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Abstract

Periodic rescheduling is an iterative method for real-time decision-making on indus-

trial process operations. The design of such methods involves high-level when-to-

schedule and how-to-schedule decisions, the optimal choices of which depend on

the operating environment. The evaluation of the choices typically requires computa-

tionally costly simulation of the process, which—if not sufficiently efficient—may

result in a failure to deploy the system in practice. We propose the continuous con-

trol parameter choices, such as the re-optimization frequency and horizon length, to

be determined using surrogate-based optimization. We demonstrate the method on

real-time rebalancing of a bike sharing system. Our results on three test cases indi-

cate that the method is useful in reducing the computational cost of optimizing an

online algorithm in comparison to the full factorial sampling.

K E YWORD S

kriging, online scheduling, re-optimization, rolling horizon, surrogate modeling

1 | INTRODUCTION

Process scheduling is operational decision-making that arises in many

fields of process systems engineering (PSE), such as production of

metals, petrochemicals, pulp and paper, and transportation of goods.

The main decisions involve defining the set of tasks to be executed,

their timing, and the allocated resources.1 In offline scheduling, these

decisions are determined prior to the beginning of the process opera-

tion based on the available information. Mathematical optimization

methods can find the optimal solution to a vast variety of such (often

combinatorially complex) scheduling problems—subject to sufficient

computing resources and execution time. For reviews of the developed

optimization methods, we refer the reader to articles.1–3

In online scheduling, the scheduling decisions are made in real-time

while operating the process. If the decision-making is based on mathe-

matical optimization, this process typically involves iterative execution

of optimization procedures, the results of which are used to update the

current schedule. Each optimization procedure aims to find the optimal

operations for a predefined scheduling horizon to the future using the

latest information of the process. As this scheduling horizon moves

ahead in time, the method is generally referred to as the rolling horizon

approach.2 While the methods for offline scheduling are fairly

established, less attention has been put on the design of online sched-

uling methods.4 A major challenge in online scheduling is how to opti-

mally use new information and the given computing resources in a

limited time. The high-level decisions related to online scheduling can

be categorized into when-to-schedule and how-to-schedule decisions.5

Gupta et al.6 review the literature of online scheduling and highlighted

four aspects for the design of online scheduling algorithms: (i) re-

computation trigger, (ii) computation technology, (iii) uncertainty model-

ing, and (iv) allowable changes and constraints to the schedule. While

the re-computation trigger is essentially a synonym for the when-to-

schedule decision, the last three aspects are all different subcategories

of how-to-schedule decisions.
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Regarding the when-to-schedule decision, periodic rescheduling is

perhaps the most commonly used in the literature to trigger scheduling

procedures. Recently, Gupta and Maravelias7 investigate how the re-

optimization interval and horizon length of open-loop scheduling affect

the closed-loop solutions. The same authors also propose a systematic

way to design a periodic rescheduling algorithm,4 focusing on the interval

of scheduling procedures and the horizon length. Stevenson et al.8 study

the effect of periodic rescheduling interval to the performance of amulti-

purpose production plant in different operation conditions. Dong et al.9

present a re-optimization framework for a maritime inventory routing

problem based on a discrete-time arc-flow formulation and stochastic

simulations to account for uncertainty. Other commonly used methods

for rescheduling timing are event-driven rescheduling10,11 and a hybrid

of periodic and event-driven rescheduling.12 Ikonen et al.13 propose an

approach where a reinforcement learning agent is trained to decide on

the timing and computing time allocation of rescheduling procedures.

Recent studies on allowable changes and constraints in online scheduling

are published in articles.14,15 Vieira et al.16 provide a thorough review of

rescheduling strategies, including re-optimization triggers. In this study,

we focus on the decisions related to the periodic rescheduling.

It is worth noticing that an evaluation of an online scheduling algo-

rithm requires repeatedly performed optimization procedures, as well as

a simulation of the process, to which the optimized scheduling decisions

are applied. In order to obtain a reliable metric of the closed loop perfor-

mance of the algorithm, the evaluation may take hours of computing

time. Considering that design of an online scheduling algorithm has many

algorithmic settings (discussed above), a full factorial evaluation of all set-

tings may require a prohibitively long computing time. In the literature,

this aspect of online scheduling is rarely discussed.

Surrogate-based optimization is a sample efficient global search

method suitable for black-box type objective functions, the evaluation of

which is computationally expensive. The main idea is to, first, generate

an initial sampling plan of the search space based on a design of experi-

ment method,17 for example, the Latin hypercube sampling18 or the

Morris-Mitchell Maximin distance sampling.19 Second, a surrogate (also

referred to as a meta-model, a response surface, or an emulator) is con-

structed based on an initial sampling. The purpose of the surrogate is to

serve as a cheap-to-evaluate representation of the objective function in

the search space. Third, the surrogate is used in an iterative process

where new candidate points (also referred to as infill points) are identi-

fied and evaluated, and the resulting input–output data are used to

update the surrogate. A field partly overlaid with surrogate-based optimi-

zation is Bayesian optimization with the distinction that in the latter the

surrogate is typically updated based on Bayesian statistics.20

Early works in these fields were done by Kushner,21 Močkus and

Žilinskas22,23 during 1960–1970s. Sacks et al.24 pioneered surrogate

modeling of computational simulations in late 1980s. Jones et al.25 pro-

posed the efficient global optimization (EGO) method, where the infill

points are determined based on a surrogate by maximizing the expected

improvement in the objective function value (developing on the idea pres-

ented by Močkus22). Commonly used surrogates are radial basis

functions,26 kriging,27 and polynomial functions. Surrogate-based optimi-

zation can take into consideration features such as noisy experiments,28,29

multiobjective optimization,30,31 multifidelity function evaluations,32 and

parallel evaluation of infill points.33,34 Surrogate-based optimization, as

well as Bayesian optimization, have been used extensively in the design of

engineering systems.35,36 McBride and Sundmacher37 review surrogate

modeling in chemical process engineering.

Regarding planning and scheduling, Wan et al.38 deploy surrogate

modeling in simulation-based optimization of a three-stage supply chain

problem under uncertainty. Sahay and Ierapetritou39 minimize the total

cost of a multi-enterprise supply chain by finding the optimal warehouse

capacities using surrogate-based optimization based on Kriging and

expected improvement maximization. Shi and You40 reformulate an inte-

grated optimization problem as a mixed-integer nonlinear program and

propose a bilevel structure, consisting of scheduling dynamic optimiza-

tion levels. Surrogate models based on piecewise linear functions are

used to represent the linking variables of the levels (i.e., processing times

and costs). Candelieri et al.41 apply Bayesian optimization to the schedul-

ing of pump operations. Hutter et al.42 developed Bayesian optimization

algorithms for the optimal configuration of the mixed integer program-

ming (MIP) solver CPLEX, often used to solve scheduling problems.

