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Motion detection and classification: 
ultra‑fast road user detection
Risto Ojala*  , Jari Vepsäläinen and Kari Tammi 

Introduction
Motivation and background

Transportation is becoming increasingly connected, with revolutionary developments in 
road infrastructure and vehicle technology. Shared information about the locations and 
intentions of road users has the potential to improve traffic safety, efficiency and con-
venience. As road injuries are one of the most common causes of death [1], tremendous 
efforts are made worldwide to reduce the number of hazardous situations and collisions 
in traffic. Traditionally, vehicle safety systems have been limited to vehicle-mounted 
sensors and drivers have been constrained to perceive the environment from their per-
spective. Limited perception may lead to accident prone situations as other road users 
might be obscured by difficult weather conditions or obstacles. Driver perception can 

Abstract 

With the emerge of intelligent and connected transportation systems, driver percep-
tion and on-board safety systems could be extended with roadside camera units. Com-
puter vision can be utilised to detect road users, conveying their presence to vehicles 
that cannot perceive them. However, accurate object detection algorithms are typically 
computationally heavy, depending on delay-prone cloud computation or expensive 
local hardware. Similar problems are faced in many intelligent transportation applica-
tions, in which road users are detected with a roadside camera. We propose utilising 
Motion Detection and Classification (MoDeCla) for road user detection. The approach 
is computationally lightweight and capable of running in real-time on an inexpensive 
single-board computer. To validate the applicability of MoDeCla in intelligent transpor-
tation applications, a detection benchmark was carried out on manually labelled data 
gathered from surveillance cameras overseeing urban areas in Espoo, Finland. Separate 
datasets were gathered during winter and summer, enabling comparison of the detec-
tors in significantly different weather conditions. Compared to state-of-the-art object 
detectors, MoDeCla performed detection an order of magnitude faster, yet achieved 
similar accuracy. The most impactful deficiency of MoDeCla was errors in bounding 
box placement. Car headlights and long dark shadows were found especially difficult 
for the motion detection, which caused incorrect bounding boxes. Future improve-
ments are also required for separately detecting overlapping road users.
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be enhanced with sensors that are mounted to the road infrastructure, allowing them to 
receive information of road users behind corners and other obstacles. This type of vehi-
cle-to-infrastructure (V2I) communication assists drivers and autonomous vehicles in 
traffic intersections, where the risk of collision is high and unexpected events may occur.

According to statistics from the US and EU, traffic intersections are some of the most 
hazardous areas of the road network. One fifth of all fatal vehicle accidents in the US 
occur in intersections [2]. EU has reported a similar figure for the junctions of its mem-
ber countries [3]. Urban intersections are particularly hazardous due to occlusion caused 
by buildings, bus stops, advertisements, and flora. Limited perception is dangerous since 
pedestrians, cyclists or other vehicles may appear seemingly out of nowhere. We have 
recently developed a V2I system on Aalto University campus that transmits the locations 
of occluded road users to a connected research vehicle when approaching an intersec-
tion [4]. The system is based on a roadside camera unit, computer vision, and 4G LTE 
communication. The roadside camera unit utilises computer vision algorithms to detect 
road users in the video feed. Localisation of the detected road users is carried out with a 
monovision measurement approach, and a stereovision camera system is therefore not 
required [4]. The road user type and location is then transmitted to the research vehicle 
via 4G LTE.

Similar intelligent transportation system (ITS) applications which rely on road user 
detection from roadside cameras are abundant in the literature [5]. Real-time operation 
and low cost of roadside computer vision implementations is essential for adoption of 
the technology, as noted in the review of Buch et al. [5] and in the study of Atev et al. 
[6]. However, accurate real-time object detection typically requires extensive comput-
ing power. This translates into expensive roadside units, or reliance on cloud computing. 
Cloud computation can introduce notable delay into an ITS system, rendering real-time 
operation impossible. Thus, local computation and minimal computational load are nec-
essary to achieve real-time operation and low unit cost. The requirements and price of 
the vision-based roadside units can be reduced by introducing a computationally light 
and reliable detection algorithm. We demonstrate the feasibility of applying an ultra-fast 
road user detector which consists of a motion detection algorithm and a convolutional 
neural network (CNN) classifier. Detecting road users with this approach is extremely 
lightweight, and can be run in real-time, over 35 frames per second (fps), on a 100 $ Jet-
son Nano [7] single-board computer (SBC) which is ideal for embedded systems. The 
accuracy of the detector is validated by comparing it to well-known state-of-the-art 
object detectors.

Scientific contributions

We propose a novel approach Motion Detection and Classification (MoDeCla) for road 
user detection. MoDeCla utilises motion detection to acquire bounding box proposals, 
which are classified with a CNN. The classification CNN is easily scalable for detecting 
practically any types of road users, whereas many traditional methods have been spe-
cifically designed for detecting instances of a certain type of road user, such as cars or 
pedestrians. We seek here to build on the work of Kim et al. [8], who have utilised simi-
lar methodology to detect people in surveillance footage. MoDeCla extends the detec-
tion framework with a compact and efficient state-of-the-art CNN classifier, instead 
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of the basic CNN classifier used in [8]. We show that MoDeCla can run in real-time 
at 35 fps on a single-board computer, whereas the previous study [8] reports a notably 
slower detection speed of 15 fps on a full desktop PC. Furthermore, MoDeCla is rigor-
ously validated with extensive experimentation in varying conditions and comparison 
to other state-of-the-art detectors. The results show that our approach achieves simi-
lar accuracy to the existing state-of-the-art detectors with approximately 20 times faster 
computation. This is due to MoDeCla applying a notably smaller CNN than state-of-
the-art detectors, which is possible due to the motion detection preprocessing. We dem-
onstrate that the algorithm can perform detection in real-time on low-cost hardware, 
enabling a multitude of different ITS applications to be implemented on SBCs. Low-cost 
hardware translates into low unit costs which is critical for roadside installations, and as 
a lightweight algorithm MoDeCla can be run locally, eliminating delays caused by data 
transmission. This makes MoDeCla ideal for numerous ITS applications utilising road-
side cameras, including the initially presented V2I intersection safety usecase.

