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A B S T R A C T   

In this work, Graphene/Copper Nanowire (G/CuNW) based transparent conducting electrodes (TCEs) were 
prepared via spin-assisted layer-by-layer (LBL) deposition. 3-aminopropyltriethoxysilane (ɣ-APS) functionalized 
glass substrates were sequentially spin-coated with graphene oxide (GO) and CuNWs. Then, to enhance the 
electrical conductivity, the multilayer films were subjected to chemical reduction and thermal annealing. The 
ultimate films were characterized by a scanning electron microscope, UV–Vis spectrometer, and sheet resistance 
using a four-point probe method. 3-bilayer G/CuNWs films exhibited sheet resistance of 9 Ω/sq and optical 
transmittance of 67% (at 550 nm), which is comparable to commercial ITO electrode in terms of mainly sheet 
resistance.   

1. Introduction 

Transparent conducting electrodes (TCEs) are the key component of 
many modern optoelectronic devices including solar cells, light-emitting 
diodes and touch screens. Owing to its low sheet resistance (~15 Ω/sq) 
and relatively high optical transmission (~85%), indium tin oxide (ITO) 
is the industrially accepted material. However, the scarcity of indium 
and the inherent brittleness coupled to complicated and energy- 
intensive coating process of ITO create a strong incentive to find alter
native transparent conductors for above-mentioned devices [1]. 

In the last decade, various nanomaterials including conducting 
polymers, carbon nanotubes, graphene and silver nanowires have been 
introduced as novel TCE material [2]. Among them, silver nanowires 
(AgNWs) have been extensively utilized in organic solar cells, organic 
light emitting diodes and displays owing to their high electrical con
ductivity, mechanical flexibility, and high transparency [3,4]. On the 
other hand, copper nanowires (CuNWs) are a promising TCE candidate 
because of their high intrinsic conductivity as well as the abundancy and 
lower cost of copper compared to silver. However, the oxidation prob
lem of the CuNWs deteriorates their electrical properties, which in turn 
limits their widespread use in the TCEs [5,6]. 

To overcome the oxidation problem of CuNWs, various protecting 
approaches have been developed, such as encapsulation of the nano
wires with polymeric layer [7], passivating with special corrosion 

inhibitors [8], use of inorganic shells [9] or coating the nanowires with 
graphene/graphene oxide (G/GO) sheets [10–15]. Among all these 
routes, G/GO demonstrated best protection of the CuNWs from oxida
tion without sacrificing the electrical properties. Strategies to prepare 
G/GO and CuNWs composite films include spray coating of both GO and 
CuNWs [10], simultaneous vacuum filtration GO and CuNWs followed 
by transfer to a substrate [11,13–15] and spray/blade coating of CuNWs 
followed by chemical vapor deposition of graphene [12]. These ap
proaches include common drawbacks such as reproducibility and poor 
adhesion of the CuNWs to the substrate. On the other hand, layer-by- 
layer (LBL) deposition is a very promising approach that can create 
thin films with tunable morphology, surface properties and good 
adhesion to any surface [16]. 

In this study, therefore, G/CuNW multilayer based TCEs were 
fabricated via spin-assisted LBL deposition technique. 3-aminopropyl
triethoxysilane (ɣ-APS) functionalized glass substrates were sequen
tially spin coated with negatively charged graphene oxide (GO) and 
positively charged CuNWs. Then, to enhance the electrical conductivity, 
the multilayer films were subjected to chemical reduction and thermal 
annealing. The ultimate films were characterized by a scanning electron 
microscope, UV–Vis spectrometer, and sheet resistance using a four- 
point probe method. 
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2. Materials and methods 

2.1. Materials 

Cysteamine hydrochloride (CA, BioXtra), sodium borohydride 
(NaBH4), 3-Aminopropyl triethoxysilane (ɣ-APS), anhydrous ethanol, 
methanol and DMF were obtained from Sigma–Aldrich. Copper nano
wires (CuNWs) dispersed in ethanol (10 mg/ml) with an average 
diameter of 100 nm and length of 30–50 µm were purchased from 
Novarials Co. Glass slides (15 × 15 mm2) were provided by Menzel- 
Glaser GmbH & Co. Deionized (DI) water (18.2 MΩ) was obtained 
with a Millipore-Q system. 

2.2. Functionalization of glass substrate 

Prior to treating the glass substrates with piranha solution [16], they 
were subjected to sonication in acetone, ethanol and DI water for 5 min 
and dried under N2 flow. Then, the glass substrates were dipped in 3% ɣ- 
APS solution for 3 h, followed by washing with excess methanol and 
drying under N2 flow. 

2.3. Surface modification of CuNWs 

0.026 M CA in DMF was added to CuNW solution (1 mg/ml), fol
lowed by stirring for 24 h at RT. Then, to remove the unreacted CA, the 
solution was centrifuged, followed by washing with DMF and DI water 
sequentially, and the final concentration was adjusted to 0.5 mg/ml by 
re-dispersing in DI water. 