In this study, we first draw attention to the high computing cost

of optimizing the closed-loop performance of an online scheduling

algorithm via simulation. Second, we propose the optimization of con-

tinuous parameter of a periodic rescheduling algorithm to be per-

formed using surrogate-based optimization, in order to mitigate the

above-mentioned high computing cost. As far as we are able to ascer-

tain, such an approach has not been reported in the literature. Third,

Gupta and Maravelias4 report results of a two-dimensional control

parameter optimization using full factorial sampling, but, to our knowl-

edge, results of systematic optimization in higher dimensions have not

been reported in the literature. We extend the search space into three

dimensions, and discuss how surrogate-based optimization could facil-

itate even higher dimensional search spaces.

We evaluate the approach on the bike sharing rebalancing problem

(BRP), which is a generalization of the one-commodity pickup and deliv-

ery traveling salesman problem.43 The objective is to minimize travel

time of a number of rebalancing vehicles that transport bikes between

fixed stations while fulfilling the service level requirement (SLR) of the

system. We also discuss the transferability of the research to more

complex processes in PSE, such as process scheduling and supply chain

optimization. Artificial intelligence (AI) algorithms are used in this study

(i) to make probabilistic predictions of the future demand at the bike

stations, using a continuous time Markov chain, (ii) to cluster the sta-

tions of the system into subsets that are allocated to a single

rebalancing vehicle, and (iii) in the surrogate-based optimization of con-

trol parameters of the online scheduling algorithm.

2 | OPTIMIZATION PROBLEM: BIKE
SHARING REBALANCING

Urban bike sharing systems are expanding concurrently in large met-

ropolitan areas and smaller cities around the world. In June 2021, the

number of active bike sharing systems globally was around 2000.44

Bike sharing is a form of sharing economy, aiming to increase the utili-

zation rate of goods and reduce the overall greenhouse gas emissions.
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The bikes of these systems are often used as last mile transportation,

for example, between home and a train station. The operation of

these systems is challenging, because the daily pickup and return dis-

tributions on different stations are asymmetric, leading to a risk of

undesired empty or overfull stations. The system operators typically

mitigate the imbalance by transporting bikes between stations by tru-

cks. In the literature, the problem of finding the optimal operation of

the rebalancing vehicles is referred to as the BRP.

The reason for selecting the bike sharing system as the example

problem here is manifold. First, the process is very dynamic and has

elements that follow certain patterns but cannot be fully forecasted.

An example of these is customer behavior, which resembles the prod-

uct demand in typical PSE applications. Second, both the dynamic

BRP and a typical online production scheduling problem involve solv-

ing computationally expensive MIP models in limited amount of time.

In addition, solving both problems follow similar procedures that need

to be handled in the best possible manner, including the use of avail-

able data and information and an intelligent combination of optimiza-

tion and AI technologies. Third, the studied problem is an instance of

capacitated vehicle routing problems, which are frequently encoun-

tered by chemical companies that transport chemicals between and

within their production sites, as well as to their customer network.

Fourth, and perhaps the foremost, open data are widely available for

the BRP and can be used for research and development purposes.

This allows to develop, test, and publish methodologies in practice

long before it would be possible with partially confidential company

data. Instead of using anonymized data, we can directly refer to real

process data collected from the described environment.

2.1 | Background

The problems studied in the literature can be categorized, in general, into

static and dynamic BRPs. The static BRP corresponds to a case of over-

night rebalancing, in which the effect of the users on the system during

rebalancing is assumed to be negligible and the rebalancing vehicles can

operate in the region without congestion. A typical objective is to mini-

mize the cost of operations, subject to fulfillment of station-specific tar-

get levels. Raviv et al.45 formulated MIP models to minimize a weighted

objective function, combining the user dissatisfaction function46 and

total operating costs. Chemla et al.,47 Dell'Amico et al.,48 and Erdo�gan

et al.49 formulate exact MIP models, and branch-and-cut algorithms to

solve them, in order to obtain the optimal operations of rebalancing vehi-

cles. Schuijbroek et al.50 determine the SLRs from historical datasets and

propose a clustering-based optimization approach. In their approach,

each station is assigned to a self-sufficient cluster of stations, which is

assigned a single truck to perform only transportations within the cluster.

The operations of the vehicles are determined by a MIP model.

These models are useful in practice in the overnight rebalancing

when the usage level is low, as shown, for example, by Freund et al.51 in

an experimental study in New York City. However, during the day-time,

the state of the system is significantly altered by the users, leading to a

situation where the optimal solution to the static BRP quickly becomes

outdated. The expanded problem that also considers the usage of the

system during rebalancing is referred to as the dynamic BRP. The key ele-

ments to solve this problem are as follows: (i) a good prediction of the

future pickup and return rates at the stations (typically based on histori-

cal and online data), (ii) an efficient solution method (typically either MIP

or a heuristic algorithm), and (iii) a re-optimization scheme that updates

the planned operations when appropriate. Chiariotti et al.52 propose a

dynamic rebalancing approach that uses the birth-death process to

model the future bike levels at the stations and updates the planned

operations periodically using a heuristic algorithm. Ghosh et al.53 pro-

pose aMIPmodel for the dynamic BRP that uses Lagrangian dual decom-

position and an abstraction mechanism that groups stations close to

each other into an abstract station in the optimization model. For an

extensive review on BRPs, we refer the reader to the recent review

paper by Shui and Szeto.54

2.2 | Real-time optimization problem

Let us now formally describe the real-time optimization problem of

rebalancing a bike sharing system. The system consists of a set of sta-

tions S and a set of rebalancing vehicles V that perform the transpor-

tation of bikes in between the stations. Each station i�S has Ci docks

where bikes can be stored. Each vehicle v�V has a maximum capacity

of bikes, Qv. The relative locations of the stations are characterized by the

distance matrix di,j, where i, j�S. The vehicles are assumed to move

from a station to another at a constant speed of v. Loading a bike

from a station to a vehicle, as well as the opposite action

(i.e., unloading), takes time tload. Initially, at time t0, the stations have

initial bike levels of siniti , i�S, and the vehicles initial loads of

qinitv , v�V, and initial locations of linitv , v�V, where linitv points to a sta-

tion in set S. A historical dataset of station-specific bike pickup

μi tð Þ, i�S and return rates λi tð Þ, i�S as a function of the time of the

day t is available for the online scheduling algorithm*. Figure 1 shows

these rates at a station located in a commercial district of Helsinki in

June 2020.55

While also other re-optimization triggers are studied in the literature

(see Section 1), we here only consider re-optimization procedures that

are triggered periodically at an undefined time interval of Δt. We evalu-

ate the periodic rescheduling algorithms by repeatedly formulating and

(h)

(1
/h
)

F IGURE 1 Average pickup and return rates, μ(t) and λ(t), at a bike
sharing station, located in a commercial district of Helsinki
(Unioninkatu, 60.17�N, 24.95�E) in June 2020
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solving optimization problems that determine the operations on the sys-

tem (Figure 2). The re-optimization procedures are executed on a fixed-

capacity computing resource that is continuously available. Thus, each

optimization procedure is allocated a computing time limit equal to the

re-optimization intervalΔt. During the ith re-optimization procedure, the

system evolves from the time point ti to ti+1 = ti + Δt. We simulate the

evolution of the bike sharing system using real pickup and return data.

The data used in the simulation is not included in the historical dataset.