State of the art
Reviewing the existing literature, camera-based technologies are an active area of 
research for different ITS applications [5]. Surveillance and traffic cameras have been 
applied in a multitude of tasks, ranging from safety usecases to traffic monitoring. Vehi-
cle collision prediction has been studied by Atev et al. [6], who utilised roadside cam-
eras to detect vehicles and estimate their trajectories. Lately, safety of vulnerable road 
users such as pedestrians has drawn a great deal of attention as well. Zhang et  al. [9] 
have created trajectory based models for mixed traffic scenarios, which were capable of 
detecting hazardous occurrences in video feed. Similar studies regarding detection of 
dangerous or anomalous scenarios involving pedestrians in intersections and walkways 
have been conducted by Zhou et al. [10] and Pustokhina et al. [11], respectively. Many 
works focusing on traffic monitoring for advanced traffic control typically apply cam-
eras as well. Neural network-based approaches have proven accurate for automatically 
extracting traffic information from camera views. Zhou et al. [12] and Zhang et al. [13] 
have applied neural network-based algorithms to extract a wide range of information of 
passing vehicles, such as as pose, size, speed, colour, and vehicle type. Neural networks 
have also been utilised to further process the traffic information acquired from images, 
as demonstrated by Sharma et al. [14] who applied neural networks for congestion pre-
diction from highway camera data. However, there is still room for improvement when 
it comes to ensuring reliable operation of computer vision methods in traffic applica-
tions, as highlighted in the review of Buch et al. [5]. For maximal reliability of the tech-
nology, classification and detection capabilities of computer vision algorithms should be 
expanded to different road users and varying weather conditions.

Recently, traditional image classification methods such as haar-wavelets [15] and his-
tograms of oriented gradients [16] have been surpassed by CNNs in terms of accuracy. 
Alexnet by Krizhevsky et al. [17] started the current trend by outperforming all previous 
records on the widely known ImageNet challenge. Building on top of the success, He 
et al. [18] developed the ResNet architecture which improved the classification accuracy 
greatly by introducing skip connections in the network. CNNs have traditionally been 
computationally expensive, yet modern GPU computation methods such as CUDA [19] 
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have enabled real-time inference. Previous research has also focused on lightweight clas-
sification CNN models. MobileNetV2 [20] and SqueezeNet [21] have reached impres-
sive accuracies with minimal computational power.

In the field of object detection, CNNs are generally the state of the art as well. The pre-
viously presented CNN classifiers can be utilised as a base network that is combined 
with a detection back-end, such as a single shot multibox detector by Liu et al. [22], to 
perform object detection. Extensive research has also been on entire deep CNN archi-
tectures specifically developed for object detection. These can be divided to single-stage 
and multi-stage methods. Single-stage methods typically aim for faster speeds, where 
as multi-stage methods for greater accuracy. Well-known CNN object detection mod-
els representing these methods include single-stage YOLO by Redmon et  al. [23–25] 
as well as Bochkovskiy et  al. [26], and multi-stage R-CNN by Girshick et  al. [27, 28]. 
Both detectors have accomplished state-of-the-art accuracy on the COCO object detec-
tion dataset [29]. All versions of YOLO are capable of running in real-time with mod-
ern high performance hardware, which is impressive considering typical inference times 
of deep CNN detectors. YOLOv3 also introduced multi-scale detection, which notably 
improved detection of small objects. Small object detection has been traditionally diffi-
cult for CNNs, and many recent detectors have commonly included multi-scale capabili-
ties. Examples of such detectors are M2Det by Zhao et al. [30] and EfficientDet by Tan 
et  al. [31], which have also scored state-of-the-art results on the COCO object detec-
tion benchmark. The presented CNN detectors are computationally demanding general 
object detectors applicable to any object detection task, including traffic applications.

With traffic being a common area to apply computer vision, less general methods 
have been developed to specifically answer the needs of ITSs. Typically this has involved 
detection of pedestrians or cars. CNNs specifically developed for these applications have 
recently delivered promising results. Du et al. [32] proposed a CNN architecture which 
fused detection and classification networks together for pedestrian detection, scoring 
state-of-the-art results on the Caltech pedestrian dataset [33]. Car detection has been 
studied in a similar manner by Wang et al. [34], who applied three CNNs back-to-back 
in their detector. Their approach was validated on the UA-DETRAC [35] car detection 
dataset, reaching excellent results. However, the accuracy of these detectors comes at 
the cost of computation, and both detectors achieved speeds of approximately 10 fps 
on a modern Nvidia Titan X graphics card. CNNs have also been applied for detect-
ing pedestrians and cars by fusing pixel information with stereovision depth information 
in the study of Ferraz et al. [36]. Utilising depth information was noticed to positively 
impact the detection accuracy. The detection framework was not focused on real-time 
operation like the previous approaches, as the reported processing time was nearly half a 
second per image. The computation cost of CNNs typically remains greater than that of 
many traditional computer vision methods.

Traditional computer vision methods have been widely applied in traffic-specific com-
puter vision. Extensive surveys on detection of pedestrians and vehicles have been pro-
vided by Benenson et  al. [37] and Sivaraman et  al. [38], respectively. Execution times 
of these detection algorithms have also been researched, with the goal of achieving 
real time operation with minimal resources. Benenson et al. [39] achieved the impres-
sive results of 50 and 135 frames per second (fps) on their monovision and stereovision 
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pedestrian detectors, respectively. Benchmarking was performed on a desktop PC 
equipped with an Intel Core i7-870 CPU and an Nvidia GeForce GTX 470 GPU. The 
implementations were based on integral channel features and boosting decision trees, 
which were shown by Dollár et al. [40] to provide accurate results for pedestrian detec-
tion. Presented monovision modifications to the original algorithm included a single-
scale detector and soft-cascading. Depth information from the stereovision camera was 
utilised to further improve detection speed by estimating the ground plane and applying 
a simplistic geometrical model for the visible environment.

