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ABSTRACT:
The goal of this study is to investigate advanced signal processing approaches [single frequency filtering (SFF) and

zero-time windowing (ZTW)] with modern deep neural networks (DNNs) [convolution neural networks (CNNs),

temporal convolution neural networks (TCN), time-delay neural network (TDNN), and emphasized channel atten-

tion, propagation and aggregation in TDNN (ECAPA–TDNN)] for dialect classification of major dialects of English.

Previous studies indicated that SFF and ZTW methods provide higher spectro-temporal resolution. To capture the

intrinsic variations in articulations among dialects, four feature representations [spectrogram (SPEC), cepstral coeffi-

cients, mel filter-bank energies, and mel–frequency cepstral coefficients (MFCCs)] are derived from SFF and ZTW

methods. Experiments with and without data augmentation using CNN classifiers revealed that the proposed features

performed better than baseline short-time Fourier transform (STFT)–based features on the UT-Podcast database

[Hansen, J. H., and Liu, G. (2016). “Unsupervised accent classification for deep data fusion of accent and language

information,” Speech Commun. 78, 19–33]. Even without data augmentation, all the proposed features showed an

approximate improvement of 15%–20% (relative) over best baseline (SPEC–STFT) feature. TCN, TDNN, and

ECAPA-TDNN classifiers that capture wider temporal context further improved the performance for many of the

proposed and baseline features. Among all the baseline and proposed features, the best performance is achieved with

single frequency filtered cepstral coefficients for TCN (81.30%), TDNN (81.53%), and ECAPA-TDNN (85.48%).

An investigation of data-driven filters, instead of fixed mel-scale, improved the performance by 2.8% and 1.4% (rela-

tively) for SPEC–STFT and SPEC–SFF, and nearly equal for SPEC–ZTW. To assist related work, we have made the

code available ([Kethireddy, R., and Kadiri, S. R. (2022). “Deep neural architectures for dialect classification with single

frequency filtering and zero-time windowing feature representations,” https://github.com/r39ashmi/e2e_dialect (Last

viewed 21 December 2021)].). VC 2022 Acoustical Society of America. https://doi.org/10.1121/10.0009405

(Received 7 July 2021; revised 16 January 2022; accepted 16 January 2022; published online 16 February 2022)

[Editor: John H. L. Hansen] Pages: 1077–1092

I. INTRODUCTION

Identifying the regional origin of a speaker from the

acoustic characteristics of speech is known as dialect identi-

fication. The task of dialect identification is usually consid-

ered to be a sub-class of language identification; however,

dialect discrimination is a bit more challenging than lan-

guage identification due to low variability among dialects.

Dialect information in speech is reflected in both acoustic

and linguistic variations. Studies by Hansen and Liu (2016)

have shown that acoustic variations are more prominent than

the linguistic variations [acoustic models performed better

than linguistic models by 15.8% absolute unweighted average

recall (UAR)] for major dialects of English. The acoustic var-

iations among dialects include segmental and supra-segmental

features, and they can be extracted directly from the speech

signal (Behravan et al., 2016; Bougrine et al., 2018; DeMarco

and Cox, 2012; Rajpal et al., 2016; Rouas, 2007) or they can

be modelled indirectly from the phonetic information derived

from the speech signal (Chen et al., 2011; Chen et al., 2014;

Najafian et al., 2018; Shon et al., 2018a).

Hand-engineered segmental feature representations obtained

from short-time Fourier transform (STFT) spectrum [such as

spectrogram, mel filter-bank energies (MFBE)/mel spectrogram

and mel–frequency cepstral coefficients (MFCCs)] are widely

investigated to represent acoustic variations between dialects

(DeMarco and Cox, 2012; Shon et al., 2018a). These features

represent the speech signal at frame-level. To obtain low-

dimensional and uncorrelated utterance-level representations,

machine learning approaches, such as the Gaussian mixture

model (GMM)–based i-vector model (Behravan et al., 2016),

Siamese network model (Siddhant et al., 2017), and factorized

hierarchical variational auto-encoder (FHVAE) model (Shon

et al., 2018b) were investigated.

Further, for better classification, linear classifiers [such

as the support vector machine (SVM) and linear discrimi-

nant analysis (LDA)] and non-linear classifiers [such as

feed-forward neural networks (FFNNs)] (DeMarco and Cox,

a)Electronic mail: rashmi.kethireddy@research.iiit.ac.in, ORCID: 0000-

0002-3047-8158.
b)ORCID: 0000-0001-5806-3053.
c)ORCID: 0000-0001-6745-4363.
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2012; Siddhant et al., 2017) were investigated. In DeMarco

and Cox (2012), i-vectors derived from MFCC features

were investigated with different classifiers (SVM, LDA,

iterative LDA, quadratic discriminant analysis (QDA), and

iterative QDA) for classification of British English dialects.

Out of them, iterative LDA classifiers performed better

(accuracy of 68%).

Modern end-to-end deep neural classifiers can handle both

compression and classification (Cai et al., 2019; Qi et al., 2018;

Shon et al., 2018a). The compressed latent representations

learnt from these networks retain the temporal dependencies

across the frames. However, neural network classifiers require

larger amounts of data for training. To overcome this, different

data-augmentation approaches are investigated in this study.

Different weight initialization of the neural network can lead to

unstable performances. To mitigate this, in this study, networks

are trained multiple times and tested against each trained model,

and then the performance is averaged across all models.

Deep neural classifiers were mainly investigated with con-

volution neural networks (CNNs) and recurrent neural networks

(RNNs) for dialect classification (Cai et al., 2019; Najafian et al.,
2018; Qi et al., 2018; Shon et al., 2018a; Wu et al., 2018). From

studies by Shon et al. (2018a,b), it was found that compared to

traditional statistical methods (i-vectorsþSVM), the end-to-end

CNN architectures (with mel spectrogram as input) performed

better by 10% absolute accuracy for Arabic English dialects.

Further, it was shown that data augmentation improved the per-

formance by 5.5% absolute accuracy. Even though RNNs were

used for classification tasks in speech as they capture long tem-

poral context, they also require O(n) sequential operations for

each unit while CNNs require O(1) sequential operations.

Lower order sequential operations for CNN lead to paralleliza-

tion of computations in CNNs. In contrast, higher order

sequential processing will lead to higher computation time for

RNNs. Networks that provide similar temporal context, such

as temporal convolution neural networks (TCNs) (Bai et al.,
2018) and time-delay neural networks (TDNNs) (Snyder et al.,
2018) with computation time similar to CNNs are investigated

in this study. Significant architectural changes were made to

TDNN to obtain emphasized channel attention, propagation

and aggregation in TDNN (ECAPA-TDNN), which was

shown to improve the performance of speaker verification sys-

tem (Desplanques et al., 2020) and language identification

(Ravanelli et al., 2021) is investigated in this study.

From the early studies on accent classification (Kat and

Fung, 1999; Arslan and Hansen, 1997), it was found that the

favourable spectral scale depends on the language of dialects and

sub-dialects contained in it. Furthermore, from the accent classifi-

cation studies with neural networks (Kethireddy et al., 2020b), it

was found that the distribution of learnt frequency bands are dif-

ferent from standard mel-scale distribution. It was observed that

learnt scale showed an improvement of 10.94% UAR (relative)

over mel-scale. Motivated by this, the current study introduces

learnable spectral scale filters as a convolution layer and learnt

along with the other network layers to discriminate dialects.

This study considers three major dialects of English,

namely, Australian (AU), American (US), and British (UK)

from UT-Podcast corpus (Hansen and Liu, 2016). The main

challenges involved in the usage of this corpus for deep

architectures is insufficient data for training and imbalanced

classes. To overcome this, speed and volume perturbations

are proposed in order to improve the training space and class

balanced training to tackle the imbalanced classes. The ini-

tial study was conducted with UT-Podcast corpus by

Hansen and Liu (2016) using traditional i-vector model and

reported 74.5% UAR. Later, Wu et al. (2018) investigated

deep neural classifier models, time distributed CNN with

one attention layer, and frequency distributed CNN with

two attention layers, which improved the performance of

dialect classification system by 1.38% and 4.82% (in abso-

lute UAR) over traditional i-vector model.

In this study, the features derived from two recently

proposed signal processing methods, namely single fre-

quency filtering (SFF) (Aneeja and Yegnanarayana, 2015)

and zero-time windowing (ZTW) (Yegnanarayana and

Dhananjaya, 2013), are explored for dialect classification.

These methods were shown to provide higher spectro-

temporal resolution compared to STFT (Aneeja and

Yegnanarayana, 2015; Yegnanarayana and Dhananjaya,

2013). The SFF method was shown to provide better spec-

tral features, such as harmonics, resonances (Chennupati

et al., 2019; Pannala et al., 2016), and time-domain features,

such as glottal closure instances and voice-onset time

(VOT) (Kadiri and Yegnanarayana, 2017; Nellore et al.,
2017). Inspired by the advantages of SFF, mel filter-bank

energies derived from SFF (MFBE–SFF) were investigated

with an SVM classifier in our previous studies (Kethireddy

et al., 2020a), which showed promising results in identifying

dialects compared to conventional STFT representations,

such as the mel-spectrogram and MFCCs. In extension to

the preliminary studies (Kethireddy et al., 2020a), this study

proposes to derive four different feature representations:

namely (1) SFF spectrogram (SPEC–SFF), (2) single fre-

quency filtered cepstral coefficients (SFFCCs), (3) mel

filter-bank energies derived from SFF spectrum

(MFBE–SFF), and (4) mel–frequency cepstral coefficients

derived from SFF spectrum (MFCC–SFF).

In studies (Dhananjaya, 2011; Dhananjaya et al., 2012;

Yegnanarayana and Dhananjaya, 2013), ZTW spectrum was

shown to differentiate different speech sound characteristics effec-

tively compared to the STFT spectrum. In order to capture acous-

tic variations in the articulation of different dialects, the high

spectral resolution of the ZTW spectrum could be helpful.