The operations obtained from the ith re-optimization procedure that

started at ti can be put into action at ti+1. The information of bike pickups

and returns by users during the evaluation becomes available for the

online scheduling algorithm at the time they occur.We evaluate the algo-

rithm during a time span of t0…tend½ �. The objective is to minimize the

sum of time the stations of the system are in an undesired state

(i.e., empty or full),
P

i � St
ef
i , where tefi is the time station i is empty or

full. The next section describes the methods we use to formulate an

optimization problem based on the prevailing state of the bike sharing

system.

2.3 | Optimization problem formulation

We formulate the optimization problems using a slightly modified ver-

sion of the model by Schuijbroek et al.50 The model, in fact, consists

of three sub-models: (i) a probabilistic prediction model of the future

bike levels at the stations, (ii) MIP model to solve routing problems,

and (iii) the aforementioned clustering model to decompose large

problems into smaller ones. Although the model was originally

designed for static BRP problems, the model is also well-suited for

dynamic problems because it recognizes stations that do not need to

be visited (referred to as self-sufficient stations) and it is scalable to

larger problems due to its clustering feature that decomposes the

original problem into smaller sub-problems. In the following, we

describe the model and report our modifications to it. We follow

mostly the symbol notation used by Schuijbroek et al.50

2.3.1 | Probabilistic prediction model

The inventory of bikes Si(t) at a station i�S is modeled as a stochastic

process on the state space 0,…,Cif g, where Ci is the number of docks

at the station (assuming that the station cannot be overfull). Let us

denote this process as {Si(t): t≥0}, where t represents the time.

Schuijbroek et al.50 model this inventory as a Mt/Mt/1/K queuing

system,56 such that the number of “customers” in the queue corre-

sponds to the number of bikes at the station. The first two elements

of the notation indicate that the arrivals of new “customers”
(i.e., bikes in our case) and their service both are non-stationary Mar-

kovian processes. Both types of events are exponentially distributed

with time-dependent rates λi(t) and μi(t), respectively. The third ele-

ment indicates that there is one machine serving the customers, and

the fourth element that the queue has a total of K = Ci waiting spaces.

The queuing system is summarized in Figure 3.

A few assumptions need to be stated here (the same assump-

tions are made by Schuijbroek et al.50). First, the model assumes

all bike users to travel alone. In reality, a portion of the users

travel in batches and therefore arrive at the pickup and/or return

stations nearly simultaneously, which is against the assumption of

exponentially distributed bike pickups and returns (Poisson pro-

cess). We estimate† that out of all trips conducted in Helsinki in

June 2020 81.5% were made alone, 16.1% in pairs, and 2.4% in

batches of three or more. As the majority of the trips are con-

ducted alone, the effect of some users traveling in batches is pre-

sumably small. Second, the model considers the stations

separately without considering possible interactions between

them. As example of this, let us consider a user starting a trip

who cannot pickup a bike from a station because it is empty (and

the opposite case of ending a trip to a full station). These users

would typically proceed next to a nearby station. Nevertheless,

this behavior is not considered in the model.

Let us denote the transient probability for the number of bikes at

station i to equal σ � 0,…,Cif g at time t≥0 given that it was

s� 0,…,Cif g at time t = 0 as

no yes

F IGURE 2 Evaluation of a periodic rescheduling algorithm on an operating environment during a time span of t0…tend½ �

F IGURE 3 Markov chain of the bike inventory Si(t) at station i�S,
having the capacity of Ci. The pickup and return rates of bikes are μi(t)
and λi(t), respectively
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pi s, σ, tð Þ¼Pr Si tð Þ¼ σjSi 0ð Þ¼ sð Þ, i�S: ð1Þ

Regarding the Mt/Mt/1/K queuing system, no closed form solu-

tion exists for these probabilities. Nevertheless, we can solve the

probabilities numerically using the Kolmogorov forward equations,57

which for this system are as follows:

_p s,0,tð Þ¼ μi tð Þpi s,1,tð Þ�λi tð Þpi s,0,tð Þ
_p s,σ,tð Þ¼ μi tð Þpi s,σ�1,tð Þ� μi tð Þþλi tð Þ½ �pi s,σ,tð Þ

þλi tð Þpi s,σþ1,tð Þ, σ � 1,…,Ci�1f g
_p s,Ci,tð Þ¼�μi tð Þpi s,Ci ,tð Þþλi tð Þpi s,Ci�1,tð Þ

8>>><>>>: ð2Þ

We use the Runge–Kutta method of order 5(4)‡, implemented in

the Python library Scipy,58 to solve this system of differential equations.

Figure 4 shows two 4-h probabilistic predictions made at 6:00

and 14:00 for the Unioninkatu bike sharing station, based on the data

shown in Figure 1, and the starting inventory at 6:00 and 14:00 on

August 17, 2021. It is worth noticing that the station has higher return

than pickup rate in the morning (Figure 1), and vice versa in the after-

noon. Thus, the station is at risk of becoming full during the morning

and empty during the afternoon. It is worth noticing that the predic-

tion method is only based on historical data of pickups and returns on

the station. The method does not consider other information

(e.g., about the weather or nearby events), which could potentially

improve the accuracy in practice.

From the operations point of view, we are interested in the

fraction of demand that can be satisfied. Schuijbroek et al.50 define

the expected fraction of satisfied pickup and return demand at

station i to be

E satisfied bike pickup demands½ �
E Total bike pickup demands½ � ¼

Ð T
0μi tð Þ 1�pi s,0,tð Þð ÞdtÐ T

0μi tð Þdt
¼ gi s,0,Tð Þ

E satisfied bike return demands½ �
E Total bike return demands½ � ¼

Ð T
0λi tð Þ 1�pi s,Ci,tð Þð ÞdtÐ T

0λi tð Þdt
¼ gi s,Ci,Tð Þ,

8>>>>><>>>>>:
ð3Þ

where T the length of the observation period. The authors define min-

imum values for these fractions, referred to as pickup and return SLRs,

β�i and βþi , respectively, for all stations i�S. Regarding station i, let us

denote its initial inventory by s0i and the inventory after the

rebalancing by si. Raviv et al.46 provide a proof that gi(s, 0, T) and gi(s,

Ci, T) increase and decrease, respectively, as the starting inventory

s increases. Based on this proof, Schuijbroek et al.50 determine the

lower and upper bounds for the inventory si after rebalancing:

smin
i ≤ si ≤ s

max
i , ð4Þ

where

smin
i ¼min s� 0,…,Cif g : gi s,0,Tð Þ≥ β�i

� �
smax
i ¼max s� 0,…,Cif g : gi s,Ci,Tð Þ≥ βþi

� �
:

(
ð5Þ

The stations belonging to set S0¼ i�S : smin
i ≤ s0i ≤ s

max
i

� �
are

referred to as self-sufficient stations. These stations do not require

rebalancing, but can be used as a source or a sink for bikes (as long as

the bounds are not violated). We make an assumption that satisfying

the pickup and return demand is equally important and that all sta-

tions have the same importance§. This allows us to define a general

system-wide SLR β¼ β�i ¼ βþi , i�S.
If smax

i ≤ smin
i , gi Ci,0,Tð Þ< β�i , or gi 0,Ci,Tð Þ< βþi , the lower and upper

bounds cannot be satisfied. In such cases, we define the bounds to equal

the inventory level that maximizes the worst of the two SLRs:

smin
i ¼ smax

i ¼ argmax
s � 0,…,Cif g

min gi s,0,Tð Þ, gi s,Ci ,Tð Þf gf g: ð6Þ

We define the set of stations to be visited initially as S� ¼S∖S0.
This set may, however, have a shortage of bikes or empty docks. In

such a case, we incrementally add stations from S0 to S� until S� is
self-sufficient or S� ¼S. We add stations from S0 in the order of the

greatest gi(s, 0, T) if the shortage is of bikes or gi(s, Ci, T) if the shortage

is of docks (Equation 3).