Environment specific assumptions are often effective tools in computer vision, espe-
cially in road environments. When the assumption of a stationary camera and static 
background can be made, motion detection has been widely utilised for traffic-related 
object detection. Viola et al. [41] utilised motion information together with appearance 
features for pedestrian detection. In their approach, they obtained motion information 
by subtracting two consecutive images after applying different shifts to the latter image. 
A number of different rectangular filters were applied on the original image as well as 
images containing motion information, and the resulting features were classified with 
cascaded ADABoost [42]. Pedestrian detection is commonly utilised in ITS applications 
for analysing urban traffic, and thus the findings of Viola et al. provided an important 
resource for traffic authorities. For car detection in a highway environment, motion 
detection was applied in the study of Gupte et al. [43]. They accomplished motion detec-
tion by taking the difference image between the current and the previous frames. In 
their application, the camera view contained only the road, and therefore it was plausible 
to detect all moving objects passing certain dimensional thresholds as cars. Bai et al. [44] 
applied similar methods in their work to also detect cars on a highway. Their approach 
for motion detection was similar, yet they added to previous research by classifying 
acquired motion regions with haar-like features and cascaded ADABoost. Car detection 
in highway environments is commonly used for traffic counting and monitoring, offer-
ing a crucial source of data for traffic control applications. A motion detection-based 
multiclass detector for traffic environments has been proposed by Zhang et al. [45], who 
detected pedestrians, cyclists and cars from a traffic camera view. Their unsupervised 
learning based approach utilised clustering as well as Gaussian distributions of velocity 
and size of detected moving objects. Motion detection in their work was achieved with 
a Gaussian mixture model. Kim et  al. [8] proposed applying Gaussian mixture model 
based motion detection in series with a CNN classifier for person detection in surveil-
lance footage. The approach was tested on a self-gathered dataset of surveillance video, 
which yielded promising results for the accuracy and detection speed. However, the 
acquired accuracy results were not compared to other detectors evaluated on the same 
data. Furthermore, their approach was not significantly faster than the current state-of-
the-art object detectors, reaching 15 fps on their Tesla M40 GPU based PC, performing 
similarly to YOLOv2.

Our approach, MoDeCla, extends the work of Kim et  al. [8] by utilising a more 
advanced CNN classifier in the detection framework. The classification CNN is 
trained with data from public datasets on the internet, demonstrating that the 
approach can be generalised to any roadside camera. MoDeCla is meticulously 
benchmarked on video data from urban environments and the performance is 
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compared to state-of-the-art object detectors. Acquired results indicate that the pro-
posed approach is nearly as accurate as state-of-the-art detectors, while performing 
detection tens of times faster on minimal embedded system hardware. Performed 
benchmark highlights that MoDeCla is capable of running at 35 fps on an inexpensive 
single-board computer, whereas the compared detectors would require remarkably 
bulkier and more expensive hardware to reach such processing speeds. Consequently, 
the proposed detector can be conveniently applied in many ITS applications, ranging 
from research to actual roadside infrastructure. Furthermore, the detector is scalable 
for detecting any types of road users, as the classification CNN can be trained to dis-
tinguish multiple classes of objects.

Methods
The road user detection algorithm proposed here consists of motion detection and 
classification, which are applied in series. The approach has been specifically tuned 
for ITS applications, with low computational cost and scalability in mind. In addi-
tion, multiple well-established image processing methods such as blur, erosion, and 
dilation are utilised to filter the contents of the images. Workflow of the algorithm is 
presented in Fig. 1, displaying the steps taken to reach detections for an image.

Fig. 1  MoDeCla workflow summarised step-by-step
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When an 8-bit three channel RGB image is fed into the algorithm, the input image is 
first resized and processed with motion detection. The image is transformed into a gray-
scale image where each moving pixel is presented in white and shadows are presented in 
gray (a). Since the acquired grayscale image is typically noisy, the image is blurred, thres-
holded into a binary image, and finally eroded and dilated (b). Remaining areas after 
the filtering are fitted with bounding boxes (c). Using these bounding box coordinates, 
bounding box proposals are captured from the original RGB image (d). The acquired 
bounding box proposals are fed into a classification CNN, which gives the class of each 
bounding box proposal as an output (e). Consequently, the output of the MoDeCla algo-
rithm is the image coordinates and types of the visible moving objects. Further details of 
the operation are provided in the following sections.

Bounding box proposals

Motion detection in MoDeCla is achieved by applying well-established Gaussian mix-
ture model background subtraction [46]. This technique applies probabilistic methods 
to map each pixel into either background, foreground or shadow. Essentially, pixels that 
differ significantly from their previous values are categorised in the foreground, and can 
be interpreted to contain movement. The Gaussian mixture model is constructed utilis-
ing a defined number of the latest captured images. As new images are acquired, the 
model is continuously updated. The parameter values used in the model in this paper are 
presented in Table 1. These parameters affect the sensitivity of the background subtrac-
tion algorithm. The parameters were manually adjusted to such values that based on vis-
ual evaluation appeared to result in low noise as well as accurate representations of the 
shapes of moving road users. The history parameter, which determines how many pre-
vious frames are utilised for computing the Gaussian mixtures, was kept at the default 
value. However, the maximum number of mixtures was raised, as the increased com-
plexity of the distributions allowed the algorithm to capture the background more accu-
rately. Consequently, the threshold parameter which determines how similar a sample 
must be to belong to the background, was reduced as the background distributions were 
more accurate. Furthermore, as the scene was experiencing fairly significant changes 
caused by varying lighting and weather, the background ratio parameter was decreased. 
This parameter defines how rapidly changes in the scenery are incorporated into the 
background model. To improve detection speed, images were resized to 640x360 pixels 
prior to performing background subtraction.

As an output, the background subtraction provides an 8-bit grayscale image, in which 
foreground is provided in white with a value of 255, shadows with a value of 127 and 
background as 0. These probability values are smoothed by applying Gaussian blur with 
a 5x5 kernel and standard deviation of 1.1. All pixels with a value less than or equal to 
127 are then thresholded, resulting in a binary image portraying movement. However, 
this binary image is typically noisy. The noise consists of a large number of detected 
areas of motion with only a few pixels in size, caused by slight changes in illumination 
or video compression. In addition, moving road users in the images are commonly only 
partially captured, consisting of multiple detected regions of movement. To remove the 
pixel sized areas of noise, the binary images are eroded once with a kernel of size 3x3. 
Afterwards, the images are dilated once with a 3x3 kernel to regain the pixels lost from 
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the larger areas during eroding, as well as uniting areas of motion in proximity of one 
another. Following these image processing steps, unified areas of motion are acquired 
by finding the remaining contours [47]. Areas smaller than 15 pixels are filtered away, 
and the rest are extracted as rectangular samples from the original RGB-image for 
classification.