Motivated by this, zero-time windowed cepstral coefficients

(ZTWCCs) are investigated with SVM as a classifier in our pre-

liminary studies (Kethireddy et al., 2020c) and have shown prom-

ising results in identifying dialects compared to conventional

STFT representations. In continuation to the preliminary work,

this study proposes to derive four different feature representations:

namely (1) ZTW spectrogram (SPEC–ZTW), (2) zero-time win-

dowed cepstral coefficients (ZTWCCs), (3) mel filter-bank ener-

gies derived from ZTW spectrum (MFBE–ZTW), and (4) mel–

frequency cepstral coefficients derived from ZTW spectrum

(MFCC–ZTW). These four feature representations derived from
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each method are used as input to advanced deep neural classifiers

for dialect classification. To assist related work, we have made the

code available (Kethireddy and Kadiri, 2022).

The major contributions of this study are as follows:

• Exploration of two recent signal processing methods (SFF

and ZTW) that provides high spectro-temporal resolu-

tions, and to derive four feature representations from SFF

spectrum and ZTW spectrum for dialect classification.
• Exploration of recent deep neural architectures (TCN,

TDNN, and ECAPA-TDNN) that provide long temporal

context, along with traditional CNN for dialect

classification.
• Introduced data-driven learnt spectral scale filters (as a

convolution layer) instead of fixed mel-scale filters as

used in traditional feature representations.
• Investigated the effectiveness of data-augmentation tech-

niques (speed and volume perturbation) to handle an

insufficient amount of data for training deep neural classi-

fiers, and class balanced loss function to handle imbal-

anced classes in the corpus.

The organization of the article is as follows: Sec. II

describes the SFF and ZTW methods along with the pro-

posed feature representations derived from the SFF/ZTW

spectrum. Section III gives the details of deep neural archi-

tectures investigated in this study. Details of the experimen-

tal setup, such as baseline feature configurations, proposed

feature configurations, training configurations, and the cor-

pus used are provided in Sec. IV. Results of the experiments

with analysis are provided in Sec. V. Finally, Sec. VI gives

a summary of the study.

II. SINGLE FREQUENCY FILTERING (SFF)
AND ZERO-TIME WINDOWING (ZTW) METHODS
AND EXTRACTION OF FEATURES

This section first describes two recently proposed sig-

nal processing methods, namely, SFF (Aneeja and

Yegnanarayana, 2015; Kadiri and Yegnanarayana, 2017)

and ZTW (Yegnanarayana and Dhananjaya, 2013) for

deriving high-resolution spectrum, and then, gives a proce-

dure to extract the proposed features from spectra of SFF

and ZTW.

A. SFF method

SFF (Aneeja and Yegnanarayana, 2015) is a time-

frequency analysis method that is used to compute an ampli-

tude envelope of speech signal as a function of time at each

selected frequency. In this method, the amplitude envelope

at a particular frequency is obtained by first frequency-

shifting (i.e., modulating) the speech signal (s½n�) (i.e., mul-

tiplying the s½n� with an exponential function): ŝ½n; k�
¼ s½n�ejx̂kn, where x̂k ¼ p� 2pfk=fs, fk is the desired fre-

quency and fs is the sampling frequency. The frequency-

shifted signal is filtered using a single pole filter, whose

transfer function is given by: HðzÞ ¼ 1=1þ rz�1. The pole

of the filter is located on the negative real axis (at z ¼ �r).

In this study, r¼ 0.99 is used, which is closer to the unit cir-

cle. The output of the filter is given by

y n; k½ � ¼ �ry n� 1; k½ � þ ŝ n; k½ �: (1)

The amplitude envelope (SSFF½n; k�) of y½n; k� at frequency fk
is given by

SSFF n; k½ � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðyr n; k½ �Þ2 þ ðyi n; k½ �Þ2

q
; (2)

where yr½n; k� is the real part and yi½n; k� is the imaginary

part of y½n; k�. The amplitude envelopes can be computed for

several frequencies at intervals of Df by defining fk as

follows:

fk ¼ kDf ; k ¼ 1; 2;…;K; (3)

where K ¼ ðfs=2Þ=Df . In this study, the value of Df is cho-

sen such that 1024 frequency samples exist in between 0 to

fs. From SSFF½n; k�, the SFF magnitude spectrum (or SFF

spectrum) can be obtained at each instant of time (“n”) by

considering all the amplitude envelope values at a particular

time instant. However, in this study, an averaged SFF spec-

trum (SSFF½n; k�) at regular intervals of 12.5 msec is consid-

ered. A schematic block diagram describing the steps

involved in the computation of SFF spectrum is shown in

Fig. 1.

B. ZTW method

ZTW method was proposed by Yegnanarayana and

Dhananjaya (2013) to derive the instantaneous spectral char-

acteristics, so that the time-varying characteristics of the

speech production mechanism can be captured. In this

method, the speech signal is windowed with a heavily

decaying window (unlike the conventional Hamming win-

dow, etc.) that provides higher emphasis at the samples near

the starting/zeroth time instant, and hence, the name zero-

time windowing (ZTW). This heavily decaying window is

shifted for every time instant and hence, the method pro-

vides higher temporal resolution. Spectrum is estimated

using group delay that was shown to provide good spectral

resolution. Hence, the method provides higher temporal res-

olution while simultaneously maintaining good spectral res-

olution. The steps involved in extracting the instantaneous

spectral characteristics using the ZTW method are as

follows:

FIG. 1. Schematic block diagram describing the steps involved in the com-

putation of SFF spectrum.
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• A segment of L msec speech signal s½n� (number of sam-

ples: M ¼ Lfs=1000) is considered at each instant (i.e.,

s½n� is defined for n ¼ 0; 1;…;M � 1). The segment is

multiplied with a heavily decaying window function

w2
1½n�, where

w1 n½ � ¼ 0; n ¼ 0;

¼ 1

4 sin2ðpn=2NÞ
; n ¼ 1; 2;…;N � 1: (4)

N is the number of points used in the computation of dis-

crete Fourier transform (DFT) (N � M). Multiplying the

signal with w2
1½n� is approximately equivalent to integra-

tion in the frequency domain (Yegnanarayana and

Dhananjaya, 2013). In this study, L¼ 25 msec and

N¼ 1024 are chosen.
• Truncation of the signal at the instant n ¼ M � 1 may

result in a ripple effect in the frequency domain. This

effect can be reduced by using another window, w2½n�, for

n ¼ 0; 1;…;M � 1; defined as:

w2 n½ � ¼ 2ð1þ cos ðp n=MÞÞ ¼ 4 cos2ðpn=2MÞ: (5)

• The spectrum of the windowed signal (i.e.,

x½n� ¼ w2
1½n�w2½n�s½n�) is computed using the numerator of

the group delay (NGD) function (gn½k�) given by

gn½k� ¼ XR½k�YR½k� þ XI½k�YI½k�; k ¼ 0;1;2;…;N� 1; (6)

where XR½k� is the real and XI½k� is the imaginary parts of

the X½k� (DFT of x½n�). Likewise, YR½k� is the real and

YI½k� is the imaginary part of the Y½k� (N-point DFT of

y½n� ¼ nx½n�).

• To highlight the hidden spectral characteristics due to

heavily decaying window, the NGD function is differenti-

ated twice. Then, the Hilbert envelope of the double-

differentiated NGD is computed. This is referred to as the

ZTW spectrum, denoted by SZTW ½n; k�.

ZTW spectrum (SZTW ½n; k�) can be obtained at every

instant of time “n”. However, in this study, the sub-

sampled ZTW spectrum at regular intervals of 12.5 msec

is considered. A schematic block diagram describing the

steps involved in the computation of ZTW spectrum is

shown in Fig. 2.

C. Extraction of feature representations
from SFF/ZTW methods

This study proposes to derive four types of features

from both SFF and ZTW spectra. They are: (1) SFF/ZTW

spectrogram (SPEC–SFF/SPEC–ZTW), (2) cepstral coeffi-

cients derived from the SFF/ZTW spectrum (SFFCC/

ZTWCC), (3) mel filter-bank energies derived from the

SFF/ZTW spectrum (MFBE–SFF/MFBE–ZTW), and (4)

mel–frequency cepstral coefficients derived from the SFF/

ZTW spectrum (MFCC–SFF/MFCC–ZTW). Out of four

features derived from SFF spectrum, only MFBE–SFF was

investigated for dialect identification in Kethireddy et al.
(2020a) and out of four features derived from ZTW spec-

trum, only ZTWCC was investigated for dialect classifica-

tion in Kethireddy et al. (2020c). As per our knowledge, this

is the first attempt to propose to use these feature representa-

tions for dialect classification. Illustrations of spectrograms

obtained with STFT, SFF, and ZTW methods are shown in

Figs. 3(a)–3(c), respectively. From the figures, it can be

clearly seen that SFF spectrogram [Fig. 3(b)] highlights the

harmonic structure (with sharper harmonics) compared to

STFT spectrogram [Fig. 3(a)], even though both of them

show similar formant structure. On the other hand, ZTW

spectrogram clearly highlights the formant structure com-

pared to STFT spectrogram.

FIG. 2. Schematic block diagram describing the steps involved in the com-

putation of ZTW spectrum.

FIG. 3. (Color online) Illustration of spectrograms obtained with (a) STFT, (b) SFF, and (c) ZTW methods.
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1. Extraction of SFF/ZTW spectrogram

The combination of SFF/ZTW spectrum at all the time

instants gives the SFF/ZTW spectrogram. The logarithm of

the SFF/ZTW spectrogram is used in this study which is

referred to as SPEC–SFF/SPEC–ZTW.

2. Extraction of SFFCC/ZTWCC

SFFCC/ZTWCC are computed from the cepstrum of

SFF/ZTW spectrum (SSFF=ZTW ½n; k�), as follows (Kadiri and

Yegnanarayana, 2018a, 2018b):

CSFF=ZTW n; k½ � ¼ IFFTð log10ðSSFF=ZTW n; k½ �ÞÞ: (7)

From cepstrum CSFF=ZTW ½n; k�, the first 80 coefficients are

considered in this study. A schematic block diagram

describing the steps involved in the extraction of SFFCC/

ZTWCC is shown in Fig. 4(a).

