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ABSTRACT Explainable artificial intelligence (XAI) has shed light on enormous applications by clarifying
why neural models make specific decisions. However, it remains challenging to measure how sensitive XAI
solutions are to the explanations of neural models. Although different evaluation metrics have been proposed
to measure sensitivity, the main focus has been on the visual and textual data. There is insufficient attention
devoted to the sensitivity metrics tailored for time series data. In this paper, we formulate several metrics,
including max short-term sensitivity (MSS), max long-term sensitivity (MLS), average short-term sensitivity
(ASS) and average long-term sensitivity (ALS), that target the sensitivity of XAI models with respect to
the generated and real time series. Our hypothesis is that for close series with the same labels, we obtain
similar explanations. We evaluate three XAI models, LIME, integrated gradient (IG), and SmoothGrad (SG),
on CN-Waterfall, a deep convolutional network. This network is a highly accurate time series classifier in
affect computing. Our experiments rely on data-, metric- and XAI hyperparameter-related settings on the
WESAD and MAHNOB-HCI datasets. The results reveal that (i) IG and LIME provide a lower sensitivity
scale than SG in all the metrics and settings, potentially due to the lower scale of important scores generated
by IG and LIME, (ii) the XAI models show higher sensitivities for a smaller window of data, (iii) the
sensitivities of XAI models fluctuate when the network parameters and data properties change, and (iv) the
XAI models provide unstable sensitivities under different settings of hyperparameters.

INDEX TERMS Explainable AI, metrics, time series data, deep convolutional neural network.

I. INTRODUCTION
Since artificial intelligence (AI)-based applications are
increasingly becoming an integral part of our world, the role
of XAI in explaining decisions made by neural-based AI
models (known as black-boxes) is becoming more critical
in different areas [1]–[6]. Specifically, due to the complex
structures of machine learning (ML) models in processing
time-series data, a lack of explanation may result in isolation
of such models in critical decision making, despite their
high performance and accuracy. Assume that an ML model,
designed for affect computing and fed with time-series sensor
data, can detect when a specific individual has been in stress
as an affective state. Without an explanation of why such
a state is recognized, one may not be able to fully rely on
the decision made by the system. This limitation could also
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mislead an expert in charge and cause irreparable medical
decisions.

Different XAI solutions are studied in the literature
[7]–[10], and are categorized into two classes of gradient-
and perturbation-based solutions [11], [12]. In the former
class, the gradient of the output with respect to a specific
instance [7], [8] or all instances along a path to a base-
line [9] is considered as an explanation. In the latter class,
the explanation consists of the output change after replac-
ing the features with randomly permuted values [10]. It is
also possible to approximate an interpretable model on a
local neighborhood of data of interest in perturbation-based
approaches [13], [14].

To evaluate the effectiveness of both categories of explana-
tions, researchers proposed different taxonomies [15], [16].
There are two types of measurements, qualitative (subjec-
tive) [17], [18] and quantitative (objective) [19] that have
been classified explicitly in [16]. The qualitative metrics rely
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onwhether humans are satisfiedwith the explanation and able
to understand the model [16]. On the other hand, the quantita-
tive metrics support the theoretically sound foundations and
allow a scarce assessment of the state-of-the-art explanation
models. We argue that the latter metrics are more convenient
for time series data due to the complex nature of such data in
both the time and feature domains.

Despite the efforts to introduce and formalize quantitative
metrics on different data types [16], [19]–[24], applications
of such metrics tailored explicitly for time series data are
still missing [25]. More specifically, a number of works [16],
[19], [21], [24] have formulated sensitivitymetrics applicable
to image data and examined the stability of the explainable
models against perturbations. However, to the best of our
knowledge, there are no formal counterpart definitions of
thesemetrics applicable to time series data. As such data (e.g.,
sensor-based data) are usually noisy in real scenarios, it is
highly important to explore how sensitive the XAI models
are with respect to such data under different settings. In this
paper, we generate temporal-based perturbations upon the
series of interest with similar class labels as the latter series.
We hypothesize that the XAI models should provide similar
explanations for the perturbed and original series. Therefore,
one may expect low explanation sensitivities with respect to
fluctuations. We also consider the same hypothesis for the
clean data, as there are usually training neighbors around the
series of interest with the same labels as the latter series.

Incorporating these ideas, we formulate four sensitiv-
ity metrics, following comprehensive evaluations on three
folds of data-, metric- and XAI hyperparameter-related set-
tings. We employ different explainable methods, namely
LIME [13] as a perturbation-based approach, and IG [9] and
SG [8] as gradient-based approaches. These XAI models are
model-agnostic with respect to any deep learning method.
We perform our experiments on a specific black-box, called
CN-Waterfall [26], a highly accurate deep neural network.
CN-Waterfall is applicable to affect computing time series
datasets, namely, WESAD [27] and MAHNOB-HCI [28].

We outline our contributions as follows:
• proposing temporal-based sensitivity metrics, namely
max short-term sensitivity (MSS), max long-term sensi-
tivity (MLS), average short-term sensitivity (ASS) and
average long-term sensitivity (ALS) tailored for time
series data. The metrics aim at evaluating the sensitivity
of explanations with respect to series fluctuations under
different settings.

• conducting comprehensive experiments and finding out
that (i) IG and LIME provide a lower scale of sensitivity
than SG in all the metrics and settings, potentially due
to the lower scale of important scores generated by IG
and LIME, (ii) the XAI models are more sensitive to
a smaller window of data, (iii) the sensitivities of XAI
models fluctuate by the change in network parameters
and data properties, and (iv) the XAI models vary in
sensitivities with respect to different settings of the
hyperparameters.

