobe diagram.
However, Impact testing always takes a lot of time to measure
frequency response function because it has to be conducted
for each tool-holder-spindle combination [35], [36]. A real-
time chatter monitoring was successfully conducted by the
cloud-based monitoring system and an intelligent algorithm
for selecting the proper action according to the collected
signal [37]. However, the proposed system was developed to
deal with a specific industrial problem of chatter suppression
in train wheel repair.

As clear aforementioned, the effective monitoring and con-
trolling of the vibration issues are recognized as the key chal-
lenges of the modern intelligence infrastructures to increase
the operational efficiency of the smart machines. Regarding
the development of IoT and deep learning techniques that
drive the smart machine tool in manufacturing, this research
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aims to propose an IoT platform integrating a developed deep
learning method to monitor the cutting process to maintain
cutting stability. Besides, the powerful learning ability of
deep learning allows the suggested system to identify
malicious attacks with fake data accurately. Accordingly, the
proposed IoT topology with deep learning can provide a
reliable and effective infrastructure that enhances industrial
decision-making and improves investments in industry 4.0.
The main contributions of this study are listed as follows:
• A new intelligent integration is performed between
the IoT platform and the DNN algorithm for online
monitoring of the CNC machines in order to detect the
status of the vibrations due to the cutting process.

• The developed system can identify the stable and
unstable cutting status in order to ensure effective cutting
processes, keep the cutting process in stable cutting that
can help to increase the quality of products.

• The introduced deep learning method is able to recog-
nize the cyber-attack and the IoT platform can show
it in the main dashboard. Moreover, the suggested
infrastructure can switch the IoT system to the backup
broker in case of a cyber-attack to keep reliable and
secure cutting processes.

• The major contribution of this research from an
industry 4.0 perspective is that the applying of deep
learning algorithms to replace the feature-generation and
feature-selection procedures, which are usually done
by experienced engineers using trial-and-error. The fact
that the proposed system has higher accuracy than the
conventional machine-learning techniques indicates it
could make an objective judgment of machining status.

II. INDUSTRIAL IOT ARCHITECTURE AND METHODOLOGY
A. INDUSTRIAL IOT OVERVIEW
The industrial internet of things (IIoT) is an extension
of the IoT in industrial areas. The IIoT relates to the
machine-to-machine (M2M) concept, signal processing, and
artificial intelligence towards smart machine tools and smart
factories to have better reliability and efficiency of their
applications [38]. Because the data and status of each
manufacturing device can be collected and then managed
by software processes, the manufacturing processes will be
able to move faster, be more flexible, meet higher work
safety standards, and fulfill higher quality standards [39].
Figure 1 illustrates a complete architecture of Industrial IoT,
in which the hardware part is the machine tool equipped with
sensors to sense the machining process and perform actions
in real-time. Then the connectivity layer allows the hardware
to pass the sensor data on the cloud layer. An IoT gateway is
usually used as a step in the middle of the hardware and the
connection to the cloud layer. The IIoT software part is also
needed for data management that has functions for storing
and processing large volumes of sensor data, and for making
decisions. Artificial Intelligence capabilities in cloud and
machine learning thrive on large volumes of data and become
a powerful tool of new cloud computing generation [40].

A user interface allows users to communicate with the IIoT
system, dashboards are designed for visualizing data and
monitoring the data in real-time. However, the cyber-attack
represents a critical issue against the collection of real data for
the right decision-making. In this paper, the developed IIoT is
integrated with a deep learning technique in order to classify
the fake data. Furthermore, the new infrastructure can switch
to the backup broker in case of cyber-attack enabling the user
to work with real data that provide reliable decision-making
and keep the cutting process of the smart machine in normal
condition with stable cutting.

