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______________________________________________________________________ 

Abstract 

This work proposes an approach combining artificial neural networks (ANN) with 

statistical models to predict injection processing conditions for four reinforcement 

architectures: plain weave (PW), bidirectional non-crimp fabrics (NCF), unidirectional 

fabrics (Uni) and random fiber mats (Random). Key results allow evaluating the velocity 

of the flow front by combining processing parameters and creating a three-dimensional 

response surface based on a properly trained ANN. This investigation is based on a large 

number of experimental results. The key role played by some physical parameters was 

associated with predicting the impregnation behavior (velocity of the flow front) during 

resin injection. The main outcome aims to provide a better control of void content in terms 

of size and position to the four fibrous reinforcements considered. 

 

Keywords: Permeability; RTM process; artificial neural network; void formation. 

_____________________________________________________________________ 

  

mailto:f.monticeli@unesp.com
mailto:humberto.almeida@aalto.fi
mailto:robertamneves@gmail.com
mailto:ornaghijr.heitor@gmail.com
mailto:humberto.almeida@aalto.fi


2 

1. Introduction 

Liquid composite molding (LCM) is a manufacturing technology with excellent cost 

benefits used to produce large and complex-shaped composite structures by resin 

injection or infusion.1–4 Considering the continuous increase of polymer composite 

structural applications over the last decades,5 understanding the physics of injection 

processing parameters and their complex relationships is essential to prevent the 

formation of defects such as porosity, warping, waviness, among others.6–8 Indeed, 

controlling processing parameters is critical in manufacturing final parts of quality for 

structural applications with appropriate mechanical properties.9–11 The resin transfer 

molding (RTM) process, for instance, depends on the fluid ability to percolate the 

reinforcement with appropriate viscosity. The reinforcement determines the resistance to 

the resin flow, which defines permeability12–14 based on Darcy’s law.15–17 

The flow behavior can be used to control the formation and location of defects.18,19 

According to Patel et al.,20 viscous drag forces among tows act at high flow front velocity, 

impregnating the inter-tows regions firstly, and hence increasing the creation of 

microscopic porosity inside tows. The opposite occurs at low flow velocity: capillary 

forces create a preferred impregnation inside tows, thus increasing the void content in the 

mesoporous network between fiber tows.21 This phenomenon of void formation is caused 

by the physical interaction of the dual-scale fibrous reinforcement with the liquid 

resin.20,21 Depending on the local velocity of the flow front, mesoscopic voids are usually 

found between fiber tows, while microscopic voids may appear inside tows.9,19,21 

Two other factors that play a critical role in the impregnation behavior are the 

architecture of the fibrous material and the fiber volume fraction.22–24 In addition, the 

various reinforcement architectures and different fiber volume fractions available for 

applications in structural composites can be processed with a wide range of injection 

parameters. This creates effective combinations of impregnation behaviors.25–28 All these 

factors influence the impregnation flow and consequently the formation, morphology, 

and location of voids.25,27,29 A complete analysis and classification are critical tasks to 

ensure high mechanical behavior since voids are connected to poor mechanical 

performance and the initiation of fracture mechanisms (crack initiation and propagation, 

delamination, tensile and shear strength, among others).30–32 For instance, Hamidi et al. 

18 emphasize the importance of characterizing void morphology, which can be even more 

detrimental to mechanical performance than void content. 
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Reports dealing with a reliability analysis33 based on experiments aiming to enhance 

the impregnation behavior and quantify the contribution of each parameter to the flow 

front velocity and void formation presents a crucial subject to the scientific literature, 

mainly using mathematical approaches. Besides, this kind of experimental analysis can 

be time-consuming. Alternatively, an ANN could prove to be a more effective tool after 

training to analyze the impregnation of laminates compared to other statistical models. 

