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Abstract: A non-equiatomic AlCoCrj75CugsFeNi alloy has been identified as a potential high
strength alloy, whose microstructure and consequently properties can be widely varied. In this
research, the phase structure, hardness, and magnetic properties of AlICoCr(75CugsFeNi alloy
fabricated by laser powder bed fusion (LPBF) are investigated. The results demonstrate that laser
power, scanning speed, and volumetric energy density (VED) contribute to different aspects in the
formation of microstructure thus introducing alterations in the properties. Despite the different
input parameters studied, all the as-built specimens exhibit the body-centered cubic (BCC) phase
structure, with the homogeneous elemental distribution at the micron scale. A microhardness of
up to 604.6 &+ 6.8 HV0.05 is achieved owing to the rapidly solidified microstructure. Soft magnetic
behavior is determined in all as-printed samples. The saturation magnetization (Ms) is dependent
on the degree of spinodal decomposition, i.e., the higher degree of decomposition into A2 and
B2 structure results in a larger M. The results introduce the possibility to control the degree of
spinodal decomposition and thus the degree of magnetization by altering the input parameters of the
LPBF process. The disclosed application potentiality of LPBF could benefit the development of new

functional materials.

Keywords: high-entropy alloys; laser powder bed fusion; selective laser melting; direct metal laser
sintering; spinodal decomposition; magnetic properties

1. Introduction

Multicomponent alloys, including high-entropy alloys (HEAs), represent the fastest
growing area of innovations of metallic materials since the last decade. HEAs represent
not only an interesting field in materials with the diverse possibility to explore, but most
importantly, the promising improvements with properties, such as, e.g., strength and
ductility [1], oxidation and wear resistance [2], corrosion resistance [3], and irradiation
resistance [4,5]. The concept of mixing multiple principal elements, equiatomic, or near-
equiatomic compositions, in one alloy system, and resulting in the high configurational
entropy to promote the solid solution, was initially materialized by Cantor et al. [6] and Yeh
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etal. [7]. Among varieties of HEA systems, Al,CoCrCuFeNi (x = 0-3, in molar ratio) has
been studied by Yeh et al. [7] as an example that only simple solid solution structures form
in HEAs, instead of the mixture of complicated phases produced in conventional alloys
containing multiple principal elements. It has been confirmed that the Al,CoCrCuFeNi
alloy consists of a single face-centered cubic (FCC) structure when the aluminum content
x was in the range of 0 to 0.5 (equivalent to 0 to 9.09 at%), while a combination of FCC
and body-centered cubic (BCC) structure was formed at x = 0.8. When x was increased
further, the modulated phase structures were formed until a single BCC phase structure
was achieved when x > 2.8 (equivalent to 35.90 at%). Apart from the microstructural
evolution, the addition of aluminum in HEAs is also found to lower the density and
enhance the strength as well as the oxidation resistance [8]. Therefore, AICoCrCuFeNi-
based alloys have attracted interest widely and have become one of the most studied
alloy systems in HEAs [9-11]. To date, HEAs are mainly fabricated by arc-melting and
casting, and usually with post-treatments. Furthermore, to form a single-phase structure
using conventional methods, the Al content needs to be kept either quite low (below
9.09 at%) or high (above 35.90 at%). Consequently, the majority of AlICoCrCuFeNi based
alloys produced conventionally display the duplex structures composed of BCC and FCC
phases [12,13]. The complexity of microstructure also arises from the segregation of copper,
which is presented in the AICoCrCuFeNi based alloys [12,13]. One strategy is to reduce the
content of copper. Tung et al. [12] found that a single BCC crystal phase was achieved in the
as-cast AlICoCrCug 5FeNi alloy, and the segregation of copper, as well as the formation of
interdendrites, was suppressed significantly. On the other hand, it is reported that the single
BCC phase structure has been detected in the equiatomic AICoCrCuFeNi alloy after splat
quenching or ultrarapid quenching, which involves the rapid solidification process [13,14].
However, due to the complex nature of multicomponent alloys, their fabrications challenge
the controllability of techniques and the processing cost.

Laser powder bed fusion (LPBF) technique, also known as selective laser melting
(SLM), is one of the most suitable additive manufacturing (AM) methods to perform
the fabrication of multicomponent alloys. It exhibits high-level local controllability, high
resolution and accuracy, and the capability of producing refined microstructure with su-
perior properties owing to the rapid solidification process [15]. It exhibits the advantage
of building a broad range of metal materials with complicated shapes using laser beam
layer by layer, with various optional possibilities for post processing [16]. The first ad-
ditively manufactured multicomponent alloy has been reported by Brif et al. [17], who
fabricated FeCoCrNi alloy employing LPBF. Their results revealed promising mechanical
properties comparable to conventional stainless steels, benefiting from the refinement of
microstructure through the LPBF process. Some studies have investigated the printability
of various AICoCrFeNi based HEAs, including Al,CoCrFeNi [18,19], AlICoCrCuFeNi [20],
AlCoCrFeMnNi [21], and AlCoCrFeNiTigs [22]. These studies have shown that LPBF
produces hierarchical microstructures, including cellular structure, modulation, and dis-
location cells, which are beneficial to the advancement of mechanical properties. To date,
the research concerning LPBF-built AlICoCrCuFeNi alloy remains scarce. As mentioned
above, Singh et al. [13] produced an equiatomic AlICoCrCuFeNi alloy consisting of a single
BCC phase by splat quenching from the melt. On the other hand, Wang et al. [20] found
that the LPBF-processed equimolar AlICoCrCuFeNi alloy consists of mixed BCC and FCC
phase structure with FCC content up to 40.20%. Splat quenching introduces a cooling rate
of 100107 K/s [13], which is similar to that in the LPBF process [23,24]. This indicates
that it is crucial to optimize the process parameters in LPBF and understand the rapidly
solidified microstructure, as well as its relation to properties. Such knowledge could assist
the development of novel multicomponent alloys.