The rest of the paper is structured as follows: Section II
reviews the literature. Section III overviews the examined
neural-based model and datasets. In Section IV, we present
the proposedmetrics, followed by Section V, which describes
the conducted experiments. In Section VI, we discuss some
obstacles in the practice of the applied XAImodels, and lastly
we conclude the paper in Section VII where we also discuss
future research directions.

II. RELATED WORKS
In this paper, we focus on the evaluation categories of [16]
and review recent literature concerned with the quantitative
metrics of explanations. We first go through the evaluation
metrics applied to data types other than time series data
and then explore the measurements used on time series.
An overview of these metrics with respect to their tailored
data type is shown in Table 1.

A. QUANTITATIVE METRICS ON NON-TIME SERIES DATA
Adebayo et al. [20] shed light on the inadequacy of saliency
maps as a sanity check on image data. A sanity check explores
whether the explanation of the network changes when the
network properties and data labels are randomly perturbed.
Passing the sanity check means that the concerned saliency
maps were different and thereby faithful to the network and
data.

Ghorbani et al. [21] also raised awareness of the fragility
of neural networks interpretation with respect to adversar-
ial attacks. Characterizing robustness, the authors showed
that a systematic perturbation to the input data could result
in dramatically different interpretations, while the class
label remained the same as the clean data. Similarly, some
works [16], [19] examined the degree of explanation sensi-
tivity and the work in [24] defined attributional robustness
with respect to perturbations and/or close data.

In [16], [19], [22], the authors quantified faithfulness
(fidelity) to show that a change in the output should be propor-
tional to the sum of attribution scores of features that are set
as baseline. This metric was also presented under the name
of sensitivity-n in [29] and generalized as infidelity in [16].
In a different definition, some fidelity metrics were intro-
duced in [14] to compare the prediction of an interpretable
model and a black-box. We cite these metrics as faithful to
black-box.

Stepping further, the authors in [19] proposed several other
quantifiedmetrics, such as complexity, to address the problem
when all the features are used in the explanation, identity,
to favour non-stochastic explanation, separability, to indicate
how surprising the explanation of an instance is compared
to its counterpart on training data, conviction, to emphasize
the expected amount of surprise that can predictably occur,
deletion and addition, to show how confidently a model pre-
dicts if a subset of important features are deleted and added
to the baseline, respectively, and ROAR and KAR, to denote
the difference in accuracy between the original and modified
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predictors when removing the most and least important fea-
tures, respectively.
Monotonicity is another metric proposed in [22], [23].

Using this metric, one can measure whether adding more
positive evidence can increase the decision probability [22]
or measure how correlated a feature importance is with the
impreciseness of prediction emerging from an unknown value
of the feature [23]. In [23], the authors also discussed explana-
tion robustness to nonimportant features under the flag of the
non-sensitivitymetric. Another metric introduced by Nguyen
and Martínez [23] was mutual information, showing how
much features and prediction information were lost after the
feature extraction process. In the context of example-based
explanations, the two metrics of non-representativeness and
diversity were proposed [23]. According to these metrics,
one can specify how much the selected examples are faithful
to the prediction and how broad these examples are. In this
work [23], the authors also considered feature interactions to
explain complexity by a metric called effective complexity.
The main motivation relied on ignoring some features even
if they influenced the prediction, for the sake of explanation
complexity.

Finally, Guidotti and Ruggieri [30] highlighted stability
analysis of some interpretable models with respect to differ-
ent design choices. In an analysis, stability was quantified
through the deviation of a measure (e.g., number of features
used) distribution over the models, learnt from different sam-
ples of population. In another analysis, stability was quanti-
fied by the mean value of similarity (in the number of shared
features) over all pairs of the models.

B. QUANTITATIVE METRICS ON TIME SERIES DATA
Following the quantifiable metrics on time series data, the
sanity check was also performed on the filter influences of
a CNN-based anomaly detection system [31]. In this work,
the last convolutional layer filters were pruned (i.e., their
values were set to zero) to check whether the removal of
the most influential filters or the least influential filters had
more impact on the final performance. The authors later
applied the sanity check upon the input data in two levels
of point-wise and sequence-wise [32] checks. At the point-
wise level, a masking process suppressed the anomalous
data point for which the explanation was provided textually.
However, in the sequence-wise level, three points, including
the data point and its preceding and following points, were
masked to explore the most salient region presented by the
explanation. Moreover, the work in [33] asserted the quality
of a counterfactual-based explanation by the sanity checks on
data and model parameters. The authors of this literature [33]
showed a significant deterioration on the proposed explana-
tion performance, thus passing the check.

In [25], two techniques, called swap time points and mean
time points, were presented to verify XAI methods on CNN
and RNN models. In the former technique, the values of a
subsequence were swapped with respect to their time order.
The start point of the sub-sequence was assigned to the time

point whose relevance score was higher than a specific thresh-
old. In the latter technique, the same process was applied;
however, instead of swapping the time points values, the
points were set to themean of the values. Another explanation
evaluation on a convolutional-based network was provided
in [6]. In this work, the validity of a proposed explanation
approach was certified by the recall and F1-score quantities.
More precisely, the network was retrained with the most
contributed features, and later, its performance was compared
with the trained network on the full set of features. The
generated explanation is valid if the former network achieved
similar recall and F1-score as the latter one.