Implementation of the methods presented above was performed with the OpenCV-
Python library [48]. This library acts as an interface that executes C++ implementa-
tions of the algorithms, allowing reasonable benchmarking of the detection speed of 
MoDeCla.

Classification

The samples extracted from the original image act as bounding box proposals, which 
are classified in parallel as a single batch with a CNN. Before feeding the proposals to 
the CNN, each proposal is reshaped into a square by adding black bars to the sides. Sub-
sequently, each proposal is resized to 48x48 pixels and pixel values are scaled between 
[0,1]. Finally, the RGB channels of the proposals are normalised with Z-score normali-
sation, after which the proposals are fully prepared for classification. The classification 
CNN evaluates each proposal, providing the probability of a proposal belonging to each 
class with a softmax layer. Theoretically any number of classes can be considered given 
the appropriate training data. In the presented experiments, only person, car and back-
ground classes were considered for benchmarking convenience.

Here, the classification was performed with the well-established CNN model ResNet18 
[18]. This was due to the computationally light architecture, as well as the excellent clas-
sification accuracy of the network. The implementation of ResNet18 was acquired from 
the PyTorch library [49]. In order to optimise the inference time of the network, Ten-
sorRT [50] was utilised during benchmarking.

Training and testing

The ResNet18 model utilised here was trained with a classification dataset that con-
tained images from multiple existing datasets. A total of three classes were included in 
the classification dataset: person, car and miscellaneous background (misc). Images of 
people were acquired from the PETA [51] and MIO-TCD [52] datasets. Car class was 
represented by randomly sampling images from the MIO-TCD car and van categories. 
Misc consisted of images from the MIO-TCD background class, as well as all classes 
from CIFAR100 [53] excluding classes listed under people or vehicles. CIFAR100 was 
included in the misc class since it provided a number of images containing different 
objects with varying shapes, which assisted the learning of ResNet18 in correct recogni-
tion of people and cars. In the complete classification dataset, each class was relatively 
equally presented in terms of number of samples, as detailed in Table 2 Throughout the 
training and all tests presented in this paper, the scaled channel statistics of the training 
set were used for performing Z-score normalisation on the images fed to the ResNet18. 
The scaled RGB channels of the training images had means of 0.4786, 0.4712, and 0.4665, 
and standard deviations of 0.2352, 0.2317 and 0.2367, respectively.

The ResNet18 was trained on the training set with stochastic gradient descent for 60 
epochs with an initial learning rate of 0.1, and a step-based learning rate decay of 0.1 
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every fifteen epochs. A batch size of 128 was utilised, and a weight decay of 5·10−4 was 
applied for regularisation.

During training, several common image augmentation methods were also applied to 
induce variance in the training batches. All images were first randomly added Gauss-
ian blur with a chance of 0.8. The sigma value for the blur was a randomly chosen inte-
ger ranging from one to five. The resulting images were padded with one eight of their 
height and width, resized to squares with black bars, and then randomly cropped to 
48x48 pixels. The saturation, brightness, contrast and hue were each randomly adjusted 
with a multiplier from 0.9 to 1.1 for each image. Images were also randomly flipped hori-
zontally with a chance of 0.5. All the applied image augmentation methods were noted 
to positively impact the detection performance of MoDeCla.  

The detection benchmarks presented here were performed on novel manually labelled 
datasets gathered from cameras overlooking urban roads at Aalto University campus 
in Espoo, Finland. Video data were recorded with a two surveillance cameras at 30 fps 
with a resolution of 1280x720 pixels. H264 encoding was applied in the video feeds, as is 
common with surveillance cameras. The first camera overlooked an urban traffic inter-
section, and the second camera monitored a road leading to the same intersection. To 
achieve maximal variance in captured video data, the cameras were used to record data-
sets during different times of year. With the first camera, a dataset was recorded during 
summertime, capturing video clips throughout the day at fixed ten minute intervals for 
approximately 3 weeks. The second camera was utilised to capture a dataset during win-
tertime, recording video clips in a similar manner for two days. These datasets gathered 
with the first camera and the second camera are here referred to as Summer benchmark 
set and Winter benchmark set, respectively. Captured video clips were 30 s long, and the 
800th frame of each video was manually labelled. The labelled frames were used for eval-
uating accuracies of the detectors in the benchmark. Only a single frame was labelled 
to achieve maximal variance between benchmark samples. Sample images of the Sum-
mer benchmark set are provided in Fig. 2, and samples of the Winter benchmark set are 

Fig. 2  Samples of the images in the Summer benchmark set, depicting the varying conditions
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provided in Fig. 3. Samples of example detections made with MoDeCla on the recorded 
data are visualised in Figs. 4 and  5. Statistics for the collected benchmark sets are pro-
vided in Table 3. The Winter benchmark set has fewer images, since summer conditions 
were emphasised in the analysis due to the fact that these conditions are more common 
globally.

Instead of using public established datasets for benchmarking, novel datasets were 
required due to the characteristics of MoDeCla. Due to performing motion detection, 
MoDeCla requires a stationary camera, as well as video footage instead of individual 
images. No suitable existing datasets that would have included labelled pedestrians as 
well as cars were identified in the literature. MoDeCla is also only capable of detecting 
moving road users, and consequently the detection benchmark images do not contain 
stationary road users, excluding cars in parking areas. The coordinates of visible parking 
areas have been manually defined in the images, and do not contain any ground truth 
bounding boxes. Consequently, no detections made in these areas are recorded in the 
benchmark. These rules were justified based on the typical requirements of ITS appli-
cations, in which stationary road users and parking lots are inherently of low interest. 
Similar exclusion procedure was followed for detections and ground truths in the hori-
zon of the Winter benchmark set images, as road users in the horizon were not clearly 

Fig. 3  Samples of the images in the Winter benchmark set, including significant snowfall and typical dark 
winter conditions

Table 1  Parameter values used in Gaussian mixture model based background subtraction

Parameter Value

History parameter 500

Threshold parameter 8

Maximum number of mixtures 10

Background ratio 0.8

Table 2  Number of images of each class in the training set of the ResNet18 classifier

Class Number 
of 
Images

Person 22,736

Car 24,216

Misc 22,777

Total 69,729
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visible even to the human eye. Furthermore, the images in the datasets were chosen to 
only contain the road users analysed here: person and passenger car. This was to avoid 
false positives caused by road users not taught to the detectors, such as cyclists.