B. PROPOSED METHODOLOGY
The purpose of this work is to introduce an intelligence IoT
infrastructure integrating a deep neural network algorithm to
monitor the cutting process regarding maintaining the cutting
stability. Besides that, the powerful learning ability of deep
learning allows the developed system to identify malicious
attacks with fake data accurately. An IoT architecture for
smart CNC machines on the shop floor is proposed in
Fig. 2. A high accuracy 5-Axis trunnion table machining
center has equipped a dynamometer between the workpiece
and the workbench to measure cutting forces under various
cutting conditions. Then, the chatter in the cutting process
can be detected using the measurement of the cutting
force as a popular way for chatter recognition. Typically,
it characterizes the cutting dynamic behavior and provides
the cutting conditions including the tooth passing frequency
and harmonics. Moreover, the measuring of the cutting
force can detect the chatter frequency of the unstable
cutting process [35], [36]. The cutting force is responding
quickly to the variations of cutting processes. Therefore, it is
suitable for early chatter detection in real-time behavior. The
dynamometer captures the force signal in three directions.
Then, the collected signal is transmitted through a charge
amplifier and module type 5167 × 1 for data acquisition
with 2.5 mN accuracy. The data is sampled with a sampling
rate of 70 kHz. The collected raw signals are processed by
a LabVIEW program and transmitted to the cloud server
of Microsoft SQL (Ms SQL). The sensor data stored in the
cloud will act as input for a deep learning algorithm which is
developed formonitoring the status of the cutting in real-time.
In this scheme, a complete platform from edge connectivity
to business applications via the web using a Digital Twin
named CONTACT Elements for IoT @ [41] is deployed to
quickly evaluate the collected data and monitor the machine
tool intelligently. The CONTACTElements for IoT is utilized
with the standardMQTT protocol to display such information
on the main dashboard after further operation of signal
processing and deep learning technique.

III. EXPERIMENTAL DESIGN
In this section, experiments are designed to conduct different
cutting conditions of slot milling. The details of the
experimental design are shown in Fig. 2. The workpiece of
Al6061-T6 with a size of 30 × 30 × 40 mm was used in
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FIGURE 1. Industrial IoT architecture on the shop floor.

FIGURE 2. Intelligence industrial IoT architecture for smart CNC machines on the shop floor.

TABLE 1. Composition of aluminum alloy type of 6061 by weight %.

all cutting experiments. The chemical composition of the
workpiece is recorded in Table 1. The mill cutter is an
uncoated carbide that has two flutes with a 12 mm diameter.
The tool geometry has a helix angle of 26◦ and a relief
angle of 6◦. The geometrical properties and the chemical
composition of the cutting tool are shown in Table 2 [42].
The cutting force signals were collected from various cutting
conditions with the cutting parameters described in Table 3.
In this study, three groups of experiments were conducted to
collect the cutting force signals under different machining
states, including stable cutting, unstable cutting, and fake
data. The dynamometer was used to capture the cutting
force signals. The collected signal is then transmitted through
a charge amplifier and module type 5167 × 1 for data
acquisition with 2.5 mN accuracy. The data is sampled with
a sampling rate of 70 kHz. The collected raw signals are

TABLE 2. Chemical composition by weight % of uncoated carbide cutting
tool.

TABLE 3. Cutting parameters.

processed by a LabVIEW program and transmitted to the
cloud server of Microsoft SQL (Ms SQL). We collected the
cutting data from 36 cutting conditions, in which 24 cutting
conditions are stable cuttings and 12 cutting conditions are
unstable cuttings. While the fake data which stands for
the cyber-attack is generated using randomly distributed
function within the range of the cutting force signals. All the
experiments were performed with dry cutting conditions.

VOLUME 10, 2022 23189



M.-Q. Tran et al.: Reliable Deep Learning and IoT-Based Monitoring System

FIGURE 3. Milling regenerative chatter.