Two focal control parameters of the probabilistic prediction

method, presented in this section, are the length of the prediction

horizon T and the SLR β. These control parameters, along with the re-

optimization interval Δt, are optimized using a method, which we will

describe later in Section 3.

2.3.2 | Routing model

The objective of the MIP routing model by Schuijbroek et al.50 is to

minimize the maximum travel distance among a set of rebalancing

vehicles subject to satisfying the bounds in Equation 4 at all stations

(A) (B)

(-
)

(-
)(-

)

F IGURE 4 Probabilistic prediction of the number of bikes at Unioninkatu bike station in Helsinki. The prediction is made based on historical
data from June 2020 and given starting levels at 6:00 (A) and 14:00 (B) on August 17, 2020. The white lines show the actual realizations on that
day. The station has a capacity of 22 bikes. The brightest yellow color exceeds the scale
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i�S. Considering that the vehicles travel at the constant speed v, the

authors transform the time to pickup or deliver a bike into

the corresponding distances d� and d+, respectively, which the

vehicle would travel during these operations. These distances are

included in the objective function. Therefore, the objective of the

model is essentially to minimize the time to bring system to the

above-described state that satisfies the SLRs. We have defined

both the loading and unloading times to be equal to tload, and thus in

our case d� ¼ dþ ¼ vtload.

The model, which is both arc- and sequence-indexed, has three

sets of integer variables. Binary variable xi,j,t,v defines whether arc (i, j)

is traveled at time step t� T by the vehicle v. Integer variables y�i,t,v
and yþi,t,v define the number of bikes pickups and deliveries, respec-

tively, from/to station i at the time step t by vehicle v.

As we can see from the variable definitions, Schuijbroek et al.50

define the model to take into account multiple vehicles¶. However,

when they use it with the earlier mentioned clustering model, they

solve the routing problem for one vehicle at the time. We use the rou-

ting model in the same way. Therefore, for us, set V has always the

cardinality of 1. We use the following slightly modified version of the

model:

min H ð7Þ

s0i þ
X
t � T

X
v � V

yþi,t,v�y�i,t,v

� �
≥ smin

i , i�S� ð8Þ

s0i þ
X
t � T

X
v � V

yþi,t,v�y�i,t,v

� �
≤ smax

i , i�S� ð9Þ

X
i � S�

X
j �N

xi,j,1,v ≤1, v�V ð10Þ

X
j �N

xi,j,t,v ≤
X
j � S�

xj,i,t�1,v , i�S�,t� T ∖ 1f g,v�V ð11Þ

X
i � S�

X
t � T

X
v � V

xi,i,t,v ¼0 ð12Þ

y�i,t,v ≤Qv

X
j �N

xi,j,t,v , i�S�,t� T ,v�V ð13Þ

yþi,t,v ≤Qv

X
j �N

xi,j,t,v , i�S�,t� T ,v�V ð14Þ

X
t � T

X
v � V

y�i,t,v ≤ s
0
i , i�S� ð15Þ

X
t � T

X
v � V

yþi,t,v ≤Ci� s0i , i�S� ð16Þ

q0v þ
X
i � S�

X
et � T :et≤ t y�

i,et,v�yþ
i,et,v

� �
≥0, t� T ,v�V ð17Þ

q0v þ
X
i � S�

X
et � T :et ≤ t y�

i,et,v�yþ
i,et,v

� �
≤Qv , t� T ,v�V ð18Þ

hv ¼
X
i � S�

X
j � S�

X
t � T

di,jxi,j,t,vþ
X
i � S�

X
t � T

d�y�i,t,vþ
X
i � S�

X
t � T

dþyþi,t,v , v�V

ð19Þ

H≥ hv , v �V ð20ÞX
j � N

xlv ,j,1,v ¼1, v�V ð21Þ

X
j �N

X
t � T

xi,j,t,v ≤1, i�S�,v�V ð22Þ

X
i � S�

X
t � T

xi,j,t,v ≤1, j�N ,v�V ð23Þ

xi,j,t,v � 0,1f g, i�S�, j�N ,t� T ,v�V
y�i,t,v ,y

þ
i,t,v �ℕ0, i�S�,t� T ,v�V

H,hv ≥0, v�V

Constraints 8 and 9 impose that the SLR (specified by the

inventory bounds in Equation 4) is fulfilled at all stations. Con-

straints 10–12 ensure that the route of vehicle v is started from

one station, is continuous, and has no branching. Constraints 13

and 14 impose that the pickup and delivery of bikes to/from station

i is only possible when leaving from it. The set N ¼S� [ 0f g includes
an artificial station that allows operations to be performed at the final

station of the route without incurring a new routing cost. Constraints

15 and 16 limit the amount of transshipment. Constraints 17 and 18

ensure that the load on vehicle v is within 0,…,Qvf g throughout the
rebalancing. Constraint 19 tracks the total distance hv traveled by

vehicle v (taking also into account the bike pickup and delivery times).

Constraint 20 tracks the maximum distance H among hv ,v�V.
Constraints 21–23 were not in the original model by

Schuijbroek et al..50 We add them, in order to make the model

more suitable for dynamic BRPs. Constraint 21 imposes vehicle v

to start the route from its starting location lv. Constraints 22 and

23 enforce that a station can only be visited once, which reduces

the computational complexity of the problem. Accordingly, in

order to ensure the feasibility of the model, we adjust bounds smin
i

and smax
i to be at most Qv bikes away from initial number of bikes s0i

(i.e., the bounds can be satisfied by one visit). We reason this choice

by the recursive nature of online scheduling. If a station requires mul-

tiple visits, a new visit would be scheduled at the next iteration after

visiting the station for the first time. As all stations can be visited at

most once we define the number of time steps in T to equal the num-

ber of stations in set S�.
The starting location lv of vehicle v is its next destination after

time Δt from the start of the re-optimization procedure. q0v is the

corresponding load when arriving to that station (i.e., the starting load

for the next planned route).

Regarding Equation (14), Schuijbroek et al.50 formulated it as

yþi,t,v ≤Qv

X
j � S�

xj,i,t,v , i�S�,t� T,v�V ð24Þ

In their formulation, the pickup of bikes can happen when

leaving from a station, and delivery of bikes when arriving at a
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station. However, to our understanding, this form would allow

the capacity of vehicles to be violated. In our experiments, we

use Equation (14), defining that both pickup and delivery can hap-

pen only when leaving a station, precluding the violation.