In addition to validity, Delaney et al. [34] presented good-
ness of explanations quantitatively in the context of counter-
factuals. The authors formulated this metric in the form of
relative counterfactual distance (RCF) and out of distribution
(OOD) computations. In detail, RCF compared the distance
of the to-be-explained sequence from a training time series
of a different class with the distance of the to-be-explained
sequence from a generated counterfactual. A good expla-
nation was expected to assign a smaller value to the latter
distance than the former. In the case of OOD, the aim was to
avoid selecting a counterfactual out of the distribution of the
to-be-explained sequence. This task was accomplished by a
local outlier factors (LOF) algorithm [35], which measures
a local deviation of a given data point from its neighbors.
Relying on a set of latent exemplars and counter-exemplars,
Guidotti et al. [36] certified the usefullness of explanations
by training two 1-NN classifiers. The first classifier was
trained on n random (counter-) exemplars while the second
classifier learned n random real time series excluding the
to-be-explained sequence. It was argued that if the former
network showed a higher accuracy than the latter network
in classifying the to-be-explained sequence, the explanation
would be usefull. Reference [36] also quantified the faithful to
black-boxmetric by comparing the output of a shapelet-based
decision tree with the output of a black-box on the to-be-
explained sequence. Moreover, [36] designed the coherency
property of explanation as a similarity between the expla-
nation of the furthest and closest sequence to the to-be-
explained sequence.

Although different metrics have been proposed in the lit-
erature, many of them have not been applied to time series
data. In our work, we establish the sensitivitymetrics based on
temporal perturbations and real-data consideration, following
a comprehensive evaluation.

III. THE BLACK-BOX MODEL AND DATA
In this paper, we apply a specific black-box model, called
CN-Waterfall, proposed by Fouladgar et al. in [26]. The
CN-Waterfall model was designed to detect a set of human
affective states with 99% accuracy, superior to several tra-
ditional and deep learning models. CN-Waterfall was exam-
ined by two publicly and academically available time series
datasets, WESAD and MAHNOB-HCI, respectively.
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TABLE 1. An overview of recent quantitative metrics with respect to the tailored data types. The red check mark and texts show our contribution in this
paper.

Looking into CN-Waterfall, shown in Figure 1, two main
components -Base and General- were presented [26]. First,
the low-level data representation of each modality was
learned by the Basemodule, providing a signal representation
(SR), and later the intermediate- and high-level representa-
tions of correlated and non-correlated series were learned
by the General module. The Base module consisted of two
convolutional blocks, while the General module consisted
of four fusions, satisfying the learning strategies. The first
and second convolutional blocks of the Base module were
equipped with 32 and 128 filter sizes, and the dense layers
of all fusions (except the last one) in the General module
consisted of 64 neurons. The dense layer of the last fusion
was assigned the same number of neurons as the number of
class labels in the problem space.

Briefly speaking about the datasets, WESAD was intro-
duced by Schmidt et al. and is a collection of human emo-
tional and stress states by means of several wearable sensors.
In [26], the records of eight signals (modalities) of chest-worn
sensors were selected from the collected data. The modalities
consisted of a 3-axis accelerometer (ACC0, ACC1, ACC2),
respiration (RESP), electrocardiogram (ECG), electrodermal
activity (EDA), electromyogram (EMG) and skin tempera-
ture (TEMP) of 15 participants. Aligned with the laboratory
protocols of data collection in WESAD, [26] also employed
four emotional states: neutral, amusement, stress and
meditation.

MAHNOB-HCI was introduced by Soleymani et al. in
2012 and uses various physiological sensors for emotion
recognition. Considering the collected data of 7 out of

27 participants in [26], seven sensors were chosen as follows:
three ECG electrodes (ECG1, ECG2 and ECG3), two GSRs
(GSR1 and GSR2), TEMP and RESP. Reference [26] also
retrieved three affective states of amusement, happiness and
surprised among other states from MAHNOB-HCI.

Both datasets were downsampled to 10 Hz and sepa-
rately unified in terms of series length. The unification pro-
cess resulted in a balanced dataset for MAHNOB-HCI and
an imbalanced dataset for WESAD. Finally, all data were
normalized and segmented into windows of 30 time steps
with 10 overlapping instances. In total, 43290 windows of
8 series with 30 time steps were obtained for WESAD, and
1323 windows of 7 series with 30 time steps were obtained
for MAHNOB-HCI.

For further details of the logic behind the CN-Waterfall
architecture as well as the prepossessing steps on the two
datasets, we refer the readers to these studies [5], [26], [37].

IV. EVALUATION METRICS
In this section, we introduce four different sensitivitymetrics,
including max short-term sensitivity (MSS), max long-term
sensitivity (MLS), average short-term sensitivity (ASS) and
average long-term sensitivity (ALS), adapted explicitly for the
evaluation of XAI models on time series data. Using these
metrics, we measure how sensitive the XAI models are with
respect to close series of the same class. We hypothesize
that these models should provide similar explanations and
thereby lower sensitivities for such series. To this end, we use
temporal-based perturbations and training neighbors of the
series of interest as two sets of close series.
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FIGURE 1. CN-Waterfall: (a) The Base and (b) General modules
architecture [26]. The Base module learns the low-level data
representation of modalities and outputs their signal representation (SR).
The representations are then employed by the General module, allowing
the network to learn intermediate- and high-level features. The
convolutional networks in Block1 and Block2 of the Base module consist
of 32 and 128 filters, respectively. With respect to the General module, all
the dense layers are designed by 64 neurons, except the dense layer of
the fourth fusion. This layer consists of the same number of neurons as
the number of classes.