In order to detect chatter using in-process techniques with
the cutting signal, an understanding of the dynamics of the
regenerative chatter is very important. Figure 3 shows the
milling regenerative chatter, in which the current tooth will
remove the previous wavy surface left by tooth 1 and so
on. It shows that the instantaneous chip thickness h(t) relies
on the previous and current wavy surface n(t) and it will
make the tool gain a response. If the vibration from the
current cutting edge to the next wavy is out of phase that
causes the chip thickness variation to be more significant,
then the tool vibrates and imprints on the work surface that
is the signature of chatter vibration [43]. The cutting force
characterizes the cutting dynamics and swiftly reflects the
tooth passing frequency and especially chatter frequency.
Therefore, cutting force is commonly used to identify the
cutting behavior, especially in the laboratory. In this research,
we used the tabletop dynamometer with a sampling rate
of 70 kHz in order to measure the chatter frequency.
Although both tabletop and spindle-based dynamometers
have difficulties to be applied to the shop floor due to their
high cost, the chatter detection method proposed in this
study could still be applied to the signals measured from
other sensors such as accelerometers andmicrophones. Those
sensors are more affordable and suitable for the shop floor
compared to the dynamometer.

An analysis for the measurement of force signals is
described in Fig. 4, indicating vibrations of the tool under
different cutting conditions in the time domain (see Fig. 4.a)
and in the frequency domain (see Figs. 4.b and 4.c). During
stable cutting, the Fourier spectrum presents the tooth passing
frequency of 150 Hz and its harmonics (cutting at the spindle
speed of 4500 rpm) as shown in Fig. 4.b. Whereas high
peaks of frequency around 4000 Hz beyond the tooth passing
frequencies and their harmonics can be seen in Fig. 4.c, which
signifies unstable cutting conditions thereby indicating the
presence of chatter.

IV. DEEP LEARNING FOR MONITORING MACHINING
STABILITY
The deep learning architecture for monitoring cutting stabil-
ity includes an input layer, multiple hidden layers, and an
output layer as shown in Figure 5. Deep learning processes
the input data of the force signal through multiple hidden
layers to recognize the status of machining. Each layer in the
network is made of artificial neurons that are interconnected.

Artificial neuron in layer li takes the input from the previous
output of layer li−1 with the weight and runs it through a
non-linear activation function to compute its output. Then this
result will be passed to the next layer li+1, and finally, the
nodes of the last layer represent the targets of the model. The
network is, therefore, able to learn very complex functions if
it is provided enough computational power.

The nonlinear relationship between two adjacent layers in
the deep neural network is described in Eq. (1). It shows the
transformation of the (l − 1)th layer into the neuron j in l th

layer, in which al and al−1 are the hidden representations of
the (l − 1)th layer and the l th layer, respectively.

alj = σ
(∑

k
wljka

l−1
k + blj

)
, (1)

where wl
jk is the weight matrix that connects to the l th layer

of neurons from node k in layer (l-1) to node j in layer
l Also, blj is the bias vector for each layer l. Further, σ
represents the activation function, in this work the rectified
linear unit (ReLU) is used as the activation function which is
defined in Eq. (2).

σ (x) = max(0, x), (2)

In the output layer, we used the softmax function as an
activation function to calculate a probability for each possible
class. The softmax function is formulated as in Eq. (3),

yc =
exp (ac)
K∑
i=1

exp (ai)

(3)

where ac is the values of the input vector to the softmax

function, the term of
K∑
i=1

exp (ai) is the normalization term

which makes the summation of all the output values of the
function equal to 1. K = 3 presents the number of classes.
Therefore, a predicted label is determined with the largest
value of the output.

In order to build the neural network architecture properly,
the determination of hidden layers’ numbers and the choosing
of suitable neurons number in each layer represent the most
important issues. Generally, more hidden layers will cause an
increase in computation time andmay result in overfitting that
leads to reducing prediction performance of the model. In this
work, the deep neural network architecture is structured
using a network with one input layer, four hidden layers,
and one output layer. In which, the first hidden layer has
128 nodes, the second hidden layer has 512 nodes, the third
layer has hidden 256 nodes, and the fourth hidden layer has
128 nodes. The details of the proposed network architecture
are described in Table 4. The proposed deep neural network
model is trained using a back-propagation strategy to update
all the weights of the network. The gradient of the error
function is calculated and proceeded backward through the
network with reference to the weights of the network. In the
training model, an efficient Adam optimization algorithm is
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FIGURE 4. Force signals under different cutting conditions in the following cases: (a) time domain, (b) Frequency spectrum of stable
cutting, and (c) Frequency spectrum of unstable cutting.

