
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Pajusalu, Mihkel; Iakubivskyi, Iaroslav; Schwarzkopf, Gabriel Jörg; Knuuttila, Olli; Väisänen,
Timo; Bührer, Maximilian; Palos, Mario F.; Teras, Hans; Le Bonhomme, Guillaume; Praks,
Jaan; Slavinskis, Andris
SISPO: Space Imaging Simulator for Proximity Operations

Published in:
PloS one

DOI:
10.1371/journal.pone.0263882

Published: 04/03/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Pajusalu, M., Iakubivskyi, I., Schwarzkopf, G. J., Knuuttila, O., Väisänen, T., Bührer, M., Palos, M. F., Teras, H.,
Le Bonhomme, G., Praks, J., & Slavinskis, A. (2022). SISPO: Space Imaging Simulator for Proximity Operations.
PloS one, 17(3), Article 0263882. https://doi.org/10.1371/journal.pone.0263882

https://doi.org/10.1371/journal.pone.0263882
https://doi.org/10.1371/journal.pone.0263882


RESEARCH ARTICLE

SISPO: Space Imaging Simulator for Proximity

Operations

Mihkel PajusaluID
1☯, Iaroslav IakubivskyiID

1☯*, Gabriel Jörg Schwarzkopf2☯,

Olli KnuuttilaID
2☯, Timo Väisänen2☯, Maximilian Bührer2,3☯, Mario F. Palos2☯,

Hans Teras1‡, Guillaume Le BonhommeID
1‡, Jaan Praks2‡, Andris SlavinskisID

1‡

1 Space Technology Department, Tartu Observatory, University of Tartu, Tõravere, Estonia, 2 Department of

Electronics and Nanoengineering, School of Electrical Engineering, Aalto University, Espoo, Finland,

3 School of Aerospace, Transport and Manufacturing, Cranfield University, Cranfield, Bedfordshire, United

Kingdom

☯ These authors contributed equally to this work.

‡ HT, GLB, JP and AS also contributed equally to this work.

* iaroslav.iakubivskyi@ut.ee

Abstract

This paper describes the architecture and demonstrates the capabilities of a newly devel-

oped, physically-based imaging simulator environment called SISPO, developed for small

solar system body fly-by and terrestrial planet surface mission simulations. The image simu-

lator utilises the open-source 3-D visualisation system Blender and its Cycles rendering

engine, which supports physically based rendering capabilities and procedural micropoly-

gon displacement texture generation. The simulator concentrates on realistic surface ren-

dering and has supplementary models to produce realistic dust- and gas-environment

optical models for comets and active asteroids. The framework also includes tools to simu-

late the most common image aberrations, such as tangential and sagittal astigmatism, inter-

nal and external comatic aberration, and simple geometric distortions. The model

framework’s primary objective is to support small-body space mission design by allowing

better simulations for characterisation of imaging instrument performance, assisting mission

planning, and developing computer-vision algorithms. SISPO allows the simulation of trajec-

tories, light parameters and camera’s intrinsic parameters.

Introduction

A versatile image-simulation environment is required in order to design advanced deep-space

missions, to simulate large sets of mission scenarios in parallel, and to develop and validate

algorithms for semi-autonomous operations, visual navigation, localisation and image process-

ing. This is especially true in the case of Small Solar System Body (SSSB) mission scenarios,

where the mission has to be designed with either very limited information about the target

(i.e., precise size, shape, exact composition and activity) or the targets can remain a near-com-

plete mystery before their close encounter (i.e., as in the case of interstellar objects [1, 2]).

Some publicly known cosmic-synthetic-image generators for space missions are available, and

they are briefly described in the next paragraph.

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 1 / 23

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Pajusalu M, Iakubivskyi I, Schwarzkopf

GJ, Knuuttila O, Väisänen T, Bührer M, et al. (2022)

SISPO: Space Imaging Simulator for Proximity

Operations. PLoS ONE 17(3): e0263882. https://

doi.org/10.1371/journal.pone.0263882

Editor: Antonio Agudo, Institut de Robotica i

Informatica Industrial, SPAIN

Received: May 12, 2021

Accepted: January 28, 2022

Published: March 4, 2022

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0263882

Copyright: © 2022 Pajusalu et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All SISPO algorithm

files are available from the GitHub (https://github.

com/SISPO-developers).

Funding: This work was funded by the ESA

Contract No. 4000131003/20/NL/IB/ig with the

https://orcid.org/0000-0003-3500-2770
https://orcid.org/0000-0003-0744-2357
https://orcid.org/0000-0002-5767-5872
https://orcid.org/0000-0002-8430-1788
https://orcid.org/0000-0001-7310-7608
https://doi.org/10.1371/journal.pone.0263882
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263882&domain=pdf&date_stamp=2022-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263882&domain=pdf&date_stamp=2022-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263882&domain=pdf&date_stamp=2022-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263882&domain=pdf&date_stamp=2022-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263882&domain=pdf&date_stamp=2022-03-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0263882&domain=pdf&date_stamp=2022-03-04
https://doi.org/10.1371/journal.pone.0263882
https://doi.org/10.1371/journal.pone.0263882
https://doi.org/10.1371/journal.pone.0263882
http://creativecommons.org/licenses/by/4.0/
https://github.com/SISPO-developers
https://github.com/SISPO-developers


Airbus Defence and Space has developed SurRender, which renders realistic images with a

high level of representativeness for space scenes [3]. It uses ray tracing to simulate views of

scenes composed of planets, satellites, asteroids and stars, taking into account the illumination

conditions and the characteristics of the imaging camera through a user-defined Point Spread

Function (PSF). The textures are accessed in a large virtual file, or procedural texture genera-

tion can be used. SurRender uses the different models for Bidirectional Reflectance Distribu-

tion Function (BRDF), for example Lambertian [4] or [5–7] for the Moon and asteroids, [8]

for the Jovian moons. The University of Dundee, UK has developed the Planet and Asteroid

Natural Scene Generation Utility (PANGU), which generates realistic, high-quality, synthetic

images of planets and asteroids using a custom graphics-processing-unit-based renderer,

which includes a parameterisable camera model [9]; it also has a graphical user interface,

which makes it more intuitive to use. PANGU implements a Spacecraft Planet Instrument

Camera-matrix Events (SPICE) interface, which provides historical and future ephemerides of

the Solar System and selected spacecraft. The standard Lambertian diffuse reflectivity model is

included as well as Hapke, Oren–Nayar, Blinn–Phong and Cook–Torrance BRDFs. NASA’s

Navigation and Ancillary Information Facility developed the internationally recognised Space-

craft Planet Instrument Camera-matrix Events (SPICE) tool, which provides the fundamental

observation geometry needed to perform photogrammetry, map making and other kinds

of planetary science data analysis [10]. It is a numerical tool that provides position and

orientation ephemerides of spacecraft and target bodies (including their size and shape),

instrument-mounting alignment and field-of-view geometry, reference frame specifications,

and underlying time-system conversions; however, it does not have surface-rendering capabil-

ities, and it is limited to shape rendering by implementing the digital shape kernel system (tes-

sellated plate data and digital elevation models). SPICE has the three-dimensional (3-D)

visualisation application Cosmographia [11], and has been recently implemented in the toolkit

with rendering capabilities for spacecraft orbit visualisation and depictions of observations

by probe instruments in Blender [12]. Hapke model also has been used with Blender previ-

ously [13].

The comparison between various simulators that are capable of SSSB synthetic image gen-

eration is summarised in Fig 1 (camera, orientation and exact light parameters may differ

between simulator set-ups). The 25143 Itokawa asteroid model by the [14] was used.

The Space Imaging Simulator for Proximity Operations (SISPO) has been developed to pro-

vide a full pipeline from simulated imagery to final data products (e.g., 3-D models); to include

photorealistic, physically based rendering; to support automatic surface generation with pro-

cedural displacement textures; to allow the implementation of spacecraft, instrument and

environmental models (e.g., imaging distortions, gas and dust environment, attitude dynam-

ics); and to avoid legacy software. SISPO uses Cycles rendering with the Blender software

package, which allows for programming procedures in Python [15]. The preliminary results of

3-D reconstruction and localisation using SISPO, without providing details for simulated

imagery and near environment (i.e., gas and dust), were published by [16]. SISPO works on

large scales and could simulate a variety of objects at the Solar System scale. It could also be

used to generate realistic videos from individual frames, either for visualisation purposes or

public outreach.

This article demonstrates the synthetic image simulation capabilities of SISPO, and 3-D

reconstruction as a case study showing how such images can be utilised. It also discusses

SISPO application to actual space missions, architecture, rendering system and supplementary

models.