To generate the perturbations, we first transform the time
series data (x) into its vectorized representation (x ′), called
the to-be-explained series (see Figure 2). Such transformation
is provided by sequentially attaching all modalities of each
time step in x to those of the previous time step. Next,
we consider two index lists of L = {0, .., d/2 − 1} and
S = {d/2, .., d}, where d denotes the size of x ′. Given the
lists, the features of x ′ indexed at L are randomly perturbed
with a normal distribution within the radius r , and the rest
of the features are kept unchanged. We denote the generated
data as a long-term perturbed series (l). The same process is
applied in the case of generating short-term perturbed series
(s); however, the set of perturbed features is indexed at S.

Considering the training neighbors as another set of close
series, we select the training data in the radius r of the to-be-
explained series.

To measure the similarity between the explanations
of short-/long-term perturbed and to-be-explained series
(D), we use the Euclidean distance. The same similar-
ity measurement is applied between the explanations of
the training neighbours and to-be-explained series. In gen-
eral, the higher the distance is, the lower the similarity of
explanations.

FIGURE 2. Two representations of a window of time series (x). To predict
the series by CN-Waterfall, the modalities are transformed into parallel
representations (shown in green), in accordance with the input structure
of CN-Waterfall. To explain the series by the XAI models, generate
temporal-based perturbations and extract training neighbors,
a vectorized representation of x , called the to-be-explained series (x ′),
is provided (shown in blue).

Following these processes, we formulate theMSSmetric by
calculating the maximum distance of the least similar expla-
nations in short-term perturbed series and training neighbors
with respect to the to-be-explained series. We perform the
same calculations for theMLS metric, except that we use the
explanations of long-term perturbed series rather than short-
term ones.

Formulating the ASS and ALS metrics, we first take an
average of sensitivities for each set of close series. By such
calculation, the variation center of each set (µAn ,µAs andµAs
in Section IV-A) is explored. Then, we calculate the average
of centers as the final values for ASS and ALS. In the case
of the former metric, the set of short-term perturbed series
is employed while in the latter metric, the set of long-term
perturbed series is used.

A. SENSITIVITY METRICS
Applying the notations of Table 2, in this section, we mathe-
matically define four sensitivity metrics.
Definition 1 (Max Short-Term Sensitivity (MSS)):

Given ST =
{
s ∈ Ds, | ρ(x ′, s) <= r; f (x ′) = f (s)

}
as a set of short-term perturbed sequences, N ={
n ∈ Dx , | ρ(x ′, n) <= r; f (x ′) = f (n)

}
as a set of training

neighbors, the black-box f , the explainer g, the distance
metric over explanations D and the to-be-explained series x ′,
we defineMSS of g at x ′ as:

µMSS (f , g, r, x ′) = max(max
n∈N

{
D(g(f , x ′), g(f , n))

}
,

max
s∈ST

{
D(g(f , x ′), g(f , s))

}
) (1)

where D(g(f , x ′), g(f , n)) = 0 if N = ∅ and
D(g(f , x ′), g(f , s)) = 0 if ST = ∅.
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TABLE 2. Notations and their description.

Definition 2 (Max Long-Term Sensitivity (MLS)):
Given LT =

{
l ∈ Dl, | ρ(x ′, l) <= r; f (x ′) = f (l)

}
as a set of long-term perturbed sequences, N ={
n ∈ Dx , | ρ(x ′, n) <= r; f (x ′) = f (n)

}
as a set of training

neighbors, the black-box f , the explainer g, the distance
metric over explanations D and the to-be-explained series x ′,
we defineMLS of g at x ′ as:

µMLS (f , g, r, x ′) = max(max
n∈N

{
D(g(f , x ′), g(f , n))

}
,

max
l∈LT

{
D(g(f , x ′), g(f , l))

}
) (2)

where D(g(f , x ′), g(f , n)) = 0 if N = ∅ and
D(g(f , x ′), g(f , l)) = 0 if LT = ∅.
Definition 3 (Average Short-Term Sensitivity (ASS)):Given

the black-box f , the explainer g, the distance metric over
explanations D, the radius r around x ′, the short-term gen-
erated data s and the to-be-explained series x ′, we define ASS
of g at x ′ as the average of centers µAn and µAs :

µAn (f , g, r, x ′) =
1
|N |

∑
n∈N

D(g(f , x ′), g(f , n)), (3)

µAs (f , g, r, x ′) =
1
|ST |

∑
s∈ST

D(g(f , x ′), g(f , s)), (4)

µASS (f , g, r, x ′) =


µAs (f , g, r, x ′), if N = ∅
µAn (f , g, r, x ′), if ST = ∅
1
2
(µAn (f , g, r, x ′)+ otherwise

µAs (f , g, r, x ′))
(5)

Definition 4 (Average Long-Term Sensitivity (ALS)):Given
the black-box f , the explainer g, the distance metric over

explanations D, the radius r around x ′, long-term generated
data l and the to-be-explained series x, we define ALS of g at
x ′ as the average of centers µAn (Equation 3) and µAl :

µAl (f , g, r, x
′) =

1
|LT |

∑
l∈LT

D(g(f , x ′), g(f , l)), (6)

µALS (f , g, r, x ′) =


µAl (f , g, r, x

′), if N = ∅
µAn (f , g, r, x ′), if LT = ∅
1
2
(µAn (f , g, r, x ′)+ otherwise

µAl (f , g, r, x
′))