This work proposes a methodology based on ANN and statistical analysis to 

investigate the role of injection parameters and material properties in impregnation 

behavior. In fact, as expected from experimental observations, the velocity of the flow 

front and the permeability of the fibrous reinforcement turn out to play key roles in that 

respect. For that purpose, the analysis of variance (ANOVA) and an analytical approach 

based on normal probability distributions will be applied here to evaluate the 

contributions of each processing parameter. An ANN is built and trained to predict the 

impregnation behavior and void formation (void content, morphology, and location) for 

each processing parameter (fiber volume fraction, architecture of the fibrous 

reinforcement, pressure, viscosity, and permeability). The ANN prediction data is then 

associated with the response surface methodology (RSM) to evaluate the permeability 

and the front flow velocity as a function of injection parameters. This statistical analysis 

confirms the key roles played by these physical parameters on the impregnation behavior 

and quality of high-performance composites fabricated by LCM. 

 

2. Experimental investigations 

2.1. Materials and processing parameters 

Aiming to provide a wide spectrum of data for the statistical models, data from a 

large number of published references on RTM and liquid resin infusion (LRI) 12, 16, 17, 23, 

26, 35–41, 43, 45–48, 50, 53, 54 are aggregated for the statistical analysis as documented in the 

supplementary material. The kinds of reinforcements investigated are plain weave (PW) 

1×1, a biaxial (0/90) non-crimp fabric (NCF), a unidirectional reinforcement (Uni), and 

a random fiber mat (Random). All the reinforcing materials considered contain only glass 

fibers. The injection pressure lies in the range of 0.01 to 0.70 MPa. The viscosity varies 

between 50 and 520 mPa⸱s. The fiber volume fraction (Vf) goes from 18 to 65%. To 

reduce calculations and simplify the prediction models, the linear flow front velocity is 

considered as a response in the ANN approach.  
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2.2. Artificial neural network 

Figure 1 shows the ANN consisting of input, output, and hidden layers. ANN is 

inspired by the central nervous system, in which each neuron represents processing 

elements that can perform operations such as calculations in parallel for data processing.55 

Permeability is directly dependent of fiber volume fraction, and the other input parameters 

are independent parameters. However, the combination presents a correlation in the 

quality of the final composite, e.g., a high level of fiber volume fraction could require 

high pressure and low viscosity to ensure complete impregnation.  

 

Figure 1. Schematic construction of an artificial neural network to correlate the two responses 

with the injection and material parameters on flow front velocity. 

 

Figure 1 refers to the fiber volume fraction, pressure, viscosity, and permeability as 

input parameters and the front flow velocity as output. In fact, an activation function could 

describe a complex curve providing a more reliable data prediction. To calculate each 

prediction curve, an activation function needs to be applied to the input data to model the 

complex relationship between input variables and output terms. Appropriate activation 

functions allow fitting non-linear relationships between experimental data. The 

hyperbolic tangent is commonly used in multi-layer neural networks as a transfer function 

for complex experimental data distributions.56  

𝑓(𝑥) =
𝑒𝑥 − 𝑒−𝑥

𝑒𝑥 + 𝑒−𝑥
 (1) 

The activation function transforms the experimental data into a new dataset. For 

example, in the case of Equation 1, output values lie in the interval [-1,+1]. The goal is to 

reduce errors, aiming for a more precise prediction behavior. It is possible to generate a 
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prediction curve through repetition of calculations, thus finding an appropriate 

relationship between input parameters and output terms. Continuous recalculation of the 

activation function is a key factor here to improve the fitting accuracy. The weight 

algorithm was resilient backpropagation with backtracking, error function was the sum 

of squared errors, threshold of error function was 0.01. More precisions on the ANN 

procedure and definitions are given in the supplementary material, together with an 

example of application. 

The dataset is used to adjust the connected nodes until the lower desired error level 

is reached. The error is characterized by the following B coefficient.57,58  

where 𝑋𝑝(𝑖) represents the predicted characteristic, 𝑋(𝑖) is the experimental value, 𝑋 is 

the mean value of 𝑋(𝑖), and 𝑛 is the number of experimental data. The coefficient 𝐵 

describes how the output variable fits the experimental output data. It measures the fitting 

quality of the ANN output variable with the actual output test data. Higher 𝐵 coefficients 

indicate that the ANN provides an improved approximation of output variables. 