While the focus of multicomponent alloys research is primarily on their mechanical
properties, the functional properties, such as magnetic properties, also attract interest with
the promising potentials to be explored [25-27]. Zhang et al. [28] found that the as-cast
equiatomic AlICoCrCuFeNi alloy, which consisted of a mixture of FCC and BCC phase,
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exhibited saturation magnetization of 38.18 Am?/ kg at ambient temperature, which is
as good as for the soft ferrite materials. The phase formation of AICoCrCuFeNi based
alloys in relation to the spinodal decomposition has been described by Singh et al. [13],
Zhang et al. [29], and Peter et al. [30], as summarized in Table 1. The splat-quenched
equiatomic AlICoCrCuFeNi alloy, which experienced a cooling rate of 10°~107 K/s, showed
a single BCC phase structure [13]. The moderate cooling rate of 103-10* K in the gas-
atomized AlCoCrg 75Cug sFeNi powder resulted in a phase separation from solid solution
into Al-Ni-rich BCC B2 structure, Fe-Cr-rich BCC A2 structure, and Cu precipitates in the
nanoscale, and it was proposed that the formation of A2 structure would be suppressed
by the higher cooling rate [30]. Al-Ni-rich ordered BCC phase was associated with the
weakened ferromagnetism [25,31]. As the cooling rate was decreased to 10>-10° K/s,
the formation of dendritic and interdendritic features was observed at the sub-micron
scale in the spray-cast sample [29]. The dendrites contained Al-Ni-rich and Fe-Cr-rich
structures along with Cu-rich precipitates, and the interdendrites corresponded to Cu-rich
precipitates [29]. Finally, when a cooling rate of 10-20 K/s typical for casting was employed,
a complicated mixture of dendrites and interdendrites consisting of several types of BCC
and FCC phase structures were observed [13]. The saturation magnetization was thereby
dependent on the degree of decomposition of Cr-Fe-Co-rich phase (that existed in the
dendrites) into the ferromagnetic Fe-Co-rich phase and antiferromagnetic Cr enriched
phase, i.e., the higher the degree of decomposition under the slower cooling rate, the higher
the reached saturation magnetization was. As a result, the as-cast sample possessed a higher
saturation magnetization of 46 Am?/kg at 14 T and 300 K than the splat-quenched one [32].
These observations show that apart from solid solution, the spinodal decomposition is
capable of improving the properties of multicomponent alloys such as magnetic properties.
Such enhancement of magnetic properties by spinodal decomposition has been recently
materialized by Rao et al. [33]. More importantly, according to the phase evolution stated
in [13,29,30], the spinodal decomposition in the AICoCrCuFeNi based alloy is governed
by the cooling rate. This suggests that in combination with one of the advantages of
LPBF, namely, controlling the cooling rate by varying the process parameters, it is feasible
to govern the formation of microstructure and consequently achieve desired magnetic
properties by altering the process parameters, without the need for post treatments or
changing the chemical compositions of the raw powder.

Table 1. Phase formation in correlation to fabrication method and cooling rate in AlICoCrCuFeNi

based alloys.

Alloy Method Cooing Rate (K/s) Phase Structure Ref.
AlCoCrCuFeNi Splat quenching 106-107 BCC [13]
AlCoCr75Cug sFeNi Gas atomization 103-10* BCC A2 + BCC B2 + Cu precipitates [30]

Dendrites: Al-Ni-rich and Fe-Cr-rich
AlCoCrCuFeNi Spray casting 102-10° structures, with Cu-rich precipitates. [29]

Interdendrites: Cu-rich precipitates.

Dendrites: Al-Ni-rich, Cr-Fe-rich,

AlCoCrCuFeNi Casting 10-20 Al-Ni-Fe-rich, and Cu-rich precipitates. [13]

Interdendrites: Cu-rich.

The detailed microstructure of the gas-atomized AlCoCr 75CugsFeNi powder used
in this research has been reported in [30,34]. This multicomponent alloy has not been
fabricated by LPBF before, and the knowledge of its microstructure and properties remains
inadequate. Further research is essential to evaluate especially the magnetic properties in
relation to the spinodal decomposition of LPBEF-built multicomponent alloys, which have
been scarcely examined previously. In this study, the feasibility of additive manufacturing
of AlCoCry 75Cug5FeNi alloy composed of a single-phase structure and the controllability
of the degree of spinodal decomposition are explored. The influence of process parameters
in the LPBF process on microstructure, mechanical and magnetic properties is determined.
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2. Materials and Methods
2.1. Specimens Preparation

The powder AlCoCrozsCuosFeNi was atomized with nitrogen using a free-fall atc
izer in a spray forming process (ID number Sk2-800, more details as reportegd»in [30,3:
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Figure 1. (a) Schematic illustration of LPBF scanning strategy, and (b) as-built AlICoCrg 75Cug sFeNi
specimens applying different process parameters.
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Table 2. Process parameters of the LPBF-built AICoCrg 75Cug 5FeNi specimens.
Sample # Power (W) Scanning Speed (mm/s) VED (J/mm?)
1 200 1200 92.59
2 200 1500 74.07
3 200 2000 55.56
4 180 1800 55.56
5 160 1600 55.56

2.2. Characterization Methods

The as-built specimens were initially ground with fine SiC papers down to P2500. The
chemical composition was determined by the PANalytical Axios™*X 3 kW wavelength dis-
persive X-ray fluorescence (WDXRF) spectrometer (PANalytical, Almelo, The Netherlands).
The phase structure was identified by the PANalytical X'Pert PRO MPD diffractometer
applying Co-K radiation operating at 40 kV and 40 mA, with a step size of 0.0131° and a
counting time of 119.85 s per step. The phase quantification was carried out on the X-ray
diffraction (XRD) pattern employing the Rietveld refinement method by X'Pert HighScore
Plus software (version 4.8). The theoretical density of each specimen was calculated based
on XRD patterns. The density and relative density were estimated by the Archimedes
principle. The electrochemical etching was performed with the 13 vol.% HNOs-ethanol
solution at —23 °C under 8 V. The microstructure of the specimens was studied by the JEOL
JIB-4700F (JEOL, Tokyo, Japan) focused-ion-beam scanning electron microscope (FIB-SEM)
equipped with a JEOL JED-2300 Analysis Station Plus energy-dispersive X-ray spectrome-
ter (EDS) system. The preparation of EBSD specimens was performed using the Buehler
VibroMet 2 vibratory polisher (Buehler, Lake Bluff, IL, USA) with Al,O3 suspension with a
particle size of 0.05 pm for 18 h. The crystal orientation was characterized by the Zeiss Ultra
55 field-emission scanning electron microscope (FE-SEM) (Zeiss, Oberkochen, Germany)
equipped with an Oxford Instruments Nordlys F* electron backscatter diffraction (EBSD)
camera. A step size of 1 um was employed. Grain structure was determined using fast
multiscale clustering (FMC) [36] using the following values: Cpgana 0f 1, Cpanao Of 5, gam-
maW of 25, alpha of 0.2, and beta of 0.3. Grain size was estimated using grain boundary
images obtained through FMC analysis and calculated using the method outlined by Lehto
etal. [37]. The microhardness was examined by the Innovatest Nexus 4303 Vickers hardness
tester according to ISO 6507-1:2018 [38], at a force of 0.4903 N and a dwell time of 10 s. Ten
points were measured for each specimen.