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 2 / 23

University of Tartu ("Comet Interceptor (EE-1):

OPIC Engineering Model Development", PI is MP;

the salary was paid to: MP, II, GLB, HT, and

hardware acquisition), the Archimedes Foundation

(https://archimedes.ee, UT ASTRA project 2014–

2020.4.01.16-0029 KOMEET “Benefits for Estonian

Society from Space Research and Application” in

the form of travel supports), the Eesti

Teadusagentuur (EE) (MOBTP151 and PUTJD601,

awarded to MP), and the base funding of Tartu

Observatory (registration number 74001073). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

Abbreviations: 3-D, three-dimensional; BRDF,

Bidirectional Reflectance Distribution Function;

ESA, European Space Agency; JAXA, Japan

Aerospace Exploration Agency; MAT, Multi-

Asteroid Touring; OASIS, Optical Aberrations for

Still Images Simulator; OpenGL, Open Graphics

Library; OpenMVG, Open Multiple View Geometry;

OpenMVS, Open Multiple View Stereo

Reconstruction; OPIC, Optical Periscopic Imager

for Comets; PANGU, Planet and Asteroid Natural

Scene Generation Utility; PSF, Point Spread

Function; RGB, Red, Green and Blue; SfM,

Structure from Motion; SISPO, Space Imaging

Simulator for Proximity Operations; SPICE,

Spacecraft Planet Instrument Camera-matrix

Events; SSSB, Small Solar System Body.

https://doi.org/10.1371/journal.pone.0263882
https://archimedes.ee


Application to space mission designs

An increasing number of missions and mission concepts for studying SSSBs require advanced

and autonomous operations. For instance, Hera’s Asteroid Prospection Explorer daughter-

craft (previously called ASPECT) has to navigate autonomously within the proximity of Didy-

mos and its natural satellite [17]; The M-ARGO might be the first-ever standalone nanospace-

craft to rendezvous with an asteroid [18]; CASTAway is a mission concept to fly by and

explore 10–20 main-belt asteroids and use optical navigation in their proximity [19]; a pro-

posed mission, Castalia, to the main-belt comet 133P/Elst–Pizarro would reveal much that is

currently unknown about it and detect water in situ in the main belt [20]; Caroline was pro-

posed in 2010 to also fly by a main-belt comet [21]; Titius–Bode is a mission concept to investi-

gate a sequence of asteroids by orbiting its targets for about six months and dispose the Bode

lander on the surface [22]; The Martian moons Deimos and Phobos were also targeted by

DePhine [23] and Phobos Sample Return [24]. Development and planning of these missions

and similar ones require a sophisticated and realistic simulator.

The initial SISPO package was developed to assist in the Multi-Asteroid Touring (MAT)

mission, where a fleet of nanospacecraft, propelled by electric sails, flys by a large number of

main-belt asteroids [25, 26]. The MAT concept cannot rely on typical deep-space-network-

based solutions to operate and navigate the fleet; it requires most of the operations to be per-

formed autonomously. The case study of MAT performing a Didymos fly-by has been evalu-

ated using SISPO; the set of images was generated for the reconstruction and basic localisation

for fly-by distances of 33–300 km [16]. The MAT mission was proposed to the European Space

Fig 1. The comparison of available simulators for space-scene image rendering. The rendered example for each simulator is asteroid 25143 Itokawa.

(A) SurRender image generator by Airbus; it uses backward ray tracing or image generation with Open Graphics Library (OpenGL). (B) PANGU image

generator by University of Dundee, UK and ESA; it uses fractal terrain generation using OpenGL. (C) SISPO by the University of Tartu, Estonia and

Aalto University, Finland; it uses Blender Cycles physically based path tracer (the same model as above with a simple diffuse shader); (D) SISPO with

Blender Cycles physically based path tracer (with procedural displacement with new surface features and reflectance textures for extra detail).

https://doi.org/10.1371/journal.pone.0263882.g001

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 3 / 23

https://doi.org/10.1371/journal.pone.0263882.g001
https://doi.org/10.1371/journal.pone.0263882


Agency (ESA) announcement of opportunity for “New Science Ideas” [27] and it was not cho-

sen despite reaching the final three [28].

Currently, the SISPO simulator is actively used for Optical Periscopic Imager for Comets

(OPIC) development [29], which will be hosted on one of three spacecraft making up the

Comet Interceptor mission (https://www.cometinterceptor.space). Comet Interceptor is ESA’s

first F-class mission (in cooperation with Japan Aerospace Exploration Agency (JAXA)) to fly

by either a dynamically new comet approaching the Sun for the first time from the Öpik—

Oort cloud, an interstellar object, or a long-period comet as a backup target [30]. OPIC will

use automatic image capturing—algorithms will be developed and tested using photorealistic

3-D renderings and a reconstruction pipeline of SISPO using a set of possible encounter veloc-

ities and geometries, as well as cometary and camera properties. From a scientific point of

view, the simulator will also be used to develop image-prioritisation algorithms, which are

required due to the limited data budget, short fly-by timeline and the possibility of the probe

being damaged by high-velocity dust impact. The EnVisS coma mapper [31] of the Comet

Interceptor mission also uses SISPO for algorithm development.

General architecture

The general structure of SISPO comprises the following parts:

1. Core features:

a. Image rendering using Blender Cycles (see Subsection: Rendering in Blender Cycles) or

OpenGL (see Subsection: Lightweight OpenGL-based rendering);

b. Simulation of on-board image processing. Currently the image processing is primarily

related to compression; however, inclusion of both cropping and image prioritisation is

planned;

c. 3-D reconstruction (see Section: Usability of images produced for 3D reconstruction).

2. Additional models:

a. Gas and dust environment (see Subsection: Gas and dust);

b. Camera distortions (see Subsection: Camera);

c. Attitude dynamics in the initial stage.

The core functionalities are split into three subpackages. The first subpackage uses Kepler-

ian orbit data for an SSSB and a simplified definition of the encounter geometry so the space-

craft can propagate realistic trajectories using the Orekit library [32] and render an image

series of the encounter. The second subpackage provides various algorithms for image com-

pression and decompression. The third subpackage uses images to reconstruct a textured 3-D

model using the Structure from Motion (SfM) technique. The three subpackages combined

provide a processing pipeline from an initial 3-D model to a reconstructed 3-D model via ren-

dered and compressed images. SISPO is a Python software package that is hosted on a public

GitHub repository under a GPL v3.0 licence and is maintained by the authors [33] among

other contributors (e.g., authors of this paper). A description of the core functionality and the

additional models is provided in Fig 2.

Rendering system

The most crucial part of SISPO is image synthesis. Two separate rendering modes are imple-

mented: Blender Cycles and OpenGL.

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 4 / 23

https://www.cometinterceptor.space
https://doi.org/10.1371/journal.pone.0263882


Rendering in Blender Cycles

Blender Cycles uses path tracing, which is a type of ray tracing. In classic ray tracing [34], each

camera’s pixel shoots one or multiple rays, which interact with a surface and then encounters

light sources directly or interacts with other surfaces before reaching the light. For realistic

reproduction, various optimisations can be used. The ray-surface and ray-volume interactions

can be modelled by shaders, which model or approximate the interacting objects’ properties.

The Cycles rendering engine supports various shaders, the most relevant of those for this

paper being: (i) diffuse bidirectional scattering distribution function, which provides access to

Lambertian and Oren–Nayal shaders based on surface roughness; (ii) emission shader that

allows surfaces or volumes to emit light; (iii) subsurface scattering that supports cubic, Gauss-

ian and Christensen–Burley models; (iii) glossy shader that supports Sharp, Beckmann, GGX,

Asikhmin–Shirley and multi-scatter GGX models; (iv) volume scattering shader that allows

simulating light scattering in volumes [15]. These shaders can be combined with both proce-

durally generated or pre-existing texture maps to change their parameters and mix various

shaders on and within the scene models. Cycles also supports Open Shading Language, which

allows the use of arbitrarily defined shaders.

Path tracing is, in some way, an improvement on ray tracing; it produces multiple rays

from the same pixel in random directions, then each ray keeps bouncing (without producing

new rays) until it reaches the light source or user-defined bounce limit. In Blender Cycles, one

can limit the following bounce limits (ideally it should be infinite; however, typically, a limited

amount is sufficient): total, diffuse, glossy, transparency, transmission and volume scattering.

Then, the amount of light per pixel is calculated for each ray along with surface colour proper-

ties; afterwards, the value is averaged and assigned to that specific pixel. Moreover, Blender has

a branched path tracer, which can be used for volumetric scattering (see Subsection: Case 2:

volumetric particle effects). The branched path tracer is similar to path tracing, but at the first

ray interaction it will split the path for different surface components, and for shading, it will

take all lighting parameters into account instead of just one [15]. The branched path tracer can

also be useful for solving light-related problems such as caustics.