In addition to MoDeCla, several state-of-the-art CNN object detectors were bench-
marked on the datasets for comparison. The detectors were chosen based on their fre-
quent appearance in previous literature as well as open source availability. YOLOv4 
[26], YOLOv3 and the lightweight TinyYOLOv3 [25], M2Det with VGG-16 backbone 
[30], and EfficientDet-D1 [31] were all evaluated on the data. YOLOv4, YOLOv3, TinyY-
OLOv3, M2Det and EfficientDet-D1 were benchmarked with input sizes of 608x608 pix-
els, 608x608 pixels, 416x416 pixels, 512x512 pixels, and 640x640 pixels, respectively. The 
detectors were applied with their original weights trained on the COCO dataset. The 
weights learned on the COCO dataset should fit the task of detecting people and cars 
well, as these are some of the most common objects in the dataset. However, COCO 
dataset contains objects other than person and car, and during testing it was noticed 
that the detectors misclassified passenger cars as trucks from time to time. This is likely 
due to COCO containing images of pick-up trucks which can resemble larger passenger 
cars. Since this classification mistake is not impactful in the presented application, truck 

Fig. 4  Samples of detections made with MoDeCla in summer conditions

Fig. 5  Samples of detections made with MoDeCla in winter conditions
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detections made by the detectors were translated to car detections to improve their 
results.

All the presented detectors were also benchmarked in terms of detection speed on an 
Nvidia Jetson Nano [7] SBC. TensorRT optimised models of YOLOv3 and TinyYOLOv3 
[54], as well as YOLOv4 [55] were used in the benchmarking. Similarly, the ResNet18 
PyTorch implementation of MoDeCla was optimised with TensorRT. For M2Det and 
EfficientDet-D1 TensorRT optimised models were not available, and therefore their 
detection speeds were benchmarked with regular PyTorch implementations [56, 57]. The 
Jetson Nano was available for roughly 100$ at the time of writing. The machine learning-
oriented SBC contains a 128-core Maxwell GPU, ARM Cortex-A57 Quad-Core CPU and 
4 GBs of LPDDR4 memory. In raw computational power, the unit has performance capa-
bilities of 472 giga floating point operations per second. Benchmarking was conducted 
in maximum power mode with a power supply providing 5 V and 4 A, and with the GPU 
and CPU cores at their maximum frequencies of 921 MHz and 1.43 GHz, respectively. 
The Jetson Nano was chosen for the benchmark to highlight the possibilities of using the 
detectors in embedded road user detection solutions with local computation.

Accuracy metrics

Detection accuracies of the analysed detectors are reported as precision-recall curves 
as well as interpolated average precision (AP) and mean average precision (mAP) val-
ues. The Intersection over Union (IoU)-threshold was set at the common choice of 0.5. 
However, MoDeCla has an operation characteristic of grouping multiple overlapping 
road users into a single detection, due to the bounding box proposals being generated 
from unified contours of motion. This detection can at most be matched to only a single 
ground truth, which causes a significant decrease in precision and recall scores on the 
detection benchmark datasets, since people often tend to move in groups at the campus 
area. Grouping overlapping road users of the same type into a single detection is not 
necessarily considered disadvantageous for many applications of road user localisation, 
as overall the information of the presence and location of the road user type can be more 
essential than their exact number. Therefore, an application-specific update is presented 
for determining true and false positives when matching the detections to the ground 
truth labels. Nevertheless, in some applications distinguishing the exact number of road 
users might be necessary, and therefore results are also provided with the original met-
ric. The precision-recall curves acquired with the Traditional matching procedure are 
here referred to as Traditional precision-recall. The results acquired with the proposed 
Cluster matching are referred to as Cluster precision-recall. This update allows matching 
multiple ground truths to a single detection, given that they pass certain conditions.

To define these conditions, the traditional definition of IoU is expanded here. The tra-
ditional definition computes an example detection de and an example ground truth ge , 
which are nonempty sets of pixels, as

(1)IoU(ge, de) =
|ge ∩ de|

|ge ∪ de|
,
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where intersection is denoted with the ∩-operator and union is denoted with the ∪
-operator. This definition is expanded to consider sets of ground truths by computing an 
example detection de and an example set of ground truths Ge as

where the 
⋃

-operator denotes the union of all members of Ge.
Cluster matching follows Traditional matching by analysing all acquired detections 

in order of confidence, from highest to lowest. For an analysed detection, the goal 
is to match a subset of ground truths that have not yet been matched to any previous 
detections. Of the remaining ground truths, the one that has the maximum IoU with 
the detection is always included in the subset. Other remaining ground truths that have 
common area with the detection are added in the subset in such a way that the subset 
has maximal IoU with the detection. However, an added ground truth must not be the 
maximum IoU ground truth of a lower confidence detection, in case their IoU is above 
the selected IoU-threshold. True positives are marked for each of the matched ground 
truths if the IoU of the subset and the detection passes the IoU-threshold. Previously 
analysed detections and matched ground truths are always removed from the pool of 
available matching options.

Defining Cluster matching in mathematic notation, an analysed detection is denoted 
by d, the set of other remaining detections with lower confidence is marked as O. The set 
of remaining ground truths is denoted by G. For the other detections O, the single maxi-
mum IoU ground truths that pass the IoU-threshold t are mapped into set S as

A set of ground truth candidates C is acquired for the detection, defined as

From this candidate set, the set of final matches Mfinal are chosen as

If the IoU of the final matches and the detection surpasses the defined IoU threshold t, 
true positives are recorded for each of the members of the final matches, and the final 
matches are removed from the set of remaining ground truths. If the IoU threshold is 
not passed, the detection is marked as a false positive. In the end, the detection is dis-
carded from the analysis, and the process is repeated for the next detection. Grouping 
overlapping road users into a single detection is not considered disadvantageous for the 
presented application of road user localisation The full Python-implementation of Clus-
ter matching is open source and provided in the repositories linked to this paper.