3. Extraction of MFBE from SFF/ZTW spectrum
(MFBE–SFF/MFBE–ZTW)

A schematic block diagram describing the steps

involved in the extraction of MFBE from the SFF/ZTW

spectrum is shown in Fig. 4(b). The MFBE extraction

involves the computation of energies from the mel filter-

banks placed on SFF/ZTW spectrum (SSFF=ZTW ½n; k�) fol-

lowed by logarithm, and which can be expressed as

follows:

MFBESFF=ZTW n; k½ � ¼ log ðMelðSSFF=ZTW n; k½ �2ÞÞ: (8)

These features are denoted as MFBE–SFF/MFBE–ZTW in

this study. Here, 80 mel filters are integrated with the SFF/

ZTW spectrum to obtain MFBE–SFF/MFBE–ZTW.

D. Extraction of MFCCs from SFF/ZTW spectrum
(MFCC–SFF/MFCC–ZTW)

A schematic block diagram describing the steps

involved in the extraction of MFCC from the SFF/ZTW

spectrum is shown in Fig. 4(c). The MFCC extraction con-

sists of the mel filter-bank analysis on the SFF/ZTW spec-

trum, followed by logarithm and discrete cosine transform

(DCT) operations, and which can be expressed as follows

(Kadiri and Alku, 2019):

MFCCSFF=ZTW n;k½ � ¼DCTðlog ðMelðSSFF=ZTW n;k½ �2ÞÞÞ; (9)

where MFCCSFF=ZTW ½n; k� denotes the mel-cepstrum.

The resulting cepstral coefficients are referred to as

MFCC–SFF/MFCC–ZTW, and they represent compactly

the spectral characteristics. From the mel-cepstrum, all 80

cepstral coefficients (including the zeroth coefficient) are

considered.

III. DEEP NEURAL ARCHITECTURES FOR DIALECT
CLASSIFICATION

Figure 5 shows the schematic block diagram of the pro-

posed dialect classification system. The proposed system

consists of mainly two stages: (1) feature extraction, where

feature representations from SFF- and ZTW-based methods

are derived for dialect classification, and (2) classifier,

where the deep neural classifiers, such as convolution neural

network (CNN), temporal convolution neural network

(TCN), time-delay neural network (TDNN), and emphasized

channel attention, propagation and aggregation in TDNN

(ECAPA-TDNN), are explored. Deep neural classifiers are

trained with frame-level features from an entire utterance.

The sub-sections in this section give the details of network

architectures of CNN, TCN, TDNN, and ECAPA-TDNN.

A. Convolution neural network (CNN)

CNNs are most widely used deep neural architectures in

speech (Abdel-Hamid et al., 2012), text (Johnson and

Zhang, 2017), and image processing (Lo et al., 1995).

CNNs were investigated previously for dialect classification

with one-dimensional (1D) convolutions (Shon et al.,
2018a) and two-dimensional (2D) convolutions (Wu et al.,

FIG. 4. Schematic block diagrams

describing the steps involved in the

extraction of features from SFF/ZTW

method. (a) Steps involved in the

extraction of SFFCC/ZTWCC. (b)

Steps involved in the extraction of

MFBE–SFF/MFBE–ZTW. (c) Steps

involved in the extraction of

MFCC–SFF/MFCC–ZTW.
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2018). Convolution neural network is usually formed by

convolution layers (Conv), max-pooling, and fully con-

nected (FC) feed-forward layers. The Conv layers of CNN

extract the translation invariant and localized temporal fea-

tures by striding over windows. The pooling layer com-

presses the segmental level information derived from the

convolution layer to utterance-level information. FC layers

are trained to classify the dialects. CNN with 1D convolu-

tion layers is investigated for dialect classification in this

study.

Table I shows the architecture of the CNN classifier

investigated in this study. The hyper-parameters that define

the Conv layer are the number of filters (# filters), filter size,

and stride, while the max-pool layer is defined only by ker-

nel size and stride. FC layers are defined by input and output

dimension. Columns of the table represent the layers of the

CNN with configurations defined along rows. Convolution

layers and max-pooling layers are segmental layers, and the

layers after global average pool processes on utterance-level

representations. Rectified linear unit (ReLU) activation is

commonly applied in all the layers.

1. Spectral filters as convolution layer in CNN

Instead of using fixed mel-scale spectral filters in fea-

ture representations for input to CNN, data-driven learnt

spectral scale filters (as convolution layer) for dialect classi-

fication are investigated. Note that learnt spectral scale fil-

ters are well known and previously used for speech

recognition (Seki et al., 2017), spoofing detection (Yu et al.,
2017), and accent classification (Kethireddy et al., 2020b).

As per our knowledge, this is the first attempt to propose to

use learnt spectral scale filters for dialect classification.

Figure 6 shows the schematic block diagram of a convolu-

tion layer of CNN that acts as learnable spectral filters.

Given spectrogram as input, the spectrum at each time

instant is integrated with a set of convolution filters (or

learnable filters) to obtain data-driven learnt filter-bank

energies which are further passed to other layers of CNN (as

given in Table I). The learnable spectral filters are trained,

along with other layers of the network, to classify dialects.

The data-driven learnt scale is used to compress higher

dimension spectrograms for dialect classification. For the

Conv layer to match mel-scale spectral filters, 80 Conv fil-

ters (each initialized to triangular-shaped mel-scale spectral

bands) and a stride of one frame (to obtain filter-bank ener-

gies for each frame) by Conv filter along the temporal axis.

Further, the weights of convolution layer are constrained to

have non-negative values during training.

B. Temporal convolution network (TCN)

TCN (Bai et al., 2018) belongs to the family of CNNs

with few constraints. The temporal convolution layers

(Tconv) of TCN differ from CNNs by four architectural

changes as given below:

(1) Each node of the temporal convolution (TConv) layer of

the network is constrained only to the past information.

This prevents leakage from future to past which is

achieved by convolving with k frames in the past (k is

the kernel size).

(2) TConv layers model sequentially resulting in same out-

put length from each hidden layer. This is achieved by

introducing zero-padding of length (k – 1) in each hid-

den layer.

(3) The convolutions in each layer are dilated to widen the

temporal context without deepening the network. The

receptive field at each layer is defined by ðk � 1Þ � d.

(4) Residual block that adds input to output before activa-

tion function.

FIG. 5. A schematic block diagram of the proposed dialect classification system with proposed feature extraction methods and deep neural classifiers.

TABLE I. End-to-end CNN architecture for dialect classification. Conv: convolution layer; FC: fully connected layer.

Layers Conv1 Conv2 Max-pooling Conv3 Conv4 Global average pool FC1 FC2 FC3

No. filters/output dimensions 500 500 — 3000 3000 3000 1500 600 3

Kernel size 5 3 10 5 3 — — — —

Stride 1 1 10 1 1 — — — —
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TCNs were previously explored in speech enhancement

for sequential output processing that could replace RNNs

with few network parameters and wider context (Pandey

and Wang, 2019). Motivated by this, TCNs are investigated

in a classification framework by adding pooling layers and

fully connected layers as in CNNs.

Table II shows the architecture of the TCN classifier

investigated in this study. The hyper-parameters that define

the TConv layer are number of filters (#filters), kernel size,

stride, and dilation. The layers after global average pool pro-

cesses the dependencies across entire utterance.

C. Time-delay neural network (TDNN)

TDNNs also belong to the family of CNNs. TDNN dif-

fer from CNNs by introducing sub-sampling in higher layers

that led to wider temporal context and does not lose much

information due to correlated neighbourhood activations.

They were first introduced for speech recognition (Waibel,

1989) and widely used in extraction of speaker embeddings

(x-vectors) (Snyder et al., 2018) and speech recognition

(Peddinti et al., 2015b). Apart from introducing the wider

temporal context, the TDNNs also optimize the time and

space complexity during training by reducing the operations

(during forward pass and backward propagation) and the

parameters of the network.

Table III shows the architecture of the TDNN classifier

investigated in this study. The time-delay (TD) layers of

TDNN are combined with pooling layers and FC layers as

in CNNs. The hyper-parameters that define TD layer are

input dimension, output dimension, and context. Along with

them, the cumulative context of the layer is also defined in

the table as total context. The first five TD layers process

acoustic dependencies at the segmental level, while the

layers after global average pooling process the utterance-

level dependencies. The TD layers of TDNN used in this

study are similar to the architecture defined in Snyder et al.
(2018) for speaker embeddings.

D. Emphasized channel attention, propagation
and aggregation in TDNN (ECAPA-TDNN)

Multiple enhancements were made to TDNN, which

resulted in ECAPA-TDNN (Desplanques et al., 2020). They

are:

• Squeeze-Excitation Res2Block (SE Res2Block) combines

the benefits of Squeeze-Excitation (SE) block (scales each

channel according to global properties of the utterance)

with the Res2Net module (computes multi-scale features

with hierarchical residual connections within and reduces

the model parameters) (Gao et al., 2019). Skip connection

is applied across an entire unit. The entire unit includes a

dilated convolution [that is preceded (to reduce feature

dimension) and succeeded (to restore feature dimension)

by a dense layer] and a SE block.
• Multilayer feature aggregation and summation of feature

maps from all three SE Res2Blocks to capture the rele-

vant information from both shallow and deeper feature

maps.
• Channel and context-dependent statistics pooling is used

to convert variable length frame-level features to fixed

length utterance-level features. This computation allows

temporal attention scores for every channel.

The network architecture of ECAPA-TDNN in this

study is similar to that in Ravanelli et al. (2021).

FIG. 6. (Color online) A schematic block diagram showing learnable spectral filters as a convolution layer initialized with mel-scaled triangular-shaped

filters.

