Koutcheme, Charles; Sarsa, Sami; Hellas, Arto; Haaranen, Lassi; Leinonen, Juho

Methodological Considerations for Predicting At-risk Students

Published in:
ACE ’22: Australasian Computing Education Conference

DOI:
10.1145/3511861.3511873

Published: 14/02/2022

Document Version
Peer reviewed version

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Methodological Considerations for Predicting At-risk Students

Charles Koutcheme
Aalto University
Espoo, Finland
charles.koutcheme@aalto.fi

Sami Sarsa
Aalto University
Espoo, Finland
sami.sarsa@aalto.fi

Arto Hellas
Aalto University
Espoo, Finland
arto.hellas@aalto.fi

Lassi Haaranen
Aalto University
Espoo, Finland
lassi.haaranen@aalto.fi

Juho Leinonen
Aalto University
Espoo, Finland
juho.2.leinonen@aalto.fi

ABSTRACT

Educational researchers have long sought to increase student retention. One stream of research focusing on this seeks to automatically identify students who are at risk of dropping out. Studies tend to agree that earlier identification of at-risk students is better, providing more room for targeted interventions. We looked at the interplay of data and predictive power of machine learning models used to identify at-risk students. We critically examine the often used approach where data collected from weeks \(w \), \(w \geq n+1 \), is used to predict whether a student becomes inactive in the subsequent weeks, pointing out issues with this approach that may inflate models’ predictive power. Specifically, our empirical analysis highlights that including students who have become inactive on week \(n \) or before, where \(n > 1 \), to the data used to identify students who are inactive on the following weeks is a significant cause of bias. Including students who dropped out during the first week makes the problem significantly easier, since they have no data in the subsequent weeks. Based on our results, we recommend including only active students until week \(n \) when building and evaluating models for predicting dropouts in subsequent weeks and evaluating and reporting the particularities of the respective course contexts.

CCS CONCEPTS

- Social and professional topics → Computing education.

KEYWORDS

predicting performance, at-risk students, prediction, learning analytics, educational data mining

ACM Reference Format:

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

ACE ’22, February 14–18, 2022, Virtual Event, Australia. © 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM. ACM ISBN 978-1-4503-9643-1/22/02. $15.00 https://doi.org/10.1145/3511861.3511873

1 INTRODUCTION

Predicting academic performance of a student is a relatively popular research topic [20, 29, 45, 54]. Within computing education research, such studies use a variety of data that includes demographic factors [12, 16], surveys and questionnaires [16, 58, 61], data collected from course activities such as clicker data from lectures [25, 42, 52], log data from course materials [38], and submission data or log data from course assignments [1, 6, 9, 24, 33, 36, 58]. One common aspect in early work in the topic is including all the available data when building predictive models – this has been the norm for demographic data, collected survey and background data, and other type of data that is relatively static and does not by itself indicate activity or lack of it.

However, with the recent increase in collecting and using log data from courses, e.g. different types of snapshot and submission data from programming courses [1, 6, 9, 24, 33, 36, 58], using all the available data when building predictive models can lead to bias when informed decisions on what data is included or excluded are not made. As an example, building models for identifying students who have dropped out at the final week of a course using log data from all but the final week of the course can lead to accurate but uninformative models. The accuracy and lack of valuable information both stem from the same root cause: many students have already dropped out at the final week and thus the log data shows little to no activity for them on e.g. the week prior to the final week of a course, which is a relatively good indicator of a dropout. Another issue with such use of data is that it may mask away other more valuable information, such as information about assignments that students struggle with. For examples of studies that have used data in this way, see e.g. [3, 38, 44].

The above example highlights the methodological issue that we discuss in this article. Our overarching theme is exploring what extent including students who have likely already dropped out into the data used to train predictive models inflate the predictive performance of those models. To achieve this, we study four datasets from three courses, and compare the performance of two approaches for building models for predicting who are likely to drop out. The first approach includes all past data (including already dropped out students), while the second approach includes only data from students who have been active up to the current point. While there exists a wide variety of works focusing on predicting at risk students [20], the closest matches to our work are articles addressing methodological aspects of such work (e.g. [60]).
This article is organized as follows. Next, in Section 2, we outline related work in predicting course dropouts, followed by Section 3 outlining our study methodology, including the context, data, and research questions. Section 4 presents our results, which are discussed in Section 5. Finally, in Section 6, we summarize our findings and outline future research directions.