 

2.3. The statistical approach  

The ANOVA methodology is also applied to perform variance analysis of the 

permeability and flow front velocity data to evaluate the contributions of fiber 

architecture, fiber volume fraction, pressure, and viscosity on the impregnation behavior. 

A single factor methodology is carried out to measure each parameter contribution to the 

responses. Parameters Fcritical and p-value are calculated using the software MiniTab18,59 

which are standard from the Tables in Ref. 60 for α = 5%. Table 1 describes how the factor 

F is calculated.  

 

Table 1. The structured form of ANOVA. 

Variation Sum of squares 
Degrees of 

freedom 

Square of 

means 
F factor 

Factor 𝑆𝑎 = ∑ 𝑛(𝑥̅𝑖 − 𝑥̿)2

𝐶

𝑖=1

 𝑉𝑎 = 𝐶 − 1 𝑆𝑀𝑎 =
𝑆𝑎

𝑉𝑎
 𝐹 =

𝑆𝑀𝑎

𝑆𝑀𝑏
 

Global 𝑆𝑏 = ∑ ∑(𝑥𝑗𝑖 − 𝑥̅𝑖)
2

𝑛

𝑗=1

𝐶

𝑖=1

 𝑉𝑏 = 𝑛 − 𝑉𝑏 𝑆𝑀𝑏 =
𝑆𝑏

𝑉𝑏
  

 

𝐵 = 1 −
∑ (𝑋𝑝(𝑖) − 𝑋(𝑖))2𝑛

𝑖=1

∑ (𝑋(𝑖) − 𝑋)2𝑛
𝑖=1

 (2) 
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where n is the number of experimental data, C is the number of groups (number of 

experimental data of each parameter), 𝑥̅𝑖 is the average of each group, 𝑥̿ represents the 

total average, 𝑥𝑗𝑖 is the F parameter representing the analysis factor to determine if the 

global parameter variation is greater than the variability of the observations within the 

analyzed parameter. 

The normal distribution (frequency of data probability distribution) is also evaluated 

to estimate the permeability of each fabric architecture, the statistical distribution of flow 

front velocity, as well as the dispersion of these parameters. 

The Response Surface Methodology (RSM – see Equation 3 below) analyzes the 

response trend using different levels of value for each parameter, which describes the 

interaction between the processing parameters on the permeability and flow front 

velocity. 

𝑌 = 𝛽0 + ∑ 𝛽𝑖

𝑘

𝑖=1

𝑥𝑖 +  ∑ 𝛽𝑖𝑖𝑥𝑖
2

𝑘

𝑖=1

+ ∑ 𝛽𝑗

𝑘

𝑗=1

𝑥𝑗 +  ∑ 𝛽𝑗𝑗𝑥𝑗
2

𝑘

𝑗=1

 +  ∑    

𝑘−1

𝑖=1

 ∑ 𝛽𝑗𝑖𝑥𝑖𝑥𝑗

𝑘

𝑗=𝑖

 (3) 

Where, 𝑌 represents the predicted response, i.e., the flow front velocity FV (m⸱s-1), xi and 

xj are parameter values, where 𝑖 represents the 𝑥 axis (here the fiber volume fraction Vf), 

and 𝑗 the 𝑦 axis (here the injection pressure 𝑃). The parameter 𝛽0 is the constant 

coefficient, 𝛽𝑖 the linear coefficients and 𝛽𝑖𝑗 is the interaction coefficients. This analysis 

is performed for each kind of fabric architecture considered. 

 

3. Results and discussion 

3.1. Statistical analysis 

Figure 2 shows the normal distributions of the linear flow front velocity. It is possible 

to notice a significant variation in both results for all the fibrous architectures explored in 

this investigation. Flow front velocity variations are expected since injection parameters 

such as pressure, viscosity, fiber volume fraction, and fiber architecture possess a large 

variability (see supplementary material for more information). 