TABLE II. End-to-end TCN architecture for dialect classification. TConv: temporal convolution layer; FC: fully connected layer.

Layers TConv1 TConv2 Max1 TConv3 TConv4 Global average pool FC1 FC2 FC3

No. filters/Output dimensions 500 80 — 500 500 500 1500 600 3

Kernel size 5 3 10 5 3 — — — —

Stride 1 1 10 1 1 — — — —

Dilation 1 2 — 1 2 — — — —
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IV. EXPERIMENTAL PROTOCOL

This section describes the baseline feature configura-

tions, proposed feature configurations, training configura-

tions for deep neural classifiers, and the details of corpus

used for dialect classification.

A. Baseline feature representations

Feature representations derived from STFT spectrum

are considered as baseline due to their wider use in deep

neural architectures for dialect classification (Shon et al.,
2018a). For computing STFT spectrum, speech signal is seg-

mented into sliding windows and then each segment is trans-

formed into frequency domain using Fourier transform. In

this study, three feature representations derived from STFT

spectrum are considered as baseline. They are: (1) STFT

spectrogram (SPEC–STFT), (2) mel filter-bank energies

derived from STFT spectrum (MFBE–STFT), and (3) mel–

frequency cepstral coefficients derived from STFT

(MFCC–STFT). STFT spectrum integrated with mel-scaled

spectral filters and logarithm of the resultant gives

MFBE–STFT. The cepstral coefficients derived from

MFBE–STFT are referred to as MFCC–STFT.

In this study, the speech signal is segmented with a

Hamming window of 25 msec length with shift equal to half

of the window size (i.e.,12.5 msec). The number of DFT

points considered in STFT spectrum computation are 1024.

For MFBE–STFT extraction, spectrum is integrated with 80

mel-scaled filters. For each frame, the dimension is 80 for

MFBE–STFT and MFCC–STFT, and 513 for SPEC–STFT.

B. Proposed feature configurations

For computing SFF spectrum, the root of the resonator r
is set to 0.99 and the value of Df is chosen such that 1024

frequency samples exist between 0� fs. Instead of consider-

ing SFF spectrum at every instant, averaged spectrum for

every 12.5 msec is considered, similar to baseline features.

SFFCCs are derived from cepstrum of SFF spectrum.

MFBE–SFF are extracted from SFF spectrum by integrating

the spectrum with 80 mel filters and then applying the loga-

rithm. MFCC–SFFs are the cepstral coefficients extracted

from MFBE–SFF. For each frame, the dimension is 80 for

SFFCC, MFBE–SFF and MFCC–SFF, and 513 for

SPEC–SFF.

For computing ZTW spectrum, speech signal is seg-

mented by a heavily decaying window of 25 msec length

with a single sample shift. Instead of considering ZTW

spectrum at every instant, sub-sampled spectrum for every

12.5 msec is considered, similar to baseline and SFF fea-

tures. The number of DFT points used to compute ZTW

spectrum is 1024. ZTWCCs are derived from cepstrum of

ZTW spectrum. MFBE–ZTW are extracted from ZTW spec-

trum by integrating the spectrum with 80 mel filters and

then applying logarithm. MFCC–ZTWs are the cepstral

coefficients extracted from MFBE–ZTW. For each frame,

the dimension is 80 for ZTWCC, MFBE–ZTW, and

MFCC–ZTW, and 513 for SPEC–ZTW.

C. Training configuration

The deep neural classifiers are trained with the baseline

and proposed features. The number of training epochs are

decided approximately based on the loss convergence and

over fitting. CNN and TCN models are trained for 50

epochs, TDNN is trained for 70 epochs, and ECAPA-TDNN

is trained for 30 epochs. All the classifier models are trained

to reduce cross-entropy loss with gradient descent optimizer.

The learning rate of CNN, TCN, and TDNN is set to 0.001,

and 0.0001 for ECAPA-TDNN. To mitigate the side-effect

of the neural network weights initialization, networks are

trained multiple times (six times for all the experiments) and

tested against each trained model. The performance is aver-

aged across all models, and mean and standard deviation of

UAR (%) are reported for all the experiments.

To handle the imbalanced classes in the corpus, models

are trained with class balanced loss function, which is

expressed as (Cui et al., 2019):

CBðp; yÞ ¼ 1� b
1� bny

Lðp; yÞ; (10)

where p is a vector of class probabilities, computed by the

classifier given as ½p1; p2;…pC�T , y is the class label that

takes values between 0 to C, ny is the class strength for class

y, b ¼ N � 1=N, and N is the total strength of the corpus.

D. Corpora: UT-Podcast

This study uses the UT-Podcast speech corpus which

was collected from major dialects of English (Australian:

AU, Britain: UK, and American: US) from the podcasts

(Hansen and Liu, 2016). Among the three dialects, US is the

majority class and UK is the minority class. Data were col-

lected from adults with 127 male and 104 female speakers.

Variations in pronunciation, vocabulary, and grammar that

are common to groups of people are considered as dialect.

TABLE III. End-to-end TDNN architecture for dialect classification. t: current frame; T: the entire utterance; TD: time-delay layer; FC: fully connected

layer, feat. dim.: dimension of input features at each frame.

Layers TD1 TD2 TD3 TD4 TD5 Global average pool FC1 FC2 FC3

Input dimensions (feat. dim.)�5 1536 1536 512 512 1500 T 1500 1500 600

Output dimensions 512 512 512 512 1500 1500 1500 600 3

Context (t� 2, t þ 2) (t� 2, t, t þ 2) (t� 3, t, t þ 3) (t) (t) T 0 0 0

Total context 5 9 15 15 15 T T T T
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These variations might be due to regional, social, or lan-

guage differences. Within a region (either US, UK, or AU),

sub-variants can exist but as per this corpus, only the major

dialect of the speaker is considered. As the size of the corpus

is small to train deep neural classifiers, data-augmentation

strategy is used to generate more data for training. Table IV

shows the distribution of UT-Podcast corpus before and

after data augmentation. The number of utterances available

for training in each of the dialects before data augmentation

are: AU:449, UK:246, and US:406. Data are augmented

using speed and volume perturbation approaches to increase

the training space which resulted in: AU:1347, UK:738, and

US:1218 utterances. Speed perturbation involves time warp-

ing of speech signal s(t) by a factor of a to get sðatÞ (Ko

et al., 2015; Shon et al., 2018a). Volume perturbation

involves simulation of different recording volumes (Peddinti

et al., 2015a; Shon et al., 2018a). Speed perturbation with

0.9 and 1.1 factors, and volume perturbation with 1.5 factors

resulted in thrice the size of the corpus. Perturbations are

implemented using SoX audio manipulation tool (SoX,

2021). The sampling frequency of the corpus is 8 kHz.

V. RESULTS AND DISCUSSION

This section reports the dialect classification experi-

mental results and analysis. First, the effect of data augmen-

tation (speed and volume perturbations) to increase the

training space for CNN classifier is investigated in Sec. V A.

Second, the baseline feature representations (derived from

STFT spectrum) and proposed feature representations

(derived from SFF and ZTW spectra) are investigated for

dialect classification with four deep neural classifiers (CNN,

TCN, TDNN, and ECAPA-TDNN) in Sec. V B. Further, to

better understand the performance of dialect classification

systems with respect to each class, class-wise accuracies are

also discussed in Sec. V B. Third, the effectiveness of data-

driven learnt spectral filters (as convolution layer) are inves-

tigated, instead of fixed mel-scale spectral filters with CNN

classifier for dialect classification, in Sec. V C. In Sec. V D,

the proposed feature representations with deep neural classi-

fiers are compared to the previous approaches in the litera-

ture that use the deep neural classifiers. Finally, in Sec. V E,

to determine the effect of proposed features, the baseline

and proposed features are investigated with VoxCeleb1 cor-

pus for dialect classification (Nagrani et al., 2017). UAR is

used as a primary metric to evaluate the imbalanced classes

better, as present in both UT-Podcast and VoxCeleb1 cor-

pora. UAR is defined as unweighted average of class-wise

accuracies (i.e., UAR ¼
PC

i¼1 ACCi=C; where ACCi is the

accuracy of class i and C is the total number of classes). For

all the experiments, networks are trained six times (to miti-

gate the side-effect of neural network weights initialization

and validate the inconsistency due to the smaller size of the

UT-Podcast corpus) and tested against each trained model.

The performance is averaged across all models, and the

mean and standard deviation of UAR (%) are reported for

all the experiments with UT-Podcast.

A. Effect of data-augmentation

DNN architectures are constrained to have sufficiently

large amounts of data for training. The UT-Podcast dialect

corpus used in this study is relatively smaller, and hence,

different levels of data augmentations (speed, volume, and

both) are investigated with CNN classifier. The results with-

out and with data augmentation are reported in Table V. In

Table V, the third column (NP: no perturbation) reports the

results without any data augmentation; the fourth column

(SP) and fifth column (VP) report the results with speed per-

turbation and volume perturbation, respectively; and the

final column (SVP) reports the results with a combination of

speed and volume perturbations. Experiments were

TABLE IV. Distribution of #utterances in each dialect class of the UT-

Podcast (AU, UK, and US) before data augmentation and after data aug-

mentation for train and test data.

UT-Podcast
Before data augmentation After data augmentation

Data type AU UK US AU UK US

Train 449 246 406 1347 738 1218

Test 332 89 240 332 89 240

TABLE V. Performance [mean and standard deviation of UAR (%) from six trails] of CNN classifier without data augmentation (NP), with speed perturba-

tion (SP), with volume perturbation (VP), and with a combination of speed and volume perturbations (SVP).