Fig 2. Program flow of SISPO.

https://doi.org/10.1371/journal.pone.0263882.g002

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 5 / 23

https://doi.org/10.1371/journal.pone.0263882.g002
https://doi.org/10.1371/journal.pone.0263882


All the surface features can be generated procedurally (e.g., by applying mathematical equa-

tions instead of externally-captured image texture) inside the Blender software [35]. The

SISPO surface model includes sand flats, rock formations and craters. The size of these fea-

tures, their number and their distribution can be adjusted by modifying the corresponding

parameters.

The elevation details are simulated by using height maps for craters, rocks and sand inside

the rendering engine (Fig 3). These consist of textures converted into surface displacement dis-

tances and are used to displace parts of the model mesh and provide surface normal changes.

Height maps can be mixed together to simulate different types of terrestrial bodies (see Sec-

tion: Simulations of realistic asteroid imagery). Each map’s weight in the mix can be modified,

or even obliterated, and they can be made to affect only specific areas of the mesh by using

masks. The shader adds a texture whose albedo corresponds to the albedo measured in real

asteroids in addition to the procedural elevation. The final procedural shader example is

shown in Fig 4.

Lightweight OpenGL-based rendering

There is an option to use a custom OpenGL-based renderer instead of Cycles and Blender. It

was added because it is desirable to generate images fast in certain situations even though

some fidelity (e.g., softer shadows or procedurally generated details) might be lost. For

instance, during the development of image-processing algorithms, it is useful to generate large

datasets for training data in a relatively short time. Validation data can be generated with

Cycles to give better confidence in the characterised algorithm performance. Fast image gener-

ation also enables a closed-loop simulation of a guidance, navigation and control system that

depends on the navigation camera input.

Three different BRDFs have been implemented as OpenGL shaders: Lambertian [4],

Lunar-Lambertian [36] and Hapke [37]. Textures are supported and correspond to the single

scattering albedo of the corresponding shape model region.

Efficient shadowing is achieved by shadow mapping [38]. Shadow mapping works by first

rendering the scene orthographically from the direction of the Sun. The resulting depth buffer

contents are imported to the actual rendering pass as a texture. The object vertices are again

projected orthographically towards the Sun; the corresponding fragment is considered to be in

the shadow if the depth of that projection is greater what is in the shadow texture.

Fig 3. Procedurally generated height maps. For craters (left), rocks (centre) and sand (right).

https://doi.org/10.1371/journal.pone.0263882.g003

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 6 / 23

https://doi.org/10.1371/journal.pone.0263882.g003
https://doi.org/10.1371/journal.pone.0263882


The output of the OpenGL render is a floating-point value giving the irradiance [W �m−2]

incident on each theoretical pixel. This “irradiance image” can be further passed to the default

camera model used by SISPO, which then applies appropriate imaging effects to get the final

synthetic image. There is currently no procedural shape or texture generation due to the sim-

plified nature of the OpenGL renderer. Dust and gas coma rendering is not fully integrated

with the OpenGL renderer. Instead, emission-based rendering of a previously generated coma

is done separately in Python after OpenGL rendering (see Subsection: Case 2: volumetric

Fig 4. Final procedural shader applied to a subdivided plane.

https://doi.org/10.1371/journal.pone.0263882.g004

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 7 / 23

https://doi.org/10.1371/journal.pone.0263882.g004
https://doi.org/10.1371/journal.pone.0263882


particle effects), and it does not take into account shadows cast by objects in the scene. One

fundamental limitation to OpenGL-based rendering is that it does not support extended light

sources. Thus, for instance, earthshine in low Earth orbit—or in the case of a binary asteroid,

the reflected light from the primary body to the secondary body—cannot be reasonably mod-

elled. As the light from reflecting surfaces is not considered, the shadow of rocks, cliffs and

other geological formations will be darker than in reality.

The OpenGL rendering engine was used for a preliminary guidance, navigation and control

analysis done for the preliminary design review of the now-defunct Asteroid Prospection

Explorer project. For this purpose, the rendering engine was interfaced from a Simulink

model designed to handle the system dynamics. The same model then forwarded the generated

images to the visual navigation algorithms for position estimates. The generation of one image

took around 0.7–1.0 seconds. The simulation time for one mission week was around 12 hours

on a laptop with an Intel i7–7700HQ (2.8 GHz) processor, with most of the processing time

spent on executing the visual navigation algorithms.

Fig 5 demonstrates the comparison between the image taken by the AMICA instrument of

the Hayabusa spacecraft and rendered image using OpenGL. The main rendering discrepan-

cies are induced by the inaccuracy of the 3D model [14] and local variations of albedo and

roughness.

Supplementary SISPO models

Gas and dust

In the inner Solar System, the solar radiation heats nuclei of comets, which causes them to

release gas together with dust. This gas and dust surround a comet forming a coma, which is

blown by the solar wind resulting in ion and dust tails that can extend over 100 million kilo-

metres and might be visible from Earth. Sometimes the comet releases strong outbursts of

these gasses and dust to produce distinctive coma-derived features called jets [39]. The gas and

Fig 5. The pixel-by-pixel comparison of the original AMICA image on the left and generated OpenGL image in the middle. The scale indicates

percent error. The AMICA image is published under Public Domain 1.0.

https://doi.org/10.1371/journal.pone.0263882.g005

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 8 / 23

https://doi.org/10.1371/journal.pone.0263882.g005
https://doi.org/10.1371/journal.pone.0263882


dust environment is visible to the camera instrumentation, and hence, in order to provide real-

istic space-scene simulation, the visible effects should be included in modelling.

The dust and gas environment causes noise that can affect the 3-D shape reconstruction.

SISPO offers models for comae, jets and tails with various details. The problem can be divided

into two parts: modelling the environment and rendering it. The modelling parts can contain,

for instance, the description of the environment, such as jets represented as geometric cones

from the surface of the comet, mathematical models from [40], or gas and dust simulations

such as those from [41, 42].

The rendering problem comes down to the level of desired details and accuracy, but on the

other hand, to reasonable computing time. In reality, the volume is a mixture of gas and dust,

which are composed of different particle sizes with different densities, and this produces vari-

ous scattering characteristics [43]. Realistic and accurate representation of the effects men-

tioned above in the rendering pipeline, which is not specialised in volume scattering, is a

challenge; a visually realistic approximation should be sought. In the current version of SISPO,

volume-scattering effects from the coma and jets are computed using a simple volume-scatter-

ing shader from Cycle that uses the voxel presentation of the comet’s surroundings as an input

for the density.

Camera

The Optical Aberrations for Still Images Simulator (OASIS) provides simulation tools for opti-

cal aberrations that are usually not implemented in popular 3-D software (e.g., Blender). Since

it uses two-dimensional images as input, motion blur effects, which require spatial awareness

of a scene, are not modelled. Optical Aberrations for Still Images Simulator (OASIS) is used in

a complementary manner with SISPO to further enhance rendered two-dimensional output

images.

Tangential and sagittal astigmatism, as well as an internal and external comatic aberration,

are modelled with distinct PSFs, which vary with the field height and orientation of the sensor

centre—image point vector. By default, aberration intensity increases with the field height.

However, a custom lens file can be provided to model any desired lens array.

Lateral chromatic aberration is modelled by rescaling individual colour channels and simu-

lating wavelength-dependent refraction of light rays. While wavelengths are continuous in the

real world, the digital Red, Green and Blue (RGB) triplet only distinguishes between three dis-

crete primitive colours, which introduces sharp edges at the boundaries of colour separation.

These can be avoided by blending chromatic aberration with tangential astigmatism (more

information with an example can be found in Section 5.7 in [44]).

Dark-current noise is currently drawn from a folded normal distribution with a zero mean

and user-defined standard deviation. Readout noise is modelled by the addition and subtrac-

tion of random values at the subpixel level, governed by a Gaussian custom standard deviation

process. The projection of light rays with random origin positions generates realistic shot

noise and follows the user-defined average sample size per pixel.

Lens distortion is simulated with a sophisticated Brown–Conrady model [45], that corrects

for both radial and tangential distortion. It is implemented in the computer-vision library

OpenCV [46] and supports up to six radial distortion coefficients—k1 to k6—and two tangen-

tial distortion coefficients—p1 and p2.

Monochrome sensors are modelled by averaging an RGB colour triplet of a virtual light ray.

Additionally, a weighted-average model can be selected that reflects the indeed perceived lumi-

nosity. The generation of dark current and readout noise is adjusted accordingly to maintain a

specified standard deviation on monochromatic detectors. The simulation of sagittal

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 9 / 23

https://doi.org/10.1371/journal.pone.0263882


astigmatism, coma, chromatic aberration, shot noise and readout noise is demonstrated in

more detail in [44] (Section 5.7).

Currently, OASIS is limited to simulating one type of PSF at a time, as a realistic convolu-

tion of multiple PSFs is not yet provided, with the exception of small aberrations. Also, the

generation of dark noise, which should follow a Poisson distribution, is subject to change once

physical units are implemented for photon flux and for the conversion between light-ray

energy and digital-sensor value.