The normal distribution was calculated from the frequency of flow front velocity 

results for each kind of reinforcement. The results of Figure 2 indicate that the respective 

values the flow front velocity variation presents a different sequence: Uni > Random > 

PW > NCF, indicating a greater variation in velocity for specific combinations of process 

and material parameters. A similar trend was also reported in the scientific 

literature.12,23,25 
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Figure 2. Histogram of impregnation data frequency for each kind of reinforcement: (a) flow 

front velocity and normal distributions, and (b) probability density vs. flow front velocity 

normalized fit (x-axis) derived from the histogram. 

 

ANOVA was performed with α = 0.05 to provide 95% reliability. The null definition 

states that the population averages are all the same. In other words, the variations of one 

parameter do not affect the permeability and flow front velocity. The Fcritical parameter is 

combined with the p-value in the analysis because a significant result does not mean that 

all variables play a critical role. The Fcritical parameters define regions where test statistics 

are unlikely to lie. The p-values are the probability that test statistics be at least as extreme 

as the one observed, given that the null hypothesis is true or false.61 The ANOVA 

definition is detailed in the supplementary material. The calculations of Fcritical and p-

values are also described in the supplementary material.  

Table 2 lists the results of fiber volume fraction, pressure, and viscosity variance for 

permeability values reported for each fabric architecture to measure the influence of 

parameters on the impregnation behavior. The Fcritical and p-value parameters are 

calculated using the software MiniTab1859 as detailed in the supplementary 

material. Fcritical is measured regarding the degree of freedom for all parameter 

combinations (for each reinforcement family). F values are calculated in Table 1. Fcritical 

represents a limit value for the null hypothesis to hold, which indicates if one parameter 

influences the response. F is the calculated value of each parameter for all families of 

reinforcements studied, which describes each parameter variance compared with global 

variance. Finally, the p-value represents the probability of getting each F value.61 
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Table 2. ANOVA results for permeability 

PW F p-value Fcritical 

Fiber volume fraction 9.22 3 x 10-29 2.72 

Pressure 0.27 5 x 10-6 2.72 

Viscosity 0.45 4 x 10-8 2.72 

NCF F p-value Fcritical 

Fiber volume fraction 4.30 4 x 10-13 2.81 

Pressure 0.43 1 x 10-6 2.81 

Viscosity 0.25 3 x 10-5 2.81 

Uni F p-value Fcritical 

Fiber volume fraction 6.50 3 x 10-11 2.79 

Pressure 0.32 6 x 10-6 2.79 

Viscosity 0.12 5 x 10-11 2.79 

Random F p-value Fcritical 

Fiber volume fraction 8.23 2 x 10-10 2.74 

Pressure 2.67 4 x 10-17 2.74 

Viscosity 0.69 2 x 10-2 2.74 

 

For PW fabric, the fiber volume fraction shows that F > Fcritical with a p-value < 0.05. 

This means that the fiber volume fraction has an influence on the response. For pressure 

and viscosity, F < Fcritical with p-value < 0.05. This indicates that both parameters (i.e., 

pressure and viscosity) are not reliable on a possible dependency of permeability.  

NCF and Uni reinforcements exhibit the same behavior as PW, in which the fiber 

volume fraction is the main (and only) factor governing permeability since F > 

Fcritical and p-value < 0.05. Pressure and viscosity are factors without influence on the 

response for both fiber architectures. In fact, permeability is independent of viscosity and 

pressure (at least in a first approximation based on the application of Darcy’s law). 

Random mat also shows a similar behavior than previous reinforcements, with a higher 

F value for fiber volume fraction. The experimental results confirms that permeability is 

dependent on fiber volume fraction, and standard deviation presents no significative 

influence on response. 