When performing rebalancing with more than one vehicle, we

first solve the clustering model50 to decompose the problem into

n single-vehicle routing problems (Equations 7–23), where n is the

number of vehicles. The clustering model, which is also a MIP

model, is defined in the paper by Shuijbroek et al.50

3 | SURROGATE-BASED OPTIMIZATION

In the previous section, we described the online algorithm for the

dynamic BRP. We highlighted the prediction horizon T, SLR β,

and the re-optimization interval Δt as the main control parame-

ters of the algorithm, which we believe to have a major impact

on its performance. Let us denote these parameters by x = [T, β,

Δt]T, and the metric of their goodness simply as y xð Þ¼
P

i � St
ef
i .

Finding the parameters x that minimize y(x) in a certain

operating environment is hindered by the high computing cost of the

evaluating y(x).

Surrogate-based optimization is a method that is well-suited

for optimization problems with expensive function evaluations. A

pseudo-code for a parallel surrogate-based optimization with the

total budget of N sampling points is shown in Algorithm 1. The

process is started by distributing ndoe points in the search space

by a design of experiment method. We use the Latin hypercube

sampling18 as the design of experiment method. The method dis-

tributes the points in the search space, such that their projec-

tions onto the variable axes have a uniform spread. The objective

function value y is then evaluated at the points x1,…,xndoe
� �

.

The remaining N � ndoe sampling points are used in an iterative

process, where (i) the surrogate model by representing y is updated

with all data obtained so far, (ii) new sampling points are chosen based

on a specified infill criterion (a procedure that involves several evalua-

tions of the surrogate), and (iii) the objective function y is evaluated at

these points. In the following, we describe the chosen surrogate

model that is based on Kriging (Section 3.1) and the infill criteria

(Section 3.2) in more detail.

3.1 | Kriging

Before evaluating the objective function y at some point x, we have

uncertainty of the value we are going to obtain. In Kriging (also

referred to as Gaussian process regression), the observations of the

function are modeled as if they are from a stochastic process, repre-

sented by the random vector

Y¼

Y x1ð Þ,
..
.

Y xnð Þ

2664
3775, ð25Þ

having the mean of 1μ, where 1 is a n � 1 vector of ones. In this

study, we model the correlation of the objective function values

at points xi and xj using the Gaussian correlation function,

defined as

Corr Y xið Þ,Y xj
� 	
 �

¼ exp �
Xd
l¼1

θl xil�xjl
� 	2 !

, ð26Þ

where d is the number of dimensions in the search space and θ1…θdf g
are hyperparameters that control how quickly Y changes in the differ-

ent dimensions of the search space.

Our evaluations of objective function y xð Þ¼
P

i � St
ef
i presumably

contains noise. Therefore, we define the random vector Y to have a

covariance of

Cov Yð Þ¼ σ2Rλ¼ σ2 Rþ λIð Þ, ð27Þ

where σ2 is variance, λ is the regularization hyperparameter (account-

ing for the noise), I is an n � n identity matrix, and R is the correlation

matrix, defined as

R ¼

Corr Y x1ð Þ,Y x1ð Þ½ � … Corr Y x1ð Þ,Y xnð Þ½ �
..
. . .

. ..
.

Corr Y xnð Þ,Y x1ð Þ½ � … Corr Y xnð Þ,Y xnð Þ½ �

0BB@
1CCA: ð28Þ

Rλ is referred to as the regularized correlation matrix.

The distribution of Y is dependent on the hyperparameters

μ,θl, l� 1,…,df g,σ2, and λ. After seeing some data, these hyper-

parameters can be fitted by the maximum likelihood estimate.

Let us denote the sampled points after n objective function evalu-

ations by X¼ x1,…,xn½ �T and the corresponding objective function

values by y¼ y1,…,yn½ �T. The log-likelihood function is

ALGORITHM 1 A pseudo-code for parallel

surrogate-based optimization

Distribute ndoe sampling points in the search domain using a

design of experiment method.

Evaluate y in parallel at points x1,…,xndoe
� �

, obtained from

the previous step.

Set n ndoeþ1.

while n ≤ N do

Update the surrogate model by of y based on all obtained

data.

Determine the next nbatch sampling points using the

specified infill criterion.

Evaluate y in parallel at points xn,…,xnþnbatch
� �

.

Set n nþnbatch.

end while

return solution x with the smallest y.
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l yjθ,μ2,σ,λ
� 	

¼

�1
2

nln 2πð Þþnln σ2
� 	

þ ln jRλjð Þþ y�1μð ÞTR�1λ y�1μð Þ
σ2

" #
:

ð29Þ

Expressions for the optimal values of μ and σ2 can be obtained by

equating the partial derivatives ∂l/∂μ and ∂l/∂σ2 to zero. The resulting

expressions are

bμ¼ 1TR�1λ y

1TR�1λ 1

bσ2¼ y�1μð ÞTR�1λ y�1μð Þ
n

8>>><>>>: ð30Þ

Substituting Equation (30) to (29), and omitting the constant

terms, yields the so-called “concentrated log-likelihood”

�n
2
ln bσ2� �

�1
2
ln jRλjð Þ, ð31Þ

This form only requires finding the optimal values for

θl , l� 1,…,df g and λ, after which bμ and bσ2 can be obtained by

substitutions.

After choosing the hyperparameters, the model can be used

to make a prediction of the objective function value y at point x*

that has not been evaluated. Let us define a new correlation vec-

tor r as

r¼

Corr Y x�ð Þ,Y x1ð Þ½ �
..
.

Corr Y x�ð Þ,Y xnð Þ½ �

2664
3775: ð32Þ

The predicted mean by x�ð Þ and variance bs2 x�ð Þ are then (see the

derivation in 59)

by x�ð Þ¼bμþ rTR�1λ y�1μð Þbs2 x�ð Þ¼bσ2 1þ λ� rTR�1λ r
h i

:

8<: ð33Þ

3.2 | Infill criteria

Finding the optimum of y based on the surrogate by requires balancing

between sampling points that by indicates to be competitive

(i.e., exploitation) and sampling points that lead to improvements in

the accuracy of by (i.e., exploration). by should be accurate especially in

regions where competitive points are found. The new points are cho-

sen based on an infill criterion. A natural infill criterion for exploiting by
is to sample the point x* that minimizes ŷðx�Þ in Equation (33). This is

referred to as the prediction-based infill criterion.

