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ABSTRACT 

Commercial photodiodes suffer from reflection losses and different recombination losses that reduce the collection 
efficiency. Recently, we realized a near-ideal silicon photodiode that exhibits an external quantum efficiency above 95% 
over the wavelength range of 235 – 980 nm, exceeds 100% below 300nm, and provides a very high response at incident 
angles of up to 70 degrees. The high quantum efficiency is reached by 1) virtually eliminating front surface reflectance 
by forming a “black silicon” nanostructured surface having dimensions proportional to the wavelength of light to be 
detected and 2) using an induced junction for signal collection instead of a conventional doped p-n junction, virtually 
eliminating Auger recombination at the light entry surface. This recombination prevention is especially important in 
ultraviolet detection since ultraviolet photons are absorbed very close to device surface, where conventional photodiodes 
have high doping concentration causing loss of signal, but induced junction diode is able to collect virtually all charge 
carriers generated. In this paper, we analyse the performance of our photodiodes under ultraviolet radiation. 
 
Keywords: Silicon, photodiode, black silicon, induced junction, quantum efficiency, nanostructure, alumina, ultraviolet 
photodiode, ideal photodiode 
 

1. INTRODUCTION  
Silicon photodiodes are used in wide range of applications ranging from automotive twilight detectors to medical 
imaging. When illuminated, photodiodes generate an output which is proportional to light level with linearity over 
several decades of light intensity. Ideally, when used in photovoltaic mode without bias, one electron-hole pair is 
generated and collected per incoming photon having energy exceeding silicon bandgap. However, in practice the 
performance of photodiodes is limited by both reflectance of incoming light and recombination of generated charges 
before they get collected to external circuit. The most important recombination modes are surface recombination on the 
(top) surface and Auger recombination in doped region forming the diode pn-junction. These phenomena are particularly 
harmful for ultraviolet (UV) detection since UV is absorbed and charge carriers generated at the immediate vicinity of 
the surface where also the dopants are usually located. Thus both surface and Auger recombination cause losses which is 
why many of the present day photodiodes exhibit relatively poor UV response. Methods of effective passivation have 
been developed to reduce surface recombination and optimization of junction doping profile and anneal processes have 
been performed to reduce Auger recombination, but there’s plenty of room for improvement. Various antireflective 
layers have been implemented to reduce the reflectance but they are typically optimized to some wavelength range at the 
cost of reduced response at other wavelengths.  
 
To overcome these limitations, we recently developed n-type black silicon induced junction photodiode with atomic 
layer deposited (ALD) aluminium oxide (Al2O3) surface layer1. The oxide layer contains negative oxide charge that is 
high enough to generate an induced junction on high resistivity n-type silicon, thus removing the need of using doping 
for charge collecting junction formation. Simultaneously, Al2O3 also provides an excellent surface passivation. 
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Additionally, very low reflectance and even higher effective charge was achieved by using surface nanostructuring, i.e. 
black silicon. Nanostructured silicon, or black silicon, with feature sizes smaller than the wavelength of visible light, 
creates an effective refraction index gradient and thus absorbs all incident light2. These nanostructures also result in 
longer optical paths and wider acceptance angles for incident photons.  

A significant challenge included in the nanostructures is the greatly increased surface area, which makes nanostructured 
devices prone to surface recombination. This issue was solved using conformal atomic layer deposited (ALD) alumina 
(Al2O3).3-4 Alumina passivated black silicon has earlier been successfully applied to silicon solar cells, resulting in 
excellent device characteristics5. Combining a nanostructured black silicon surface with an induced junction created via 
ALD deposited alumina, we recently manufactured silicon photodiodes with an external quantum efficiency above 96% 
over the wavelength range of 250 – 950 nm, and which exhibit a steady response at incident angles of up to 70 degrees1. 
Here, we describe our latest efforts in further development of our photodiode technology specifically in ultraviolet 
range. 

2. METHODS 
2.1  Device fabrication 

525 µm thick high resistivity (>10 kΩ·cm) n-type 100 mm diameter <100> surface oriented silicon wafers were used as 
starting material. Black silicon was formed on the active areas (Ø5 mm) of the diodes by inductively coupled plasma – 
reactive ion etching (ICP-RIE). The process was carried out at -120°C using a mixture of SF6 and O2. It is possible to 
some extent to tune the general dimensions and characteristic shape is the spikes created by selecting the process 
parameters. Scanning electron microscope image of a representative structure is shown in figure 1.  

Figure 1. Scanning electron microscope image of black silicon created by inductively coupled plasma – reactive ion etching (ICP-
RIE). The dimensions of the formed spikes are in the range of wavelength of optical light. As a result the effective index of refraction 
gradually increases from that of air to that of silicon, reducing reflectance to sub % level, thus absorbing almost all incident light. 