ANOVA demonstrated a low influence of pressure and viscosity on permeability, 

which depends only on the fiber volume fraction. This was expected because permeability 

characterizes the ability of the liquid to flow through the fiber bed. Nevertheless, this low 
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statistically observed contribution of pressure and viscosity may be associated with the 

variability of permeability measures. As a matter of fact, two benchmarks on in-plane 

permeability characterization have shown a significant dispersion in measured 

permeability data for the same procedure conditions.62 This dispersion of experimental 

permeability results for the same fiber volume content induces a bias in the statistical 

response, leading to the values reported for the F and p-values. Therefore, a study 

considering the variability of manufacturing parameters becomes interesting, considering 

the reduction of results variance as a function of process parameters. 

Table 3 lists the analysis of variance (ANOVA) for the flow front velocity. Since we 

know that the fiber volume fraction is intrinsically connected to permeability, confirmed 

by the previous statistical analysis, only permeability was considered as input together 

with pressure and viscosity in this analysis. All fiber architectures show that permeability 

governs the flow front velocity with F > Fcritical and p-value < 0.05. Nevertheless, 

pressure and viscosity also exhibit F values higher than Fcritical, presenting p-values < 

0.05, which indicates that all parameters influence flow front velocity. 

 

Table 3. ANOVA results for flow front velocity 

PW F p-value Fcritical 

Permeability 8.52 1 x 10-28 2.72 

Pressure 4.97 5 x 10-6 2.72 

Viscosity 3.91 2 x 10-7 2.72 

NCF F p-value Fcritical 

Permeability 5.51 2 x 10-7 2.81 

Pressure 4.28 1 x 10-6 2.81 

Viscosity 4.64 4 x 10-2 2.81 

Uni F p-value Fcritical 

Permeability 12.91 3 x 10-11 2.79 

Pressure 5.24 6 x 10-6 2.79 

Viscosity 12.32 6 x 10-11 2.79 

Random F p-value Fcritical 

Permeability 4.74 8 x 10-8 2.74 

Pressure 2.67 4 x 10-17 2.74 

Viscosity 5.39 2 x 10-2 2.74 
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Using ANOVA data, it is possible to calculate the percentage of contribution (PC) of 

each parameter to the flow front velocity. Figure 3 exhibits the PC for the flow front 

velocity, for which permeability is the main contributing factor (i.e., > 40%), followed by 

pressure and viscosity. Widely studied in the literature, all parameters present important 

contributions on the injection process; however, Figure 3 presents a comparative 

contribution analysis of each parameter, based on experimental analysis, in which several 

authors use constant viscosity associated with variation in fiber volume fraction and 

pressure levels, increasing their contribution to the response. 

 

Figure 3. Percentage of contribution for flow front velocity. 

 

The fiber volume fraction dictates the pressure required to ensure a complete 

impregnation of the fibrous reinforcement. Thus, this parameter is the main factor, and 

pressure is secondary. Fluid viscosity is also of utmost importance. However, there are 

limitations in resin viscosity. It is difficult to find an epoxy system of low viscosity (e.g., 

< 50 mPa.s) to ensure an appropriate impregnation time. Meanwhile, higher viscosity 

values might also make the impregnation unfeasible. Finally, a small range of viscosity 

values usually remains. In other words, the process limits the viscosity range levels, 

especially in studies that seek optimal injection approaches, focusing on lower viscosities 

to control the flow by other processes parameters. Thus, viscosity exhibits a lower 

influence on the response, to permit higher controllability of other parameters. 63,64 
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3.2. Artificial neural network results  

A dataset is constructed with injection parameters as input and impregnation 

behavior as output based on experimental data. The number of hidden neurons in each 

layer is twenty, and the optimal training data is twelve to ensure a reliable analysis with 

low error. The ANN results show an appropriate fit, in which the optimization parameters 

and validation are available in the supplementary material. Besides, the B coefficient 

introduced in Equation 2 is in accordance with the following sequence PW (0.95) > NCF 

and Uni (0.93) > Random (0.90). The Random preform shows the higher dispersion in 

prediction reliability (B-values = 0.85), because of high variations in experimental data. 

However, the B-values ensure a consistent prediction fit of the impregnation behavior. 