Features Feature type NP SP VP SVP

STFT-based features (baseline) SPEC–STFT 63.62 6 0.22 70.53 6 0.28 66.55 6 0.30 76.36 6 0.36

MFBE–STFT 60.69 6 1.10 72.31 6 0.56 67.39 6 0.62 74.52 6 0.68

MFCC–STFT 58.74 6 1.02 73.20 6 0.09 61.91 6 0.69 76.70 6 0.56

SFF-based features (proposed) SPEC–SFF 71.72 6 1.09 79.14 6 0.34 78.00 6 0.49 77.91 6 0.17

SFFCC 69.84 6 1.10 74.42 6 0.19 73.39 6 0.34 77.11 6 0.50

MFBE–SFF 73.74 6 0.23 78.71 6 0.37 74.09 6 0.52 80.10 6 0.57

MFCC–SFF 73.99 6 0.08 78.69 6 0.36 76.61 6 0.98 76.33 6 0.68

ZTW-based features (proposed) SPEC–ZTW 74.31 6 1.65 73.50 6 0.80 78.60 6 1.56 75.87 6 0.24

ZTWCC 72.72 6 0.58 73.06 6 0.12 71.81 6 0.19 74.69 6 0.14

MFBE–ZTW 73.82 6 0.81 76.66 6 0.54 75.28 6 0.27 77.95 6 0.41

MFCC–ZTW 75.77 6 0.26 73.92 6 0.24 75.23 6 0.46 76.22 6 1.82
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conducted with baseline feature representations (SPEC–

STFT, MFBE–STFT, and MFCC–STFT) and proposed fea-

ture representations (SPEC–SFF/SPEC–ZTW, SFFCC/

ZTWCC, MFBE–SFF/MFBE–ZTW, and MFCC–SFF/

MFCC–ZTW) to choose the best data-augmentation

approach for further experiments.

The mean and standard deviation of UAR (%) from six

trails are reported in the table. From the standard deviation

values, it can be observed that the accuracy is stable across

multiple trails. From the experiments without data augmen-

tation (NP, as in column 3), it can be observed that all the

proposed SFF- (rows 5–8) and ZTW-based features (rows

9–12) performed better than baseline features (rows 2–4).

With the individual data augmentation (SP and VP) and

combination of data augmentations (SVP), it can be seen

that the performance is improved for all the baseline and

proposed features.

Among the baseline features, it can be observed that

without data augmentation, SPEC–STFT performed better

than MFBE–STFT and MFCC–STFT with a mean UAR of

63.62%. Speed and volume perturbations improved the per-

formance, and applying both the perturbations together

(SVP), improved the performance of SPEC–STFT,

MFBE–STFT, and MFCC–STFT by 20.0%, 22.8%, and

30.6%, relatively, compared to without data augmentation

(NP).

From the results of SFF-based features with NP (i.e.,

without data augmentation), it can be observed that

SPEC–SFF, SFFCC, MFBE–SFF, and MFCC–SFF outper-

formed the best baseline feature (SPEC–STFT) by 12.7%,

9.8%, 15.9%, and 16.3% (relative UAR), respectively.

Among the SFF-based features, MFBE–SFF and

MFCC–SFF performed reasonably well with UAR of

73.74% and 73.99%. Independently, SP and VP improved

the performances of all the SFF-based features. Applying

both the perturbations together (SVP) improved the per-

formances of SPEC–SFF, SFFCC, MFBE–SFF, and

MFCC–SFF by 8.6%, 10.4%, 8.6%, and 3.2% (relative

UAR), respectively. From the results of ZTW-based features

with NP, it can be observed that SPEC–ZTW, ZTWCC,

MFBE–ZTW, and MFCC–ZTW outperformed the best

baseline SPEC–STFT by 16.8%, 14.3%, 16.0%, and 19.1%

(relative UAR), respectively. Applying both the perturba-

tions together (SVP) improved the performance of

SPEC–ZTW, ZTWCC, MFBE–ZTW, and MFCC–ZTW by

2.1%, 2.7%, 5.6%, and 0.6% (relative UAR), respectively.

Overall, it can be observed that a combination of both

speed and volume perturbations (SVP) gave better perfor-

mance for all the feature representations (baseline and pro-

posed). Hence, throughout this study (unless mentioned),

the combination of speed and volume perturbations data is

used to train the neural models for dialect classification.

B. Results of deep neural classifiers
with the proposed feature representations

This section presents the dialect classification results

with four deep neural classifiers (CNN, TCN, TDNN, and T
A
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ECAPA-TDNN) for all the baseline features (STFT-based)

and proposed (SFF- and ZTW-based) features. Table VI gives

the performances in UAR (%) and Table VII gives the class-

wise accuracies for baseline and proposed features. To see

the discriminability among the dialect classes, non-linear t-

distributed stochastic neighbor embedding (t-SNE) projec-

tions of latent features, derived from CNN classifier for best

performing baseline feature (MFCC–STFT), proposed SFF-

based feature (MFBE–SFF), and proposed ZTW-based fea-

ture (MFBE–ZTW) are shown in Fig. 7. Also, t-SNE projec-

tions of latent features derived from four deep neural

classifiers with best performing feature (SFFCC) are shown

Fig. 8. The t-SNE projections for all the features with all clas-

sifiers are provided (see Kethireddy and Kadiri, 2022).

The columns of Table VI report the results [in mean

and standard deviation of UAR (%)] of features with respect

to deep neural classifiers specified along the rows. Here,

also, it can be observed from the standard deviation values

that the accuracy is stable across multiple trails for all the

classifiers. For discussion, first let us consider the results of

CNN classifier (row 3 of Table VI) for baseline and pro-

posed features. It can be observed that all the proposed SFF-

based features performed better than baseline STFT-based

features. On the other hand, among the proposed ZTW-

based features, MFBE–ZTW feature performed better than

baseline features and the remaining ZTW-based features

performed similar to the baseline. Between SFF- and ZTW-

based features, SFF-based features performed better than

ZTW-based features. Among the baseline features, it can be

observed that performance of SPEC–STFT and

MFCC–STFT is better than MFBE–STFT. Among the SFF-

based features, MFBE–SFF performed better than

SPEC–SFF, SFFCC, and MFCC–SFF. Among the ZTW-

based features, MFBE–ZTW performed better than the

FIG. 7. (Color online) Plots showing t-SNE projections of the latent representations from the second fully connected layer (FC2) (see Sec. III) of CNN for

(a) MFCC–STFT, (b) MFBE–SFF, and (c) MFBE–ZTW. Projections are color coded by their dialect class [AU:Red(�), UK:Green(þ), and US:Blue(D)].

TABLE VII. Class-wise accuracies of dialect classification (three classes: AU, UK, and US) for baseline and proposed features with respect to four deep

neural classifiers (CNN, TCN, TDNN, and ECAPA-TDNN).

STFT-based features SFF-based features ZTW-based features

(Baseline) (Proposed) (Proposed)

Models Class SPEC–STFT MFBE–STFT MFCC–STFT SPEC–SFF SFFCC MFBE–SFF MFCC–SFF SPEC–ZTW ZTWCC MFBE–ZTW MFCC–ZTW

CNN AU 78.46 91.01 81.93 87.1 85.54 85.49 80.22 89.61 88.25 68.62 65.51

UK 62.36 53.93 63.11 60.11 61.42 75.28 61.61 57.68 50.75 83.89 76.91

US 88.26 78.61 85.01 86.54 84.38 79.51 87.15 87.99 85.07 79.03 86.18

TCN AU 86.90 84.69 81.48 91.77 76.60 81.73 81.73 87.80 91.87 84.59 88.51

UK 53.37 63.86 66.11 64.80 77.72 62.55 63.67 56.18 53.37 60.68 54.12

US 94.10 93.82 87.43 85.97 89.58 91.46 92.09 92.71 85.28 88.68 89.36

TDNN AU 76.10 83.13 80.32 91.62 78.06 80.02 77.16 91.17 89.61 81.38 84.29

UK 57.12 58.05 63.11 53.56 77.15 61.05 69.47 57.12 57.68 62.73 59.77

US 95.0 89.17 86.39 87.78 89.37 92.22 93.40 88.06 87.99 83.75 84.45

ECAPA- AU 77.71 80.12 81.93 80.42 85.24 81.63 83.73 78.61 73.19 74.70 67.47

TDNN UK 79.78 74.16 79.78 65.17 82.02 67.42 77.53 65.17 87.64 76.40 70.79

US 88.75 90.83 92.92 94.17 89.17 96.25 87.92 92.08 92.08 91.67 91.25
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remaining three (SPEC–ZTW, ZTWCC, and MFCC–ZTW).

Overall, with the CNN classifier, it can be concluded that

proposed features MFBE–SFF (80.10% UAR), SPEC–SFF

(77.91% UAR), SFFCC (77.11% UAR), and MFBE–ZTW

(77.95% UAR) performed better than the best baseline fea-

ture MFCC–STFT (76.70% UAR).

In comparison to CNN classifier, the results for TCN

classifier (row 4 of Table VI) are better for all the baseline

and proposed features. Again, it can be observed that the

proposed SFF-based features (especially SFFCCs and

SPEC–SFF) performed better than all the baseline features.

ZTW-based features performed equally well or slightly less

than baseline features. Between SFF- and ZTW-based fea-

tures, SFF-based features performed better than ZTW-based

features. Among the SFF-based features, SFFCCs gave the

best performance (81.30 UAR %). Among the ZTW-based

features, SPEC–ZTW gave the best performance (78.90

UAR %). The results of TDNN classifier (row 5 of Table

VI) are better for some of the proposed features (SFFCC,

MFCC–SFF, and ZTWCC) compared to CNN and TCN

classifiers. Again, it can be seen that all the proposed SFF-

and ZTW-based features performed better than all the base-

line features (except MFBE–ZTW and MFCC–ZTW).

Among the SFF-based features, SFFCCs gave best perfor-

mance (with 81.53 UAR %). Among the ZTW-based

features, SPEC–ZTW gave best performance (with 78.78

UAR %). The results for ECAPA-TDNN classifier (row 6 of

Table VI) are better than all the other classifiers for all the

baseline and proposed features. Note that the performance

differences among STFT-, SFF-, and ZTW-based features

are very small and within the error margins.

In summary, the performance of the proposed SFF- and

ZTW-based features is comparable or better than baseline

STFT-based features for all the four deep neural classifiers.