A commonly used infill criterion in surrogate-based optimization

is to sample the point x* that maximizes the expected improvement

E(I) in the best known objective function value. This infill criterion has

a balanced exploration and exploitation. The expected improvement is

defined as

E Ið Þ¼
ðI¼∞
I¼0

I
1ffiffiffiffiffiffi

2π
p

s xð Þ
exp � ymin� I�by xð Þð Þ2

2s2 xð Þ

" #( )
dI, ð34Þ

where ymin is the best known objective function value.25 Using inte-

gration by parts, the equation can be transformed into

E Ið Þ¼ s xð Þ uΦ uð Þþϕ uð Þ½ � ð35Þ

where Φ(�) and ϕ(�) are the cumulative distribution function and the

density function of the normal distribution, respectively, and

u¼ fmin�by xð Þ
s xð Þ : ð36Þ

In this study, we sample the first nei infill points using the

expected improvement criterion (maximization of Equation 35) and

finalize the search by sampling nby infill points using the prediction-

based criterion (minimization of ŷðx�Þ in Equation 33). In order to

reduce the total time of an optimization procedure we use a batch

size of nbatch = 3 when sampling using the expected improvement cri-

terion. The parallel infill points are sampled using the method by

Ginsbourger et al.33 The final infill points based on prediction-based

criterion are evaluated in series (nbatch = 1). The method we use fol-

lows fairly closely the original EGO method25 with the exceptions that

we use a slightly different correlation function (Equation 26) and final-

ize the search by the prediction-based infill criterion. Despite of these

differences, let us refer to the described method as EGO for the sake

of brevity. As the implementation of the method, we use EGO func-

tion from the Python module SMT.60 A reader interested in further

information on surrogate-based optimization may consult the works

by Jones61 and Forrester et al.62

4 | RESULTS

We formulate real-time optimization problems based on data

recorded from the bike sharing system in the Helsinki region. The

origin–destination data of the trips conducted in the system, as well

as the locations and capacities of its stations, have been published by

Helsinki Region Transport55,63 since 2016 under the CC BY 4.0

license. Kainu64 has published the number of available bikes at the

stations of the system at the sampling interval of 5 min since 2017

(also under CC BY 4.0). In 2020, the system consisted of 352 stations.

We have chosen a subset of these stations that lay inside the rectan-

gular region, specified by the coordinate ranges [60.15 … 60.19�N]

and [24.90 … 25.00�E] (Figure 5). The region, capturing the city center

of Helsinki, has a total of 92 stations.

We use the origin–destination data recorder in June 2020 as the

training data, and the corresponding data recorded during August 17–

28, 2020, as the test data**. For the sake of simplicity, we only con-

sider weekdays in this work, as the demand profiles are different on

weekdays and weekends, and should anyways be handled separately.

The number of weekdays in June 2020 was 22, whereas the specified
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time window in August 2020 includes 10 weekdays. Here, training

the prediction model means determining the pickup and return rates,

μ(t)i and λ tð Þi , i�S, from the aforementioned origin–destination data.

We determine the rates by calculating the mean of pickups and

returns during 15-min intervals; the resulting values are maximum

likelihood estimates for Poisson variables. Figure 1 shows the

obtained rates for the station on Unioninkatu (i.e., station 11 in

Figure 5).

When evaluating an online algorithm on the test data, we initiate

the system at 6:00 using the numbers of bikes at the stations from

the data recorded by Kainu.64 We then repeatedly perform re-

optimization procedures, and simulate the evolution of the system

(Figure 2). At tend = 15:00, the rebalancing is stopped. Finally, we sim-

ulate the system until 22:00 (without rebalancing) and determine the

total time,
P

i � St
ef
i , the stations in the system were either empty or

full during the time window of 6:00–22:00. The goodness of an online

algorithm is measured based on
P

i � St
ef
i , averaged over the

10 test days.

Unlike some other bike sharing systems, the system in Helsinki

allows bikes to be returned to full stations. However, in order to keep

the methods analogous to other systems, we preclude returning a bike

to a full station in our simulations, and use the number of docks Ci as

the initial number of bikes if the station was initially overfull. We also

wish to point out that in the origin–destination data, the pickup

demand is censored (i.e., the demand is not visible in the data) during

the time periods when the station in question is empty. The return

demand, on the other hand, is not censored in the data when the sta-

tion is full, as the system allows stations to be overfull. We assume

the censored pickup demand to have only a small effect on our

evaluations.

Regarding the model parameters, we determine the elements of

the distance matrix di,j as the Euclidean distance between the stations

with a detour factor of 1.4. The vehicle(s) have a capacity of Qv = 22.

Picking up or delivering a bike from/to a station takes 1 min. These

three parameters are the same as in the work by Schuijbroek et al.50

Further, we define vehicles to have an average speed of v¼20

km/h. Thus, based on the average speed and the pickup/delivery time,

parameters d� and d+ have the value of 333m. In the beginning of

operation, the load on the vehicle(s) is half of their capac-

ity, qinitv ¼11,v�V.
In the following, we present the results from test cases with one

(Sections 4.1 and 4.2) and two rebalancing vehicles (Section 4.3). In all

cases, we allocate 32 evaluations for the EGO method, described in

Section 3, and use the following sampling plan: first, we evaluate

ndoe = 15 initial points, then nEI = 15 infill points using the expected

improvement criterion in batches of nbatch = 3, and finally nby ¼2 infill

points in series using the prediction-based criterion. We also show

reference results generated using full factorial sampling. In this

method, the variables, defining the search space, are discretized

evenly, and all variable combinations are evaluated. In order to ensure

that the full factorial sampling is sufficiently dense, we allocate

64 evaluations for it.

The evaluations were performed on a high performance computing

facility, consisting Intel Xeon E5 2680/2690 v3 central processing units

(CPUs). The number of allocated threads to evaluate a day in the test

data was chosen to be the same as the number of rebalancing vehicles in

the test case. Each evaluation was allocated 4 GB of memory. We use

Gurobi 9.1.2 to solve the MIP models (i.e., the routing model

[Equations 7–23] and the clustering model, defined in 50). Regarding the

solver time limits, if only one vehicle is used in rebalancing, we define the

solver time limit to equal the re-optimization interval†† Δt. If multiple

vehicles are used, we define the time limit to solve to the clustering

model as 20% of Δt, and the time limit to solve the resulting routing

models as Δt � tclu, where tclu is the run time of solving the clustering

model (the routing models are solved in parallel).

4.1 | Two-dimensional case with one vehicle

Let us start with a case where one rebalancing vehicle operates

in the region shown in Figure 5 (the vehicle has the initial

location of linit1 ¼1). In this case, the purpose is to optimize the SLR β

and the prediction horizon T while keeping the re-optimization

interval fixed at Δt = 1 h. The value represents a natural choice for

the re-optimization interval that could be chosen in practice. We

specify the search domain using the bounds β� 0:1,…,0:95½ �
and T � 0:1,…,6:0½ � h.

Figure 6 illustrates the results obtained by the EGO method and

the full factorial sampling. The dots in both subfigures represent the

initial sampling points. In Figure 6A, the crosses indicate the locations

of the iteratively evaluated infill points. After the optimization proce-

dure with EGO method, we trained a surrogate using all observed

data. The contour in the Figure 6A represents the predicted objective

function value (ŷðx�Þ in Equation 33) in the search space based on this

surrogate.

F IGURE 5 The locations of 92 bike stations around the city
center of Helsinki that are used in this study. The map is generated
using OpenStreetMap66
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Both figures indicate the design space to have a vertically aligned

valley of good control parameter combinations. The valley starts at

the top of the search space at around (β = 0.8, T = 6.0 h) and

becomes wider when Δt is reduced. The valley is surrounded by two

separate regions with poorly performing control parameter combina-

tions. The wide region at the top left corner of the search space corre-

sponds to algorithms where the SLR β is so low that no or only a few

stations are added to the route of the vehicle. This leads to situations

where the vehicle is on idle and waits for instructions. If no

rebalancing is performed during the test days, the objective function

has the value of
P

i � St
ef
i ¼245:49 h (applies to several points in this

region). On the other hand, the (vertically) narrow region at the top

right corner of the search space corresponds to algorithms where too

many stations are added to the routing model, leading to combinatori-

ally complex models. As a result, the MIP solver fails to find an integer

solution in the given computing time, and again no rebalancing

instructions can be sent to the vehicle.