Figures 4 and 5 show the experimental data and ANN predictions. The ANN 

predictions indicate that each processing and material parameter (fiber volume fraction, 

pressure, viscosity, and permeability) has an influence on the flow front velocity response. 

The fiber volume fraction acts directly as a restriction to the impregnation flow. However, 

this parameter provides mechanical properties such as stiffness and strength 65. In the 

same way, viscosity is directly connected to the velocity of the flow front: a higher 

viscosity implies a greater difficulty of impregnation and a decreased flow front velocity. 

On the other hand, the pressure parameter has a direct influence on the flow path through 

fiber tows at low pressure or between tows at high pressure.20 

Figure 4a shows the variations of fiber volume fraction against the flow front 

velocity. Both PW and NCF fabrics present a continuous decrease in flow front velocity 

with all fiber volume fractions studied. The Random preforms show an unusual variation 

on flow velocity decrease at 20% of fiber volume fraction, a plateau between 20 and 40%, 

and then the flow front velocity decreases more smoothly. The flow front velocity is lower 

for unidirectional reinforcements (Uni) than for PW, NCF, and Random reinforcements. 

However, Uni curve of flow front velocity demonstrates a continuous reduction for an 

increase in fiber volume fraction, but slightly away from the entire ANN prediction curve. 
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Figure 4. ANN flow front velocity predictions for each parameter: (a) fiber volume fraction; (b) 

pressure. 

 

Figure 4b illustrates the ANN prediction of the flow front velocity as a function of 

pressure. The increase in pressure for the PW preform results in an abrupt increase of the 

flow front velocity up to a pressure of 0.22 MPa, where a plateau with higher velocity 

occurs between 0.22 and 0.6 MPa. The ANN prediction for Random mats shows a 

significant increase in velocity up to a pressure of 0.2 MPa, indicating the correlation 

behavior between flow front velocity and pressure. From that point, a plateau can be 

reached. For the NCF, the increase in pressure also generates an increase in velocity, 
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regarding the in-plane behavior in which the holes created by the sewing play a 

subordinate. NCF behaves like PW, but at a lower level.20 

 

Figure 5. ANN flow front velocity predictions for each parameter: (a) viscosity; (b) 

permeability. 

 

The viscosity variation (Figure 5a) shows that values greater than 200 mPa⸱s generate 

a significant decrease in the predicted velocity. It is difficult to maintain an appropriate 

impregnation flow to ensure low void formation with high viscosity matrix system for the 

injections process. Thus, it is suitable to control the flow front velocity by using larger 

injection parameters.66,67 The NCF velocity shows the highest connection to permeability, 

followed by the PW, Random, and Uni. The flow front velocity is directly proportional 

to permeability, but different slopes for each type of reinforcement. 
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Figure 6 displays the architecture of each preform visually. The NCF (0/90) in Figure 

6b has two preferential directions: the average flow direction can follow the orientations 

of the warp or of the weft of the fabric. This generates a balanced relationship with 

permeability and the impregnation flow front velocity. The PW (Figure 6a) has the same 

directions as the NCF fabric. However, the yarn weave increases tortuosity and the ability 

of the reinforcement layers to nest into each other,13,17 thus decreasing permeability and 

hence the flow front velocity also. Previous statements made for PW and NCF are only 

valid if both fabrics are balanced, i.e., the fiber content is the same in both directions. In 

addition, the fabric must have had the same warp and weft tension during manufacture 

and the weave type must also be symmetrical.  

The unidirectional arrangement (Figure 6c) exhibits a unique flow direction, which 

facilitates capillary flows, mainly at low velocity. The random reinforcement (Figure 6d) 

also presents a linear relationship between permeability and flow front velocity. However, 

the random architecture provides a higher slope than unidirectional fibers due to 

tortuosity.68 In addition, random reinforcements exhibit a non-linear capillary effect and 

viscous drag force on the flow. For the Uni and Random textiles, it should be noted that 

the capillary forces are usually one to two orders of magnitude smaller than the typical 

injection pressures and therefore do not usually play a role 

 

Figure 6. Schematic of fiber architectures: (a) PW; (b) NCF; (c) Uni; and (d) Random. 