Orbital simulation

The trajectory simulation within SISPO is handled by the Orekit library [32]. A simple Kepler-

ian orbit propagator is used to propagate both the SSSB and the spacecraft. Additionally, it is

possible to rotate the SSSB around a single axis at a constant spin rate.

The implemented Orekit Python bindings run a virtual machine to execute the underlying

Java code. During propagation, Orekit determines state information of the SSSB and the space-

craft for each sample along the trajectory. The state information includes the date, position

and the rotation angles of the SSSB.

In SISPO, the spacecraft trajectory is normally defined by its Keplerian elements, but the

user does not explicitly enter these elements. Instead, the elements are calculated from the tar-

get body’s Keplerian elements and the expected encounter geometry relative to the SSSB at the

closest approach. The parameters presented in Table 1 are used to calculate the state vector of

the spacecraft at the encounter, which defines the spacecraft trajectory. The sssb_state is calcu-

lated based on the SSSB input data and the encounter data.

The propagation process is defined by the duration of a fly-by, the number of frames to be

rendered, timesampler mode and a slowmotion factor as presented in Table 2. The timesampler
mode determines whether the steps are distributed linearly in time (mode 1, default) or

whether an exponential model (mode 2) is used, which increases the number of frames around

the encounter. The number of additional samples can be controlled with the slowmotion factor.

Table 1. Parameters defining the encounter state of the spacecraft in SISPO. The first five parameters are required as input.

Parameter Unit Type Description

encounter_distance m float Minimum distance between SSSB and spacecraft.

with_terminator – bool Determines whether the terminator is visible at the closest approach.

with_sunnyside – bool Determines whether the spacecraft passes the SSSB on the Sun-facing side or the side facing away from the Sun.

relative_velocity m s-1 float Relative velocity of the spacecraft to the SSSB at the encounter.

encounter_date – dict Date of the closest approach of the spacecraft and SSSB. The type is a Python dictionary with an int for year, month, day, hour,

minute, and float for second.

sssb_state m, m s-

1
tuple SSSB state vector containing three position and three velocity components at the encounter. The spacecraft encounter state is

calculated relative to this state vector. The SSSB state is not required as input since it is calculated based on the SSSB trajectory

and encounter date.

https://doi.org/10.1371/journal.pone.0263882.t001

Table 2. Input parameters that define the propagation step in SISPO.

Parameter Unit Type Description

duration s float Total length of the simulation. The encounter date is reached after half of the duration.

frame – int Number of frames (samples) taken during the encounter.

timesampler_mode – int Mode 1 is linear and mode 2 is exponential sampling.

slowmotion_factor – float Determines how many more state samples are taken around the encounter. Only applies if timesampler_mode is exponential.

https://doi.org/10.1371/journal.pone.0263882.t002

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 10 / 23

https://doi.org/10.1371/journal.pone.0263882.t001
https://doi.org/10.1371/journal.pone.0263882.t002
https://doi.org/10.1371/journal.pone.0263882


Mode 2 is especially helpful when simulating a long fly-by, since, when the spacecraft is far

from the SSSB nucleus, only minor changes are visible in rendered images.

Attitude dynamics

Along with the orbital simulation, a simplified attitude dynamics portion is already built into

the Orekit framework, also accessible via the SISPO library. Attitude information in Orekit is

handled essentially as another frame transformation. It contains the rotation from the refer-

ence frame to the satellite frame, and then the angular velocity (i.e., spin) and angular accelera-

tion (i.e., rotation acceleration) of the spacecraft in its frame. This makes Orekit’s

spacecraft_state a great construct to hold attitude-related and orbital data, which can then suc-

cessfully be propagated in time. The Orekit library also allows SISPO to build user-defined

“attitude law”. This attitude law can be selected from several pre-existing and common attitude

modes (e.g., pointing, spin stabilised) or recompiled entirely in a way necessary for the mission

simulation.

It is, however, essential to note that the Orekit library mainly focuses on orbital mechanics

and propagation. The attitude model, and any attitude laws it follows, presumes the existence

of a “perfect attitude control system” without necessarily considering the physical limitations

or perturbations of the satellite attitude by external forces. The Orekit library lacks the neces-

sary constructs to convey and utilise the moments of inertia of the satellite. Since this informa-

tion is crucial for the inclusion of external forces and their effect on the spacecraft’s attitude or

other celestial bodies, this will be implemented as a secondary layer into the current frame-

work; this is explained in Section: Discussion and future work.

Simulations of realistic asteroid imagery

This section demonstrates five different use cases of the SISPO software.

Case 1: Asteroid 25143 Itokawa

Fig 6 demonstrates the comparison between the image taken by the AMICA instrument of the

Hayabusa spacecraft and rendered image using Cycles on the plain model using a simple dif-

fuse shader. The main discrepancies in the rendering are due to the inaccuracy of the 3D

model [14]. The higher error spots are caused mainly by the local variations of albedo and

roughness. The biggest advantage of the procedural texturing, which introduces new surface

features, is demonstrated in Fig 7. The fragmented zoomed view in Fig 8 demonstrates how

surface features are added procedurally and the level of details that can be achieved in compar-

ison with the plain mesh.

Fig 7 shows a comparison between a plain mesh of the asteroid 25143 Itokawa and a mesh

recreation using the procedural shader in Blender. The initial mesh is a 3-D reconstruction of

the actual asteroid as described in [47]. The shader then adds procedural surface features on

top.

A small area of the model mesh was rendered using OpenGL and Cycles to show the ulti-

mate advantage of procedural texturing. Both renders are shown in Fig 8, and the one with

procedural texturing indicates the capability to generate almost arbitrary level of detail. This

feature would be required, for example, to train probes that can land on the surface.

Case 2: Volumetric particle effects

Coma and dust jets are produced by particles emanating from the surface, and these are used

to produce a volumetric density distribution. For the preliminary proof of concept, the jets

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 11 / 23

https://doi.org/10.1371/journal.pone.0263882


were modelled using simplified versions of the gas and dust models from [41, 42]. First, the gas

source strengths and gas velocities are generated for each face of the mesh from the noise func-

tion. The gas source data are then used as input for the gas model [41], which computes the

gas field densities and velocities around the comet. This data is then used in a particle simula-

tion following [42] from which the particle position data is further processed into a three-

dimensional number-density map around the comet, which is encoded to a single OpenEXR

file [48]. Before the render, the number-density map is smoothed with tricubic interpolation

[49]. It can then be loaded by Cycles and rendered using either volumetric scattering or emis-

sion (volumetric emission, although less accurate, is orders of magnitude faster).

Volumetric particle effects on the comet 67P/C–G. In Fig 9 (the coma might appear dif-

ferently to the article’s viewer depending on the monitor or the print quality), the dust envi-

ronment capabilities of SISPO are presented by simulating and rendering images of the comet

67P/C–G. This image is then compared to the actual image, and with an OpenGL rendered

Fig 7. Surface mesh of asteroid 25143 Itokawa. Created by the AMICA imaging team [14] and rendered by authors in Blender Cycles. (A) plain mesh

and (B) smooth mesh with procedural shader.

https://doi.org/10.1371/journal.pone.0263882.g007

Fig 6. The pixel-by-pixel comparison of the original AMICA image on the left and generated Cycles image in the middle. The scale indicates

percent error. The AMICA image is published under Public Domain 1.0.

https://doi.org/10.1371/journal.pone.0263882.g006

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 12 / 23

https://doi.org/10.1371/journal.pone.0263882.g007
https://doi.org/10.1371/journal.pone.0263882.g006
https://doi.org/10.1371/journal.pone.0263882


image. All the shader features (rocks, craters and sand flats) can be used simultaneously for

complex SSSBs if needed. The masks that separate the “sand flats” from the rest of the surface

features are created with procedural noise, but they could be painted by hand if necessary.

Case 3: Larger bodies

The reproduction of larger terrestrial bodies in SISPO is demonstrated in Fig 10, which is

based on the narrow-angle-camera digital terrain model of the Apollo 15 landing site and

operations area [50], obtained by Lunar Reconnaissance Orbiter Narrow Angle Camera

(http://wms.lroc.asu.edu/lroc/view_rdr_product/NAC_DTM_APOLLO15_M111571816_

50CM, accessed 28.01.2021). The original terrain model has a 2 m resolution for elevation

maps and 0.5 m resolution for orthographic photos, which is not enough to produce images

from the surface that would be useful for navigation testing. This case demonstrates the image

scalability produced in SISPO. The lunar rendering was made by implementing a digital

Fig 8. Close view of the 25143 Itokawa surface. Zoomed-in region. (A) OpenGL render and (B) Cycles render.

https://doi.org/10.1371/journal.pone.0263882.g008

Fig 9. Comet 67P/C-G with coma. (A) OpenGL, (B) Cycles and (C) Real image. The brightness was enhanced at the post-processing stage in order to

better visualise coma.

https://doi.org/10.1371/journal.pone.0263882.g009

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 13 / 23

http://wms.lroc.asu.edu/lroc/view_rdr_product/NAC_DTM_APOLLO15_M111571816_50CM
http://wms.lroc.asu.edu/lroc/view_rdr_product/NAC_DTM_APOLLO15_M111571816_50CM
https://doi.org/10.1371/journal.pone.0263882.g008
https://doi.org/10.1371/journal.pone.0263882.g009
https://doi.org/10.1371/journal.pone.0263882


terrain model and procedural texturing over the whole 5.1 × 28.6 km2 area; the farthest point

visible on the render is roughly 11 km away from the camera.