(7)

B. WORKFLOW
Algorithm 1 represents the process of calculating the val-
ues of the evaluation metrics. In an iterative process, the
preprocessed data (see Section III) are split into training
and test sets with a ratio of 80-20. The training set is
then fed into CN-Waterfall, and the best fitted model is
extracted as the Black-Box. At each iteration, a number of
windows (X ) are randomly selected from the test set. As dis-
cussed earlier (Section IV), we change the representation
of each window (X [j] = x) to a vector (x ′), providing
a unified representation for all the XAI models. Sets of
short- and long-term perturbations (STj and LTj) as well as
training neighbors (Nj) of each vector are then generated and
extracted, respectively. We provide the explanations (ex) of
all data by each XAI model and evaluate the explanation
sensitivities of each vector by the four metrics in Section IV.
Finally, we take the average over the sensitivities of all vectors
for each metric. To further clarify, Figure 3 illustrates the
procedure.

24000 VOLUME 10, 2022



N. Fouladgar et al.: Metrics and Evaluations of Time Series Explanations: Application in Affect Computing

Algorithm 1 Extract Explanation Sensitivities
Inputs: PreporocessedDataset
Output: µMSS , µMLS , µASS and µALS
Begin:

for i ∈ Iterations do
Xtraini ,Xtesti ← Split(PreprocessedDataset)
Black_Boxi← CN −Waterfall(Xtraini )
Xi← RandomSelection(Xtesti )
for j ∈ size(Xi) do

x ′← ChangeRepresentation(Xi[j])
STj← GenerateShortTermPurturbations(x ′)
LTj← GenerateLongTermPurturbations(x ′)
Nj← ExtractTrainingNeighbors(x ′,Xtraini )
exx ′ , exSTj , exLTj , exNj ← XAI_Model(x ′, STj,LTj,Nj,Black_Boxi)
µMSSj ← MSS(exx ′ , exSTj , exNj ) [Eq. 1]
µMLSj ← MLS(exx ′ , exLTj , exNj ) [Eq. 2]
µASSj ← ASS(exx ′ , exSTj , exNj ) [Eq. 5]
µALSj ← ALS(exx ′ , exLTj , exNj ) [Eq. 7]

end for
µMSSi ← Average(µMSS0 , .., µMSSsize(Xi) )
µMLSi ← Average(µMLS0 , .., µMLSsize(Xi) )
µASSi ← Average(µASS0 , .., µASSsize(Xi) )
µALSi ← Average(µALS0 , .., µALSsize(Xi) )

end for

V. EXPERIMENTS AND RESULTS
In this section, we discuss the results of our evaluation
metrics examined on the XAI models. We focus on both
gradient-based (IG and SG) and perturbation-based (LIME)
approaches.

According to our standard settings, each XAI model runs
over 10 iterations. At each iteration, 50 windows of test data
are selected and represented as vectors for explanation (see
Algorithm 1). We also generate 20 temporal-based perturbed
series, and extract 20 training neighbors in the radius of
r = 1 per vector. Following these settings, for IG,1 we cal-
culate the average over the training data and consider it as the
IG baseline (reference). We also set no_steps = 10, referring
to the number of steps in which the gradients of series are
computed along a straight line path from the baseline. For
SG,2 20 noisy samples are generated by a Gaussian noise
kernel with a mean of 0 and standard deviation (STD) of
1.0. In case of LIME,3 we restrict ourselves to 50 samples,
by which a linear model is approximated. The restriction is
mainly due to the time complexity issue, which will be dis-
cussed in Section VI. More precisely, we sample 50 vectors
in the neighborhood of the vectorized representation of each
series. Similar to SG, the applied sampling kernel in LIME
also relies on a Gaussian distribution with a mean of 0 and
standard deviation of 1.0.

1https://github.com/hiranumn/IntegratedGradients
2https://github.com/sicara/tf-explain
3https://github.com/marcotcr/lime

In the following, we present our evaluations on the
three-fold setting of data-,metric- and XAI hyperparameters-
in which the results are averaged over the 50 selected data
in each iteration. Figure 4 shows, as an example, a window
of ACC0 series in WESAD as well as one of its short-term
perturbed series. Figure 5 also shows explanations of each
XAI model over ACC0 and its perturbation. The explanations
are provided with respect to the importance score at each
time step. As observed, the scores of the original ACC0 and
the perturbed version vary in each XAI model, implying the
sensitivity of explanation in ACC0. We also infer that the
scale of importance scores in IG and LIME are much lower
than in SG (nearly close to 0). Such scaling could result in
lower sensitivities in the former models than in the latter.

A. DATA
In this section, we investigate the effect of two parameters,
the window size and the overlapping stride, on the sensitivity
of XAI models. In addition to our standard setting discussed
earlier, we partition both datasets into windows with the two
following settings: the window size of 30 time steps together
with 20 overlapping strides, as well as the window size of
60 time steps together with 20 overlapping strides. For ease
of use, we indicate our settings as 30_10 (standard setting),
30_20 and 60_20. The reported results of all the settings are
the average of the outputs over 10 iterations.
Figure 6 shows the results on WESAD. As we observe,

in all the XAI models, the standard setting of 30_10 achieves
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FIGURE 3. The workflow of measuring the explanation sensitivities in each iteration. First, the data are preprocessed (see
Section III) and split into the training and test sets. Our black-box, CN-Waterfall, is learnt from the training set, and the best
model is extracted. From the test set, 50 windows of series are randomly selected and transformed into the vectorized
representation. For each vector, 20 temporal-based perturbations and 20 training neighbors are generated and extracted,
respectively (see Section IV). We, then, provide the explanations of all the data by the IG, SG and LIME models. Finally, the
explanation sensitivities of the vectorized windows of series are calculated and averaged over 50 in each iteration.