(2)IoU(Ge, de) =
|(
⋃

Ge) ∩ de|

|(
⋃

Ge) ∪ de|
,

(3)S = {argmax
g∈G

IoU(g , o) | o ∈ O ∧max
g∈G

IoU(g , o) ≥ t}.

(4)C = {g | g ∈ G ∧ IoU(g , d) > 0 ∧ g /∈ S} ∪ argmax
g∈G

IoU(g , d).

(5)Mfinal = argmax
M⊆C

IoU(M, d).
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Results
A Jetson Nano SBC was utilised to benchmark the detection speeds of MoDeCla and 
the other detectors included for comparison. These tests provide tangible information 
regarding cost-effective application of the detectors in widescale ITS employment. Fur-
thermore, the detection accuracies of all the detectors were evaluated on the Summer 
benchmark and Winter benchmark sets. Traditional precision-recall curves as well as 
Cluster precision-recall curves were plotted for each of the detectors on both datasets. 
From these curves, the AP and mAP values were also computed for the detectors to 
allow for further quantitative analysis.

Detection speed

To analyse the applicability of the detectors in real ITS applications, the detection 
speeds of the detectors were clocked on a Jetson Nano. TensorRT optimised models of 
YOLOv4, YOLOv3 and TinyYOLOv3 were applied in the testing. The ResNet18 used for 
classification in MoDeCla was also TensorRT optimised with a maximum batch size of 
100. TensorRT optimised models of M2Det and EfficientDet-D1 were not available, so 
their detection speeds were clocked with regular PyTorch models. All detectors were 
run with the CNNs using 32-bit floating-point arithmetic operations. Detection speeds 
are reported in Table 4 as mean of 500 detections.

Presented results demonstrate that MoDeCla was capable of operating in real-time 
with minimal hardware. Compared to the other analysed detectors, MoDeCla was able 
to perform detection in a notably shorter time. All other detectors except TinyYOLOv3 
were an order of magnitude slower. TinyYOLOv3 reached a detection speed of roughly 
60% of that of MoDeCla. However, the detection accuracy benchmarks demonstrated 
that MoDeCla greatly surpassed TinyYOLOv3 in terms of accuracy.   

Detection accuracy

The detection accuracies of MoDecla, M2Det, EfficientDet-D1, YOLOv4, YOLOv3 
and TinyYOLOv3 were benchmarked on the datasets characterised in Table 3. Detec-
tions were matched to ground truths with both the Traditional matching, as well as 
the presented Cluster matching. Traditional precision-recall curves generated from 
detections on the Summer benchmark set are presented in Fig. 6 for both classes pre-
sent in the data: person and car. Cluster precision-recall curves are provided for the 

Fig. 6  Traditional precision-recall curves for the detectors on the Summer benchmark set
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Summer benchmark set in Fig.  7. Furthermore, Traditional and Cluster precision-
recall curves for the detectors on the Winter benchmark set are provided in Figs. 8 
and   9, respectively. The provided curves allow in-depth analysis of the detection 
characteristics of the detectors. It is worth noting that MoDeCla did not reach as low 
precisions as the other detectors, as it does not provide as many low confidence detec-
tions due to only processing areas with apparent motion. For a convenient numerical 
comparison of the detectors, the AP and mAP values of the detectors calculated from 
the Traditional and Cluster precision-recall curves are reported in Tables 5 and  6 for 
the Summer benchmark set and Winter benchmark set, respectively. 

Table 3  Characteristics of the gathered detection benchmark data

Characteristic Summer benchmark set Winter 
benchmark 
set

Number of images 853 129

Number of people 610 154

Number of cars 325 100

Person height mean (std) 36 (18) px 38 (26) px

Person width mean (std) 16 (13) px 17 (14) px

Car height mean (std) 57 (34) px 28 (24) px

Car width mean (std) 95 (61) px 42 (44) px

Table 4  Detection speeds of the algorithms benchmarked on a Jetson Nano

*Not TensorRT optimised

Detector Detection 
speed 
(fps)

M2Det* 0.630

YOLOv4 1.42

YOLOv3 1.45

EfficientDet-D1* 1.78

TinyYOLOv3 21.3

MoDeCla 35.6

Fig. 7  Cluster precision-recall curves for the detectors on the Summer benchmark set
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Analysing the mAP values for the Summer benchmark set in Table 5, the acquired 
results demonstrate that YOLOv4 and YOLOv3 were overall the most accurate detec-
tors on this benchmark. MoDeCla was the third most accurate detector, with M2Det 
reaching a slightly lower mAP value. EfficientDet-D1 achieved a notably lower mAP 
score than the aforementioned detectors, and TinyYOLOv3 did not clearly succeed in 
the task as well as the other detectors. Observing the AP values of the person class, 
most of the detectors clearly had trouble correctly detecting people in the images. 
YOLOv4, YOLOv3 and MoDeCla were notably more successful than the other detec-
tors when it came to detecting people. The Cluster matching evaluation greatly ben-
efited the AP value of MoDeCla on the person class, ranking its accuracy nearly as 
high as that of YOLOv4. As for the car class, all detectors had an easier time detecting 
them correctly, as the reached AP values were much higher. This was likely due to 
cars appearing larger in the images than people. Compared to the other detectors, 
MoDeCla did not rank as high in detecting cars as it did in detecting people. In addi-
tion to YOLOv4 and YOLOv3, M2Det managed to reach a higher AP value on the car 
class than MoDeCla. EfficientDet-D1 also nearly acquired an equivalent AP value as 
MoDeCla. Cluster matching did not notably affect AP values of the detectors on the 
car class, as overlapping cars were rarer in the data than overlapping people.