2 BACKGROUND

The ability to identify students who are at risk of dropping out of studies [53], or simply under-performing [20], provides institutions and instructors with an opportunity to act to remedy the issue. Indeed, significant efforts have been invested into building early warning systems that analyze collected data and highlight students who might benefit from an intervention [4, 28, 43]. These interventions can be manual, e.g. providing counseling or coaching [7], but they can also be automated, e.g. the use of visualizations [23] or other automated feedback mechanisms [13]. As an example, even feedback on projected grade may change students’ behavior [5].

The key issue in these systems is the functionality that is used to identify students who are performing poorly in their studies. Due to the complexity of the topic, there exist several intertwining research streams; some being very domain-specific such as identifying students’ performance using log data collected from a programming environment [19, 21, 63], down to the level of utilizing keystrokes students take while programming [14, 32, 36], while other research streams may be domain-generic such as using past grades, completed courses or consistency of work to predict future performance [2, 31, 59]. Yet, even with the ability of identify students in need of assistance, it might be that the interventions themselves do not work [51], or only work for a subset of the students [23].

As with all predictions, like predicting weather or predicting the outcome of a cricket match, prediction results need to come sufficiently early, as having a system warn about upcoming rain is not useful if one already looks like a drowned rat. In the same vein, an early warning system that highlights already dropped out students is unlikely to be useful. The notion of earliness has been highlighted in research into predicting academic performance; although earliness between studies varies, it often indicates predicting academic performance using data from only a part of the course such as the first course weeks (see e.g. [1, 10, 17, 41]). However, approaches for predicting academic performance are often evaluated over multiple datasets, where each dataset has data from a particular period from a course or a set of courses (see e.g. [10, 30, 37, 57]).

Herein also lies the possibility for a methodological misstep that our present article discusses. Knowing that many students who drop out of courses drop out early, it is possible that – if not enough care is taken when choosing what data to use – data used to train and evaluate predictive models also includes data of students who have already dropped out. As an example, a dataset that is used to create a model for predicting who will drop out during the fourth week of a course might – if not carefully constructed – include students who have already dropped out after the first week, and thus no longer are active during the second and third week. This leads to a situation where – during training and evaluation of predictive models – the predictive models have information that they would not have in a realistic situation, or at least that would not be useful to those in the end using such models. If the models are not taken into use there is little harm however; including students who might already have become inactive likely will just inflate the performance of the models (see e.g. [3, 38, 44]).

Note that although our focus here is on weeks, the same phenomenon could be also observed within weeks. That is, if a student drops out in the middle of the week, completing just a few of the assignments, then the subsequent assignments that are left undone could be a good indicator of students’ performance. This has been highlighted, e.g., in the analysis by Ahadi et al [1], who noted that the last assignments of a week were good predictors of future performance, although to their merit they also analyzed what students did in those particular assignments. Similarly, the phenomenon exists also on a higher abstraction level – as an example, one could seek to build a model that predicts dropouts from a degree program using e.g. enrollment data that would effectively already encode students’ engagement.

3 METHODOLOGY

3.1 Context and Data

For the purposes of our study, we obtained log data from three courses held at a university in a Nordic country. All of the courses had different instructors. We refer to these courses as CS0-Web, CS1, and WD. CS0-Web & CS1 had deadlines after each round while WD only had a single deadline at the end of the course. The courses and their context are as follows.

CS0-Web is a 3 ECTS course intended for life-long learners to learn the basics of programming and web development with JavaScript. The course is taken by approximately 100 students annually and is realized as an interactive ebook with embedded exercises that are automatically graded. The course is focused on learning basics of HTML, CSS, and JavaScript as well as learn to manipulate DOM\(^1\) with JavaScript. The latter half of the course focuses on simple server-side development.