FIGURE 4. The representation of the original and short-term perturbed
ACC0. The first 15 time steps of the two series are identical, while the
second 15 time steps of the original ACC0 are manipulated. The values of
the latter steps are randomly perturbed with a normal distribution in a
radius r = 1.

a higher sensitivity in all metrics compared to 60_20. In other
words, a larger window size (60_20) shows less maximum
and average sensitivity than a smaller window size (30_10)
over the IG, SG and LIME models. Moreover, a higher sen-
sitivity of 30_10 with respect to 30_20 is observed for all
the XAI models and metrics. Regardless of the window size
and the overlap stride values, we find similarities between the
results of the sensitivity metrics in both short- and long-term
settings. The latter argument motivates further effort in future

work to examine a flexible range of temporal perturbations
rather than a fixed equal size. In addition, we infer a lower
scale of sensitivities in IG and LIME than SG, which could
potentially refer to the lower scale of generated scores by the
former models (see Figure 5). In the following, we further
analyze each model individually.

As shown in Figure 6(a), in IG, sensitivity differences of
approximately 0.14 and 0.13 are seen between the 60_20 and
30_10 settings in MSS and MLS, respectively, while a lower
difference of approximately 0.07 is observed between the
same metrics for the 30_20 and 30_10 settings. In the case of
ASS and ALS, all the settings show tightly close sensitivities
to each other.

We find that SG assigns high scale importance scores to
the features. Correspondingly, high scale sensitivities of the
metrics are observed in Figure 6(b). This figure shows a
difference around 1.5 and 3.0 for the maximum sensitiv-
ity metrics between the 30_20 and 30_10, and 60_20 and
30_10 settings, respectively. We also see quite similar results
for 30_20 and 60_20 in terms of ASS and ALSmetrics, with a
difference around 1.5 between the latter settings and 30_10 in
the aforementioned metrics.

In LIME (Figure 6(c)), we observe a decrease around
0.1 between pairwise metrics in 60_20 and standard settings.
However, a lower decrease, around 0.04, is seen between
these metrics in 30_20 and standard settings.
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FIGURE 5. The explanations of the original and short-term perturbed ACC0 in terms of importance scores. Each row corresponds to the
results of one XAI model as follows: IG in the first row, (a) and (b), SG in the second row, (c) and (d), and LIME in the last row, (e) and (f).
The importance score of each time step in the original (the left column) and perturbed ACC0 (the right column) are indicated by ‘‘green’’
and ‘‘blue’’ colors, respectively. It could be inferred that the scores of the original ACC0 and its perturbed version are not identical, implying
the sensitivity of explanation in ACC0. In addition, lower scales of scores in IG and LIME than SG could lead to lower sensitivities in the
former models.

Regarding MAHNOB-HCI as a balanced dataset, Figure 9
shows that in IG, there are slight sensitivity differences
between the 60_20 and 30_10 settings, while there are not
considerable differences between 30_20 and 30_10 over all
metrics. In SG, a larger window/overlap size (60_20 and
30_20) provides less sensitivity than a smaller win-
dow/overlap size (30_10). In the case of LIME, one may
argue that only the impact of a larger window size (60_20)
decreases the sensitivities in all metrics. Similar to the
WESAD results, the sensitivities of short- and long-term

related metrics are fairly the same in the IG and LIME mod-
els. However, in SG, ALS provides lower sensitivities than
ASS in all settings. We also find a lower scale of sensitivities
in IG and LIME than SG.

In detail, the maximum and average sensitivity metrics
between the 60_20 and 30_10 settings in IG show dif-
ferences around 0.04 and 0.02, respectively (Figure 7(a)).
However, such differences are less than 0.01 between
the metrics of the 30_20 and 30_10 settings in most
cases.
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In SG (Figure 7(b)), the differences are approximately
0.4 between the highest sensitivity setting (30_10) and
30_20 in MSS and ASS; however, there are approximately
0.1 lower differences in theMLS and ALSmetrics. In the case
of a larger window size (60_20) in SG, there is a higher vari-
ation in sensitivities between 60_20 and 30_10 than between
30_20 and 30_10. A difference of 1.2 inMSS,MLS and ASS,
and 0.8 in ALS are seen between 60_20 and 30_10.

In LIME (Figure 7(c)), we observe variations around
0.1 between 30_20 and the standard setting in MSS, MLS
metrics, and around 0.05 in ASS and ALS. This is while the
sensitivity variations between 60_20 and the standard setting
are approximately 0.1 for all metrics.

B. METRIC
In this section, we investigate the impact of different standard
deviations for generating the temporal-based perturbations on
the sensitivities of the XAI models. In particular, we examine
the standard deviations of 0.001, 0.01, 0.05 (the standard
setting) and 0.1 in all the experiments. Since these settings
are designed based on the definition of metrics, we name the
experiments in this section metric-related experiments.

Figures 8 (a), (b) and (c) show the experimental results of
IG, SG and LIME, on the WESAD dataset, respectively. Due
to the similarities found in the results of the four metrics,
we only show our analysis on MSS. The same arguments are
applied for the MAHNOB-HCI dataset, and the results of the
MSS metric are shown in Figure 9.