Magnetic properties were evaluated using a vibrating sample magnetometer (VSM)
installed in the Quantum Design Physical Property Measurement System (PPMS) (Quantum
Design, Inc., San Diego, CA, USA). The thermomagnetic curves, i.e., magnetization versus
temperature curves, were measured in low (0.01 T) and saturation (2 T) fields in the
temperature interval of 10 to 800 K in an attempt to estimate the ferromagnetic Curie point.
Furthermore, the magnetic behavior of one specimen was determined in 2 T field at a
temperature from 305 to 1000 K. Saturation magnetization Ms from magnetization loops
was measured up to 9 T field at 10 K and 300 K. To determine magnetic coercivity, the
additional measurement of magnetization loops at room temperature was performed using
VSM PAR (Quantum Design, Inc., San Diego, CA, USA) with an electromagnet.

3. Results
3.1. Density and Chemical Composition

The effect of process parameters on Archimedes density (AD) and relative density (RD)
of LPBF-built AlCoCrj75CugsFeNi alloy is depicted in Figure 2. As shown in Figure 2a,
the maximum AD of 7.070 + 0.017 g/cm? and RD of approximately 97% are achieved
with the highest applied VED of 92.59 J/mm?. When the input VED is reduced from
92.59 to 55.56 ] /mm?, corresponding to an increase of the scanning speed from 1200 to
2000 mm/s at a laser power of 200 W, AD and RD slightly fluctuate to 7.041 + 0.023 g/cm?
and 96.7% =+ 0.3%, respectively. On the other hand, in Figure 2b, both AD and RD in-
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changes most considerably. Comparing to the powder composition reported in [30], the

composition of the reference PECS sample remains identical, while the Al content in LPBF-

built specimens declines to a varying degree. This is expected, as the Al element has the

lowest boiling point and heat of evaporation of the elements involved [40]. Cu content

also decreases somewhat but not as clearly, whilst the content of the other four alloying

elements correspondingly increases slightly. When different scanning speeds are applied at

a laser power of 200 W, the element content of specimens alters only within the uncertainty

of measurements despite different VEDs. Under the same VED input of 55.56 J/ mm?,

adjusted with the laser power and the scanning speed, the average content of the specimens

remains roughly the same, taking into account the measurement errors. Only the average

Al content appears to change slightly with changing laser power and the scanning speed.

This suggests that the process parameters employed in this research reduce the Al content

only marginally as neither the alteration of VED nor laser power or scanning speed affect

the chemical composition of the specimens markedly.
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The chemical composition of as-built specimens and a reference PECS sample is pre-
sented in Table 3. It is found that among all six elements, the average content of Al changes
most considerably. Comparing to the powder composition reported in [30], the composi-
tion of the reference PECS sample remains identical, while the Al content in LPBF-built
specimens declines to a varying degree. This is expected, as the Al element has the lowest
boiling point and heat of evaporation of the elements involved [40]. Cu content also de-
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Table 3. Chemical composition of as-built specimens, a reference PECS sample, and the
starting powder.

Element (at%)

Sample
Al Cu Fe Ni Co Cr
Powder [30] 19.5 9.57 18.8 19.5 19.6 12.9
VED =92.59 J/mm?
(P=200 W, 0 = 1200 mm/s) 17.8 +0.12 9.3 +0.01 19.2 + 0.09 20.1 £ 0.05 20.5 + 0.04 13.1 +0.03
VED = 74.07 J/mm?
(P=200 W, 0 = 1500 mm/s) 17.8 +0.35 9.3 +0.02 19.2 +0.13 20.0 £ 0.08 20.5 + 0.10 13.2 +0.08
VED = 55.56 J/mm?
(P =200 W, 0 = 2000 mm/s) 18.1 £ 0.10 9.4 +0.02 19.1 + 0.03 19.8 + 0.07 20.3 + 0.02 13.3 + 0.03
VED = 55.56 J/mm?
(P=180W, 0 = 1800 mm/s) 17.7 + 0.30 9.5+ 0.05 19.1 + 0.08 20.0 £ 0.07 20.4 + 0.07 13.3 + 0.08
VED = 55.56 ] /mm?
(P=160 W, 0 = 1600 mm/s) 17.6 + 0.26 9.5+ 0.02 19.2 + 0.04 20.0 £ 0.10 20.4 + 0.13 13.3 + 0.06
PECS sample 19.3 £ 0.15 9.6 + 0.09 18.7 + 0.07 19.6 + 0.06 19.9 + 0.09 12.9 +0.08

3.2. Phase and Microstructure

Figure 4 illustrates the XRD diffraction pattern along with the Rietveld analysis of
the starting powder with the particle class size of 20-63 um. The 100 peak at 26 = 36.28°
refers to the super-lattice B2 structure. A mixture of two types of BCC phase is identified,
namely, the ordered B2 phase and the disordered A2 phase. According to the phase quan-
tification analysis carried out using the Rietveld refinement method, the lattice constant
of A2 structure is estimated to be ax, = 2.8732 A, and that of B2 structure ap, = 2.8744 A.
The weight fractions of A2 and B2 phase are determined to be 35.8 wt% and 64.2 wt%,
respectively. These results are consistent with the observations characterized by the scan-
ning transmission electron microscopy and atom probe tomography in [30]. It is worth
mentioning that in both the previous XRD analyses on the same raw powder in [30,34],
é)%ly one type of BCC phase was revealed. This is likely to result from the program settings