Case 4: Subsurface exploration

Lava caves, the isolated underground environments, exist on Moon [51] and Mars [52]. These

caves have been studied by remote sensing and have not been explored by dedicated missions,

although some were proposed and developed, such as Moon Diver [53] and rock climber

Lemur [54]. Lava tubes have been morphologically related to ones formed on Earth in volcanic

rock by a volcanic eruption [55]. SISPO could be utilised for synthesising versatile sets of lava-

caves images for (i) developing navigation algorithms and sampling spots detection by image

processing (e.g., biological mats or their preserved remains on the geological substrate) or (ii)

mapping the caves by photogrammetry for potential human settlements. An example of SISPO

cave rendering is demonstrated in Fig 11.

Case 5: Fly-by of a spacecraft

The SISPO environment is suitable for spacecraft fly-by rendering. This can be useful for

multi-spacecraft missions, in-orbit servicing and fleets. The Cycles rendering of the spacecraft

fly-by is demonstrated in Fig 12. The model uses a principled bidirectional scattering distribu-
tion function shader including multiple layers to create spacecraft materials. The set of pro-

duced images can be used for developing and training formation-flying proximity algorithms

demanded by attitude control and orbit determination subsystem.

Usability of images produced for 3D reconstruction

A set of synthetically generated images can be used for photogrammetry-based 3-D surface

reconstruction within the SISPO environment. The steps executed in the reconstruction pipe-

line are described in [16]. The reconstruction uses two libraries:

1. Open Multiple View Geometry (OpenMVG) C++ library [56], which creates a sparse point

cloud based on two different SfM techniques:

Fig 10. Application of procedural texturing on the scale of a larger airless body. (A) using a digital terrain model and applying orthographic photos

as a texture. (B) using a digital terrain model and procedural terrain generation with Blender Cycles on the same digital terrain model. (C) image taken

during the Apollo 15 mission from roughly the same location.

https://doi.org/10.1371/journal.pone.0263882.g010

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 14 / 23

https://doi.org/10.1371/journal.pone.0263882.g010
https://doi.org/10.1371/journal.pone.0263882


a. Global SfM [57].

b. Incremental SfM [58], which is much more suitable for SISPO applications [16].

2. Open Multiple View Stereo Reconstruction (OpenMVS), which uses input from

OpenMVG, creates a dense point cloud, a faceted surface (mesh) or a set of planes [59].

Case 1: SSSB fly-by

A set of 25 images was generated in SISPO and then used to reconstruct the 3-D model using

the pipeline. The images were generated using a pinhole camera (i.e., no optical aberrations,

Fig 11. An example of a cave rendering. Colour, specularity and normal maps were applied. Colour maps are used from the walls of the Hillingdur

and Blámi lava caves in Iceland obtained by Iakubivskyi. White spots indicate possible biological mats or secondary mineral precipitation; the red areas

simulate iron oxide.

https://doi.org/10.1371/journal.pone.0263882.g011

Fig 12. Rendering of a spacecraft fly-by.

https://doi.org/10.1371/journal.pone.0263882.g012

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 15 / 23

https://doi.org/10.1371/journal.pone.0263882.g011
https://doi.org/10.1371/journal.pone.0263882.g012
https://doi.org/10.1371/journal.pone.0263882


which would decrease the reconstructed accuracy; however, they can be implemented as dis-

cussed in Subsection: Camera). The two furthest points and the closest approach are shown in

Fig 13.

The result of reconstruction is shown in Fig 14, which visualises vertices and the triangular

mesh via the inclusion of normals and applied texture in the reconstructed model.

As a result, two 3-D models are obtained: the input model for SISPO and the reconstructed

model from images. Only the visible part of the comet was obtained because of the nature of

Fig 13. Three out of 25 frames used for the reconstruction. Images rendered in SISPO. Furthest approaching frame, closest approach and furthest

leaving frame.

https://doi.org/10.1371/journal.pone.0263882.g013

Fig 14. Final reconstruction of the visible part of the target without post-production. (A) Synthetically generated image (input). (B) Vertices of

reconstruction. (C) Mesh with normals. (D) Triangular mesh with texture.

https://doi.org/10.1371/journal.pone.0263882.g014

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 16 / 23

https://doi.org/10.1371/journal.pone.0263882.g013
https://doi.org/10.1371/journal.pone.0263882.g014
https://doi.org/10.1371/journal.pone.0263882


the fly-by (i.e., during the fly-by only one illuminated part of the target is visible). The recon-

structed model was compared with the input 3-D model externally using the CloudCompare
software [60]. Generally, the reconstructed model is close to the input model, except for the

edges (e.g., the black area in Fig 15), where the error deviation was very high (up to 600 m).

These highly deviated parts could be removed in the point cloud or mesh post-processing, but

have not been done in this analysis. The Gaussian distribution mean error is 14.7 m and the

standard deviation is 63.9 m. The visualisation of deviation and the error analysis are shown in

Fig 15.

Case 2: SSSB orbiting

During SSSB orbiting, it is possible to observe every side of the target because as the target

spins, each part will be illuminated at a certain point. Three different input-image views (out

of 53 used in total) and a fully reconstructed 3-D model are shown in Fig 16. Fifty-three images

were generated from different angles using a pinhole camera.

The input and reconstructed 3-D model were compared using the same method as in the

fly-by case. Because of the larger set of observational angles, the deviation is decreased in the

orbiting case and reaches 60–89.7 m at some crater spots, but most of the surface is aligned

with the input model as shown in Fig 17. The Gaussian mean error distribution is 1.2 m and

the standard deviation is 6.6 m. The accuracy can be increased by using a more significant set

of images and higher resolution.

Discussion and future work

SISPO is a sophisticated tool for terrestrial-cosmic-scenery rendering. Its most significant

advantage is the physically based, high-quality, realistic renderings, which can reproduce sub-

millimeter surface resolution and beyond for SSSBs and other terrestrial bodies thanks to

micropolygon procedural texturing and Blender’s Cycles path-tracing rendering engine. The

produced renderings are mature for deep-space mission design and algorithm development

for semi-autonomous operations, visual navigation, localisation and image processing. There

are a few more functions that are considered for future implementation:

• Attitude dynamics auxiliary package (see below);

Fig 15. Deviation analysis of the reconstructed partial mesh and input 3-D model for image synthesis. Visualisation of deviation (left); errors and

Gaussian distribution (right).

https://doi.org/10.1371/journal.pone.0263882.g015

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 17 / 23

https://doi.org/10.1371/journal.pone.0263882.g015
https://doi.org/10.1371/journal.pone.0263882


Fig 16. Full reconstruction of the comet during orbiting. The first column shows actual synthetic images, the second column is the textured view of

the 3-D reconstruction, and the third column shows the meshed view of the reconstruction.

https://doi.org/10.1371/journal.pone.0263882.g016

Fig 17. Deviation analysis of the entire reconstructed mesh and input 3-D model for image synthesis. Visualisation of deviation (left); errors and

Gaussian distribution (right).

https://doi.org/10.1371/journal.pone.0263882.g017

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 18 / 23

https://doi.org/10.1371/journal.pone.0263882.g016
https://doi.org/10.1371/journal.pone.0263882.g017
https://doi.org/10.1371/journal.pone.0263882


• Image compression algorithms for efficient data storage and transmission evaluation, which

was preliminarily assessed by [61];

• Reconstruction of various scenery;

• Algorithms for spacecraft photogrammetry-based localisation;

• Capability to simulate measurements of the target spectral reflectance in certain wavelength

channels;

• Improved shader and user-defined parameterisation of Cycles in order to minimise the

approximation;

• Solar System ephemeris integration for historical and upcoming events. This can include

both terrestrial bodies and spacecraft via the possible adaptation of Spacecraft Planet Instru-

ment Camera-matrix Events (SPICE) data.

Attitude dynamics auxiliary package

The SISPO simulation environment will include optional packages for calculating the effects

of external forces such as dust particle impacts, atmospheric drag, gravity gradient and various

other effects necessary to account for. Each of these functionalities will be built as an add-on to

the current Orekit-based attitude framework. This is done by adding an optional extra calcula-

tion step between the propagations of the spacecraft state through time by Orekit to account

for the perturbations. With the addition of the second layer on top of Orekit orbital simula-

tions, for accurately simulating the attitude dynamics of the spacecraft or a celestial body, the

SISPO environment will have the necessary groundwork for later expansions into different

active and passive attitude control systems present in any future mission simulations.