FIGURE 5. Traditional feature learning and deep learning architecture for cutting stability monitoring.

used for stochastic gradient descent, and the category cross-
entropy is utilized as the loss function. The number of epochs
for training is set to 100 epochs, and the best parameters of
training are saved to evaluate the test data.

V. RESULTS AND DISCUSSIONS
The developed deep learning algorithm is devoted to classi-
fying different statues of machining including stable cutting,
unstable cutting, and attacked signal. Then, the developed
model by deep learning is combined with an IoT system to
support the online validation of cutting processes of the smart

CNC machine in order to overcome the vibration problem of
the unstable cutting. Furthermore, it can detect cyber-attack,
provide a reliable and effective cutting process, keep the smart
machine in a healthy state. In order to create an effective
deep learning model, a real-time dataset is selected from the
smart CNC machine at different cases of cutting processes in
order to train and test the proposed deep learning technique.
A fake dataset is created randomly to represent the
cyber-attack and it is added to the real-time dataset of the
smart CNC machine. Figs. 6a, 6b, and 6c show different
real-time states of stable, unstable, and fake signals that it
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FIGURE 6. (a) Stable cutting at the cutting speed of 5250 rpm and 0.6 mm
and (b) Unstable cutting at the cutting speed of 5250 rpm and 1.2 mm
(c) Cutting signal under different states.

is utilized for the training and testing of the proposed deep
learning algorithm. In this case, the stable cutting is very
obvious at a low cutting speed of 3000 rpm and a small cutting
depth of 0.6 mm, and the unstable cutting form is also clear
at a high cutting speed of 5250 rpm and the cutting depth of
1.4 mm. Though, the difference between stable and unstable
cuttings cannot be easy to be known in the time domain for
other cases. For example, when considering the same cutting
speed of 5250 rpm, the chatter occurs at a cutting depth of
1.2 mm while remaining stable cutting at 0.6 mm cutting
depth.

Various cutting signals under various cutting conditions are
labeled into three classes. Totally, 840 samples were split for
the training and testing process. Of which 80% is used for the
training dataset and the rest of it is used for testing dataset.
Figure 7 describes the classification results of the improved
model of the deep learning approach. The classification rate
improves when increasing the number of training epochs.
It shows that both training and validation progress can reach
the accuracy of 90% after 5 epochs and the highest accuracy
is up to 99.47% after 17 training epochs. Moreover, the
performance of the proposed model on the testing dataset is
also evaluated via precision, recall, and f1-score, which are
detailed in Table 5. It shows that both precision and recall
values for each cutting class are quite close to one. As a result,

TABLE 4. Network architecture.

FIGURE 7. Classification accuracy of the training dataset.

TABLE 5. Classification report by the deep learning model.

the f1-score, which measures the average of the precision and
recall, is also close to 1 for every class, as shown in Table 5.

Figure 8 shows the receiver operating characteristic (ROC)
curves of three classes from the deep learning model. Overall,
the performance is around 0.99 for all cases that indicating
the balanced distribution between the performances of three
different classes within the dataset. It shows that the model
can detect the fake signals well when the system is attacked
with the highest performance at 1.0, followed by the stable
case at 0.99. The unstable cutting has the lowest performance
at 0.98.

Traditional feature learning techniques are conducted
to compare with the proposed model. Initially, several
conventional chatter indicators have been applied to identify
cutting chatter vibration [44], [45]. In this work, eight
statistical indexes are adopted to generate cutting features
from the measured force signal in real-time. The determi-
nations of these indicators are formulated in the following

23192 VOLUME 10, 2022
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FIGURE 8. ROC of three different classes, means (0: stable cutting, 1:
unstable cutting, and 2: attacked signal).

equations (4)-(11):

Average (AVG)x̄ =
1
n

∑n

i=1
xi (4)

Standard Deviation (STD)s =

√
1

n− 1

∑n

i=1
(xi − x̄)2 (5)