This supports our hypothesis that the high spectral resolu-

tions of SFF and ZTW spectra may help in improving dia-

lect classification and could be an alternative feature

representation for dialect discrimination. Among the four

deep neural classifiers, TCN, TDNN, and ECAPA-TDNN

gave better performance over CNN for many of the baseline

and proposed features. This supports our hypothesis that the

wider temporal context helped in improving dialect classifi-

cation. Overall, SFFCCs with ECAPA-TDNN gave best dia-

lect classification with UAR of 85.48%.

Table VII gives the class-wise accuracies of baseline

and proposed features with four deep neural classifiers.

From the table, it can be observed that results are biased

towards the majority classes (AU and US) with lower per-

formance for minority class (UK dialect) for all the features

(except SFFCC) and classifiers (except ECAPA-TDNN). In

case of CNN classifier, it can be observed that proposed fea-

tures (especially MFBE–SFF, MFBE–ZTW, and

MFCC–ZTW) are more accurate in classification of minor-

ity class compared to other proposed and baseline features.

In case of TCN and TDNN classifiers, SFFCC features are

more accurate in classification of minority class compared

to all other features. In the case of ECAPA-TDNN classifier,

both SFFCCs and ZTWCCs are more accurate in classifica-

tion of minority class compared to all other features.

Overall, the minority class is classified more accurately for

almost all the features with ECAPA-TDNN classifier com-

pared to other classifiers.

Discriminability among the dialect classes are visual-

ized using t-SNE projections of latent features. Figure 7

shows the t-SNE projections of the latent features derived

from the second fully connected layer of CNN classifier

for the best performing baseline feature (MFCC–STFT)

[Fig. 7(a)], proposed SFF-based feature (MFBE–SFF)

[Fig. 7(b)], and the proposed ZTW-based feature

(MFBE–ZTW) [Fig. 7(c)] (see row 3 of Table VI). It can

be observed that all the projections of classes are better

separated in MFBE–SFF [Fig. 7(b)] compared to

MFCC–STFT [Fig. 7(a)] and MFBE–ZTW [Fig. 7(c)].

Whereas in Figs. 7(a) and 7(c), the projections of classes

AU and US are well separated, and the projections of UK

class are overlapped with AU and US. These projections

FIG. 8. (Color online) Plots showing t-SNE projections of the latent representations from the second fully connected layer (FC2) (see Sec. III) of (a) CNN,

(b) TCN, (c) TDNN, and (d) ECAPA-TDNN for SFFCC features. Projections are color coded by their dialect class [AU:Red(�), UK:Green(þ), and

US:Blue(D)].
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are synchronous with the class-wise accuracies reported in

Table VII with CNN.

Figure 8 shows the t-SNE projections of the latent fea-

tures derived from four deep neural classifiers, CNN [Fig.

8(a)], TCN [Fig. 8(b)], TDNN [Fig. 8(c)], and ECAPA-

TDNN [Fig. 8(d)], trained with the best performing feature

(SFFCCs). From t-SNE projections of CNN [Fig. 8(a)], it

can be observed that the projections of classes AU and US

are well separated, and the projections of UK class are over-

lapped with AU and US. Whereas from t-SNE projections

of TCN [Fig. 8(b)], TDNN [Fig. 8(c)], and ECAPA-TDNN

[Fig. 8(d)], all the classes are relatively better separated

when compared to CNN. These observations are in confor-

mity with the class-wise accuracies reported in Table VII

for SFFCC features.

C. Investigation of data-driven learnt spectral filters

Based on the hypothesis that spectral scale depends on

the language of dialects for dialect classification, learnable

spectral scale filters (as convolution layer) are investigated

as discussed in Sec. III A 1 instead of fixed mel-scale spec-

tral filters. Table VIII shows the performances [in UAR

(%)] of three spectral representations (i.e., spectrograms of

STFT, SFF, and ZTW) integrated with fixed mel-scale filters

and learnable-scale filters (represented as convolution

layer). From the table, it can be observed that data-driven

learnt filters performed better than fixed mel-scale filters for

STFT and SFF spectrograms. Whereas in the case of ZTW

spectrograms, fixed mel-scale filters performed equally well

as learnt filters. It can be concluded that learnt filters

retained relevant information required for classification in

STFT and SFF spectrograms.

D. Comparison with previous studies

This section compares the results obtained for UT-

Podcast corpus by the previous approaches (Wu et al., 2018)

that uses DNNs and the current studies (with both baseline

and proposed features). In the previous study (Wu et al.,
2018), the strength of utterances belonging to the minority

class (UK) are re-sampled for training. They investigated

six different neural architectures [feed-forward neural

network (FFNN), five-layer CNN, AlexNet (Krizhevsky

et al., 2012), VGG-11 (Simonyan and Zisserman, 2015),

ResNet-18 (He et al., 2016), and FreqCNN] with STFT

spectrogram as input. Feed-forward neural network is a

small deep neural classifier with three fully connected

layers. Five-layer CNN is a deep neural classifier with five

2D convolution layers followed by fully connected layers.

AlexNet (Krizhevsky et al., 2012), VGG-11 (Simonyan and

Zisserman, 2015), and ResNet (He et al., 2016) are typical

deep neural architectures belong to a family of CNNs with

varied numbers of convolution layers. FreqCNN is proposed

in Wu et al. (2018), and its architecture comprises of atten-

tion based convolution blocks along with basic convolution

blocks. Note that Lu et al. (2020) reported UAR of 94%

which is due to a mismatch in the experimental protocol,

especially in the data distributions of training and testing, as

opposed to the initial study of UT-Podcast in Hansen and

Liu (2016), where the authors provided train and test sets

which are collected from entirely different websites to have

open test conditions. Hence, this study (Lu et al., 2020) is

not considered for comparison.

For a fair comparison, the UK class is re-sampled as in

Wu et al. (2018) for the experiments conducted in this sec-

tion. Table IX shows the results (UAR and class-wise accu-

racies) from previous studies in Wu et al. (2018) that uses

different neural networks with SPEC–STFT as input, and

the results of proposed and baseline features with CNN-1D

classifier. The UAR (%) and class-wise accuracies of the

current studies are the mean values from six trails. Among

TABLE IX. Performance in UAR (%) (mean and standard deviation from

six trails) and class-wise accuracies (of classes AU, UK, and US) for differ-

ent deep neural architectures from previous studies and current studies with

all the features (STFT, SFF, and ZTW) using CNN classifier (for similar

data configurations).

Class-wise accuracies

Input feature type Arch. type UAR AU UK US

Previous studies (Wu et al., 2018)

SPEC–STFT FFNN 61.42 70.78 50.56 62.92

Five-layer CNN 62.81 64.76 41.57 82.0

AlexNet 64.90 58.43 64.04 74.17

VGG-11 54.40 55.72 48.31 59.17

ResNet-18 61.66 69.28 38.20 77.50

FreqCNN 79.32 88.55 71.91 77.50

Current studies: STFT-based features

SPEC–STFT CNN 74.05 6 0.33 72.94 77.90 71.60

MFBE–STFT 71.96 6 0.34 69.23 69.29 76.67

MFCC–STFT 71.58 6 0.30 70.18 68.73 76.67

Current studies: SFF-based features

SPEC–SFF CNN 80.81 6 0.30 82.63 89.89 70.35

SFFCC 79.32 6 0.34 87.40 71.35 77.57

MFBE–SFF 80.72 6 0.20 87.35 75.84 77.71

MFCC–SFF 80.38 6 0.41 87.20 74.91 77.91

Current studies: ZTW-based features

SPEC–ZTW CNN 79.63 6 0.22 83.68 80.15 74.58

ZTWCC 78.72 6 0.44 79.77 84.27 71.11

MFBE–ZTW 78.69 6 0.21 86.90 70.97 76.73

MFCC–ZTW 78.33 6 0.30 86.30 71.72 76.25

TABLE VIII. Performance [in mean and standard deviation of UAR (%)

from six trails] of CNN classifier trained with spectrograms of STFT, SFF,

and ZTW integrated with mel-scale filters and learnable-scale filters (spec-

tral scale as convolution layer).

Spectral filters

Feature type Mel-scale Learnable-scale

STFT 74.52 6 0.6 76.60 6 0.25

SFF 80.10 6 0.57 81.25 6 0.44

ZTW 77.95 6 0.41 77.41 6 1.21
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the six different DNNs from previous studies (Wu et al.,
2018), it can be observed that FreqCNN performed better

(with 79.32% UAR) than other classifiers. On the other

hand, it can be observed that current studies with all the pro-

posed features (especially SFF-based features) performed

better than the previous studies. From the current studies

with the baseline STFT-based features, SPEC–STFT

(74.05% UAR) performed better than other STFT-based fea-

tures. The proposed SFF-based features (SPEC–SFF,

SFFCC, MFBE–SFF, and MFCC–SFF) outperformed the

best performing baseline feature (SPEC–STFT) by 9.1%,

7.1%, 9.0%, and 8.5% (relative UAR), respectively. The

ZTW-based features (SPEC–ZTW, ZTWCC, MFBE–ZTW,

and MFCC–ZTW) outperformed the best performing base-

line feature by 7.5%, 6.3%, 6.3%, and 5.8% (relative UAR),

respectively. Overall, it can be observed that performance

obtained with the proposed SFF- and ZTW-based features is

superior to the baseline features and previous studies (except

FreqCNN). Among all, SPEC–SFF with basic CNN gave

the highest performance with a UAR of 80.81%, which is

1.9% (relatively) higher than the performance of FreqCNN

with SPEC–STFT (79.32%). Investigating proposed features

with FreqCNN may further improve the performance.

From the comparison of class-wise accuracies among

previous studies, it can be observed that other than AlexNet

and FreqCNN, all the classifiers identified the UK dialect

with less than 50%. However, AlexNet lacked its perfor-

mance in identifying the AU dialect. On the other hand,

almost all the proposed features identified the UK dialects

with accuracy more than 70% without lacking performance

in other dialect classes (AU and US). Current studies with

both baseline and proposed features outperformed all the

architectures (except FreqCNN) of previous studies with

similar data configurations.