. . . . . 9 of 2
of XRD measurement, e.g., the step size and count time per step, which are not efficient ©
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As elongated grains are formed on the xz-plane (see in Figure 3b,c), XRD analysis ha:
been performed on both the xy- and xz-plane of each LPBF specimen, as displayed ir
Figure 5. It is noticed in Figure 5a,b that only BCC phases are detected in the LPBF speci-
mens. On the other hand, the reference PECS sample consists of both FCC and BCC
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As elongated grains are formed on the xz-plane (see in Figure 3b,c), XRD analysis
has been performed on both the xy- and xz-plane of each LPBF specimen, as displayed
in Figure 5. It is noticed in Figure 5a,b that only BCC phases are detected in the LPBF
specimens. On the other hand, the reference PECS sample consists of both FCC and BCC
phases. The weight fractions of FCC and BCC phases estimated by Rietveld refinement are
44.9 wt% and 55.1 wt%, respectively (see in Figure S1). According to Figure 5a, the intensity
of the 100 and 200 diffraction peak on the xy-plane of the sample produced with the highest
VED of 92.59 J/mm? is enhanced in comparison with the raw powder, suggesting the
presence of the preferred crystallographic texture, {100} plane is perpendicular to building
direction. With the decrease of applied VED, the preferred orientation on the xy-plane
gradually weakens. Under the same constant VED input of 55.56 ] /mm?, few significant
differences on the xy-plane are delineated, regardless of the alteration of both laser power
and scanning speed. In addition, it is noticed that the superlattice reflection 100 is more
profound on the xy-plane of samples produced by the VEDs of 92.59 and 74.07 J/mm?.

, On the xz-plane, XRD patterns of LPBF specimens appear similar to that of the starting
Materials 2022, 15, x FOR PEER REVIEW ; ) . . . .10 of 25
powder, as can be seen in Figure 5b, and the differences of relative intensity on the xz-plane
among each LPBF specimen are indistinguishable.
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The EBSD analyses of inverse pole figure (IPF) maps on the xy-plane of LPBF-built
AlCoCro7sCuosFeNi specimens are illustrated in Figure 6. All the specimens display the
polygonal equiaxed grains on the xy-plane, and only BCC structure has been identified.
The grain size of each specimen is shown on the left corner of each map. The finest grain
size of ~9.47 um is produced when the scanning speed reaches the highest value of 2000
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As shown in Figure 5¢, the magnification of 26 in the range of 51-54° illustrates that
the 110 peaks on the xy-plane of LPBF specimens shift to a higher angle than that of the
powder, which suggests that the interplanar spacing on the xy-plane of each LPBF specimen
is decreased from that of starting powder. The peak on the xy-plane detected in the sample
built with the largest VED of 92.59 J/mm? is shifted the most. As the VED declines
concomitantly with the increasing scanning speed, the degree of shift of 110 peak on the
xy-plane decreases, implying that the rapid solidification-induced stress concentrations on
the xy-plane are increased when the scanning speed is faster. Peaks on the xy-plane are
identical at a constant VED of 55.56 J/mm?, suggesting that the residual stresses on the
xy-plane are similar under the same VED despite the alteration in laser power and scanning
speed. The magnified 26 range from 51° to 54° in Figure 5d illustrates a smaller degree
of shift but broader 110 peaks on the xz-plane when compared with the xy-plane. The
broadening of XRD peaks on the xz-plane is somewhat greater than that on the xy-plane,
which is likely due to the non-symmetrical cell structure and texture.

The EBSD analyses of inverse pole figure (IPF) maps on the xy-plane of LPBF-built
AlCoCrj 75Cug sFeNi specimens are illustrated in Figure 6. All the specimens display the
polygonal equiaxed grains on the xy-plane, and only BCC structure has been identified. The
grain size of each specimen is shown on the left corner of each map. The finest grain size of
~9.47 um is produced when the scanning speed reaches the highest value of 2000 mm/s
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The EBSD IPF maps, band contrast images with grain boundary maps, and Kernel
average misorientation (KAM) maps on the xz-plane of LPBF-built AICoCrozsCuosFeNi
specimens are depicted in Figure 7. The IPF maps displayed in Figure 7a-1,b-1,c-1,d-1
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The EBSD IPF maps, band contrast images with grain boundary maps, and Kernel
average misorientation (KAM) maps on the xz-plane of LPBF-built AICoCrg 75Cug 5FeNi
specimens are depicted in Figure 7. The IPF maps displayed in Figure 7a-1,b-1,c-1,d-1
manifest that instead of the equiaxial grains determined on the xy-plane, the grains on the
xz-plane are elongated towards the building direction, indicating that epitaxial growth
occurs [41]. The average grain size of specimens estimated on the xz-plane is, therefore,
larger than that determined from the xy-plane. Both the length and width of the grains
reduce with the rising scanning speed; this observation is in agreement with former re-
search, where a columnar-to-equiaxed transition (CET) of grains occurs when employing
a higher cooling rate in LPBF process, and is related to the high probability of the het-
erogeneous nucleation under the large undercooling [42]. Merely BCC phase has also
been revealed on xy-plane. The band contrast images with high angle grain boundary
(HAGSB, blue lines) maps and low angle grain boundary (LAGB, 5-15°, red lines) maps in
Figure 7a-2,b-2,c-2,d-2 delineate the variation of the HAGBs fraction in LPBF specimens
(the fraction value is shown on the upper right corner of each image). When the VED input
decreases from 92.59 to 55.56 ] /mm?, the fraction of HAGBs increases from ~45% to ~57%.
It demonstrates that the specimen produced with the maximum VED contains the smallest
proportion of HAGBs, as a consequence of the lower scanning speed employed. When
applying the same VED of 55.56 ]/ mm?3 with applied laser power of 180 W and scanning
speed of 1800 mm/s, the proportion of HAGBs is determined to be ~62%, which is larger
than the value of ~57% obtained with the applied laser power of 200 W and scanning speed
of 2000 mm/s. The KAM maps in Figure 7a-3,b-3,c-3,d-3 quantify the average misorien-
tation in the range of 0.2° to 1.8° within the grains. The local grain misorientation can be
used to indicate the local formation of dislocation cells and dislocation density distribution
in grains [43]. When the employed VED achieves the largest value of 92.59 J/mm?, the
proportion of misorientations <0.6° within the grains is estimated to be relatively the high-
est. This proportion decreases as the crystal misorientation angle grows bigger when the
smaller VED corresponding to a greater employed scanning speed is applied. Furthermore,
under the identical input VED of 55.56 |/ mm?, the misorientation angle decreases when
the laser power and scanning speed are lowered. These results suggest that the higher
cooling rate in LPBF process is responsible for the greater misorientation value in KAM map
because it produces (i) higher dislocation density due to the strain localization, (ii) CET of
grain structures [42], and (iii) finer grain size, which has been observed to possess a higher
misorientation value [44].