Root Mean Square (RMS) =

√
1
n

∑n

i=1
x2i (6)

Variance (VAR) =
1
n

∑n

i=1
(xi − x̄)2 (7)

Max Value (MAX) = (xmax) (8)

Kurtosis (KUR) =
1
n

∑n

i=1

(
xi − x̄
s

)4

(9)

Skewness (SKE) =
1
n

∑n

i=1

(
xi − x̄
S

)3

(10)

Crest Value (CRE) =
xmax√

1
n

∑n
i=1 x

2
i

(11)

in which n represents sample numbers and xi represents the
magnitude of the ith cutting force signal value.
Once all the features were extracted, different traditional

machine learning classifiers such as k-nearest neighbours
(KNN), artificial neural network (ANN) [46]–[49], and
supported vector machine (SVM) were implemented for the
classification. The details of those classifiers were introduced
in [50], [51]. In addition, the effectiveness of the proposed
DNN model is also evaluated by comparing to ensemble
learning approaches such as random forest (RF) and eXtreme
Gradient Boosting (XGBoost) [52], [53]. The classification
accuracy of different approaches is listed in Fig. 9, in which
the classification accuracies of different approaches are
shown in a vertical bar plot as an effective clarified way for
comparison. The results demonstrate that the lowest accuracy
comes from the linear SVM classifier with a classification
accuracy of 93.33%. The KNN structure uses the nearest
neighbours’ number equal to 3 that improving the classi-
fication with 98.3% accuracy. While, by applying a signal

FIGURE 9. Classification accuracy of different methods.

Algorithm 1 The Pseudo-Code of Data Acquisition, Valida-
tion, and Visualization for Smart Machine

1: Read data from the dynamometer
2: Input the data to the deep learning model
3: Classify the machining status by the deep learning model
4: if the output of the deep learning model == 0
5: Publish that the data is ‘Stable cutting’ and ‘Real data’
6: elseif the output of the deep learning model == 1
7: Publish that the data is ‘Unstable cutting’ and ‘Real data’
8: Adjust the cutting parameter to reach a stable condition
9: else the output of the deep learning model == 2
10: Publish that the data is ‘Fake cutting’ and ‘Attacked data’
11: Switch the broker to the backup IoT broker
12: end if

hidden layer of 10 neurons for the ANN model heuristically,
the classification accuracy can reach 98.6%. The ensemble
learning approaches have lower classification accuracies,
in which the accuracy of the RFmodel is 94.05%, and 92.26%
accuracy is obtained by the XGBoost model. The improved
proposed deep neural network (DNN) provides classification
with 99.47% accuracy that outperforms the other traditional
machine learning methods to recognize different statuses
of the milling process successfully as clear in Fig. 9. This
demonstrates that the deep learning network is able to learn
the pattern and extract representative features automatically
within the dataset. Moreover, traditional feature learning
required deep expertise and knowledge for signal processing
to design and select the best features within the dataset.

Once the status of the machine was captured by the
proposed deep learning approach, the result is sent to the
IoT platform through the MQTT protocol. The IoT system
will read the cutting conditions online and publish them
on the dashboard. An IoT dashboard was designed on the
Contact element for IoT. Thus, the current cutting status
including stable cutting, cutting chatter, and fake cutting
can be visualized, then the cutting process is monitored in
real-time. The operations of the data acquisition, validation,
and visualization are illustrated by following pseudo-code in
Algorithm 1. Besides, Figure 10 shows the flowchart of the
proposed IoT architecture based on DNN for CNCmachines.
As shown, the main goal of this experiment is to introduce a
new intelligent integration between an IoT platform and the
DNN algorithm for the online monitoring of CNC machines.
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FIGURE 10. Flowchart of the proposed IoT architecture based on DNN for
CNC machine.

FIGURE 11. IoT dashboard in case of stable cutting.