E. Investigation with VoxCeleb

The effectiveness of proposed features is also investigated

for the VoxCeleb1 dataset (Nagrani et al., 2017). This dataset

was collected from 1251 celebrities that span a wide range of

nationalities. For the dialect classification experiments, speech

data of four nationalities [AU, Canadian English (CA), UK, and

US] are considered, based on the amount of available data for

each class. Table X shows the data statistics of the VoxCeleb1

corpus considered in this study. Details about the data splits are

provided (see Kethireddy and Kadiri, 2022).

For a fair comparison, only MFCCs derived from

STFT, SFF, and ZTW methods are considered with CNN as

a classifier. Table XI shows the performance in UAR (%)

and class-wise accuracies. From the results in the table, it

can be observed that MFCC–ZTW performed better than

MFCC–SFF and MFCC–STFT features. From the class-

wise accuracies, it can be observed that the minority classes,

CA and AU, are less accurately classified for both baseline

and proposed features.

VI. SUMMARY AND CONCLUSION

This study explored the features derived from high

spectro-temporal resolution of SFF and ZTW methods with

deep neural classifiers for dialect classification. From SFF/

ZTW spectra, four different feature representations

(SPEC–SFF/SPEC–ZTW, SFFCC/ZTWCC, MFBE–SFF/

MFBE–ZTW, and MFCC–SFF/MFCC–ZTW) were derived.

Further, TCN, TDNN, and ECAPA-TDNN deep neural clas-

sifiers were investigated along with the traditional CNN.

From initial experiments with CNN classifier, it was

found that data augmentation improved the performance of

both baseline (STFT-based) and proposed (SFF- and ZTW-

based) features. Further, it was found that proposed features

outperformed the baseline features in both with and without

data augmentation.

From the results with TCN classifier, it was found that

SFF-based features, such as SPEC–SFF, SFFCC, and

MFCC–SFF, improved their performance relatively by

3.8%, 5.4%, and 3.7%, and ZTW-based features, such as

SPEC–ZTW, ZTWCC, and MFCC–ZTW, improved their

performance relatively by 4.0%, 2.9%, 1.5%, respectively,

compared to the results obtained with CNN classifier. From

the results with TDNN classifier, it was found that SFFCC,

MFCC–SFF, SPEC–ZTW, and ZTWCC features improved

relatively by 5.7%, 4.8%, 3.8%, and 5.0%, respectively,

compared to the results obtained with CNN classifier. From

the results with ECAPA-TDNN classifier, it was found that

SPEC–SFF, SFFCC, MFBE–SFF, MFCC–SFF,

SPEC–ZTW, ZTWCC, MFBE–ZTW, and MFCC–ZTWCC

features improved relatively by 2.6%, 10.9%, 2.1%, 8.8%,

3.6%, 12.9%, 3.8%, and 0.4%, compared to the results

obtained with CNN classifier.

Overall, the proposed SFF- and ZTW-based features

gave comparable or better performance over baseline STFT-

based features for all the four deep neural classifiers, which

supports our hypothesis that the high spectro-temporal reso-

lution of SFF and ZTW spectra helps in improving dialect

classification. It was also found that among the four deep

neural classifiers, ECAPA-TDNN performed better than

TABLE X. Distribution of #utterances in each dialect class of VoxCeleb1

(AU, CA, UK, and US) for training, validation, and test data.

Data type AU CA UK US

Train 3223 3941 19 408 66 415

Validation 696 842 4173 14 215

Test 674 819 4192 14 241

TABLE XI. Performance in UAR (%) and class-wise accuracies (AU, CA,

UK, and US) for CNN trained with MFCC–STFT, MFCC–SFF, and

MFCC–ZTW for VoxCeleb1 corpus.

Class-wise accuracies

Feature type UAR AU CA UK US

MFCC–STFT 77.6 67.55 60.12 86.74 95.99

MFCC–SFF 75.07 65.73 52.07 86.50 95.99

MFCC–ZTW 78.46 69.78 59.18 89.19 95.67
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CNN, TCN, and TDNN in many cases. The best dialect

classification performance was achieved using SFFCC fea-

tures with ECAPA-TDNN classifier (85.48% UAR).

Further, data-driven learnt spectral scale filters were investi-

gated and found that learnt scale filters performed better

than fixed mel-scale filters with STFT and SFF spectro-

grams. In summary, as the performance of the proposed fea-

tures is comparable or better than baseline STFT-based

features, they can be used as an alternative or complimen-

tary features for similar tasks, such as accent, language, and

speaker identification.

ACKNOWLEDGMENTS

R. Kethireddy would like to thank the University

Grants Commission India [Project No. 3582/(NET-

NOV2017)] for supporting her PhD. S. R. Kadiri would like

to thank the Academy of Finland (Project No. 330139) for

supporting him as a Research Fellow.

Abdel-Hamid, O., Mohamed, A., Jiang, H., and Penn, G. (2012). “Applying

convolutional neural networks concepts to hybrid NN-HMM model for

speech recognition,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Kyoto, Japan, 25–30

March 2012, pp. 4277–4280.

Aneeja, G., and Yegnanarayana, B. (2015). “Single frequency filtering

approach for discriminating speech and nonspeech,” IEEE Trans. Audio

Speech Lang. Process. 23(4), 705–717.

Arslan, L. M., and Hansen, J. H. (1997). “A study of temporal features and

frequency characteristics in American English foreign accent,” J. Acoust.

Soc. Am. 102(1), 28–40..

Bai, S., Kolter, J. Z., and Koltun, V. (2018). “An empirical evaluation of

generic convolutional and recurrent networks for sequence modeling,”

arXiv:1803.01271.

Behravan, H., Hautam€aki, V., Siniscalchi, S. M., Kinnunen, T., and Lee, C.

(2016). “i-vector modeling of speech attributes for automatic foreign

accent recognition,” IEEE Trans. Audio Speech Lang. Process. 24(1),

29–41.

Bougrine, S., Cherroun, H., and Ziadi, D. (2018). “Prosody-based spoken

Algerian Arabic dialect identification,” Procedia Comput. Sci. 128, 9–17.

Cai, W., Cai, D., Huang, S., and Li, M. (2019). “Utterance-level end-to-end

language identification using attention-based CNN-BLSTM,” in

Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019, pp.

5991–5995.

Chen, N. F., Shen, W., Campbell, J. P., and Torres-Carrasquillo, P. A.

(2011). “Informative dialect recognition using context-dependent pronun-

ciation modeling,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Prague, Czech

Republic, 22–27 May 2011, pp. 4396–4399.

Chen, N. F., Tam, S. W., Shen, W., and Campbell, J. P. (2014).

“Characterizing phonetic transformations and acoustic differences across

English dialects,” IEEE Trans. Audio Speech Lang. Process. 22(1),

110–124.

Chennupati, N., Kadiri, S. R., and Yegnanarayana, B. (2019). “Spectral and

temporal manipulations of sff envelopes for enhancement of speech intel-

ligibility in noise,” Comput. Speech Lang. 54, 86– 105.

Cui, Y., Jia, M., Lin, T., Song, Y., and Belongie, S. (2019). “Class-balanced

loss based on effective number of samples,” in Proceedings of the
Conference on Computer Vision and Pattern Recognition (CVPR), Long

Beach, CA, 16–20 June 2019, pp. 9260–9269.

DeMarco, A., and Cox, S. J. (2012). “Iterative classification of regional

British accents in i-vector space,” in Proceedings on the Symposium on
Machine Learning in Speech and Language Processing (MLSPL),
Portland, OR, 14 September 2012, pp. 1–4.

Desplanques, B., Thienpondt, J., and Demuynck, K. (2020). “ECAPA-

TDNN: Emphasized channel attention, propagation and aggregation in

tdnn based speaker verification,” arXiv:2005.07143.

Dhananjaya, N. (2011). “Signal processing for excitation-based analysis of

acoustic events in speech,” Ph.D. thesis, IIT Madras, Chennai.

Dhananjaya, N., Yegnanarayana, B., and Bhaskararao, P. (2012). “Acoustic

analysis of trill sounds,” J. Acoust. Soc. Am. 131(4), 3141–3152.

Gao, S., Cheng, M.-M., Zhao, K., Zhang, X.-Y., Yang, M.-H., and Torr, P.

H. (2019). “Res2net: A new multi-scale backbone architecture,” IEEE
Transactions on Pattern Analysis and Machine Intelligence.

Hansen, J. H., and Liu, G. (2016). “Unsupervised accent classification for

deep data fusion of accent and language information,” Speech Commun.

78, 19–33.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for

image recognition,” in Proceedings of the Conference on Computer
Vision and Pattern Recognition (CVPR), Las Vegas, NV, 27–30 June

2016, pp. 770–778.

Johnson, R., and Zhang, T. (2017). “Deep pyramid convolutional neural

networks for text categorization,” in Proceedings of the Association for
Computational Linguistics (ACL), Vancouver, Canada, 31 July–2 August

2017, pp. 562–570.

Kadiri, S. R., and Alku, P. (2019). “Mel-frequency cepstral coefficients

derived using the zero-time windowing spectrum for classification of pho-

nation types in singing,” J. Acoust. Soc. Am. 146(5), EL418–EL423.

Kadiri, S. R., and Yegnanarayana, B. (2017). “Epoch extraction from emo-

tional speech using single frequency filtering approach,” Speech

Commun. 86, 52–63.

Kadiri, S. R., and Yegnanarayana, B. (2018a). “Analysis and detection of

phonation modes in singing voice using excitation source features and sin-

gle frequency filtering cepstral coefficients (SFFCC),” in Proceedings of
Interspeech, Hyderabad, India, 2–6 September 2018, pp. 441–445.