The surface area of silicon is multiplied by formation of three dimensional structures, resulting into significantly 
increased surface recombination. To passivate the b-Si surface and also to form an inversion layer near the substrate 
surface, 20 nm of Al2O3 was deposited via atomic layer deposition (ALD). Atomic layer deposition is literally applied at 
atomic layer precision, resulting in that the dielectric layer deposited will conformally cover and passivate the high 
aspect ratio shapes created by the ICP-RIE process. The ALD process was carried out at 200°C using 
trimethylaluminium (TMA) and H2O as the aluminium source and oxidant, respectively. With earlier device 
simulations1, we confirmed that the inversion (hole concentration exceeding electron concentration) extends to 
approximately 15 µm depth from the device surface while the corresponding depletion region reaches approximately 30 
µm depth. This corresponds to depletion depth of pn-diode made on equivalently high resistivity substrate. 
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Figure 3 External quantum efficiency as a function of wavelength of the photodiode presented, as well as an ultraviolet enhanced 
photodiode (OSI Optoelectronics UV series) using silicon dioxide induced inversion layer instead of a pn junction8 and a violet 
enhanced photodiode (Hamamatsu S3590)9. The EQE of an ideal photodiode (100%) is also shown. 

It is evident that our device is significantly superior to the compared diodes, having close to 100% quantum efficiency 
over the full range of visible wavelengths. Our device also has quite exceptional performance in the ultraviolet range. 
The induced junction is particularly powerful there, because the UV photons are absorbed very close to the surface, and 
the strong electric field separates charge carriers from each other preventing immediate recombination. In conventional 
pn-junction photodiodes charge carriers generated close to the surface are more probably recombined due to dopant-
induced Auger recombination or implantation damage. Although, the photodiode from OSI optoelectronics also utilizes 
induced junction, its EQE is still lower probably mostly due to optical reflections. 

For short wavelengths, the energy of the incident photons is so high, that the electron released by the photoelectric effect 
carries enough kinetic energy to have a chance of ionizing another electron. Probability of this secondary, or impact 
ionization, increases with photon energy as can be seen in the response graph. With the virtually eliminated reflectance 
and surface recombination of our black silicon induced junction photodiode, this phenomenon results in the effective 
EQE increasing to over 100 % at short wavelengths.  

Earlier it was thought that the excess photon energy of the ionized electron is dissipated via phonon emissions resulting 
in device heating. Kolodinski, et. al.10 proved theoretically that if the photons have energy high enough, impact 
ionization instead of phonon emission is possible. Assuming that all the excess energy is transferred into kinetic energy 
of the carrier, the absolute minimum photon energy required for impact ionization is twice the bandgap. In silicon this 
would include photons with wavelength shorter than ≈550 nm. However, such an event would result in that the generated 
secondary electron would not have any kinetic energy left and would soon recombine. Thus, in practice the photon 
energies need to be larger. Earlier experiments and calculations, for example by Wilkinson, et. al.11 indicated that the 
threshold for impact ionization is around 3.3 - 3.5 eV which translates into wavelength between 375 - 355 nm. Our 
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results1 indicate that the secondary ionization may start to contribute to the response already from around 400 nm 
downwards. 

Theoretically attainable responsivity has later been assessed by L. Shi, et.al.12, including at least the impact ionization 
phenomenon. Figure 4 shows our measured response data in the same graph with the theoretically attainable responsivity 
as indicated by them. It can be seen that our response, down to wavelengths we have so far been able to measure, 
approaches and even surpasses the theoretical curve. The values exceeding the theoretical limit could be due to enhanced 
ionization within or at the tips of the black silicon spikes. According to our simulations, the induced electric field at the 
tips of the black silicon spikes can reach levels typically used in avalanche photodiodes. Since deeper UV photons have a 
reasonable chance of getting absorbed already at the spikes, limited avalanche might take place. More experiments are 
still needed to verify this theory. 

Figure 4. Spectral response measured from two first generations of our black silicon photodiodes, photodiode, plotted together with 
the theoretically attainable responsivity12. It can be seen that response of black silicon induced junction diode approaches and even 
exceeds the theoretical curve, potentially due to ionization at the very top of the three dimensional structures forming the black silicon.  

Tolerance to UV radiation is another advantage of using alumina for inducing the junction. Previous induced junction 
photodiodes have usually been realized with silicon dioxide (SiO2) on p-type silicon13. They utilize positive charges 
present in SiO2 for inversion formation. Although, they achieve quite impressive response at UV-wavelengths, serious 
degradation results from exposure to UV radiation14. The degradation is caused by negative charges that UV light 
induces into SiO2 which weakens the inversion by negating the positive charges. In Al2O3, the situation is the opposite. 
UV radiation enhances the negative charge and no degradation should be seen in the response. This is supported by our 
preliminary tests where we illuminated one of our photodiodes under a xenon lamp for 250 hours and did not see any 
change in the spectral response. Dingemans et. al.15 have also detected a significant increase in the charge carrier lifetime 
of Al2O3 passivated samples after UV illumination. They too believe that this enhancement is due to increased negative 
charge in the oxide. 
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4. CONCLUSIONS
We have shown our recent efforts in development of n-type induced junction black silicon photodiode with near-unity 
spectral response in the wavelength range of 300 – 950 nm, even with high incident angles. In the wavelength range 
below 300 nm, the external quantum efficiency even exceeds 100% due to secondary ionization. In that region, the 
response of the demonstrated device is two to three times higher than that of commercially available silicon photodiodes 
for UV detection. As an example of the many benefits of this improvement, many fluorescence phenomena emit photons 
at this range, and doubling the sensitivity potentially facilitates detection of smaller concentrations of chemical 
compounds, or from longer distance.  
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