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Manipulation of Granular Materials by Learning
Particle Interactions

Neea Tuomainen , David Blanco-Mulero , and Ville Kyrki , Senior Member, IEEE

Abstract—Manipulation of granular materials such as sand or
rice remains an unsolved problem due to challenges such as the
difficulty of defining their configuration or modeling the materials
and their particles interactions. Current approaches tend to sim-
plify the material dynamics and omit the interactions between the
particles. In this letter, we propose to use a graph-based represen-
tation to model the interaction dynamics of the material and rigid
bodies manipulating it. This allows the planning of manipulation
trajectories to reach a desired configuration of the material. We
use a graph neural network (GNN) to model the particle interac-
tions via message-passing. To plan manipulation trajectories, we
propose to minimise the Wasserstein distance between a predicted
distribution of granular particles and their desired configuration.
We demonstrate that the proposed method is able to pour granular
materials into the desired configuration both in simulated and real
scenarios.

Index Terms—Deep learning in grasping and manipulation,
machine learning for robot control, manipulation planning.

I. INTRODUCTION

THE concept of granular materials encompasses materials
such as ground coffee, uncooked rice, and sand to name

a few. These materials are difficult to manipulate due to their
particle nature [1], as the particles of the material interact with
each other potentially grouping into individual shapes. Recently,
several attempts have been made to solve various tasks involving
granular materials ranging from transporting the material [2],
shaping [3], [4], to common daily tasks such as gathering,
spreading or flipping [5]. A common approach is to use visual
feedback to learn to manipulate the material. However, there is
a common caveat on these approaches, the interactions of the
material particles are not captured. Thus, these methods are not
able to plan manipulation of granular materials into a desired
configuration when there are complex interactions including e.g.
dropping the material and the material interacting with rigid
bodies. This is because learning the interactions from visual-
feedback is not feasible as the material is not fully observable.
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Fig. 1. Granular manipulation using the GNN (left) and physical system
(right). The granular material is manipulated using a rigid-body (cup) following
the optimal trajectory T ∗ to pour the material in the particles target distribution
Pg,G.

Instead of using models learned from direct observations,
simulations of the physical interaction can be used. However,
high-fidelity simulators are considerably expensive computa-
tionally. Instead, we can learn a computational surrogate model
from these simulators to speed up the manipulation planning.
Recently, graph neural networks (GNNs) have been proposed
for modeling interactions between particles [6]–[9]. Some of
these works have explored modeling the dynamics of complex
materials such as granular [10] or deformable ones [11], [12].
The GNN based approaches have shown good accuracy and gen-
eralisation capabilities, and thus present a promising surrogate
model for granular manipulation planning.

In this work, we address the problem of manipulating granular
materials into a desired configuration by interacting with a rigid-
object (see Fig. 1). In order to capture the interactions of the
granular material with the rigid-body, we take on a model-based
approach and learn a surrogate model from simulated data based
on the idea of Graph Networks-based Simulators (GNS) [10].
We propose to solve the problem of manipulating the material
into a desired configuration as a trajectory planning problem,
where we use the GNS to rollout the dynamics of the system.
The trajectory of the rigid-body is planned by minimising the
Wasserstein distance between the simulated final distribution of
granular particles and its target.

We evaluate two different aspects of the method. First, we
perform an ablation study of the graph attributes and GNN
architecture, and provide evidence that the chosen attributes and
architecture are able to capture the rigid-body and granular ma-
terial interactions. Secondly, we evaluate the proposed trajectory
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planning method over different target distributions of the granu-
lar particles, both using the GNN rollout and a real robot set-up
(Fig. 1). As a test-case task we perform pouring of a granular
material into a desired configuration. Our results demonstrate
that the proposed method effectively pours the material into
different desired distributions. Furthermore, we demonstrate
that the optimal trajectories in the real robot approximate the
expected result using the GNN dynamics model.

The main contributions of this letter are:
1) A GNN based approach for modeling the interaction of

granular materials and rigid bodies, and evaluation of
the model parameters required to effectively predict the
interactions.

2) A solution for trajectory planning based on the Wasser-
stein distance between the distribution of the manipulated
granular material and its target distribution.

3) A demonstration of the framework for pouring granular
materials into a desired configuration both in simulated
and real scenarios.