CS1 is a 5 ECTS fully online\(^2\) introductory programming course which teaches programming fundamentals, using the Scala language, and emphasizes both the object-oriented and functional paradigms. It is taken by approximately one thousand students annually, most of whom are from the university, though some life-long learners also take it. The course is given through an open online interactive textbook which integrates both the activities (assignments, exercises, multiple-choice questionnaires) and the theoretical side. Each week, students have to solve and submit a set of assignments integrated within the textbook.

WD is a 5 ECTS university course typically taken during the second year of studies. It is taken by a few hundred students annually, and it introduces students to the lifecycle of web applications, ranging from conceptualization and building of web applications to security testing and maintenance. Topics in the course are approached in a hands-on manner, where students learn to develop and test web applications using JavaScript, as well as to deploy, maintain, and monitor them in cloud environments.

\(^1\)Document Object Model

\(^2\)Due to the COVID-19 pandemic.
Web rounds 1 & 8 last a week, but rounds 2 to 7 last two weeks. In
We adopted the same approach for all courses studied. Our research
who are likely to drop out by a given round
we use two separate datasets with separate anonymized student
Table 1.
(for CS0-Web, CS1, and WD) collected from their learning manage-
ment systems and browsing behavior (for CS1) collected using a
JavaScript plugin similar to the one described in [27, 38, 39]. For CS1,
students in the data who have become inactive in the rounds preceding
out by a given round
round (i.e., the student did not access/interact with the materials).
For browsing data, we say that a student is inactive at a
activity. We say that a student
be considered as having dropped out, which can even be affected by
part in learning [15, 18, 34, 35].

There is no general consensus on when or how a student should
considered as having dropped out, which can even be affected by
institutional policies [55]. We defined dropping out using student
activity. We say that a student \(s \) has dropped out at round \(y \) if the
student \(s \) is inactive at that round \(y \) and all the following rounds.
Our definition of activity varies depending on the type of data
collected. For submission data, we say that a student is inactive at a
given round \(y \) if the student did not submit any assignments during
that round. For browsing data, we say that a student is inactive at a
given round \(y \) if the student has no browsing activity during that
round (i.e., the student did not access/interact with the materials).
The \textit{including approach} seeks to identify students who dropped
out by a given round \(y \) using data from all students from all previous
rounds. Studies using the including approach tend to include stu-
dents in the data who have become inactive in the rounds preceding
the target round. In \textit{excluding approach}, when identifying students
who are likely to drop out by a given round \(y \), only students who did
not drop out during the preceding rounds are included (i.e. students
who already have dropped out are excluded). Compared to the in-
cluding approach, the data from already dropped out students is not
included, which creates a more realistic picture of the performance
of the models.

To answer RQ1, we compare the prediction performance of the
including approach and the excluding approach when predicting
which students are likely to drop out. To answer RQ2, we analyze
the features from the data that both of the approaches use for the
predictive models, and to what extent they differ. Finally, to answer
RQ3, we draw insights from the models’ features and performance,
and relate that with the differences in the courses and data.

In the analyses, where applicable, for the including approach, we
predict which students are at risk of dropping out by each round
of the courses, from round 2 to round \(7^3 \), using iterative subsets
of data from the previous rounds (1, 1-2, etc.). For predicting e.g.,
dropouts by round 7, we iteratively use data from: round 1, rounds
1-2, rounds 1-3, rounds 1-4, rounds 1-5, and rounds 1-6. In each
subtask, we include all the student population. In our excluding
approach, the task is the same, but we adjust the data to only include
the students who did not dropout in one of the rounds beforehand.