GitHub algorithm repository

The open-source algorithm is stored in the public GitHub repository (https://github.com/

SISPO-developers), and everyone is welcome to use and modify it. The algorithm is updated,

and new functionalities are managed and added by authors. The instruction and comments

can also be found in the repository. It contains following subrepositories: main SISPO (https://

github.com/SISPO-developers/sispo), dust and gas environment generator for SSSBs (https://

github.com/SISPO-developers/ComaCreator), comatic aberration and astigmatism simulator

(https://github.com/SISPO-developers/OASIS) and docker image (https://github.com/SISPO-

developers/sispo_docker) for fast SISPO deployment. Additional information about the algo-

rithm can be found in [44, 61].

Conclusions

In this paper, the Space Imaging Simulator for Proximity Operations (SISPO) architecture and

capabilities were described and several features demonstrated by case simulations. The tool

generates physically based, photorealistic images from an input 3-D model using Blender’s

Cycles path-tracing rendering engine. For regolith surface reconstruction it uses procedural

texturing. SISPO has supplementary models for optical aberrations as well as for gas and dust

of small bodies. The description and usage of these models were discussed in this paper. Other

use cases have demonstrated renderings of the Moon and a spacecraft. The set of produced

images can be implemented for 3-D surface reconstruction. The tool is open access and cur-

rently requires basic programming skills to be used [33]. The level of detail currently produced

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 19 / 23

https://github.com/SISPO-developers
https://github.com/SISPO-developers
https://github.com/SISPO-developers/sispo
https://github.com/SISPO-developers/sispo
https://github.com/SISPO-developers/ComaCreator
https://github.com/SISPO-developers/ComaCreator
https://github.com/SISPO-developers/OASIS
https://github.com/SISPO-developers/sispo_docker
https://github.com/SISPO-developers/sispo_docker
https://doi.org/10.1371/journal.pone.0263882


by SISPO is suitable for the design of advanced deep-space missions, the simulation of large

sets of scenarios, and the development and validation of algorithms for (semi-)autonomous

operations, vision-based navigation, localisation and image processing. SISPO has already sup-

ported the development of deep-space mission concepts and is currently being used for the

ESA–JAXA Comet Interceptor mission (more details in Section: Application to space mission

designs).

Some further improvements have been considered and are listed in Section: Discussion and

future work. Other teams are welcome to use SISPO, implement new functions and contact

the authors of this paper.

Supporting information

S1 Script. Image comparison. The file contains python algorithm used to compare images in

this manuscript.

(ZIP)

Acknowledgments

We thank Mattias Malmer for allowing us to use his shape model of the comet 67P/Churyu-

mov–Gerasimenko. Thanks to Hayabusa’s AMICA imaging team for publishing the shape

model of 25143 Itokawa. We would like to express our gratitude to Airbus Defence and Space

for developing and providing the SurRender software; to Jérémy Lebreton and Christine Pels-

ener-Scamaroni in particular for providing and accommodating changes to the licence agree-

ment. Thanks to the University of Dundee and Martin Dunstan for developing and providing

PANGU software and helping to set it up. A special mention goes to the Blender community,

thanks to whom the open-source software exists and improves. Thanks to Tomas Kohout

(University of Helsinki) for helping to arrange Timo Väisänen’s civilian service (a.k.a. semi

postdoc) at Aalto University.

Author Contributions

Conceptualization: Mihkel Pajusalu.

Data curation: Mihkel Pajusalu, Iaroslav Iakubivskyi, Olli Knuuttila.

Formal analysis: Gabriel Jörg Schwarzkopf.

Funding acquisition: Mihkel Pajusalu.

Investigation: Iaroslav Iakubivskyi, Gabriel Jörg Schwarzkopf, Olli Knuuttila, Maximilian

Bührer, Mario F. Palos, Hans Teras, Andris Slavinskis.

Methodology: Mihkel Pajusalu, Iaroslav Iakubivskyi, Gabriel Jörg Schwarzkopf, Timo Väisä-

nen, Maximilian Bührer, Hans Teras.

Project administration: Andris Slavinskis.

Software: Mihkel Pajusalu, Iaroslav Iakubivskyi, Gabriel Jörg Schwarzkopf, Olli Knuuttila,

Timo Väisänen, Maximilian Bührer, Mario F. Palos, Hans Teras.

Supervision: Mihkel Pajusalu, Jaan Praks, Andris Slavinskis.

Validation: Iaroslav Iakubivskyi, Olli Knuuttila, Guillaume Le Bonhomme, Jaan Praks, Andris

Slavinskis.

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 20 / 23

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0263882.s001
https://doi.org/10.1371/journal.pone.0263882


Visualization: Iaroslav Iakubivskyi, Olli Knuuttila, Timo Väisänen, Maximilian Bührer,

Mario F. Palos, Guillaume Le Bonhomme.

Writing – original draft: Iaroslav Iakubivskyi.

Writing – review & editing: Mihkel Pajusalu, Iaroslav Iakubivskyi, Olli Knuuttila.

References
1. Fitzsimmons A, Snodgrass C, Rozitis B, Yang B, Hyland M, Seccull T, et al. Spectroscopy and thermal

modelling of the first interstellar object 1I/2017 U1 ‘Oumuamua. Nature Astronomy. 2018; 2(2):133–

137. https://doi.org/10.1038/s41550-017-0361-4

2. Fitzsimmons A, Hainaut O, Meech KJ, Jehin E, Moulane Y, Opitom C, et al. Detection of CN Gas in

Interstellar Object 2I/Borisov. The Astrophysical Journal. 2019; 885(1):L9. https://doi.org/10.3847/

2041-8213/ab49fc

3. Brochard R, Lebreton J, Robin C, Kanani K, Jonniaux G, Masson A, et al. Scientific image rendering for

space scenes with the SurRender software. In: 69th International Astronautical Congress (IAC). Bre-

men, Germany: IAF; 2018. p. 1–11. Available from: https://arxiv.org/abs/1810.01423.

4. Lambert JH. Photometria sive de mensura et gradibus luminis, colorum et umbrae. Klett; 1760. Avail-

able from: https://archive.org/details/bub_gb_zmpJAAAAYAAJ.

5. Hapke B. Bidirectional reflectance spectroscopy: 1. Theory. Journal of Geophysical Research: Solid

Earth. 1981; 86(B4):3039–3054. https://doi.org/10.1029/JB086iB04p03055

6. Hapke B. Bidirectional reflectance spectroscopy: 3. Correction for macroscopic roughness. Icarus.

1984; 59(1):41—59. https://doi.org/10.1016/0019-1035(84)90054-X

7. Hapke B. Bidirectional Reflectance Spectroscopy: 5. The Coherent Backscatter Opposition Effect and

Anisotropic Scattering. Icarus. 2002; 157(2):523—534. https://doi.org/10.1006/icar.2002.6853

8. Oren M, Nayar SK. Generalization of the Lambertian model and implications for machine vision. Inter-

national Journal of Computer Vision. 1995; 14(3):227–251. https://doi.org/10.1007/BF01679684

9. Martin I, Dunstan M, Gestido MS. Planetary Surface Image Generation for Testing Future Space Mis-

sions with PANGU. In: 2nd RPI Space Imaging Workshop. Saratoga Springs, NY, USA; 2019. p. 1–13.

Available from: https://pangu.software/wp-content/pangu_uploads/pdfs/SpaceImagingWorkshop_

2019_paper_pangu_final.pdf.

10. Acton C, Bachman N, Semenov B, Wright E. SPICE TOOLS SUPPORTING PLANETARY REMOTE

SENSING. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sci-

ences. 2016; XLI-B4:357–359. https://doi.org/10.5194/isprs-archives-XLI-B4-357-2016

11. Semenov B. WebGeocalc and Cosmographia: Modern Tools to Access OPS SPICE data. In: 2018

SpaceOps Conference. Marseille, France; 2018. p. 2366. Available from: https://doi.org/10.2514/6.

2018-2366.

12. Garreta Piñol B. Study: Visualization of spacecraft trajectories with NASA SPICE and Blender [B.S. the-

sis]. Universitat Politècnica de Catalunya; 2020. Available from: https://upcommons.upc.edu/handle/

2117/330122.

13. Aiazzi C, Quadrelli MB, Gaut A, Jain A. Physics-based rendering of irregular planetary bodies. In: The

International Symposium on Artificial Intelligence, Robotics and Automation in Space (i-SAIRAS). Vir-

tual: LPI contribution No.2358; 2020.Available from: https://www.hou.usra.edu/meetings/

isairas2020fullpapers/pdf/4009.pdf.