The preferred crystallographic growth orientation is represented by the EBSD pole
figure (PF) images in Figure 8. The grains grow preferentially along {100} plane lies on
xz-plane and parallel to building direction when the input VED is at the highest value of
92.59 ] /mm?3 (laser power of 200 W and scanning speed of 1200 mm/s). This preference
weakens evidently along with the VED reducing to the lowest value of 55.56 ] /mm?3 (laser
power of 200 W and scanning speed of 2000 mm/s), corresponding to the increasing of
scanning speed. Under the same VED of 55.56 ] /mm3, differences are found after the
alteration of laser power and scanning speed, which indicates that texture formation does
not depend entirely on the VED. The texture identified by EBSD is somewhat different
from that of the XRD analysis, which is likely due to EBSD measurement being carried out
on a highly localized region, where the preferred orientation alters slightly.

The microstructure of AICoCr( 75Cug sFeNi alloy specimen produced under the VED
of 92.59 ] /mm? (laser power of 200 W and scanning speed of 1200 mm/s) is presented in
Figure 9. In the back-scattered electrons (BSE) image on the mechanically polished xz-plane
shown in Figure 9a-1, the high magnification of grains and melt pool boundaries is revealed.
The corresponding quantitative elemental distributions of Figure 9a-1 are illustrated in
Figure 9a-2. The specimen in general has a homogeneous elemental distribution in the
microscale, and no segregation is detected, even if the scanning speed was the slowest
of 1200 mm/s. Typical cellular structures, as well as the boundaries of grains and melt
pools on the electrochemically etched xy-plane, are shown in Figure 9b-1. It is noticed



distribution in grains [43]. When the employed VED achieves the largest value of 92.59
J/mm3, the proportion of misorientations < 0.6° within the grains is estimated to be rela-
tively the highest. This proportion decreases as the crystal misorientation ar}g%ﬁ; STOWS
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The preferred crystallographic growth orientation is represented by the EBSD pole
figure (PF) images in Figure 8. The grains grow preferentially along {100} plane lies on xz-
plane and parallel to building direction when the input VED is at the highest value of
92.59 J/mm? (laser power of 200 W and scanning speed of 1200 mm/s). This preference



weakens evidently along with the VED reducing to the lowest value ot 55.56 J/mm>- (laser
power of 200 W and scanning speed of 2000 mmy/s), corresponding to the increasing of
scanning speed. Under the same VED of 55.56 J/mm?3, differences are found after the alter-
ation of laser power and scanning speed, which indicates that texture formation does not
depend entirely on the VED. The texture identified by EBSD is somewhat different frOfIZI}L
that of the XRD analysis, which is likely due to EBSD measurement being carried oufon

a highly localized region, where the preferred orientation alters slightly.

Materials 2022, 15, 1801

92.59 J/mm?

VED =
=200 W, v =1200 mm/s

2000 mm/s

3

VED = 55.56 J/mm?*

P =200 W

l

D = 55.56 J/mm*
180 W, v = 1800 mm

‘\‘r—:
{ P
»e

Materials 2022, 155% EEQEQW 6#@1]@@@?%@%@“1%?%&%%% By élff@f@ﬁf MM' 14 of

eters ony(a) xy- and,{b) X7z-plane
1CI5 OIT d )\y dlltlr \ )\L'})icll <.

Figure 9. SEM obbégts& SnBiVARRRTYaHan gy ngﬁa\'@éf iSRS RRESIDERPINEVED Bridh B Y Rt 92.59 J/mr
oo w o e i g%%:'%% B -2
(@-2) Correspondlr%l%l ar%ll ?ﬁ‘éﬁz Corresp rE&’a{Fé) L@%ée%emerﬁ%ﬁ 1ﬁ’trlbu or%[r %an ]’&etiXmes indic

etched xy-plane WMMGBTng quant atlve EDS elemental distributions. Red dotted lines
indicate the melt pool boundaries.
The variation of cell structure morphology on the xy- and xz-plane formed under 1
same laser power of 200 W with the alteration of scanning speed is shown in Figure
Similar to the observation on grains, the cells on the xy-plane incline to being equiax
(see in Figure 10a-1,b-1,c-1), while those on the xz-plane are tended to be elongated (:
in Figure 10a-2,b-2,c-2). On the xy-plane, the cell size formed under the lowest scanni
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The variation of cell structure morphology on the xy- and xz-plane formed under the
same laser power of 200 W with the alteration of scanning speed is shown in Figure 10.
Similar to the observation on grains, the cells on the xy-plane incline to being equiaxial
(see in Figure 10a-1,b-1,c-1), while those on the xz-plane are tended to be elongated (see
in Figure 10a-2,b-2,c-2). On the xy-plane, the cell size formed under the lowest scanning
speed of 1200 mm/s is estimated to be ~0.31 pm, and as the scanning speed is changed
from 1500 to 2000 mm/s, the cell size is changing from ~0.28 to ~0.22 pum, respectively.
This observation concurs with our previous results [45] that the cell size decreases with
the growing scanning speed. The cell structures introduced by LPBF process have been
found to be beneficial for enhancing the mechanical properties owing to the high degree
islocation induced strain hardening [46]. The spacing between the cell boundaries on
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and scanning speed rising from 160 W and 1600 mm/s to 200 W and 2000 mm/s, co:
spondingly. For comparison, the reference PECS sample exhibits a hardness of 409.5 +
HV1. In addition, a nearly linear relation between microhardness and RD is found on b

Materials 2022, 15, 1801 planes, as plotted in Figure 12. The microhardness improves when the LPBE sampl
denser, namely, when it possesses less porosity.
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decrease of saturation magnetization, indicate a very similar saturation magnetization
behavior with temperature Ms (T) and thus similar ferromagnetic Curie temperature (T.)
for all LPBF samples. From the decrease of the magnetization, T, can be estimated to be
well above 400 K for LPBF samples while the PECS sample exhibited T. of about 300 K.
Coercive force of all LPBF samples is relatively low, about 760 A/m and similar to that of
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spinodal decomposition structures in spray-cast equiatomic AlICoCrCuFeNi alloy wa
found to occur at 913 K [29]. Therefore, it is likely that the disappearance of A2 and B!
phase, as well as the formation of a new phase, is initiated after heating up to 1000 K.