3.3 Features Used

For the prediction tasks, we collected the following features:

Submission data We include the following features for each
assignment per round:
- Attempt count \(\in \mathbb{N} \): the number of times the student at-
temted the assignment
- Correctness \(\in [0, 1] \): the percentage of maximum points
 student received for the assignment

Browsing data We include the following features for each
round:
- Study session count \(\in \mathbb{N} \): The number of study sessions
- Study session length \(\in \mathbb{R} \): The average length of a study
 session (in minutes)
- Total time \(\in \mathbb{R} \): The total time spent online (in minutes)
- Per page time \(\in \mathbb{R} \): Time spent reading each chapter of
 the material pages corresponding to the given round

Overall, the features that we used for submission data are com-
monly used in the literature [22]. We opted for assignment specific
features because for the courses selected, the assignments given
do not have the same difficulty, and as such, we would lose in-
formation if we aggregated features over the rounds. Concerning
browsing data, we computed per round study session statistics,
but, in order to have features with close level of granularity across
datasets, we also computed the time students spent reading on
each page of the rounds included as data. This time spent per page
approximates very roughly the time each student spent on (sets)
of assignments – i.e. time-on-task, which is known to be a crucial
part in learning [15, 18, 34, 35].

3.4 Models

Following the methodology employed by studies predicting stu-
dents at risk, we used machine learning models for our task of
predicting dropouts. As our machine learning models, we employ

3Round 1 is excluded, as there are no previous rounds to use as input data, and early
rounds have a high dropout rate due to students sampling courses.
Random Forest classifier and Logistic Regression, which have also been previously used in the literature [20]. These models are both widely used in machine learning, often performant and are also interpretable in the sense that feature importance can be extracted for the trained models.

In addition to the two machine learning models, we use two baseline models to show the effectiveness of the machine learning models, i.e. that the models are able to generate useful non-trivial predictions. Our first baseline model is Majority Vote aka Zero Rate (ZeroR) model, which is a model that predicts all values as the most common prediction value in given data. As such it has no predictive value. As our second baseline model, we use a Naive Bayes classifier, which operates on the (unrealistic) assumption that each feature used to predict a class is independent of each other.

3.5 Procedure

For each subtask, we trained our machine learning models, random forest and logistic classifiers using the scikit-learn framework [48]. The approach here is similar to the approaches that have previously been applied in research on predicting academic performance (see e.g. [1]).

For model hyperparameter tuning and performance evaluation, we employ nested cross-validation using 5 folds for outer loop, and 3 folds for inner loop. We use PR-AUC (Precision-Recall Area Under Curve) as the metric to pick the best model hyperparameters. We report the performance of our models on the following commonly used performance metrics to vary the descriptiveness of our performance results: accuracy (intuitive metric with simple interpretation), RMSE (Root Mean Squared Error, a raw error metric for reliability), ROC-AUC (Receiving Operator Characteristic Area Under Curve a decision threshold independent metric that is unaffected by data skew), and F1-score (the harmonic mean of precision and recall which are both intuitive metrics for the problem).

We perform two preprocessing steps before feeding the data to our models: standardization and feature selection. Standardization balances the a priori importance of each feature, since different types of features have different magnitudes. We standardize each feature individually to have zero mean unit variance. Afterwards, we perform a feature selection step. We used Analysis of variance (ANOVA) to determine the \sqrt{M} most relevant features as model inputs, where M is the total number of features. We also experimented with no feature selection at all, to rule out the possibility that feature selection removes important features.

In order to assess which features are most useful for dropout prediction, we examine the learned properties of the final models that are selected by the nested cross-validation process. We obtain the best subset of features from the final random forest model by looking at the accumulation of the impurity decrease within each tree of the model. We obtain the best subset of features from the final logistic regression model by looking at the (normalized) coefficients of the model.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>R4</th>
<th>R5</th>
<th>R6</th>
<th>R7</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS0-Web</td>
<td>All</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>73</td>
<td>68</td>
<td>68</td>
<td>48</td>
<td>36</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>25</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Returning</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CS1-B</td>
<td>All</td>
<td>1196</td>
<td>1262</td>
<td>1305</td>
<td>1327</td>
<td>1360</td>
<td>1378</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>1196</td>
<td>966</td>
<td>896</td>
<td>860</td>
<td>849</td>
<td>823</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>0</td>
<td>296</td>
<td>409</td>
<td>467</td>
<td>511</td>
<td>555</td>
</tr>
<tr>
<td></td>
<td>Returning</td>
<td>0</td>
<td>0</td>
<td>26</td>
<td>37</td>
<td>26</td>
<td>21</td>
</tr>
<tr>
<td>CS1-S</td>
<td>All</td>
<td>1034</td>
<td>1044</td>
<td>1045</td>
<td>1047</td>
<td>1051</td>
<td>1053</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>1034</td>
<td>847</td>
<td>787</td>
<td>790</td>
<td>776</td>
<td>755</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>0</td>
<td>197</td>
<td>258</td>
<td>257</td>
<td>275</td>
<td>298</td>
</tr>
<tr>
<td></td>
<td>Returning</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>13</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>WD</td>
<td>All</td>
<td>169</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
<td>174</td>
</tr>
<tr>
<td></td>
<td>Active</td>
<td>169</td>
<td>166</td>
<td>143</td>
<td>140</td>
<td>134</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>Inactive</td>
<td>0</td>
<td>8</td>
<td>31</td>
<td>34</td>
<td>40</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Returning</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3.6 Implementation