14. AMICA imaging team. Shape models of 25143 Itokawa, the target of the HAYABUSA mission; 2007.

Available from: https://darts.isas.jaxa.jp/planet/project/hayabusa/shape.pl.

15. Blender Online Community. Blender—a 3D modelling and rendering package; 2020. Available from:

http://www.blender.org.

16. Pajusalu M, Slavinskis A. Characterization of Asteroids Using Nanospacecraft Flybys and Simulta-

neous Localization and Mapping. In: 2019 IEEE Aerospace Conference; 2019. p. 1–9. Available from:

https://doi.org/10.1109/AERO.2019.8741921.

17. Kohout T, Näsilä A, Tikka T, Granvik M, Kestilä A, Penttilä A, et al. Feasibility of asteroid exploration

using CubeSats—ASPECT case study. Advances in Space Research. 2018; 62(8):2239—2244.

https://doi.org/10.1016/j.asr.2017.07.036

18. Walker R, Binns D, Bramanti C, Casasco M, Concari P, Izzo D, et al. Deep-space CubeSats: thinking

inside the box. Astronomy & Geophysics. 2018; 59:24–30.

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 21 / 23

https://doi.org/10.1038/s41550-017-0361-4
https://doi.org/10.3847/2041-8213/ab49fc
https://doi.org/10.3847/2041-8213/ab49fc
https://arxiv.org/abs/1810.01423
https://archive.org/details/bub_gb_zmpJAAAAYAAJ
https://doi.org/10.1029/JB086iB04p03055
https://doi.org/10.1016/0019-1035(84)90054-X
https://doi.org/10.1006/icar.2002.6853
https://doi.org/10.1007/BF01679684
https://pangu.software/wp-content/pangu_uploads/pdfs/SpaceImagingWorkshop_2019_paper_pangu_final.pdf
https://pangu.software/wp-content/pangu_uploads/pdfs/SpaceImagingWorkshop_2019_paper_pangu_final.pdf
https://doi.org/10.5194/isprs-archives-XLI-B4-357-2016
https://doi.org/10.2514/6.2018-2366
https://doi.org/10.2514/6.2018-2366
https://upcommons.upc.edu/handle/2117/330122
https://upcommons.upc.edu/handle/2117/330122
https://www.hou.usra.edu/meetings/isairas2020fullpapers/pdf/4009.pdf
https://www.hou.usra.edu/meetings/isairas2020fullpapers/pdf/4009.pdf
https://darts.isas.jaxa.jp/planet/project/hayabusa/shape.pl
http://www.blender.org
https://doi.org/10.1109/AERO.2019.8741921
https://doi.org/10.1016/j.asr.2017.07.036
https://doi.org/10.1371/journal.pone.0263882


19. Bowles NE, Snodgrass C, Gibbings A, Sanchez JP, Arnold JA, Eccleston P, et al. CASTAway: An aster-

oid main belt tour and survey. Advances in Space Research. 2018; 62(8):1998—2025. https://doi.org/

10.1016/j.asr.2017.10.021

20. Snodgrass C, Jones GH, Boehnhardt H, Gibbings A, Homeister M, Andre N, et al. The Castalia mission

to Main Belt Comet 133P/Elst-Pizarro. Advances in Space Research. 2018; 62(8):1947—1976. https://

doi.org/10.1016/j.asr.2017.09.011

21. Jones GH, Agarwal J, Bowles N, Burchell M, Coates AJ, Fitzsimmons A, et al. The proposed Caroline

ESA M3 mission to a Main Belt Comet. Advances in Space Research. 2018; 62(8):1921—1946. https://

doi.org/10.1016/j.asr.2018.02.032

22. Probst A, Förstner R. Spacecraft design of a multiple asteroid orbiter with re-docking lander. Advances

in Space Research. 2018; 62(8):2125—2140. https://doi.org/10.1016/j.asr.2017.07.041

23. Oberst J, Wickhusen K, Willner K, Gwinner K, Spiridonova S, Kahle R, et al. DePhine—The Deimos

and Phobos Interior Explorer. Advances in Space Research. 2018; 62(8):2220—2238. https://doi.org/

10.1016/j.asr.2017.12.028

24. Ferri A, Pelle S, Belluco M, Voirin T, Gelmi R. The exploration of PHOBOS: Design of a Sample Return

mission. Advances in Space Research. 2018; 62(8):2163—2173. https://doi.org/10.1016/j.asr.2018.06.

014

25. Slavinskis A, Janhunen P, Toivanen P, Muinonen K, Penttilä A, Granvik M, et al. Nanospacecraft fleet

for multi-asteroid touring with electric solar wind sails. In: 2018 IEEE Aerospace Conference. IEEE;

2018. p. 1–20. Available from: https://doi.org/10.1109/AERO.2018.8396670.

26. Iakubivskyi I, Mačiulis L, Janhunen P, Dalbins J, Noorma M, Slavinskis A. Aspects of Nanospacecraft

Design for Main-Belt Sailing Voyage. Advances in Space Research (in press). 2020;.

27. ESA. Announcement of opportunity for new science ideas in ESA’s science programme, viewed 08

April 2020; open call 2016. https://www.cosmos.esa.int/web/new-scientific-ideas.

28. ESA. CDF–178(C) study report: Small Planetary Platforms (SPP) in NEO and MAB (study manager:

Bayon, S.), pp. 81–100, viewed 08 April 2020. European Space Agency; technical report 2018. Avail-

able from: https://sci.esa.int/web/future-missions-department/-/60411-cdf-study-report-small-

planetary-platforms-spp.

29. Pajusalu M, Kivastik J, Iakubivskyi I, Slavinskis A. Developing autonomous image capturing systems

for maximum science yield for high fly-by velocity small solar system body exploration. In: 71st Interna-

tional Astronautical Congress, IAC-20-A3.4B.4. Cyber Space: IAF; 2020. p. 1–8. Available from: https://

dl.iafastro.directory/event/IAC-2020/paper/61048/.

30. Snodgrass C, Jones GH. The European Space Agency’s Comet Interceptor lies in wait. Nature commu-

nications. 2019; 10(1):1–4. https://doi.org/10.1038/s41467-019-13470-1 PMID: 31780664

31. Pernechele C, Deppo VD, Brydon G, Jones GH, Lara L, Michaelis H. Comet interceptor’s EnVisS cam-

era sky mapping function. In: Ellis SC, d’Orgeville C, editors. Advances in Optical Astronomical Instru-

mentation 2019. vol. 11203. International Society for Optics and Photonics. SPIE; 2020. p. 115—118.

Available from: https://doi.org/10.1117/12.2539239.

32. Maisonobe L, Pommier V, Parraud P. Orekit: An open source library for operational flight dynamics

applications. In: 4th International Conference on Astrodynamics Tools and Techniques. ESAC, Madrid,

Spain; 2010.

33. Schwarzkopf GJ, Pajusalu M. Space Imaging Simulator for Proximity Operations; 2020. Available from:

https://doi.org/10.5281/zenodo.3661054.

34. Whitted T. An Improved Illumination Model for Shaded Display. Communications of the ACM. 1980; 23

(6):343–349. https://doi.org/10.1145/358876.358882

35. Flavell L. Chapter 4: Lighting and Procedural Textures. In: Beginning Blender: Open Source 3D Model-

ing, Animation, and Game Design. New York: Apress; 2011. p. 69–96.

36. McEwen AS. Photometric functions for photoclinometry and other applications. Icarus. 1991; 92

(2):298–311. https://doi.org/10.1016/0019-1035(91)90053-V

37. Hapke B. Theory of Reflectance and Emittance Spectroscopy. 2nd ed. Cambridge: Cambridge Univer-

sity Press; 2012. Available from: https://doi.org/10.1017/CBO9781139025683.

38. Williams L. Casting Curved Shadows on Curved Surfaces. In: Seminal Graphics: Pioneering Efforts

That Shaped the Field. New York, NY, USA: Association for Computing Machinery; 1998. p. 51–55.

Available from: https://doi.org/10.1145/280811.280975.