II. RELATED WORK

A. Granular Manipulation

The manipulation of granular materials has been studied in
different tasks such as robotic excavation [13], scooping [14] and
pouring [15]. Recent works have focused on learning to manip-
ulate granular materials using feedback-based methods where
data is collected in the real-world [2]–[4], [15], [16]. In [2], a
ConvNet model is learned to choose the required actions for
transporting beans to a goal shape. Similarly, a learning-based
approach was proposed by [16] to grasp granular foods. These
methods learn a surrogate model from height or density maps,
which does not capture the interaction of the granular particles.
Furthermore, collecting data in the real-world is prohibitive and
the feedback from the real data does not capture the inherent
dynamics of the material. More recently, [5] proposed to learn
a Reinforcement Learning policy to manipulate in simulation
amorphous materials. However, the policy takes as input the
density and height map, facing the same limitation of previous
approaches. In contrast, [17] proposed a framework to infer the
properties of granular materials using real-world data for fine
tuning a simulator to perform robotic tasks.

In the present work, we propose to solve granular manipula-
tion directly in simulation. This alleviates the burden of gather-
ing data in the real-world of previous approaches. In addition, the
proposed GNN approach enables learning the granular material
interactions, as opposed to the aforementioned surrogate models.
Furthermore, our method defines the desired configuration of
granular particles as an experimental distribution. This enables
planning for target particle configurations potentially more com-
plex than those given by height or density maps.

B. Liquid Manipulation

Similar approaches to those in granular manipulation have
been proposed for pouring liquids [18]–[20]. These either used
visual feedback to detect the liquid [18], [19] or learned to

manipulate from human demonstrations [20]. While dynamics
may be learned on from real examples, using real-world data is
limited by data collection, as with granular materials, which can
be solved by using simulated dynamics. Some of the works in
liquid manipulation have considered the dynamics of the mate-
rial either using high-complexity simulations [21] or simplified
dynamics models [22]–[24]. Considering the dynamics of the
system allows trajectory planning in more complex manipula-
tion tasks. However, simplified dynamics models might lead to
inaccurate trajectories, whereas using high-quality simulations
might be costly for complex materials.

C. Learning Particle Interactions Using GNNs

An alternative is to learn the dynamics of the system from
high-fidelity simulators using data-driven models [9]–[11].
These can learn from simulation techniques and present the
benefit of lower computational cost than the simulators they
learn from. Particularly, some GNN approaches have shown
outstanding results on learning to simulate complex materi-
als [10], [11]. Sanchez-Gonzalez et al. [10] proposed the Graph
Networks-based Simulators (GNS) framework, which demon-
strated accurate forecasting for different materials such as sand
or fluids. However, their work does not involve modeling the
interactions when the materials are manipulated. Recently, the
GNS framework was used to learn the dynamics of manipu-
lated cloths [12], which suggests it is a good candidate for
learning to manipulate granular materials. The closer work
to our aim is DPI-Nets [9], as it combines a GNN model
for learning material dynamics with model predictive control
for controlling a fluid. However, they do not consider the
interaction dynamics of pouring the material and the fluid
does not have the mechanical properties of granular materi-
als.

III. METHOD

In this letter, we address the problem of manipulation of
granular materials that are shaped into a desired configuration
by interacting with them using a rigid-object. We distinguish
between two types of materials: the rigid-body that manipu-
lates the granular material, and the granular material itself. We
model both materials as particles, which has proven as a good
representation for modelling the interaction between different
materials [7], [9], [10]. Rigid bodies are modelled as a set
of rigid-body particles pr ∈ Pr controllable, where the true
position is assumed known. Granular material particlespg ∈ Pg

are affected by gravity, their interaction with each other and
with rigid-body particles, and the boundaries of the manipulation
scene. The granular particles cannot be directly controlled, but
we can affect their state through their interaction with controlled
rigid-body particles.

A. Graph-Based Representation

Our method makes use of a graph representation where each
particle pi is represented by a node in a graph G. The nodes are
connected via edges if the particles they represent interact with
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Fig. 2. The initial graph Gi = (Vi, Ei) is created from the particles of the granular material Pg and the rigid-body Pr . The particles are manipulated to match
the goal particle distribution Pg,G. The graph Gi is mapped through the GNN model encoder f , processor g and decoder h to predict the acceleration ẍi ∈ A of
the granular material particles.

each other. We assume an interaction exists when two particles
are in contact, that is, their distance is lower than a connectivity
radius R (see Section IV-B).