A. SCENARIO 1: STABLE CUTTING
In this scenario, the proposed IoT system is examined when
the data of the cutting force is real and the cutting under stable
conditions. Figure 11 represents the output of the proposed
system for this test that is shown in the dashboard of the
IoT platform. The status now is showing the real data with
stable cutting which means the cutting process and the data
measurement are working properly. Therefore, the green in
the traffic light is assigned to describe the operation without

FIGURE 12. IoT dashboard in case of unstable cutting chatter.

any notice of the event and/or alarms. This demonstrates that
the proposed system works well without any errors.

B. SCENARIO 2: CUTTING CHATTER
In this case, the proposed system is examined when the
data of the cutting force is real and the cutting under
unstable conditions. Figure 12 illustrates the output of the
test on the dashboard of the IoT platform, in which the
real data of cutting is displayed but the cutting condition
is now changed to the unstable cutting. This indicates
that the tool is vibrating with the chatter frequency. Thus,
the red in the traffic light is assigned to make the alarm
warnings to the manufacturers. Then they need to take further
actions to modify the cutting parameter, in which they can
play first with the spindle speed, increase it and reduce it
gradually to disturb the wave regeneration mechanism in
dynamic milling in order to seek stable machining [54].
If it does not work, then they can reduce the depth of the
cut. Furthermore, a chatter suppression strategy based on
the stability lobe diagram introduced in [55], [56] can be
used to find the best cutting conditions to obtain stable
cutting butmaintain themachining efficiency simultaneously.
Additionally, increasing the stiffness and damping of the
machine tool system and choosing the optimal tool geometry
are the other strategies to suppress chatter vibration.

C. SCENARIO 3: TESTING FAKE CUTTING DUE TO
CYBER-ATTACKS
In this scenario, the proposed IoT system is examined when
the force signal is fake due to the cyber-attack. The output
of this test on the IoT dashboard is shown in Fig. 13. The
proposed deep learning technique can successfully detect the
fake cutting condition. The traffic light is changed to red color
to make an alarm to the user about the abnormal case of fake
data. This scenario is a serious case, and the system has to
automatically disconnect immediately to secure the system
from the cyber-attack [57].
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FIGURE 13. IoT dashboard in case of fake cutting.

FIGURE 14. Switching the broker to the backup IoT broker; (a) the case of
stable cutting, and (b) the case of unstable cutting.

D. SCENARIO 4: SWITCHING TO THE BACKUP IoT
BROKER
From scenario 3, the proposed system may be damaged by
the cyber-attack or the inefficient reading of the sensor due
to the environment temperature, humidity, and noise signals.
This makes the system get a fake signal. A solution has been
developed to deal with the attack case to secure the system,
in which the broker is switched to the backup IoT broker to
stop the attack. Figure 14 describes the results after switching
the broker to the backup IoT broker. This demonstrates that
the proposed IoT system can automatically hook up with the
real cutting and continue to monitor the cutting operation in
real-time.

VI. CONCLUSION
This research was inspired by the concept of the cyber-physic
system in the Industry 4.0 era where deep learning and the
IoT play a core role. A newly developed intelligent IoT
architecture for vibrations control and monitoring of smart
machines, in which an improved deep learning algorithm
has been applied to monitor the cutting process regarding
maintaining the cutting stability of CNC machines. In the
IoT platform, the milling CNC machine center was equipped
with a force sensor to capture the cutting vibrations. The

IoT architecture using the MQTT protocol was designed to
connect the sensor node and the cloud server to capture the
cutting conditions. Different cutting statuses including stable
cutting, unstable cutting, and fake cutting were successfully
classified by the improved model of deep learning neural
network. An IoT dashboard was designed on the Contact
element for IoT to online visualize the cutting condition
in order to ensure that the CNC machine works efficiently
in a healthy state. Furthermore, the proposed system can
automatically switch the IoT system to the backup broker
in case of a cyber-attack to keep reliable and secure cutting
processes. The excellent performance was achieved from
the proposed approach indicating that deep learning can
outperform other traditional machine learning methods for
vibration control. Furthermore, the proposed IoT structure
with deep learning can be applied to other smart systems in
future work.
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