The points with the smallest objective function values are circled

in Figure 6. The numeric values of these points, as well as the

corresponding objective function values, are listed in Table 1. With

the control parameters obtained by the EGO method the total time

the stations are empty or full,
P

i � St
ef
i , is 3.32% smaller than with

those obtained by the full factorial sampling.

Figure 7 shows the realized and planned route of the vehicle in

the morning on August 17, 2020 when using the optimized control

parameters obtained by the EGO method (see the map in Figure 5).

The realized and planned routes are indicated by solid and dashed

lines, respectively. The three subfigures correspond the first three

time points of the day when updates of the optimized operations are

sent to the vehicle. Figure 8 shows the realized and planned load on

the vehicle corresponding to these states. These two figures illustrate

how the optimized plan of operations changes when new information

is obtained. In Figure 8C, the one-bike gap between the realized and

the planned load is caused by a shortage of bikes at station 121, pre-

cluding the vehicle to follow the planned operations precisely.

With the optimized control parameters, obtained by the EGO

method, the average solution time of the MIP solver was 130.9 s, indi-

cating that in many cases the solver did not need all of the allocated

solution time of Δt = 3600 s to find the optimal operations. However,

the solution times had significant variance. The minimum and maxi-

mum solution times were 0.0015 and 3600.0 s, respectively. The MIP

gap varied from 0.00% to 2.33%.

(A) (B)

(h
)

(h
)

(-) (-)

(h
)

(h
)

F IGURE 6 Results obtained using the EGO method (A) and full factorial sampling (B). The dots and crosses represent the initial and infill
sampling point, respectively. The best obtained point is circled. The contour in (A) is from the surrogate that is trained with all observed data.
EGO, efficient global optimization; SLR, service level requirement

TABLE 1 Optimized SLR β and
horizon T, and the corresponding
objective function values

Objective
Parameters x

Method
P

i � St
ef
i (h) SLR β (�) Horizon T (h) Evaluations

EGO 130.05 0.746 1.738 32

Full factorial 134.52 0.707 1.786 64

Note: The re-optimization interval has the fixed value of Δt = 1 h.

Abbreviations: EGO, efficient global optimization; SLR, service level requirement.
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4.2 | Three-dimensional case with one vehicle

Considering that the MIP solver did not need most of the allocated

solution time in the case, the next question is whether we could find a

better algorithm if we also relax the re-optimization interval Δt and

include it as a new dimension in the search space. In this section, we

study the same dynamic BRP as in the previous section but seek the

optimal control parameter combination from the three-dimensional

search space, defined by bounds β� 0:1…0:95½ �, T � 0:1…6:0½ � h,

and Δt� 0:01…3:0½ � h.
We use the 64 sampling points allocated to the full factorial sam-

pling by discretizing each dimension using four points (43 = 64).

Figure 9B illustrates the results obtained at these sampling points. It is

worth noticing that the objective function landscape at all four 4 � 4

horizontal layers resemble that of Figure 6B. Figure 9A shows the

isosurfaces obtained by a surrogate that is trained with all observed

data. Table 2 lists the best control parameters, and the objective func-

tion values, obtained by both methods. Despite having 50% fewer

function evaluations, the EGO method yielded a control parameter

combination with 1.15% smaller objective function value than the full

factorial sampling.

The improvement in the best obtained objective function value is

only 0.30% in comparison to the previous two-dimensional case (com-

pare Tables 1 and 2) although the re-optimization procedures are per-

formed more frequently. Arguably, there could be at least two reasons

for observing only a relatively small improvement. First, we have

(A) (B) (C)

F IGURE 7 Realized (solid line) and planned route (dashed line) of the vehicle when obtaining first three operations updates at 6:00 am (A),
7:00 am (B), and 8:00 am (C) on August 17, 2020

(A)

(B)

(C)

F IGURE 8 Realized (solid line) and planned load (dashed line) on the vehicle corresponding to the three states shown in Figure 7. The vertical
dotted lines indicate the arrival times to specific stations
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allocated the same number of evaluations for the methods in the two

cases, despite the search space of the latter having an additional

dimension. Therefore, the search space in the first case can be exam-

ined more thoroughly than that of the second case. Second, the

performance of the online algorithm seems to have only a small

dependency on the re-optimization interval Δt. This argument is

supported by the surrogate that is trained with all 32 evaluated data

points by the EGO method. Especially in the bottom region of the

(A) (B)

(h)

(h
)

(h)(h)

F IGURE 9 Results obtained using the EGO method (A) and full factorial sampling (B). The isosurfaces in (A) are from the surrogate that is
trained with all observed data. The best control parameter combination obtained by full factorial sampling is circled. EGO, efficient global
optimization; SLR, service level requirement

TABLE 2 Optimized SLR β, horizon T,
and re-optimization interval Δt, as well as
the corresponding objective function
values

Objective
Parameters x

Method
P

i � St
ef
i (h) SLR β (�) Horizon T (h) Interval Δt (h) Evaluations

EGO 129.66 0.569 0.445 0.142 32

Full factorial 131.18 0.383 0.100 0.010 64

Abbreviations: EGO, efficient global optimization; SLR, service level requirement.

(A) (B)

(-) (-)

(h
)

(h
)

(h
)

(h
)

F IGURE 10 Results obtained using the EGO method (A) and full factorial sampling (B) on the two-dimensional cse with two vehicles. The
dots and crosses represent the initial and infill sampling point, respectively. The best obtained points are circled. EGO, efficient global
optimization; SLR, service level requirement
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cube (where Δt is small), the isocurves are aligned nearly vertically.

This indicates low dependency of the re-optimization interval Δt. Fur-

ther, the hyperparameters θ1,…,θdf g of the Kriging model give an indi-

cation of the importance of the different variables. The

hyperparameters θ1 and θ2, corresponding to β and T have values of

0.708 and 0.454, respectively, whereas θ3, corresponding to Δt has a

value of 0.101, indicating lesser importance.

4.3 | Two-dimensional case with two vehicles

Finally, let us examine a case with two rebalancing vehicles. As the

inclusion of the re-optimization interval Δt in the search space pro-

vided only a minor improvement in the objective function value, we

fix it, for the sake of simplicity, again to the value of Δt = 1 h. Thus,

the case is otherwise the same as that of Section 4.1, but has two

rebalancing vehicles instead of one. The vehicles have initial locations

of linit1 ¼1 and linit2 ¼81, located at the opposite sides of the region.