We define a graph as G = (V,E), where vi ∈ V is a node
attribute vector and eij ∈ E represents an edge attribute vector,
where i is the index of the sender node and j is the index
of the receiver node. Here, we represent the node set as a
matrix V ∈ RN×D, where the i-th column represents the node
attribute for node i, N represents the number of nodes and D
the node attributes. Similarly, we represent the edge set as a
matrix E ∈ RM×F , where M is the number of edges and F the
number of edge attributes. We define the node attribute vector
as vi = [ẋt−C , . . . , ẋt−1,bt,m, ct], where ẋt−C , . . . , ẋt−1 are
the C previous velocities of the particle, bt represents the rela-
tive distance to the manipulation scene boundaries, m denotes
whether the particle is a rigid-body or a granular material parti-
cle, andct represents the control input applied to the particle. The
control input is defined as the current velocity of the particle ẋt

for rigid-body particles, and as a zero vector for granular material
particles. The edge attribute vector is eij = [sij , dij ], where
sij represents the relative displacement between the particles
sij = pi − pj , and dij represents their relative distance.

B. Graph Neural Network Model

We learn the dynamics of the granular material particles and
their interaction with the rigid-body using a GNN model. The
GNN model is used to predict the acceleration of the granular
material particles and their trajectories assuming their initial
position as well as the position of the rigid-body particles are
known. Our network architecture is based on the GNS frame-
work [10]. The model is divided into three sequential parts: (a)
an encoder f : Gi �→ Gl, (b) a processor g : Gl �→ GK , and (c)
a decoder h : GK �→ A. The encoder maps the input graph Gi

into a latent graph Gl. The processor propagates the information
through K latent graphs, outputting the final latent graph GK .
Finally, the decoder produces as output the acceleration of each
particle represented by a node using the node attributes of the
final latent graph GK . Each sequential part is built as follows:

1) Encoder: The encoder takes an input graphGi = (Vi, Ei)
and encodes the node attributes Vi ∈ RN×Di and edge attributes
Ei ∈ RM×Fi into a latent graph Gl = (Vl, El), where Vl ∈
RN×Dl and El ∈ RM×Fl . The latent node and edges are given

by

Vl = ϕv(Vi),

El = ϕe(Ei), (1)

where ϕv and ϕe are multi-layer perceptrons (MLPs).
2) Processor: The processor consists of K interaction net-

works (IN) [6] such that the output attributes of one network are
summed to its input attributes to produce a new latent graph.
The new latent graph is given as input to the next network to
propagate information through the graph. The output of the
processor is the final latent graph GK = (VK , EK). Each IN
is defined as

e′ij = φe(eij ,vi,vj), e′j =
∑

eij∈Ej

eij ,

v′i = φv(vi, e
′
i), (2)

where Ej = {eij | i = 1, . . . , N} is the set of edges whose
receiver node is the node with index j. The functions φe and
φv are MLPs such that each IN has the same architecture but
different weights.

3) Decoder: The decoder produces the output for each node
using the nodes of the graph produced by the final IN of the
processor by

ẍi = ϕa(vi), vi ∈ VK , (3)

where ẍi ∈ A is the acceleration of the particle and ϕa is
an MLP.

The predicted accelerations are used to update the next state
and then compute the trajectory. The next state is computed using
the semi-implicit Euler integration via

ẋi,t = ẋi,t−1 +Δt ẍi,t−1,

xi,t = xi,t−1 +Δt ẋi,t. (4)

C. Trajectory Planning for Granular Manipulation

Our objective is to control the rigid-body particles Pr by
following a trajectory T that leads the granular particles to
settle into a desired goal position Pg,G. We consider a planning
horizon H , where the granular particles start from an initial
position Pg,0, located inside the rigid-body. The rigid-body can
be controlled through two set of actions: rotation and translation
ut = (Rt,xt). The optimal trajectory is defined byQ via-points
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T ∗ = (u0, . . . ,uQ). The trajectory is then interpolated to get
the actions in the planning horizon H that minimise the distance
between the end position of the particles and the desired goal
position:

u0, . . . ,uQ = arg min d(Pg,G, Pg,H), (5)

where d(·, ·) is the distance between the desired and predicted
distributions of the particles. We choose this approach as it
is unnecessary to transport each particle to the exact position
of that same particle in the target distribution, as long as the
distributions match. In contrast to existing approaches in particle
manipulation that use the Chamfer distance, which measures the
distance of every particle to its nearest neighbour [9], [25], we
propose to use the Wasserstein distance, which can be under-
stood as the minimum cost of moving the particles from one
distribution to the other. We expect this to express better the
semantics of material transport. Thus, the trajectory planning is
formulated as a discrete optimal transport (OT) problem, where
we minimise the quadratic Wasserstein distance:

d(Pg,G, Pg,H) =

(
N∑
i=0

‖Xi,G −Xi,H‖2
)1/2

, (6)

where Xi,G ∈ Pg,G and Xi,H ∈ Pg,H are the samples of each
empirical distribution. One of the issues when computing the
Wasserstein distance for a large number of particles is the
computational cost. In order to utilise the Wasserstein distance
with large datasets we use the Sinkhorn loss Sε(Pg,G, , Pg,H),
which is an approximation of OT and reduces the complexity as
presented by [26].

To solve the optimisation problem, we adopt a population-
based black-box optimiser, the Covariance Matrix Adaptation
Evolution Strategy (CMA-ES) [27], and treat the trajectory
planning as a constrained optimisation problem. As constraints,
we use the manipulator end-effector limits and the velocity limits
used for training the model, similar to [28]. The constraints guide
the optimisation to consider trajectories within the training data
of the model. The optimisation problem is then

min
u0,...,uQ

J(Pg,G, Pg,H , T )

subject to |uq − uq−1| ≤ Δumax,

umin ≤ uq ≤ umax, (7)

for all q = 0, . . . , Q, where J(·) is the cost function and
umin, umax and Δumax are the boundaries and velocity limits
respectively. The cost function, in addition to minimising the
distance between experimental distributions, includes a term that
penalises the acceleration of the rigid-body to reduces abrupt
motions, such that

J(Pg,G, Pg,H , T ) = αSε(Pg,G, Pg,H)

+ β

H∑
t=2

‖ut − 2ut−1 + ut−2‖2 (8)

where α and β are regularisation constants.

Algorithm 1: Trajectory Planning.
Input: Pg,0, Pg,G, T
Output:T ∗
1: for i = 0→ T do
2: for t = 0→ H do
3: u∗t ← Tt
4: Gi,t ←create_graph (Pg,t,u

∗
t) � Section III-A

5: Pg,t+1 ←GNN(Gi,t)
6: end for
7: T = arg min J(Pg,G, Pg,H , T ) �Using (7)
8: end for
9: T ∗ ← T

The optimal trajectory is found by following Algorithm 1.
The algorithm takes as input an initial trajectory T as well as the
initial and target particle configurationsPg,0 andPg,G. Then, the
next position of the rigid-body particles Pr,t is computed after
applying the actions ut. From this, the control inputs ct are
computed as the difference of the rigid-body position Pr,t and
Pr,t−1. Next, the graphGi,t is created as explained in Section III-
A. The next position of granular particles Pg,t+1 is updated
on line 5 by following the semi-implicit Euler formulation (4).
Once the rollout has finished, the cost J(·) is computed. We
perform the optimisation T times, where CMA-ES generates
a new population until the maximum number of iterations is
reached.

IV. EXPERIMENTAL RESULTS

In this section, we first provide information about the physics
engine simulation set-up as well as the GNN training and
the trajectory planning routine. Then, we perform an ablation
study of the graph attributes and GNN parameters, where we
evaluate the accuracy of the models predictions. After that, we
assess the trajectory planning routine accuracy for pouring the
granular material into different goal positions. The goals of the
experiments are twofold: 1) to assess the required parameters for
predicting accurately the interaction of granular materials with
rigid-bodies, 2) to evaluate whether the proposed method can
pour granular material into a desired shape, both in simulation
and in a physical system.

A. Simulation Set-Up

We use Taichi-MPM [29] to generate training data for the
GNN model. We create a simulated scene where a cup pours
granular material into a container, which acts as boundaries of
the scene. The container is a 10× 20× 20 cm box with an open
top allowing the cup and granular material to be located above
the container. The cup is modelled as a 3D mesh of ∅7× 10 cm,
which has been populated and replaced by rigid-body particles
Pr. The cup is controlled via translation and rotation actions.
The granular material is modelled as sand particles which are
initialised inside the cup. The simulation consists of H = 300
time-steps, where the number of particles is 1945, out of which
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Fig. 3. Boxplot of ablation study using forecast Wasserstein distance. Boxes represent values between 1st and 3rd quartiles, orange horizontal lines represent
medians and dotted green lines represent means. Models marked with darker blue represent the GNN model with the proposed graph attributes and architecture.