The code used in this work is available at Aalto Version Control System\(^3\) with the full configuration of the trained models and evaluation pipeline. Unfortunately, we cannot publish the data used due to privacy concerns.

3.7 Descriptive Statistics

Descriptive statistics of the data, including active students, inactive students, and returning students for each course for each round is shown in Table 2. The total number of students is increasing in most of the datasets, indicating that it is common for the courses to include a few students who start late. The overall student count is also higher in CS1-B than in CS1-S, indicating that students browse the course materials without submitting anything, especially when joining late.

Additionally, besides the variance between the dropout statistics, returning students, i.e. students who become inactive on some round but are active again on a later round, are scarce within the data – as an example, for WD, there is only one returning student out of all the students who become inactive in the course. When considering CS1-S and CS1-B, the number of returning students is higher in the browsing data than in the submission data, possibly due to students being more likely to inspect the upcoming course material for reference than doing assignments when unsure of continuing on a course.

4 RESULTS

4.1 RQ1. Differences in Predictive Power

Students returning on a coming round after a break is rare as is shown in Table 2. Thus, intuitively, the inclusion of previous weeks’ dropouts for predicting all future dropouts in the including approach helps models perform better as it should be easy for models

\(^3\)https://version.aalto.fi/gitlab/sarsas2/methodological-considerations-for-predicting-at-risk-students
to pick up on the trend that previously inactive students remain inactive. On the other hand, the excluding approach cannot leverage such information and should therefore perform worse. The model performance comparison over different rounds to predict, in Figure 1, suggests that the later the round we are trying predict, the larger the difference between the two approaches becomes. This effect can be confirmed by inspecting the plot in Figure 2 which shows a comparison of random forest models and majority vote baseline scores for different metrics with different feature sets for predicting round 7 or the last round available. In the plot, we see that apart from a few outliers, the random forest scores are clearly higher for the including approach than the excluding approach.

Also, in the including approach the scores are improving mostly monotonically as more rounds (i.e. features) are introduced, whereas in the excluding approach this trend is not present. Instead, in the excluding approach, predicting dropouts appears at times harder as more rounds are introduced, which is evident especially in the F1-score, although the drastic difference for the F1-metric can be partly explained by a smaller number of positive examples (dropouts) in the data. Moreover, the model performance comparison over different rounds to predict, in Figure 1, shows that the later the round we are trying predict, the larger the difference between the two approaches becomes.

Also in Figure 2, in contrast to the F1-score results, differences in accuracy are rather small. The excluding approach even achieves better accuracy than the including approach for the CS1-B dataset when using features from all rounds that precede the prediction round. Achieving high accuracy, however, is increasingly easier for the excluding approach, since the proportion of dropouts decreases the further we are in a given course. Unlike in the including approach, the excluding approach random forest model accuracy scores are not much higher than those of the majority vote baseline and logistic regression fairs even worse. A similar pattern can be seen for RMSE score. Furthermore, when inspecting e.g. random forest model’s F1-Score for feature rounds 1-6 and dataset CS1-S in the excluding approach, it is extremely poor, and similarly, accuracy is below that of the majority vote. Even though ROC-AUC scores are relatively high for both approaches, the overall results still show that the models may have major difficulties in reliably identifying future dropouts, a result which is not evident when using the including approach.