The results shown in Figures 8 and 9 indicate that none of
the XAI models achieve a steady sensitivity trend within the
iterations. In other words, the XAI models provide different
sensitivity results in each epoch. Since the black-box param-
eters and the to-be-explained series differ in each epoch, one
may argue that the provided explanations are independent of
the black-box dynamism and test data properties.

Regarding the WESAD dataset, we see that higher stan-
dard deviations worsen the sensitivity of the IG model
(Figure 8(a)). Additionally, with STD = 0.001, we observe
the same pattern as with STD = 0.01. In the case of SG
(Figure 8(b)) and LIME (Figure 8(c)), the models are found
to be insensitive to different STDs but highly fluctuate within
iterations.

Regarding theMAHNOB-HCI dataset, as seen in Figure 9,
we can assert the same evaluations as WESAD. However,
in MAHNOB-HCI, we observe lower scales of sensitivities
for IG and SG in all settings. Moreover, all the STDs in IG
follow quite similar patterns of sensitivities.

Comparing the XAImodels over all STDs, we first normal-
ize the previously achieved results and then take an average
over the sensitivities in each iteration. Due to the similarities
found in the results of the four metrics, we only show the out-
puts of theMSSmetric on each dataset (Figure 10). Given the
results, we can infer that IG and LIME provide much lower
MSS values than SG for both datasets. More specifically, the
former models provide an average value below 1.0 on both
datasets, while in the case of SG, the average is approximately

FIGURE 6. Comparison of MSS, MLS, ASS and ALS sensitivities with the
time series windows and overlapping of 30_10, 30_20 and 60_20 for
(a) IG, (b) SG and (c) LIME on WESAD. In all the XAI models, lower
sensitivities are observed in the settings with larger window and overlap
sizes (60_20, 30_20) than in the standard setting (30_10).

12.5 and 3.0 on WESAD and MAHNOB-HCI, respectively.
The results could be justified as the scale of generated expla-
nations by IG and LIME are lower than their SG counterparts
(see Figure 5). On WESAD (Figure 10(a)), we also see a
constant behavior of IG and LIME within 10 epochs. How-
ever, on MAHNOB-HCI (Figure 10(b)), some fluctuations
are observed in LIME.
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FIGURE 7. Comparison of MSS, MLS, ASS and ALS sensitivities with the
time series windows and overlapping of 30_10, 30_20 and 60_20 for
(a) IG, (b) SG and (c) LIME on MAHNOB-HCI. Fairly, in all the XAI models,
the setting with a larger window size (60_20) than the standard setting
(30_10) provides lower sensitivities, while this is not always the case for
settings (e.g., 30_20) with a larger overlap size (e.g., see the results in
LIME (c)).

C. XAI HYPERPARAMETER
In this section, we explore the impact of the hyperparameters
of each XAI model on its sensitivity. To carefully design the
experiments, we assume the data- and metric-related settings

FIGURE 8. Comparison of MSS with different STDs of perturbation for IG
(a), (b) SG and (c) LIME on WESAD. SG and LIME show similar sensitivity
under different settings, while the sensitivity of IG varies by the scale of
perturbations. In all the XAI models, different sensitivities are observed
within the epochs, implying the independence of these models from the
black-box dynamism and data properties.

are unchanged. The reported values are the average of the
achieved results over 10 iterations.

1) INTEGRATED GRADIENT
As argued in [9], IG aggregates gradients of all samples along
a straight path from an input to a baseline. The focus of
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FIGURE 9. Comparison of MSS with different STDs of perturbation for IG
(a), (b) SG and (c) LIME on MAHNOB-HCI. Similar to Figure 8, the
sensitivity of IG varies under different STDs, while SG and LIME do not.
In addition, the XAI models seem independent of the black-box
dynamism and data properties, as their sensitivity follows an unsteady
trend within epochs.

the experiments in this section is on the number of steps
(no_steps) in which the gradients are aggregated. More pre-
cisely, we explore the impacts of the 5, 10 (the standard
setting), 20 and 40 steps on the sensitivities of IG on both
datasets.

According to the results shown in Table 3, the 5 and
10 number of steps implies higher sensitivities than the 20 and

FIGURE 10. Comparing MSS of XAI models for all the STD settings on
WESAD (a) and MAHNOB-HCI (b). IG and LIME provide much lower
sensitivity than SG for both datasets. Such a result could be due to the
lower scale of important scores in the former models (see Figure 5).

40 steps on WESAD. When the aggregations are saturated
by 20 gradients, the sensitivities remain constant in all the
metrics. We also observe lower values for ASS and ALS than
MSS and MLS in all settings.

With respect to MAHNOB-HCI, it could be inferred that
the 5 steps of gradient provide the lowest sensitivity value
in most of the metrics. However, there is no considerable
difference in sensitivities between the latter and the two other
settings of 20 and 40. We also observe that the values of
ASS and ALS are rather close to MSS and MLS, respectively,
implying a dense distribution of sensitivities.

Likewise, the results discussed in Sections V-A and V-B
show fairly similar results between the MSS and MLS values
in all settings. The same argument also applies between ASS
and ALS.

2) SMOOTHGRAD
In the following, we discuss the impact of different noise
levels on the sensitivities of SG. As mentioned before, in our
standard setting, we generate noisy samples using a Gaussian
kernel with a mean of 0 and an STD of 1.0. We further extend
this setting by examining the STDs of 0.5 and 2.0 to generate
noise.
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TABLE 3. IG sensitivities with different number of steps for each dataset.