Kadiri, S. R., and Yegnanarayana, B. (2018b). “Breathy to tense voice dis-

crimination using zero-time windowing cepstral coefficients (ZTWCCs),”

in Proceedings of Interspeech, Hyderabad, India, 2–6 September 2018,

pp. 232–236.

Kat, L. W., and Fung, P. (1999). “Fast accent identification and accented

speech recognition,” in Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Phoenix, AZ, 15–19

March 1999, Vol. 1, pp. 221–224.

Kethireddy, R., Kadiri, S. R., Alku, P., and Gangashetty, S. V. (2020a).

“Mel-weighted single frequency filtering spectrogram for dialect identi-

fication,” IEEE Access 8, 174871–174879.

Kethireddy, R., Kadiri, S. R., and Gangashetty, S. V. (2020b). “Learning fil-

terbanks from raw waveform for accent classification,” in Proceedings of
the International Joint Conference on Neural Networks, Glasgow, UK,

19–24 July 2020, pp. 1–6.

Kethireddy, R., Kadiri, S. R., Kesiraju, S., and Gangashetty, S. V. (2020c).

“Zero-time windowing cepstral coefficients for dialect classification,” in

Proceedings of Odyssey, The Speaker and Language Recognition
Workshop, Tokyo, Japan, 1–5 November 2020, pp. 32–38.

Kethireddy, R., and Kadiri, S. R. (2022). “Deep neural architectures for dia-

lect classification with single frequency filtering and zero-time windowing

feature representations,” https://github.com/r39ashmi/e2e_dialect (Last

viewed 21 December 2021).

Ko, T., Peddinti, V., Povey, D., and Khudanpur, S. (2015). “Audio augmen-

tation for speech recognition,” in Proceedings of Interspeech, Dresden,

Germany, 6–10 September 2015, pp. 3586–3589.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). “ImageNet classifi-

cation with deep convolutional neural networks,” in Proceedings of
Advances in Neural Information Processing Systems, Lake Tahoe, NV,

3–6 December 2012, pp. 1106–1114.

Lo, S. C. B., Chan, H. P., Lin, J. S., Li, H., Freedman, M. T., and Mun, S.

K. (1995). “Artificial convolution neural network for medical image pat-

tern recognition,” Neural Netw. 8(7-8), 1201–1214.

Lu, H., Zhang, H., and Nayak, A. (2020). “A deep neural network for audio

classification with a classifier attention mechanism,” arXiv preprint

arXiv:2006.09815.

Nagrani, A., Chung, J. S., and Zisserman, A. (2017). “Voxceleb: A large-

scale speaker identification dataset,” arXiv:1706.08612.

Najafian, M., Khurana, S., Shan, S., Ali, A., and Glass, J. (2018).

“Exploiting convolutional neural networks for phonotactic based dialect

identification,” in Proceedings of the International Conference on

J. Acoust. Soc. Am. 151 (2), February 2022 Kethireddy et al. 1091

https://doi.org/10.1121/10.0009405

https://doi.org/10.1109/TASLP.2015.2404035
https://doi.org/10.1109/TASLP.2015.2404035
https://doi.org/10.1121/1.419608
https://doi.org/10.1121/1.419608
http://arxiv.org/abs/arXiv:1803.01271
https://doi.org/10.1109/TASLP.2015.2489558
https://doi.org/10.1016/j.procs.2018.03.002
https://doi.org/10.1109/TASLP.2013.2285482
https://doi.org/10.1016/j.csl.2018.09.002
http://arxiv.org/abs/arXiv:2005.07143
https://doi.org/10.1121/1.3688470
https://doi.org/10.1016/j.specom.2015.12.004
https://doi.org/10.1121/1.5131043
https://doi.org/10.1016/j.specom.2016.11.005
https://doi.org/10.1016/j.specom.2016.11.005
https://doi.org/10.1109/ACCESS.2020.3020506
https://github.com/r39ashmi/e2e_dialect
https://doi.org/10.1016/0893-6080(95)00061-5
http://arxiv.org/abs/arXiv:2006.09815
http://arxiv.org/abs/arXiv:1706.08612
https://doi.org/10.1121/10.0009405


Acoustics, Speech and Signal Processing (ICASSP), Calgary, AB,

Canada, 15–20 April 2018, pp. 5174–5178.

Nellore, B. T., Prasad, R., Kadiri, S. R., Gangashetty, S. V., and

Yegnanarayana, B. (2017). “Locating burst onsets using SFF envelope

and phase information,” in Proceedings of Interspeech, Stockholm,

Sweden, 20–24 August 2017, pp. 3023–3027.

Pandey, A., and Wang, D. (2019). “TCNN: Temporal convolutional neural

network for real-time speech enhancement in the time domain,” in

Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019, pp.

6875–6879.

Pannala, V., Aneeja, G., Kadiri, S. R., and Yegnanarayana, B. (2016).

“Robust estimation of fundamental frequency using single frequency fil-

tering approach,” in Proceedings of Interspeech, San Francisco, CA, 8–12

September 2016, pp. 2155–2159.

Peddinti, V., Chen, G., Manohar, V., Ko, T., Povey, D., and Khudanpur, S.

(2015a). “JHU ASpIRE system: Robust LVCSR with TDNNs, ivector

adaptation and RNN-LMS,” in Proceedings of the IEEE Automatic
Speech Recognition and Understanding Workshop (ASRU), Scottsdale,

AZ, 13–17 December 2015, pp. 539–546.

Peddinti, V., Povey, D., and Khudanpur, S. (2015b). “A time delay neural

network architecture for efficient modeling of long temporal contexts,” in

Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), South Brisbane, Queensland, Australia,

19–24 April 2015, pp. 3214–3218.

Qi, Z., Ma, Y., Gu, M., Jin, Y., Li, S., Zhang, Q., and Shen, Y. (2018).

“End-to-end Chinese dialect identification using deep feature model of

recurrent neural network,” in Proceedings of the International
Conference on Computer and Communications (ICCC), Chengdu, China,

7–10 December 2018, pp. 2148–2152.

Rajpal, A., Patel, T. B., Sailor, H. B., Madhavi, M. C., Patil, H. A., and

Fujisaki, H. (2016). “Native language identification using spectral and

source-based features,” in Proceedings of Interspeech, San Francisco,

CA, 8–12 September 2016, pp. 2383–2387.

Ravanelli, M., Parcollet, T., Plantinga, P., Rouhe, A., Cornell, S., Lugosch,

L., Subakan, C., Dawalatabad, N., Heba, A., Zhong, J., Chou, J.-C., Yeh,

S.-L., Fu, S.-W., Liao, C.-F., Rastorgueva, E., Grondin, F., Aris, W., Na,

H., Gao, Y., Mori, R. D., and Bengio, Y. (2021). “SpeechBrain: A

general-purpose speech toolkit,” arXiv:2106.04624.

Rouas, J. (2007). “Automatic prosodic variations modeling for language

and dialect discrimination,” IEEE Trans. Audio. Speech, Lang. Process.

15(6), 1904–1911.

Seki, H., Yamamoto, K., and Nakagawa, S. (2017). “A deep neural network inte-

grated with filterbank learning for speech recognition,” in Proceedings of the
International Conference on Acoustics, Speech and Signal Processing (ICASSP),
New Orleans, LA, 5–9 March 2017, pp. 5480–5484.

Shon, S., Ali, A., and Glass, J. (2018a). “Convolutional neural network and

language embeddings for end-to-end dialect recognition,” in Proceedings
of Odyssey, The Speaker and Language Recognition Workshop, Les

Sables d’Olonne, France, 26–29 June 2018, pp. 98–104.

Shon, S., Hsu, W.-N., and Glass, J. (2018b). “Unsupervised representation learn-

ing of speech for dialect identification,” in IEEE Spoken Language
Technology Workshop, Athens, Greece, 18–21 December 2018, pp. 105–111.

Siddhant, A., Jyothi, P., and Ganapathy, S. (2017). “Leveraging native language

speech for accent identification using deep siamese networks,” in Proceedings
of the IEEE Automatic Speech Recognition and Understanding Workshop
(ASRU), Okinawa, Japan, 16-20 December 2017, pp. 621–628.

Simonyan, K., and Zisserman, A. (2015). “Very deep convolutional net-

works for large-scale image recognition,” in Proceedings of the
International Conference on Learning Representations (ICLR), San

Diego, CA, 7–9 May 2015.

Snyder, D., Garcia-Romero, D., Sell, G., Povey, D., and Khudanpur, S.

(2018). “X-vectors: Robust dnn embeddings for speaker recognition,” in

Proceedings of the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Calgary, AB, Canada, 15–20 April 2018,

pp. 5329–5333.

SoX. (2021). “Audio manipulation tool,” http://sox.sourceforge.net/ (Last

viewed 21 December 2021).

Waibel, A. (1989). “Modular construction of time-delay neural networks

for speech recognition,” Neural Comput. 1(1), 39–46.

Wu, Y., Mao, H., and Yi, Z. (2018). “Audio classification using attention-

augmented convolutional neural network,” Knowl. Based Syst. 161,

90–100.

Yegnanarayana, B., and Dhananjaya, N. (2013). “Spectro-temporal analysis

of speech signals using zero-time windowing and group delay function,”

Speech Commun. 55(6), 782–795.

Yu, H., Tan, Z.-H., Zhang, Y., Ma, Z., and Guo, J. (2017). “DNN filter bank

cepstral coefficients for spoofing detection,” IEEE Access 5, 4779–4787.

1092 J. Acoust. Soc. Am. 151 (2), February 2022 Kethireddy et al.

https://doi.org/10.1121/10.0009405

http://arxiv.org/abs/arXiv:2106.04624
https://doi.org/10.1109/TASL.2007.900094
http://sox.sourceforge.net/
https://doi.org/10.1162/neco.1989.1.1.39
https://doi.org/10.1016/j.knosys.2018.07.033
https://doi.org/10.1016/j.specom.2013.02.007
https://doi.org/10.1109/ACCESS.2017.2687041
https://doi.org/10.1121/10.0009405