4.2 RQ2. Discriminative Features

We ranked the features given the importance given by each final model for each prediction task, and we selected the top 10 features. Figure 3 shows the percentage (from these top 10 features) of features of each type presented in subsection 3.3, for each type of dataset, averaged over all the weeks. The first thing that we observe is that both approaches rank the types of features rather similarly (within a given course). There are only variations in the magnitude of the importance while the feature ranking is the same between the two approaches. For the submission data, we see that the including approach has a tendency to give more importance to the correctness variable. Concerning browsing data, both the including and the excluding approach favor time spent as the most discriminating feature. However, this is also likely due to the higher proportion of time related features than study session related features. With that factor taken into account, it seems that the including approach makes equal use of study session statistics, while the excluding approach favors slightly more the study session length than the number of study sessions.

We show as illustration the top 10 submission features used by the RandomForest algorithm to discriminate dropouts from non dropouts at the 6th round, using data from all previous rounds, for the CS1 course (Table 3) and the CS0-Web course (Table 4). Figure 4 gives the distribution of the rounds from which these features come from. We observe that there are no major differences in terms of the type of feature used by both approaches in that scenario. For the CS1 course, there are also no differences in between approaches concerning the distribution of features with respect to rounds, as both approaches focus on assignments from the fifth round (Table 3). However, for the CS0-Web course, we observe that while the excluding approach leverages features from all rounds, the including approach only leverages features from the third and the fifth round (Table 4).

Nevertheless, we must be careful of over-interpreting these results as the ranking is prone to variance. For instance, simply choosing another number of top features to examine, restricting the selection to a specific round to predict or applying shuffling in cross-validation would show a slightly different picture.

4.3 RQ3. Effects of The Course Context

Overall, the performance of the models vary across the courses and across the rounds (Figure 2). While the performance seems to stay relatively similar across courses when using the including approach (same trend), the trend of the performance of the model under the excluding approach tends to be dissimilar (for accuracy and RMSE, dissimilar in relation to majority vote). One of the possible causes for this is the data – as discussed in descriptive statistics (Section 3.7), while many students drop out early on in the courses, there are fewer students dropping out later in the courses.

The bottom plot of Figure 3 highlights the difference and similarities in the top submission features when taking into account the course context. We can make a few observations about similarities and differences across courses. For the CS0-Web and the
WD courses, the differences in the chosen features are not large between the excluding and the including approaches, while CS1-S shows a bigger difference; namely, that the including approach favors correctness over attempt count compared to the excluding approach. In practice, this suggests the need for course-specific predictive models, or the use of approaches such as transfer learning, as discussed in [30].
Table 4: Top 10 features used by the RandomForest model for predicting students dropping out at round 6 using data from all previous rounds with the excluding approach (top) and the including approach (bottom) for the CS0-Web dataset. The data did not include assignment names but only database IDs for the assignments, which are shown in the name column in the table.