The detectors performed fairly differently on the Winter benchmark set, as indi-
cated by the results presented in Table  6. YOLOv4 and YOLOv3 were again overall 

Fig. 8  Traditional precision-recall curves for the detectors on the Winter benchmark set

Fig. 9  Cluster precision-recall curves for the detectors on the Winter benchmark set
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the highest performing detectors, achieving notably higher mAP scores than the other 
detectors. However, MoDeCla did not achieve such high accuracy, falling just slightly 
behind M2Det and EfficientDet-D1 in terms of mAP score. TinyYOLOv3 showcased the 
most drastic change in performance, as the detector was effectively not able to oper-
ate in the winter conditions, reaching by far the lowest AP scores for both classes. Con-
trary to the Summer benchmark, all detectors struggled to detect cars, yet had an easier 
time detecting people. Out of all the detectors, excluding TinyYOLOv3 due to its subpar 
performance, MoDeCla reached the lowest AP values on the person class. On the car 
class however, MoDeCla reached the second highest Traditional AP value, just barely 
surpassed by YOLOv3. The Cluster matching evaluation again improved the results of 
the detectors, notably increasing the AP values reached by MoDeCla on both classes. In 
fact, on the Cluster AP metric, MoDeCla achieved the highest accuracy of all the detec-
tors on the car class. Overall, considering the previously presented processing speed 
results, MoDeCla seemed to offer a favourable combination of accuracy and speed on 
both benchmark sets.

Fig. 10  Encountered difficulties with headlights and dark shadows in motion detection

Table 5  AP values computed from the Traditional and Cluster precision-recall curves on the 
Summer benchmark set

Detector Traditional AP Cluster AP

Person Car mAP Person Car mAP

M2Det 16.8 80.0 48.4 18.3 80.0 49.2

YOLOv4 43.3 86.0 64.7 47.2 86.0 66.6

YOLOv3 31.5 89.7 60.6 35.2 89.7 62.5

EfficientDet-D1 11.8 65.4 38.6 14.4 65.4 39.9

TinyYOLOv3 1.99 27.3 14.7 5.23 27.6 16.4

MoDeCla 30.2 72.9 51.6 46.3 73.2 59.8
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Discussion
As indicated by the presented results, MoDeCla showcased overall impressive perfor-
mance on the gathered benchmark data. The precision and recall values achieved by 
MoDeCla are nearly on par with those of state-of-the-art general object detectors, while 
processing images notably faster. During testing, the accuracy of MoDeCla was noted 
to mostly suffer from slightly incorrect bounding box placement, which caused many 
detections to not quite pass the 0.5 IoU threshold. With an IoU threshold of 0.3 or 0.4, 
the results for MoDeCla would have likely improved, whereas the other detectors tend 
to leave objects completely undetected rather than placing a misrepresenting bounding 
box. Additional problems in the bounding box proposals of MoDeCla were noticed to 
emerge during night-time, and during sunrises and sunsets. As presented in Fig. 10, the 
headlights of cars as well as long dark shadows caused such drastic changes in pixel val-
ues that the motion detection registered much larger areas for the bounding boxes than 
intended. These problems were observed on both datasets, the Summer benchmark set 
and the Winter benchmark set. Furthermore, additional problems in bounding box pro-
posals were noted to occur when road users moved directly away or towards the camera, 
as in these scenarios the perceived motion was naturally not as apparent. This was espe-
cially experienced on the Winter benchmark set, as pedestrians on the other walkway 
moved in a fairly straight line away or towards the camera. Future improvements to the 
bounding box proposal procedure could likely improve the results of MoDeCla greatly.

As for the general applicability of the acquired results, it is worth noting that the gath-
ered image data only contained images from two different viewpoints overlooking two 
different areas. This limitation can skew the results, and operation in different scenarios 
may vary. The presence of objects that are visually undergoing constant change, such as 
reflective surfaces, bright lights or flora swaying in the wind, can trigger false positives 
in MoDeCla. Similarly, the accuracy of the other detectors may vary in different areas. 
Differences were already witnessed in operation of all the detectors between the bench-
marking sets gathered from different camera views. This can however be largely attrib-
uted to the significantly different weather conditions as well. The performed benchmarks 
highlight that MoDeCla is capable of operating in significantly varying weather and 
lighting conditions, indicating that utilisation of the algorithm would be feasible in ITS 
applications. Still, further testing in varying traffic environments is required in order to 
benchmark the detection accuracies more exhaustively.

Table 6  AP values computed from the Traditional and Cluster precision-recall curves on the Winter 
benchmark set

Detector Traditional AP Cluster AP

Person Car mAP Person Car mAP

M2Det 50.1 20.4 35.3 53.4 20.4 36.9

YOLOv4 79.3 28.5 53.9 80.3 28.5 54.4

YOLOv3 73.2 33.5 53.4 73.2 33.8 53.5

EfficientDet-D1 46.6 22.2 34.4 54.6 22.2 38.4

TinyYOLOv3 0.0138 0.0264 0.0201 0.0138 0.0264 0.0201

MoDeCla 34.3 32.2 33.3 41.1 36.6 38.9
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In addition to benchmarking with an increased amount of data, MoDeCla could be 
compared to computer vision algorithms specifically designed for detecting traffic users. 
In this paper, comparison to state-of-the-art general object detectors was made due to 
their wide reputation, as well as excellent accuracy and speed in a multitude of appli-
cations. Considering the person-class is by far the most common class in the COCO 
dataset used for training the CNN detectors, and the car-class is among the five most 
common classes, the detectors are arguably well-suited for the task evaluated here. More 
definitive results for the comparison of the detectors would have possibly been acquired 
if the detectors had been trained with the same data. However, since MoDeCla utilises 
classification data for training, whereas the other detectors require object detection data 
with bounding box coordinates, the training processes are inherently different. Further-
more, EfficientDet, M2Det, YOLOv3, and YOLOv4 all feature multi-scale processing, 
which makes the detectors exceptional for detecting small objects. This is ideal, as road 
users appear fairly small in the roadside camera view. Comparison against the detec-
tors also has the benefit of the models being openly available for fair comparison. Simi-
lar to these detectors, MoDeCla can also be trained to detect any number of varying 
classes due to the classification stage being performed with a CNN. Many traffic-related 
computer vision methods presented in the literature are designed for detecting a single 
class, either pedestrians or vehicles. In the presented application of road user mapping, 
multiple classes must be detected, which would result in significant modifications in the 
detectors aimed for detecting specific types of road users. Nevertheless, for a more accu-
rate benchmark, other detection approaches should be considered as well.