 

Ruiz et al.2,29 and Patel et al.20 presented an analytical model to predict void content 

and size based on the flow front velocity and a balance between capillary and viscous 

forces in the impregnation flow. Applying this restrictive model to the neural network, it 
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is also possible to predict void formation for each reinforcement architecture and assess 

the respective influence of both permeability and flow front velocity.  

The velocity of the flow front is directly related to the formation, morphology and 

position of voids in terms of capillary and viscous drag effects. A low velocity creates 

capillary flow inside fiber tows, resulting in mesoscopic porosity between tows. 

Meanwhile, a higher flow front velocity creates a viscous drag, resulting in a faster flow 

between fiber tows and microscopic void formation inside tows. 

As shown in Figure 7, the predicted results of void formation present a similar V 

shape as found in the scientific literature for the modified capillary number.2,29 The results 

of experimental porosity were extracted from experimental data and references, which 

also follows the equations 𝑉𝑚𝑒𝑠𝑜 = −32.3 − 11.8log (𝐹𝐹𝑉) and 𝑉𝑚𝑖𝑐𝑟𝑜 = 6.35 +

2.35log (𝐹𝐹𝑉), which FFV is the flow front velocity. The relationship between viscous 

and capillary effects can be confirmed for each fabric family analyzed. A mesoscopic 

void formation occurs for a flow front velocity lower than 2 × 10-3 m⸱s-1, and microscopic 

voids appear for an average flow front velocity higher than 2 × 10-3 m⸱s-1. Knowing this 

critical value of the flow front velocity, it is possible to control the void formation through 

resin injection. In addition, the determination of the injection parameters (pressure, 

viscosity, and fiber volume fraction) for each reinforcement family will be presented in 

section 3.3, in which the combination of the levels indicates the optimum impregnation 

flow front velocity.  

Figure 8 shows, for all processing parameters, the void size-frequency predicted for 

each fibrous architecture – calculated from Figure 7 data. The PW and NCF fabrics 

display a higher trend of microscopic void formation (≈ 70%) since it is easier for the 

resin to flow between tows in two main fabric directions. Unidirectional flows create a 

greater capillary effect, which decreases the resistance to the impregnation flow at low 

velocity with a higher possibility of mesoscopic void creation between fiber tows. 

Random fiber mats present no differences in void size since random fiber mats are 

materials of single porosity, whereas all the other kinds of reinforcement are considered 

to possess a dual-scale porous structure. 
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Figure 7. ANN Void content and morphology predictions flow front velocity. 

 

 

Figure 8. Microscopic and mesoscopic void content frequency. 
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3.3. Impregnation trends 

This section presents a surface contour response in Figure 9 for the ANN prediction 

data to implement the RSM.69 Each analysis provides an equation to predict the flow front 

velocity based on a combination of pressure and fiber volume fraction parameters, with a 

high-reliability level since the determining B-value > 0.9 for all the reinforcements 

considered. All the response surfaces are calculated for a viscosity of 100 mPa⸱s because 

higher viscosity levels limit control of the flow as shown in the ANN prediction fit of 

Figure 4c. The dots are the ANN prediction data. 

The SRM was performed based on Equation 3, through non-linear surface regression, 

in which the three-dimensional curve is obtained, with the variable response (flow front 

velocity) being plotted as a function of pressure vs. fiber volume fraction and constant 

viscosity. An example of the SRM development is described in the supplementary 

material. This analysis aims to model how changes in variables affect the flow front 

velocity, find the levels of variables that optimize the response, and select the operational 

conditions for void formation control. Based on the model generated by Figure 7, we can 

control the pore fraction and size based on the impregnation flow velocity. The statistical 

modeling of SRM provides the optimization of flow front velocity values, in which it is 

possible to determine the flow velocity following parameters combination and, as a 

consequence, determine the optimal void content/size. This explanation was added in the 

manuscript 

Figure 9a exhibits the PW flow front velocity prediction surfaces of Equations (4). 