Materigl, 2092, Fgpx FORBEER REVIEW 18 of 49 of 25

(a) VED = 74.07 J/mm® (P = 200 W, v = 1500 mm/s) (b)80 VED = 55.56 J/mm (P = 180 W, v = 1800 mm/s)
= T T T T T T T 80 T T
gﬂ - = o 4 K/mm I~1rqt heating
= 6F =4 o4 Second heating
< 160 E "8 60 Third heating |
- <
= — =
— = &
4+ (o I o
et 140 % ®
< [ =
= S o
§= S B
= g N
Sy {20 8 ©
5 First heating E:_“ ED
& Second heating| 4 K/min s S
= .
O 1 1 1 1 1 | 1 1 (J 0 1 1 - 1 1 L. L,
0 100 200 300 400 500 600 700 800 900 300 400 500 600 700 800 900 1000
Temperature, 7 (K) Temperature, 7 (K)

Figyge 51 dagaeticRehaniartobpsdmiki M {coiciysicu Fedlispacimens. @) M-T eurves in the range
of 14hte 890 &ksango (R s wrvesin thgd e eaHerm38v 305 100 A K.

4. bRGEYARN
4.1. Effect of Process Parameters on General Mjcrostructure

4.1. Eﬁect O{w rocess ammetgrs on General Mzcrostructur%
o sets of applied process parameters suggest that laser power, scanning speed,

and Wﬁ’fﬁ&tﬁ wlaprlisfpresersPaArAmetarrHEget Whaklapat Ry are stamng yPeed,
angaNHlotaffadirtheispeatfiveem mmetoair ot powder ditferentrigayd. doabRDpaviefuishthe key
paifineteesmbathgiig s pfoieetiesn Stangiog ppeedercatd by tee ahso ADthe doRia aowd dtirther
inflRieiossaivth sHibadsphspireiol cStulanpspuedrdslemerted distikyten fYERaIBreOf mi-
crc§§ﬂtﬁéh‘ilfécé‘%fc@%sdﬁ{%r&“i‘éeéit%H‘&ffﬁ%‘%?ﬂf&%ff%“&ﬁﬂoém}ﬁ%ﬂr&ﬁ%ﬂ%ﬁcmﬁﬁ)&epre-
seﬁPse?ﬁe £ &dﬁﬁ%ae?% S %szm%éaa&ma%ﬁ%eg%ﬁ%ﬂ% thgele o8 Pling Wsnning

¥ocess t oticed t one 1s.not su erP]’E to emo ei e difference
sp e ﬁg ance P% aser bower an speed atfect the local coolr dur-
Oun: 1n € currenht observations, such as structure, grain and cell siz

ing thePResEsS, dhdamoticedihahavkidse s ﬁ%&9&3&#&5%%%&%B&@%@ﬁﬁﬁﬁemes
foy&netmmﬁé’—eﬁmmh%aﬂmeoﬁﬂﬁb&&)&%ﬁhassﬁm@eﬁamm sell siggrsrystal
migegieibtadtomatentre camglanisiobiag dngss L B pivcessoTHatcerayiths preyasets thasearch
[47)) threetyiate theterp himaloi Lieycat: MBDoguifined itothalaP BFvpibacsd. as theem oy edhed, as it
faibseendkisesibeeddaubra tekemtiaicoeapdidepstivsid hrdbetD PBIupedwiter Thdeesiredings pro-
poded fRat RIprRHdes phok Hignses ROt e d dpaReeearny A eBEEstbER. Fur-
th&‘ﬁj&% n&ilgee ljg;sm&%%%eaee LR hieh ﬁé{‘ &%ﬁ%%?a% tlaaa [fbetter
< %d% }‘jﬁ%f uch 25 fiermg con C%%étyg&ivﬁla‘fﬁzea"gﬁ deit Fe | proven
re i ent1 1ed n $-built specimens 1e
to J%%S @aqﬂgV% 590 teamna?a € ORHIRRl BIPRSSH R AR S5l AIE snag Jekces of
PrOSRSHPREATALETF ABAk E&‘ﬁ(ﬂlﬁ%ﬂ’@?@%@%lﬁé%%@%ﬁﬁ%%%?&éﬂt%h%@rhﬁ@ con-
sidsfraet 4B hct is shown earlier in Figure 3c. In addition, it is found that when the laser
poWhreeatyyeedhef lagfestts pyriée dhealtified 200 Wethe-huﬂbﬁpmjbneiﬁﬁdte.aﬂmﬁkﬁmﬁaﬂusion,
sphdndhg dEpbiney hisdhe bakes RS 3adk i sivshad dieconstants WiRof 83b6hployed pa-
rafORer NS PRI IR i D it e et RE nYehsni s deseleP e dFd cckle AT ample
of %‘ﬁ&%e%t &%?EPP%E éﬁ%?&zﬁoé“é?ﬁé?%vﬁ Lﬁree gsqmrs%ﬁ%&tﬁ f’él 88%‘81%13{&%11[%‘{?%% laser

POwe reaa gsﬁ}- 1?Slrones et inat 9B Sg% %Q}Wreihacfgr g us?rmegfpec S a rmed

whn E%mﬁe'?tf\;epx; i, Vevlrés P WAL RE SABRARGED Oh D féésvmmS

QU HICURRIEN: Bl R e {ERIS REPSRInNGR, RS JASEE RONEMIATRANSSdotkeiHesults
suggertidhen bath ﬂnéqiop@weéﬁﬂd)&’gﬁnwmgqiﬁaﬁdnmlhﬁ at eheufPBienthyphighydevel to
avobdethedl dbkenffdresiivis eepectsd Theet dphrotealegadt froneshaprotelitige tanfiosprererefearch
[56fergbe dtnduicatidsyofd) RBE dhisperels proesostdnied the fvathetdnvestgaionder, (b) en-
trapment of the protective Ar atmosphere, or (c) the evaporation of volatile element. The
most volatile element in the present work is aluminum, however, no aluminum was found
in association with the pores even though the loss of aluminum in the LPBF samples was
observed. Therefore, it is expected that the pores result from the protective atmosphere of
either gas atomization or LPBF. This needs to be confirmed by further investigation.