<table>
<thead>
<tr>
<th>importance</th>
<th>name</th>
<th>round</th>
<th>feature type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.026298</td>
<td>476</td>
<td>Attempt count</td>
</tr>
<tr>
<td>2</td>
<td>0.021747</td>
<td>445</td>
<td>Attempt count</td>
</tr>
<tr>
<td>3</td>
<td>0.021477</td>
<td>444</td>
<td>Attempt count</td>
</tr>
<tr>
<td>4</td>
<td>0.020963</td>
<td>444</td>
<td>Attempt count</td>
</tr>
<tr>
<td>5</td>
<td>0.018968</td>
<td>532</td>
<td>Attempt count</td>
</tr>
<tr>
<td>6</td>
<td>0.018469</td>
<td>472</td>
<td>Attempt count</td>
</tr>
<tr>
<td>7</td>
<td>0.017219</td>
<td>554</td>
<td>Attempt count</td>
</tr>
<tr>
<td>8</td>
<td>0.015807</td>
<td>570</td>
<td>Correctness</td>
</tr>
<tr>
<td>9</td>
<td>0.014855</td>
<td>570</td>
<td>Correctness</td>
</tr>
<tr>
<td>10</td>
<td>0.014628</td>
<td>331</td>
<td>Attempt count</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>importance</th>
<th>name</th>
<th>round</th>
<th>feature type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.058946</td>
<td>566</td>
<td>Attempt count</td>
</tr>
<tr>
<td>2</td>
<td>0.055328</td>
<td>566</td>
<td>Correctness</td>
</tr>
<tr>
<td>3</td>
<td>0.049541</td>
<td>573</td>
<td>Attempt count</td>
</tr>
<tr>
<td>4</td>
<td>0.044551</td>
<td>567</td>
<td>Correctness</td>
</tr>
<tr>
<td>5</td>
<td>0.038696</td>
<td>560</td>
<td>Attempt count</td>
</tr>
<tr>
<td>6</td>
<td>0.037591</td>
<td>561</td>
<td>Attempt count</td>
</tr>
<tr>
<td>7</td>
<td>0.037280</td>
<td>563</td>
<td>Attempt count</td>
</tr>
<tr>
<td>8</td>
<td>0.035821</td>
<td>562</td>
<td>Attempt count</td>
</tr>
<tr>
<td>9</td>
<td>0.035017</td>
<td>567</td>
<td>Attempt count</td>
</tr>
<tr>
<td>10</td>
<td>0.028314</td>
<td>474</td>
<td>Attempt count</td>
</tr>
</tbody>
</table>

Figure 4: Percentage of the top 10 features of previous rounds used by the RandomForest classifier when predicting dropouts at round 6 using data from all previous rounds, for the CS1-course (left) and the CS0-Web course (right).

5 DISCUSSION

Overall, using two types of data from three separate courses, our results highlight two important intertwined aspects. First, the further into a course we go, the fewer students are actually dropping out, and second, predictive models that include all the data until the round to predict, i.e. the including approach, perform better than the predictive models that include only students who have been active at least until the previous round of the round to predict, i.e. the excluding approach. As an example, in the CS1-S data, there were only 20 dropouts from round 4 to round 5; the excluding approach seeks to identify these, while the including approach seeks to identify those in addition to the students who have already dropped out, which creates a target that is at least ten times larger. This effectively highlights a data imbalance issue, where one group to predict is larger than the other, which in turn makes the prediction task more difficult [62]. Approaches, such as sampling, can alleviate the issue to some extent [56], although we did not explore it in the present work.

The problem of students dropping out is especially important in the context of massive open online courses [8, 47], where the majority of the participants may drop out before the end of the course. Although one might argue that students might come back later though, as our data (Table 2) shows, this is fairly rare in our context. In practice, the relative number of students who drop out of courses tends to decrease the further we go into the course [47], although our data showed that there are differences in how this manifests. Building a predictive model that includes data from students who have already dropped out may lead to the models using features in data that are not useful in practice. This might hamper efforts where data from one course is used to predict the outcomes in another course, although in such cases one might also explore techniques such as transfer learning (see e.g. [30]). Although we identified studies that evaluate predictive models with data that likely includes students who have already dropped out, we typically did not observe evidence of the same models being taken into use as, e.g., early warning systems.

When considering the metrics that we used for studying the performance of the built models, we observed considerable differences between the excluding and including approach in most of the metrics in most of the courses (shown in Figure 2). While accuracy tended to be a poor metric in general due to the imbalanced dataset, the ROC-AUC masked performance differences for CS1-B and CS0-Web. On the other hand, these differences were clearly visible e.g. when studying the F1 score. This effectively highlights that when reporting results of such analyses, multiple metrics should be included.

When considering the problem of students dropping out in general, we acknowledge that there are a multitude of issues that are at play. While losing interest or preferring other work, highlighted e.g. in [26, 50], might be something that cannot be addressed, other factors – also highlighted in [26, 50] – such as plagiarism or excessively relying on others could be alleviated through interventions. It is a good question, however, what sorts of features should be used to identify factors such as confusion and the actions taken in such situations, as discussed in [40].