Both parameters (pressure and void volume fraction) contribute to the impregnation 

velocity. The use of low fiber fraction with low pressure results in higher flow velocity - 

associated with viscous drag force presence. On the other hand, the increase in fiber 

volume fraction results in a low flow front velocity, increasing the capillary effect. Based 

on the ideal flow front velocity given by the ANN analysis, a fiber volume fraction 55% 

associated with a pressure between 0.1 and 0.5 MPa represent optimal parameter levels 

to reduce void content and size. 

Figure 9b depicts the NCF flow front velocity surfaces of Equations (5). The flow 

front velocity is also influenced by both parameters (fiber volume fraction and pressure). 

An appropriate flow front velocity to control void content and morphology lies in the 

range of 50 to 60 % for the fiber volume fraction associated with a pressure between 0.15 

and 0.25 MPa. 
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Figure 9c exhibits flow front velocity surfaces for Uni reinforcements following 

Equations (6). Regarding the easier flow path in unidirectional preforms, which decreases 

the flow front velocity, a larger range of flow front velocity will reduce void formation, 

as shown in the central green region of Figure 9c. A broader range of optimal flow front 

velocity for Uni fibers is associated with chosen viscosity (100 mPa⸱s) since it allows a 

higher impregnation control. However, due to the direction of unidirectional 

reinforcements, a small modification of injection parameters could facilitate the effect of 

the viscous force (a combination of higher pressure and lower fiber volume content) or 

increase the capillary effect (lower pressure with higher fiber volume content). 

 

 

Figure 9. Response surface trend behavior as a function of pressure and fiber volume fraction 

flow front velocity: (a) PW, (b) NCF, (c) Uni, and (d) Random. 

 

Flow front velocity = 176 − 3.9𝑉𝑓 − 162𝑃 + 0.01𝑉𝑓
2 + 30𝑃2 + 2.8𝑉𝑓𝑃 (4) 

Flow front velocity = 136 − 4.8𝑉𝑓 − 39𝑃 + 0.04𝑉𝑓
2 − 22𝑃2 + 1.2𝑉𝑓𝑃 (5) 

Flow front velocity = 1.6 − 0.002𝑉𝑓 + 23𝑃 + 0.001𝑉𝑓
2 − 34𝑃2 − 0.03𝑉𝑓𝑃 (6) 

Flow front velocity = 0.1 + 5𝑉𝑓 − 197𝑃 − 0.07𝑉𝑓
2 + 339𝑃2 + 0.2𝑉𝑓𝑃 (7) 
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Figure 9d shows the flow front velocity surfaces of Random reinforcements 

associated with Equations (7). The flow front velocity is influenced by both parameters 

(fiber volume fraction and pressure) and presents similar trends. The optimal flow front 

velocity to control void content and morphology is not directly predicted since the random 

fiber directions do not allow control of viscous drag forces and capillary effects. However, 

the current method uses the results of the flow front velocity trend to control the 

impregnation behavior in random fiber mats. 

 

4. Conclusions 

This study evaluated the role of injection parameters on the impregnation behavior 

and void formation in composite laminates by a statistical approach and ANN 

methodology. Three fiber architectures and random fiber mats were analyzed. For PW, 

NCF, and Uni reinforcements, the ANOVA analysis confirmed that the fiber volume 

fraction is the factor used to determine the permeability. For the flow front velocity, all 

parameters influence the injection process; however, with a distinct comparative 

contribution for each parameter. Random fiber mats showed dispersion in the response, 

which resulted in the lower reliable analysis regarding the variation for each mat. The 

combination of the statistical and ANN methods allows predicting the flow front velocity 

by combining injection process parameters for all the fiber architectures used in this 

study, making it possible to choose appropriate parameters to ensure proper control of 

void content and position as a function of processing levels combinations not accessed 

experimentally. 
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