2.4. Preparation of transparent conductive electrode 

Graphene oxide (GO) was synthesized as reported previously [16]. 
The ɣ-APS modified substrate was coated with GO solution (1 mg/mL) 
via spinning (2.500 rpm, 30 sec) and rinsed excessively with DI water. 
Then, the substrates were spin-coated (2.500 rpm, 30 sec) with CuNWs 
solution, followed by vigorously rinsing with DI water. Multilayer films 
were acquired via repeating the mentioned processes. Finally, the films 
were subjected to chemical reduction and thermal annealing under inert 
gas atmosphere based on our previous report [16]. 

2.5. Characterization 

Surface charges of CuNWs and GO were evaluated by zeta potential 
analyzer (Nano ZS, Malvern Instruments). The surface morphology of 
the TCEs were characterized by field emission scanning electron mi
croscope (FIB-SEM Multibeam System, JIB 4601F) and sheet resistance 
of TCEs was measured by four-point probe technique (RM3000, Jandel), 
while the optical property was analyzed using UV–Vis spectrometer 
(Lambda 750, Perkin-Elmer). 

3. Results and discussion 

The CuNWs demonstrated a positive zeta potential (+32.0 mV), 
while the GO exhibited a negative value (−40.9 mV) (Fig. S1). These 
positive and negative charges resulted from protonation of –NH2 and 
deprotonation of –COOH groups [16], respectively, which provide suf
ficient mutual attraction to ensure a stable LBL deposition. 

Increasing the layer number provided a darkening red color (Fig. 1- 
a), which can be attributed to the increase in the number of GO and 
CuNWs. It is clearly shown that the film was still transparent even after 
four bilayer depositions. As shown in Fig. 1-b, the optical transmittance 
of films decreased with increasing number of bilayers. The strong 
bonding between the GO and CuNWs was derived from the ionic in
teractions between the negatively-charged hydroxyl groups of GO and 
the positively-charged amine groups of CuNWs [16]. Moreover, the film 
thickness measurement also supports the formation of successful 

multilayer, showing 72, 136, 256 and 551 nm with 1, 2, 3 and 4 bilayers, 
respectively. The 1 bilayer sample exhibited RMS value of 1.5 nm. As the 
number of bilayers increased, their RMS values increased, providing 3.2, 
8.4 and 11.7 nm for 2, 3 and 4 bilayers, respectively (Fig S2). 

As it could be seen in Fig. 2, number of the bilayers have strong 
influnce on the morphology of the multilayer films. It is noticeable that 
1-bilayer film resulted in a low density of nanowires (Fig. 2-a). However, 
the density of the CuNWs on the surface was found to increase with the 
increased number of layers, which again demonstrates the successful 
LBL deposition. In addition, it is worthy to note that increasing the 
number of bilayers led to formation of more electron transport paths, 
and reduction in the size of voids which led to less optical transmission 
(Fig. 2 b-d). 

After chemical reduction and thermal annealing, the sheet resistance 
of the multilayer films was evaluated as 50, 21, 9 and 7 Ω/sq for 1, 2, 3 
and 4-bilayers, respectively. Moreover, the optical transmission at 550 
nm was measured as 89, 77, 67 and 60% for 1, 2, 3 and 4-bilayers, 
respectively (Fig. 3-a). We believe that both graphene and CuNW 
network contributed to the conductivity of the multilayer film. The 
graphene acted as a conducting bridge between disconnected CuNWs, 
which in turn led to low sheet resistance. The 3-bilayer G/CuNWs films 
exhibited Figure of Merit (FOM) value of 94, which is comparable to that 
of ITO (T = 85%, RS = 15 Ω/sq, FOM = 148.5). 

Consequently, G/CuNW film performance was compared with the 
previous works in Fig. 3-b. The comparison reveals that our work has 
similar performance with the other coating techniqes. Moreover, the 
films obtained in this work have good adhesion to the substrate. The G/ 
CuNW multilayer films in this work easily passed adhesion test with 3-M 
tapes without any change in sheet resistance and topology (not shown 
here). The strong adhesion could be explained by the strong ionic 
interaction between negatively charged GO and positively charged 
CuNWs (Fig. S3). Compared to other coating techniques, LBL deposition 
provides better results in terms of control over the morphology, tuning 
the optoelecronic properties, repeatibility and tailoring adhesion of the 
to the substrate. 

Fig. 1. (a) Macro images and (b) Optical transmittance of GO/CuNWs multi
layer films. 
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4. Conclusion 

In this work, G/CuNWs based solution-processable transparent 
conducting electrode was successfully prepared via LBL coating method. 
The electrical and optical properties of G/CuNWs hybride electrodes 
were investigated by varying the number of bilayers. Optimum opto
electronic performance was obtained with 3-bilayer of G/CuNWs elec
trode, which provided sheet resistance of 9 Ω/sq, optical transmission at 
550 nm of 67% and FOM value of 94. The demonstrated material system 
and coating technique has the potential to replace ITO where low-cost 
and flexible processability is preferred. 
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Fig. 2. a) SEM images of (a) 1, (b) 2, (c) 3 and (d) 4-bilayer GO/CuNWs films.  

Fig. 3. (a) Sheet resistance and optical transmission at 550 nm of G/CuNW multilayer films and (b) Comparison of the sheet resistance and optical transmission 
values of this work with the references. 
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Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.matlet.2021.131632. 
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