This study does not come without limitations, either. First, we defined dropout through inactivity, but students who drop out late might still get a passing grade. Second, despite our data showing that very few students become active after becoming inactive, this is still a possibility and a corner case, which the including approach could handle – despite its flaws – better. Third, as in many evaluations of predicting dropouts, we used data from the same course, which itself could lead to bias in the data. Finally, we also did not look into demographics or more fine-grained features and thus, cannot state how the two approaches would compare in those situations. Furthermore, our feature analysis is rather limited.

6 CONCLUSION

We have examined the differences in two approaches for identifying students who are likely to drop out. We observed that the including approach which includes also students who have already dropped out does not match the objective of most research, which typically
tries to assess the usability of data collected for developing real-time warning applications for educational teams. Importantly, we do not claim that everyone does this wrong, but rather, that there is a risk of bias that needs to be acknowledged and recognized. To summarize, our research questions and the answers are as follows.

RQ1: What performance differences do we observe in predictive models when we include versus exclude data from students who have already dropped out? First, we observed differences in the performance of the evaluated machine learning models; out of the explored models, random forest had the highest performance, which could be due to its behavior in identifying outliers. We also observed considerable differences between the excluding and including approaches, the latter including the students who have already dropped out in the data. In practice, due to the decreased number of dropouts over the weeks, the performance of the excluding approach tends to generally decline, while the opposite is true for the including approach. We did not, however, evaluate sampling (see e.g. [49]) or other approaches often used to alleviate the problem.

RQ2: What features are most predictive of students dropping out when including versus excluding data from students who have already dropped out? Comparing the features that the predictive models used between the two approaches, we observed slightly different emphases. However, contrary to our expectations, the differences are hardly evident enough to conclude the types of features used between the two approaches are inherently different. We did not, however, look into the individual features used by the models.

RQ3: How does the course context influence the performance of the predictive models? When comparing the performance of the predictive models between the courses, we observed significant differences. It is evident that the context and thus the data affects the results significantly. This further highlights the problem of using models developed in one context in other contexts, and also emphasizes the meaningfulness of reanalyses and replications of similar work in the future.

Effectively, our work highlights the importance of paying attention to the data in addition to the models. While research on predicting at-risk students inherently strives for high performance, focusing only on model evaluations and not paying sufficient attention to what data is being used can lead to wrong conclusions. An interesting question arises from our observations: how can we take into account the information about dropped out students in previous weeks to increase the performances of the models which try to detect which students drop out in the following weeks without risking unrealistic performance inflation? An option might be to revisit methodologies on transfer learning — shifting our focus from course to course behavior to learning about the dropout patterns within a specific course.

Finally, we need to consider the demographics of students in our courses and approaches. Dropouts, and other at-risk behavior, is also likely to stem from factors other than the differences in the course organization and the course materials used. Predictive models should be developed with care and consideration in order to achieve true fairness, and to avoid projecting our own biases into them in our attempts at improving the learning process for all [46]. As Corbett-Davies & Goel [11] so eloquently put it: “Algorithms can avoid many of the implicit and explicit biases of human decisions makers, but they can also exacerbate historical inequities if not developed with care.”

ACKNOWLEDGMENTS

We acknowledge the computational resources provided by the Aalto Science-IT project. We are grateful for the grant by the Media Industry Research Foundation of Finland which partially funded this work.

REFERENCES

Jarkko Lagus, Krista Longi, Arto Klami, and Arto Hellas. 2018. Transfer-learning
Leo Leppänen, Juho Leinonen, Petri Ihantola, and Arto Hellas. 2017. Predicting
Päivi Kinnunen and Lauri Malmi. 2006. Why students drop out CS1 course?. In
Soohyun Nam Liao, Sander Valstar, Kevin Thai, Christine Alvarado, Daniel Zin-
Jarkko Lagus, Krista Longi, Arto Klami, and Arto Hellas. 2018. Transfer-learning in
98–106.
Jacob Whitehill, Kiran Mohan, Daniel Seaton, Yigal Rosen, and Dustin Tingley. 2017. MOOC dropout prediction: How to measure accuracy? In Proceedings of the fourth (2017) acm Conf. on learning@ scale. 161–164.