Thao hichoct Aorncitvr 10 achioyvrad 1 +tho carmminla vrad110aod aridh HFlhe mvvavitrti1 VVED AfF



Materials 2022, 15, 1801

19 of 24

The highest density is achieved in the sample produced with the maximum VED of
92.59 J/mm3>. Most of the porosity in this sample is due to cracks, unlike those obvious lack-
of-fusion defects and gas pores observed in other samples built with lower VED. The high
crack sensitivity during the LPBF process has been reported in the LPBF-built equimolar
AlCoCrCuFeNi HEA [20]. It is known that generally in LPBF process, internal stresses
and localized strains would be created due to thermal gradient during the process [51]. In
addition, the misorientation of boundaries contributes to the cracks propagating along the
HAGBs instead of the LAGBs, as revealed in Figures 3 and 7. This corroborates previous
research, where it was described that HAGBs exhibit a higher cracking sensitivity than those
of LAGBs [52-54]. In this research, these intergranular cracks are likely to be solidification
cracks [55].

As discussed above, cracking is related to the proportion of HAGBs, and the cracks
would affect the RD. The microhardness of the LPBF samples appears roughly to be a
function of RD, as depicted in Figure 12, while grain size and cell size have smaller effects
within the range studied. As the RD reduces, the measurement error of each hardness
value varies more significantly. The highest hardness of 604.6 = 6.8 HV0.05 on the xy-plane
is achieved with the highest RD of ~97% when the HAGBs have the lowest value of ~45%.
However, it is observed that the RD of each specimen produced under the laser power of
200 W with a different scanning speed of 1500 and 2000 mm/s is similar (see in Figure 2a),
while the hardness of specimen produced with a scanning speed of 2000 mm/s is higher.
Moreover, the RD of specimens produced under the constant VED of 55.56 ] /mm3 with the
laser power and scanning speed of 160 W and 1600 mm/s and 180 W and 1800 mm/s is
noticeably lower than that of 200 W and 2000 mm /s (see in Figure 2b), but the distinction
on the hardness is not as obvious (see in Figure 11b). This suggests that although the RD is
relatively lower, the hardness is enhanced by the smaller cell size induced by increasing
the scanning speed, as displayed in Figure 10. This is likely to be ascribed to the higher
density of dislocations associated with the cells [56]. In conjunction with the controllability
of the structures, especially cell size, implies the great potential of designing alloys with
the desirable properties.

4.2. Effect of Microstructure Evolution on Magnetic Properties

The representative values of Ms of as-built LPBF specimens and raw powder are
summarized in Table 5. These values were higher than those reported previously for
similar compositions also highlighted in the same table. For comparison, Zhang et al. [28]
obtained the M; of 38.2 Am?/kg (at 1.5 T and room temperature) on as-cast AlCoCrCuFeNi
alloy. The M; of as-cast and splat-quenched AlICoCrCuFeNi alloy was disclosed by Singh
et al. [32] to be 44.0 and 46.0 Am?/ kg (at 14 T and 300 K), respectively.

Table 5. The saturation magnetization of multicomponent alloys produced by various methods.

Annealing Temperature and M after Annealing

2
Alloy Method M; (Am?/kg) Time (Am?/kg) Ref.
AlCoCro75Cup s FeNi Gas atomization 55.3 (at 9 T and 300 K) This work
(powder, 20-63 pm)
AlCOCrg,75Cu0‘5FeNi
(VED =92.59 ] /mm? LPBF 65.3 (at 9 T and 300 K) This work
(P =200 W, v =1200 mm/s))
AlCoCro_75Cu0_5FeNi
(VED = 55.56 J/mm? LPBF 60.1 (at 2 T and 305 K) 800 K, 10 min 75.9 (at 2 T and 305 K) This work
(P =180 W, v = 1800 mm/s))
. . 46.0
AlCoCrCuFeNi Splat quenching (at 14 T and 300 K) - [32]
. . 44.0
AlCoCrCuFeNi Casting (at 14 T and 300 K) [32]
AICoCrCuFeNi Casting 382 (at 1.5 Tand 127315K, 2 h 16.1 (at 1.5 T and room [28]
room temperature) temperature)
Fe15C015NiznMnyoCusg Homogenization 12.0 (at 2 T and 300 K) 873.15K,240 h 21.0 (at 2 T and 300 K) [33]

The spinodal decomposition in AICoCrCuFeNi alloy has been well established [13,29,30,32].
It has been shown that the phase decomposition already occurs at the early stage of
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solidification of the melt even under a high cooling rate of 10°~10” K/s [32]. Particularly,
the phase decomposition into BCC A2 and B2 structures has been observed in the gas-
atomized raw powder, as shown in Figure 4. During the LPBF process, as the scanning
speed varies from 2000 to 1200 mm/s under the same laser power of 200 W, accordingly,
M increases from 78.7 to 80.5 Am?2/ kg at 10 K, and from 63.0 to 65.3 Am?/ kg at 300 K.
The differences identified in the saturation magnetization Ms of specimens (depicted in
Figure 13 and summarized in Table 4) can thus be related to the dependence of M on the
degree of spinodal decomposition, which is controlled by the cooling rate. The high cooling
rate in the LPBF process leads to the suppressed decomposition, i.e., less Fe-Cr-rich A2
phase while more Al-Ni-rich B2 phase structure is produced, which causes the decrease of
M;. This is in agreement with previous research [25,31], in which the Al-Ni-rich ordered
BCC phase possessed weakened ferromagnetism. Singh et al. [32] showed that in the as-cast
AlICoCrCuFeNi alloy aged at 873.15 K for 2 h then followed by an ice quenching, the M
increased by 4 Am? /kg at 14 T and 300 K. This improvement is comparable to our results
by varying the input parameters in LPBF process, as listed in Table 4. It demonstrates
that LPBF provides an efficient method to enhance the magnetic properties without the
need for time-consuming heat-treatment. Furthermore, it allows a local control of magnetic
properties via input parameters of the LPBF process.