Figure 10 illustrates the results with the EGO method and full fac-

torial sampling. The objective function landscape is similar to that of

Figure 6 but, in this case, the valley of good control parameter combi-

nations has shifted slightly toward top right. The shift is due to the

clustering method, which reduces the combinatorial complexity of the

routing models. Even at the upper bound of the SLR β = 0.95, the

MIP solver can find an integer solution in most of the optimization

procedures. The control parameters with the best objective function

values have also shifted slightly toward the top right corner of the

search space (Table 3). In this case, the EGO method yielded control

parameters with an objective function value 0.76% lower than that

from the full factorial sampling.

Figure 11 illustrates the routes of the vehicles when they receive

the first three operations updates in the morning on August 17, 2020.

Here, the re-optimization of operations may reallocate a station from

one vehicle to another (see, e.g., station 32 in the optimized opera-

tions at time points 6:00 and 7:00).

We tested also an alternative infill strategy for the EGO method

where also the first nei infill points are generated based on the

prediction-based infill criterion. The optimized objective function

values in the three test cases (Sections 4.1–4.3) were within 0.7%

from those of the primary strategy described earlier in this section.

Arguably, if the objective function has multiple local minima, the alter-

native strategy may yield sub-optimal solutions, as it is essentially a

local search method.

5 | DISCUSSION AND CONCLUSIONS

In this study, we have investigated surrogate-based optimization of a

periodic rescheduling algorithm on a dynamic BRP. We optimized

three continuous control parameters of the algorithm (the SLR β, pre-

diction horizon T and re-optimization interval Δt) and investigated

how these parameters affect the performance of the algorithm.

TABLE 3 Optimized control
parameters, and the corresponding
objective function values, on the two-
dimensional case with two vehicles

Objective
Parameters x

Method
P

i � St
ef
i (h) SLR β (�) Horizon T (h) Evaluations

EGO 109.21 0.847 2.245 32

Full factorial 110.05 0.829 2.629 64

Note: The re-optimization interval has the fixed value of Δt = 1 h.

Abbreviations: EGO, efficient global optimization; SLR, service level requirement.

(A) (B) (C)

F IGURE 11 Realized (solid line) and planned route (dashed line) of the two vehicles when obtaining first three operations updates at 6:00 am
(A), 7:00 am (B), and 8:00 am (C) on August 17, 2020
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Based on our results on two- and three-dimensional search

spaces, the main benefit of using the surrogate-based optimization is

the reduction in the computational cost of tuning an online algorithm

to a certain environment. The full factorial sampling was allocated

64 evaluations, all of which involve evaluating the performance of the

algorithm on 10 days, each having 9 h of rebalancing vehicle opera-

tion. Thus, the total allocated computing time to solve the MIP models

was 5760 CPU-hours. On the three studied cases, the surrogate-

based optimization method was able to find control parameter combi-

nations with 0.76% to 3.32% better objective function values with

50% fewer function evaluations in comparison to the full factorial

sampling. However, the actual computing times of evaluating a point

varied significantly depending on the region of the search space. In

general, points with the smallest SLR β had the smallest computing

times (in an order of seconds) due to the low combinatorial complexity

of the resulting MIP models, whereas the points with a largest SLR β

used, in many cases, all of the allocated computing time.

We can identify a few directions for improving the method. First,

while the Latin hypercube sampling is a frequently used design of experi-

ment method, yielding a uniform projected spread along the variable

dimensions, it is not necessarily a space-filling method. Such a design of

experiment method is, for example, that by Morris andMitchell,19 which

maximizes theminimum distance among the points of a Latin hypercube.

Second, cost-aware methods have recently been developed at least in

the field of Bayesian optimization.65 Considering the high variance that

we observed in the actual computing cost, these methods could be use-

ful in reducing the computing time of the optimization procedures, as

they construct also a surrogate for the evaluation time and use this surro-

gate when deciding new sampling points. Third, surrogate-based optimi-

zation is applicable to optimization problems with up to around

20 variables‡‡.20,35 The future study should investigate expanding the

dimensions of the search space by other continuous parameters related

to an online scheduling algorithm (e.g., the allocated computing time per

re-optimization procedure). A pre-screening of parameters by a frac-

tional factorial design17 could be useful prior to surrogate-based optimi-

zation, in order to include only important parameters in the optimization.

On the second test case, in which we also optimized the re-

optimization interval, the best obtained control parameter combina-

tion has the re-optimization interval of Δt = 0.142 h (i.e., around

8.5 minutes). Sending updated operations to the drivers of the vehi-

cles this frequently would be very impractical in reality, as the drivers

would have uncertainty of the operations they need to perform after

visiting the next planned station. Therefore, most operators would

prefer to use the re-optimization interval of Δt = 1 h of the first case,

the objective function value of which is only marginally compromised.

This is also the case in most industries facing varying demand patterns

or disturbances in the processes. Once an operator decides to take an

action, for example, perform a small maintenance routine, he is occu-

pied for a certain time and this routine may also limit or determine the

next production decisions. For instance, in multi-product processes, a

sequence-dependent changeover may take even 30 minutes (in,

e.g., Pulp & Paper or steel industry) and there is no rationale to swap

the next product during this time.

As already indicated above, the methodology described in this

paper is generic and can be applied to various processes. The dynam-

ics of a bike sharing system and process industries are both stochastic

by nature. On the material side, there may be urgent orders or supply

problems from the upstream processes. Additionally, the processing

times are heavily affected by potential disturbances or deviations in,

for example, material qualities and yields. Many of these stochastic

elements cannot be fully prepared for but may be observed or

predicted, for example, by surrogate models, allowing to better tune

the optimization model parameters, as can also be seen in many ear-

lier contributions in PSE, cited in the literature overview. The main

challenge is to have access to sufficient information and suitable

methodologies in order to better describe the underlying process

model through historical data. The discussed study, thus, also contrib-

utes to the research on the integration of scheduling and control:

here, we use AI/ML methods to acquire more information and knowl-

edge about the low-level process dynamics (that in this case cannot

be fully observed nor controlled) in order to improve the upper-level

awareness and, consequently, the overall decision quality.
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ENDNOTES

* This dataset can be generated from user trip data, containing the identi-

fiers of the origin and destination stations, as well as the corresponding

time stamps. Such data are widely published by the operators of bike

sharing systems.
† The estimate is based on an assumption that two trips belong to the

same batch, if they pairwise have the same pickup and return stations

and their corresponding time stamps are within 3 min.
‡ The method takes steps using the fifth-order Runge–Kutta method and

controls the error by assuming an accuracy of the fourth-order method.
§ This assumption has the caveat that the algorithm cannot prioritize a sta-

tion with high demand over a station with low demand. Nevertheless,

14 of 16 IKONEN ET AL.



station-specific service level requirements are outside the scope of this

study.
¶ The routing model with multiple vehicles has a high combinatorial com-

plexity already with relatively small number of stations. The authors use

it mainly as a reference model.

** We use the data from the second half of August as the test data

because July and the first half of August are the main vacation times in

Finland. The vacations presumably have an effect on the daily demand

profiles of the bike sharing system. Studying this effect falls outside the

scope of this study.
†† We omit the computing time to determine the bounds smin

i and

smax
i , i�S (Section 2.3.1), as this time is typically in an order of seconds,

or tens of seconds.
‡‡ With a greater number of variables the repeatedly performed retraining

the surrogate may incur a prohibitively large computing cost.
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