TABLE 4. SG sensitivities with different noise STDs for each dataset.

As shown in Table 4, onWESAD, the STD of 0.5 results in
lower sensitivities than the standard setting in all the metrics.
In contrast, the STD of 2.0 results in higher sensitivities.
OnMAHNOB-HCI, the results related to the STDs of 1.0 and
2.0 are closer to each other in all the metrics. We also see
similar results for MSS and MLS in all the settings. This
argument also applies in the case of the ASS and ALSmetrics.
In other words, incorporating different standard deviations of
sampling noise does not cause a remarkable change between
the results of short- and long-term sensitivity metrics.

3) LIME
As discussed in [13], LIME generates several samples in
the neighbourhood of to-be-explained instance by a Gaussian
kernel. Later, LIME approximates a linear model to provide
an explanation. In this section, we vary over the standard
deviation of this kernel and investigate how this variation
impacts the explanation sensitivities of LIME. To this end,
we choose STDs of 0.5 and 2.0 in addition to the standard
setting (1.0).

Table 5 shows that for both datasets, the highest neighbor-
hood STD (2.0) achieves better results than the lowest STD
(0.5). With respect to STD = 1.0 and STD = 0.5, we observe
better results in the former setting than in the latter, with
differences of approximately 0.1 for all the metrics on both
datasets. We also report such a difference between the STDs
of 2.0 and 1.0. Comparing MSS-MLS and ASS-ALS, we find
similar sensitivities in each pair for all the settings of both
datasets. However, in a comparison between the maximum
and average sensitivity metrics, one could see that the average
sensitivities are lower than the maximum sensitivities on both
datasets.

VI. IMPLEMENTATION CHALLENGES AND TIME
COMPLEXITY
Each XAI model follows a specific reasoning to explain the
input of interest. The XAI models examined in this work

TABLE 5. LIME sensitivities of different neighbourhood STDs for
each dataset.

TABLE 6. Running-time complexity of all XAI models in the scale of
second on each dataset.

are initially proposed for contexts with non-time series data.
In this paper, we devoted extra efforts to making these models
compatible with time series data. Moreover, the XAI models
are usually employed for output explanations of traditional
black-box models, e.g., support vector machines (SVM) [13],
[14], as well as popular deep learning models, e.g., inception
architectures [8], [9], [13]. However, the community lacks the
practice of output explanation for deep learning models such
as CN-Waterfall with specific structure. Such practice could
entail integration challenges rather than paving a straight way
to apply the XAI models. In our case, since CN-Waterfall
is fed by parallel inputs, we implemented a module that
maps the preprocessed data to a parallel representation (see
Figure 2) to tackle the integration challenge.

We also investigated the running-time complexity of the
XAI models applied on the standard setting for both datasets.
As shown in Table 6, we performed all the experiments on
a machine with an Intel(R) Corei5-7600T CPU, 2.81 GHz
clock speed and 32 GB RAM. We noticed that LIME is
computationally more expensive than IG onWESAD but less
expensive on MAHNOB-HCI. Overall, the SG model is the
most affordable XAI model on both datasets.

VII. CONCLUSION AND FUTURE WORKS
This paper formulated four different metrics, namely, MSS,
MLS, ASS and ALS, to evaluate the sensitivities of XAI mod-
els considering temporal-based perturbations and training
neighbors around the series of interest. Our hypothesis was
that we would obtain similar explanations for close series
with the same class labels, and thereby the XAI models
would result in low sensitivities.We focused on the sensitivity
evaluations of three attribution-based XAI models, namely
IG, SG and LIME. These models were applied to explain
the decision of CN-Waterfall [26], a highly accurate convolu-
tional deep learning model specialized for affect computing.
The experiments were conducted on a three-fold setting of
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data, metric and XAI hyperparameter on the WESAD and
MAHNOB-HCI datasets. We also discussed the applicability
and running-time complexity of each XAImodel with respect
tp the sensitivity evaluations.

In summary, we found that (i) IG and LIME provide lower
scales of sensitivity than SG in all the metrics and settings.
We referred the result to the lower scale of important scores
generated by the former models; (ii) the window size of
the series plays a role in the sensitivities’ variation in the
XAI models. In our experiments, higher sensitivities were
associated with a smaller window size; (iii) ignoring network
parameters and data properties in design, the XAI models
fluctuate in terms of sensitivities when the parameters and
properties change; (iv) the sensitivities of XAI models vary
with respect to different settings of hyperparameters.

There are several shortcomings in this research that could
be further investigated in the future. First, in this study,
the impact of a limited number of window and overlapping
sizes were provided. We encourage practitioners to explore
the impact of broader data settings. Second, we examined
equal ranges of short- and long-term perturbations. In most
of the cases, we observed similar outputs for MSS-MLS,
and also for ASS-ALS. It could be interesting to focus on
unequal/dynamic ranges of temporal-based perturbations and
explore how the sensitivities of XAI models change under
such settings. Third, although the evaluated XAI models
are among the most prominent models in the XAI field,
investigating the sensitivities of more elaborated models is
recommended. Specifically, it is worth to examine the models
with low running-time complexities and modular implemen-
tations. Last, in this paper, we focused on the time series
benchmarks in affect computing. Understanding how the pro-
posed metrics work in other domains (e.g., human activity
recognition) could further acknowledge the scalability of
these metrics in practice. In theory, the proposed metrics are
assumed scalable to other domains of interest as there is no
constraint on the context/semantic of to-be-explained series
in the process of metrics’ design.
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