Regarding the suitability of the benchmarking metrics utilised here, the presented 
Cluster precision-recall may be biased towards the operation characteristics of MoD-
eCla. This metric allows clustering multiple ground truths to a single detection, given 
that they passed certain conditions. The Cluster precision-recall computation was 
implemented due to the bounding box proposal step of MoDeCla grouping overlapping 
road users into a single bounding box. In some road user detection applications this is 
not desirable behaviour, and therefore the Traditional precision-recall curves were also 
provided for the detectors. However, the presented safety-related application acting as 
motivation for this study does not benefit from differentiating individual road users from 
a tight group of road users. This information may not be crucial for many other appli-
cations as well. Therefore, this operation characteristic was defined acceptable, justify-
ing the development of a modified evaluation metric. Analysing the results presented 
in Tables 5 and  6, the mAP of all the detectors can be seen to increase with the new 
Cluster precision-recall approach. As expected, the mAP of MoDeCla experienced the 
largest improvement. Other detectors did not benefit from the modified metric as much, 
since they attempt to find every single road user in a tight group, instead of placing a 
large bounding box which contains all the members of the group. This typically leads to 
detecting most road users in the front of a group as individuals, leaving the road users 
in the back undetected. This behaviour is less beneficial on the Cluster precision-recall 
metric, since a large bounding box can better cover mostly concealed objects in the back. 
Yet from the perspective of many applications, the detections should be assessed equally, 
since the behaviour of identifying only the front-most road users provides virtually the 
same information as placing a large bounding box on the entire group.
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Due to the motion detection bounding box proposals utilised in MoDeCla, the algo-
rithm is not as generally applicable as the other detectors. By definition, MoDeCla is only 
capable of detecting moving road users. A registry of some sort is required to keep track 
of road users that become stationary in the view. This type of additional processing may 
cause detection errors in camera views where road users make frequent stops. Addition-
ally, usage of MoDeCla may be limited in camera views which commonly feature large 
numbers of overlapping road users, as overlapping road users are grouped into a single 
detection. This can be common in high traffic areas, where cars form tightly spaced ques 
and pedestrians move as an apparent unified crowd. However, proper camera placement 
can have a notable impact on the detection capabilities of MoDeCla, as well as the other 
detectors. Detecting overlapping objects is commonly a difficult task in computer vision 
applications. Basic tracking methodologies can greatly alleviate this problem, as earlier 
information of road user positions and trajectories assists in detecting cases of temporary 
overlap.

For many traffic-related applications, real-time detection with minimal hardware 
is crucial, and therefore the detection speeds of the detectors were benchmarked. As 
shown in Table 4, MoDeCla achieved a detection speed notably higher than that of any 
of the other detectors. The detection speed of TinyYOLOv3 was to some extent com-
parable to that of MoDeCla, yet its detection accuracy was notably poorer. It is worth 
noting that M2Det and EfficientDet-D1 were not evaluated with TensorRT optimised 
models, therefore limiting their performance. Optimised models would have processed 
images faster, yet the speed increase would not have likely been significant enough to 
alter the overall indications of the results. Furthermore, the compared detection speeds 
were acquired with using 32-bit floating-point arithmetic operations in the inference of 
all of the CNNs. Running inference with 16-bit floating-point or 8-bit integer represen-
tations has lately become a popular method for improving inference speed, typically at 
the cost of slightly reduced accuracy. Applying reduced precision here would have likely 
improved the speeds of all detectors, yet the improvement in the speeds of detectors 
other than MoDeCla would have been more notable due to the methods being end-to-
end CNNs. The computational workload of MoDeCla is divided between the motion 
detection as well as CNN classifier, and therefore reduced inference speed of the CNN 
would be less impactful. Nevertheless, 32-bit precision was applied here due to the pre-
cision traditionally providing more reliable operation as well as being commonly used 
when reporting results in the literature. Applying a lower precision would not have likely 
changed the results drastically, leaving the the essence of the results intact.

Conclusion
A Motion Detection and Classification algorithm, MoDeCla, was proposed in this paper 
for road user detection. The algorithm was successfully developed to be ultra-fast while 
maintaining a reasonable balance of processing speed and detection accuracy. MoDe-
Cla operates on the assumption of a stationary camera, applying well-established back-
ground subtraction methods for motion detection. Moving areas in images are captured 
as bounding box proposals, which are classified with a CNN to different types of road 
users or miscellaneous background. Detection speed benchmarks demonstrated that 
MoDeCla runs in real-time on minimal hardware, an order of magnitude faster than the 
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compared detectors. In the presented experiments, the classification stage of MoDeCla 
was trained to detect people, cars and miscellaneous background utilising existing data-
sets. The resulting detector was benchmarked on datasets gathered from two different 
cameras, one dataset gathered during summer and one dataset gathered during winter. 
On these datasets, MoDeCla achieved accuracies comparable to those of state-of-the-
art object detectors. Analysing the detection performance of MoDeCla, its accuracy was 
noticed to be mostly hindered by incorrectly placed bounding boxes.

Future work will focus on improving the bounding box proposals of MoDeCla. Identified 
problems with bounding box proposals ranged from slight misplacements to more severe 
issues caused by car headlights and long dark shadows. These problems could possibly be 
solved by adding more complexity in the CNN that currently only classifies the proposals 
acquired with motion detection. The CNN architecture and training could be extended to 
additionally provide corrections for the bounding box coordinates. Furthermore, the CNN 
could be modified to consider multiple instances of objects in a single bounding box proposal, 
fitting a new bounding box for each. These improvements should not considerably reduce 
detection speed, since the CNN would not necessarily have to be significantly deeper to carry 
out the task properly. Described improvements would enhance the performance of MoDeCla 
and allow more general application. Currently the behaviour of grouping overlapping objects 
into a single bounding box may limit the areas where the detector can be applied.

Overall the results highlight that in terms of accuracy MoDeCla is comparable to 
state-of-the-art computer vision methods for road user detection, while running in real-
time with the minimal hardware of a Jetson Nano. These features allow employment of 
the algorithm in many practical traffic user detection applications. Local computation 
and low hardware cost enable widespread adoption of intelligent infrastructure based 
sensors in road networks. As presented in related work, surveillance cameras could 
be utilised for improving safety in traffic intersection areas, providing information of 
obstructed and hidden road users to connected vehicles. The implementation of the 
algorithm used here is published as open source in the provided repositories to cultivate 
other creative applications or improvements to the algorithm.
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