39. Schmitt MI, Tubiana C, Güttler C, Sierks H, Vincent JB, El-Maarry MR, et al. Long-term monitoring of

comet 67P/Churyumov–Gerasimenko’s jets with OSIRIS onboard Rosetta. Monthly Notices of the

Royal Astronomical Society. 2017; 469:S380–S385. https://doi.org/10.1093/mnras/stx1780

40. Finson M, Probstein R. A theory of dust comets. I. Model and equations. The Astrophysical Journal.

1968; 154:327–352. https://doi.org/10.1086/149762

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 22 / 23

https://doi.org/10.1016/j.asr.2017.10.021
https://doi.org/10.1016/j.asr.2017.10.021
https://doi.org/10.1016/j.asr.2017.09.011
https://doi.org/10.1016/j.asr.2017.09.011
https://doi.org/10.1016/j.asr.2018.02.032
https://doi.org/10.1016/j.asr.2018.02.032
https://doi.org/10.1016/j.asr.2017.07.041
https://doi.org/10.1016/j.asr.2017.12.028
https://doi.org/10.1016/j.asr.2017.12.028
https://doi.org/10.1016/j.asr.2018.06.014
https://doi.org/10.1016/j.asr.2018.06.014
https://doi.org/10.1109/AERO.2018.8396670
https://www.cosmos.esa.int/web/new-scientific-ideas
https://sci.esa.int/web/future-missions-department/-/60411-cdf-study-report-small-planetary-platforms-spp
https://sci.esa.int/web/future-missions-department/-/60411-cdf-study-report-small-planetary-platforms-spp
https://dl.iafastro.directory/event/IAC-2020/paper/61048/
https://dl.iafastro.directory/event/IAC-2020/paper/61048/
https://doi.org/10.1038/s41467-019-13470-1
http://www.ncbi.nlm.nih.gov/pubmed/31780664
https://doi.org/10.1117/12.2539239
https://doi.org/10.5281/zenodo.3661054
https://doi.org/10.1145/358876.358882
https://doi.org/10.1016/0019-1035(91)90053-V
https://doi.org/10.1017/CBO9781139025683
https://doi.org/10.1145/280811.280975
https://doi.org/10.1093/mnras/stx1780
https://doi.org/10.1086/149762
https://doi.org/10.1371/journal.pone.0263882


41. Kramer T, Läuter M, Rubin M, Altwegg K. Seasonal changes of the volatile density in the coma and on

the surface of comet 67P/Churyumov–Gerasimenko. Monthly Notices of the Royal Astronomical Soci-

ety. 2017; 469(Suppl_2):S20–S28. https://doi.org/10.1093/mnras/stx866

42. Kramer T, Noack M, Baum D, Hege HC, Heller EJ. Dust and gas emission from cometary nuclei: the

case of comet 67P/Churyumov–Gerasimenko. Advances in Physics: X. 2018; 3(1):1404436.

43. Levasseur-Regourd AC, Renard JB, Hadamcik E, Lasue J, Bertini I, Fulle M. Interpretation through

experimental simulations of phase functions revealed by Rosetta in 67P/Churyumov-Gerasimenko dust

coma. Astronomy and Astrophysics. 2019; 630:A20. https://doi.org/10.1051/0004-6361/201834894

44. Bührer M. Simulation of Optical Aberrations for Comet Interceptor’s OPIC Instrument [M.Sc. thesis].

LuleåUniversity of Technology and Cranfield University; 2020. Available from: http://urn.kb.se/resolve?

urn=urn:nbn:se:ltu:diva-81638.

45. Brown DC. Close-range camera calibration. Photogrammetric Engineering. 1971; 37(8):855–866.

46. Culjak I, Abram D, Pribanic T, Dzapo H, Cifrek M. A brief introduction to OpenCV. In: 2012 Proceedings

of the 35th International Convention MIPRO. Opatija, Croatia; 2012. p. 1725–1730. Available from:

https://ieeexplore.ieee.org/document/6240859.

47. Gaskell R, Barnouin-Jha O, Scheeres DJ, Konopliv A, Mukai T, Abe S, et al. Characterizing and navi-

gating small bodies with imaging data. Meteoritics & Planetary Science. 2008; 43(6):1049–1061.

https://doi.org/10.1111/j.1945-5100.2008.tb00692.x

48. Kainz F, Bogart R, Hess D. The OpenEXR image file format. In: ACM SIGGRAPH Technical Sketches;

2003. Available from: https://developer.nvidia.com/gpugems/gpugems/part-iv-image-processing/

chapter-26-openexr-image-file-format.

49. Lekien F, Marsden J. Tricubic interpolation in three dimensions. International Journal for Numerical

Methods in Engineering. 2005; 63(3):455–471. https://doi.org/10.1002/nme.1296

50. Spudis PD, Ryder G. Geology and petrology of the Apollo 15 landing site: Past, present, and future

understanding. Eos, Transactions American Geophysical Union. 1985; 66(43):721–726. https://doi.org/

10.1029/EO066i043p00721

51. Robinson MS, Ashley JW, Boyd AK, Wagner RV, Speyerer EJ, Ray Hawke B, et al. Confirmation of

sublunarean voids and thin layering in mare deposits. Planetary and Space Science. 2012; 69(1):18–

27. https://doi.org/10.1016/j.pss.2012.05.008

52. Cushing GE, Titus TN, Wynne JJ, Christensen PR. THEMIS observes possible cave skylights on Mars.

Geophysical Research Letters. 2007; 34(17):L17201. https://doi.org/10.1029/2007GL030709

53. Nesnas IA, Kerber L, Parness A, Kornfeld R, Sellar G, McGarey P, et al. Moon Diver: A Discovery Mis-

sion Concept for Understanding the History of Secondary Crusts through the Exploration of a Lunar

Mare Pit. In: 2019 IEEE Aerospace Conference; 2019. p. 1–23. Available from: https://doi.org/10.1109/

AERO.2019.8741788.

54. Uckert K, Parness A, Chanover N, Eshelman EJ, Abcouwer N, Nash J, et al. Investigating Habitability

with an Integrated Rock-Climbing Robot and Astrobiology Instrument Suite. Astrobiology. 2020; 20

(12):1427–1449. https://doi.org/10.1089/ast.2019.2177 PMID: 33052709

55. Sauro F, Pozzobon R, Massironi M, De Berardinis P, Santagata T, De Waele J. Lava tubes on Earth,

Moon and Mars: A review on their size and morphology revealed by comparative planetology. Earth-

Science Reviews. 2020; 209:103288. https://doi.org/10.1016/j.earscirev.2020.103288

56. Moulon P, Monasse P, Perrot R, Marlet R. OpenMVG: Open Multiple View Geometry. In: Kerautret B,

Colom M, Monasse P, editors. Reproducible Research in Pattern Recognition. Cham: Springer Inter-

national Publishing; 2017. p. 60–74. Available from: https://link.springer.com/chapter/10.1007/978-3-

319-56414-2_5.

57. Moulon P, Duisit B, Monasse P. Global Multiple-View Color Consistency. In: Proceedings of CVMP

2013. Londres, United Kingdom; 2013. Available from: https://hal-enpc.archives-ouvertes.fr/hal-

00873517/.

58. Liu Z, Marlet R. Virtual line descriptor and semi-local matching method for reliable feature correspon-

dence. In: Proceedings of British Machine Vision Conference 2012. Surrey, United Kingdom; 2012.

p. 16.1–16.11. Available from: https://hal.archives-ouvertes.fr/hal-00743323.

59. Cernea D. OpenMVS: Multi-View Stereo Reconstruction Library; 2021. Available from: https://

cdcseacave.github.io/openMVS.

60. Girardeau-Montaut D. Cloudcompare—open source project; 2011. Available from: https://www.

cloudcompare.org.

61. Schwarzkopf GJ. 3D Reconstruction of Small Solar System Bodies using Rendered and Compressed

Images [M.Sc. thesis]. LuleåUniversity of Technology, Aalto University; 2020. Available from: http://

urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77846.

PLOS ONE SISPO

PLOS ONE | https://doi.org/10.1371/journal.pone.0263882 March 4, 2022 23 / 23

https://doi.org/10.1093/mnras/stx866
https://doi.org/10.1051/0004-6361/201834894
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81638
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-81638
https://ieeexplore.ieee.org/document/6240859
https://doi.org/10.1111/j.1945-5100.2008.tb00692.x
https://developer.nvidia.com/gpugems/gpugems/part-iv-image-processing/chapter-26-openexr-image-file-format
https://developer.nvidia.com/gpugems/gpugems/part-iv-image-processing/chapter-26-openexr-image-file-format
https://doi.org/10.1002/nme.1296
https://doi.org/10.1029/EO066i043p00721
https://doi.org/10.1029/EO066i043p00721
https://doi.org/10.1016/j.pss.2012.05.008
https://doi.org/10.1029/2007GL030709
https://doi.org/10.1109/AERO.2019.8741788
https://doi.org/10.1109/AERO.2019.8741788
https://doi.org/10.1089/ast.2019.2177
http://www.ncbi.nlm.nih.gov/pubmed/33052709
https://doi.org/10.1016/j.earscirev.2020.103288
https://link.springer.com/chapter/10.1007/978-3-319-56414-2_5
https://link.springer.com/chapter/10.1007/978-3-319-56414-2_5
https://hal-enpc.archives-ouvertes.fr/hal-00873517/
https://hal-enpc.archives-ouvertes.fr/hal-00873517/
https://hal.archives-ouvertes.fr/hal-00743323
https://cdcseacave.github.io/openMVS
https://cdcseacave.github.io/openMVS
https://www.cloudcompare.org
https://www.cloudcompare.org
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77846
http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-77846
https://doi.org/10.1371/journal.pone.0263882