The variations of M after annealing has also been given in Table 5. Interestingly, the
M of one LPBF specimen in this research is found to increase by approximately 15 Am?/kg
at 2 T and 305 K after annealing at 800 K for 10 min, as displayed in Table 5. The enhanced
M; indicates that the annealing temperature around 800 K falls into the miscibility gap
of spinodal decomposition, which promotes the further formation of ferromagnetic A2
structure. It suggests that if annealing this alloy at the temperature of 800 K for a suitable
period, it is possible to improve the M; significantly. As a comparison, in the research
conducted by Rao et al. [33] displayed in Table 5, the Fe15Co15NizMnyoCuzg HEA specimen
was annealed at 873.15 K for 240 h to achieve an improvement from 12 to 21 Am? /kg at2 T
and 300 K.

When further heating up to 1000 K, the temperature is out of the range of miscibility
gap, and the phase transition is also initiated. Zhang et al. [29] stated that the annealing of
the spray-cast sample results in the disappearance of spinodal decomposition structures
and the formation of new phases. The latter is also observed in our case (Figure 15b).
Consequently, the M of LPBF specimen decreased while heating up to 1000 K. Moreover, it
also explains the smallest Ms detected in the PECS sample. The PECS sample is sintered
at the temperature of 1273.15 K, which is above the miscibility gap of spinodal decom-
position, similar to the as-cast sample annealed at 1273.15 K for 2 h exhibiting the M; of
16.1 Am?/kg (at 1.5 T and room temperature) [28], as displayed in Table 5. The cooling
rate of 100 °C/min in the reference PECS sample is much lower than that in the LPBF
process. The slow cooling process leads to the formation of dual-phase FCC + BCC struc-
tures (see in Figures S1 and S2), which is in accordance with the former investigations on
AlCoCrCuFeNi based alloy produced by traditional methods with a slow cooling rate [7,9].
The BCC phase in the PECS sample is determined to be Al-Ni-rich (see in Figure S3 and
Table S2). As the Al-Ni rich BCC phase discloses a weakened ferromagnetism [25,31], and
furthermore, ferromagnetism is known to be sensitive to the aging temperature [57], the
annealing and slow cooling are likely responsible for the smallest Mg of PECS sample
(Table 4).

It can be therefore summarized that there are two stages of phase decomposition in
the AlCoCrCuFeNi based alloy. When the melt solidifies at a high cooling rate, generally
>10% K/s, the phase separation into Fe-Cr-rich A2 and Al-Ni-rich B2 phase occurs. As
the increase of cooling rate suppresses the formation of A2 phase, it results in the lower
saturation magnetization. Once the sample is annealed at the temperature located in
the miscibility gap of spinodal decomposition, further decomposition occurs, leading
to the enhanced magnetization M;. At a low cooling rate, such as in a regular casting
process, dendrites and interdendrites are formed, including the Cr-Fe-Co-rich regions, and
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if annealing the sample at a temperature fell into the miscibility gap, the Cr-Fe-Co-rich
regions are separated into the ferromagnetic Fe-Co-rich structure and antiferromagnetic
Cr-rich structure, and a higher degree of decomposition results in the larger M;, as disclosed
by Singh et al. [32].

In this case, the magnetization measurements proved to be an efficient method to
distinguish the various structural phases down to the nanoscale, which might be tedious
to achieve by other characterization methods. Based on the relationship among cooling
rate, degree of spinodal decomposition, and magnetization, with the great controllability of
LPBE, it is feasible to design the magnetic properties as demanded.

5. Conclusions

To conclude, the microstructure and properties of additively manufacturing
AlCoCr 75CugsFeNi alloy with LPBF process have been investigated. The feasibility
of utilizing spinodal decomposition to induce the improvements of magnetic proper-
ties in multicomponent alloys is presented, and this can be easily materialized by the
LPBF process.

1.  Two sets of process parameters have been employed, namely, the different VEDs
corresponding to the alteration of scanning speed under the same laser power, and the
same VED referring to different laser power and scanning speed. The observations
demonstrate that these three parameters contribute to the different aspects during the
process, and they should all be optimized to achieve the best results.

2. All LPBF specimens are found to consist of BCC phase, while the reference PECS
sample contains both FCC and BCC phase. The phase structure in LPBF specimens
estimated by XRD reveals that the A2 structure formation is suppressed by the in-
creasing cooling rate. Smaller cellular structures are formed by employing a higher
scanning speed under the same laser power. This contributes to the high microhard-
ness of 604.6 + 6.8 HV0.05, despite the cracks and other defects. It is noticeably higher
than 409.5 £ 4.2 HV1 of the reference PECS sample.

3. Raw powder, LPBF specimens, and PECS sample all exhibit soft magnetic behavior.
The highest M of 65.3 Am?/kg is reached in as-built alloy. The saturation magneti-
zation is related to the spinodal decomposition into A2 and B2 phase structure, and
the degree of decomposition is controlled by the cooling rate, which can be adjusted
by means of altering the scanning speed in the LPBF process. As the scanning speed
declines, corresponding to a decreased cooling rate, a higher degree of decomposi-
tion is conducted, leading to the formation of a larger fraction of A2 structure. It
contributes to the enhancement of Mg comparable to the formerly reported value of
the as-annealed sample, yet without the need for time-consuming post treatment. In
addition, the decomposition is furthered via annealing at 800 K for 10 min, resulting
in the increase of Mg, approximately by more than 15%.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ma15051801/s1, Figure S1: XRD experimental and refinement
patterns of PECS AlCoCr( 75Cug5FeNi alloy; Figure S2: Secondary electron (SE) image of PECS
AlCoCr 75Cuq 5FeNi alloy; Figure S3: SEM-EDS results of PECS AlCoCr(75Cug sFeNi alloy. (a) Secondary
electron (SE) image. EDS spectra of (b) Point 1 and (c) Point 2 indicated in (a); Table S1: Archimedes
density and Vickers hardness of PECS AlCoCr( 75Cug 5FeNi alloy; Table S2: Chemical compositions
of Point 1 (FCC phase) and Point 2 (BCC phase) displayed in Figure S3.
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