70% represent the granular material and the rest the rigid-body
particles.

B. GNN Training Details

The training dataset consists of 20 simulations where the cup
is translated along the Y -axis and rotated along the X-axis. The
translation and rotation axes are constrained so that the granular
material is always poured inside the container. We provide
details about the different trajectories used for generating the
training data in the Appendix. In addition, we have included a
simulation where the cup only translates and rotates with small
Gaussian noise and a simulation of the granular material falling
without a cup in the scene.

The connectivity radius used to construct the graph is R =
0.015. Before constructing the graph we add a random-walk
noise with standard deviation σ = 3 · 10−4 to the particle posi-
tions to improve the acceleration prediction as shown by [10].
The velocities and accelerations are normalised with mean and
standard deviation of the dataset. The distance to boundaries b
in node attributes and displacement sij in edge attributes are
normalised using the connectivity radius R, and b is clipped to
range [−1, 1] as in [10]. The model is trained for 2000 epochs
using the Adam optimiser [30]. For the first 500 epochs the
learning rate is constant lr = 10−4, after which we switch to
an exponential learning rate with γ = 0.997. The training is
done using minibatches of size 2. For each MLP in our model,
we use two hidden layers where each hidden layer has a size
of 128. Each MLP in the encoder and processor are followed
by a Layer Normalization [31]. We have experimented using
two different loss functions, the number of message-passing
steps, including and excluding control inputs ct, as well as
the length of velocity history {ẋt−C , . . . , ẋt−1} in the node
attributes. The first loss function evaluated,Lg , is the L1-loss that
considers only accelerations of granular material particles. The
second one, Lg+r, is the L1-loss of both granular material and
rigid-body particle acceleration. Both losses are averaged over
all particles in the minibatch. All GNN models were trained until
convergence, which takes 12 days for the model with parameters
K = 10 and C = 5 on a computer with a NVIDIA V100 GPU.

C. Trajectory Planning Details

We use four target distributions Pg,G of the granular material
for evaluating the optimal trajectory determined using Algo-
rithm 1. The target distributions are generated from simulations

that are not included in the training data of the GNN model.
The trajectory T has Q = 6 via-points and it is interpolated
using a piecewise cubic hermite interpolating polynomial to
the rollout horizon length used in the GNN training and test
models. For the CMA-ES optimiser we used an initial variance
of σT = 1.5 and a population size of 20. In order to speed up
the optimisation process, we scaled the trajectory rotation by π
and the translation by 0.11 so that both variables are within the
same range. The algorithm is run for 150 iterations with five
different random seeds, where each random seed took 10 hours
on a computer with a V100. The constraints were defined as
umin,max = {±2.8973,±0.1} and Δumax = {2.1973, 0.02},
which matches the maximum values of the training data dis-
tribution. We used α = 1000 and β = 0.001 as values for the
regularisation terms of the cost function (8). The α parameter
is scaled with a high value due to the order of magnitude
of the Sinkhorn loss, whereas β is reduced to keep it as a
second minimisation objective. The values for these parameters
were determined experimentally. We used one of the sinusoidal
trajectories used for training (see Appendix) as initial trajectory
T , where the final material distribution does not match the test
cases target.

D. GNN Ablation Study

We perform an ablation study of the aforementioned param-
eters. To evaluate the accuracy of the predictions, we use the
Wasserstein distance between the predicted granular material
particles and the ground-truth simulation. The initial Wasser-
stein distance for simulations when the particles are relatively
still in the cup and the forecast error has not yet accumulated
is in the order of 10−5. In our experimental set-up we can
consider that a Wasserstein distance of 10−2 for the entire rollout
presents distant distributions, whereas a value in the order of
10−4 accurately matches the rollout particle distributions. The
tests are performed by starting from the same initial state onward
to create a rollout prediction, where the rollout length is the same
as the simulation. The test-set includes 8 simulations that are in
the model training domain. The results are summarised in Fig. 3,
where the box plot excludes minimum and maximum values,
since they are similar in each tested model. In Fig. 3 the best
performing model is highlighted in darker blue, which was used
to rollout the dynamics in the trajectory planning.

1) Training loss: We experimented on two loss functions Lg

and Lg+r. As shown in Fig. 3, the loss Lg presents a slightly
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lower median and mean. The most noticeable difference between
the two models is their quartiles, which are lower for the lossLg .
This provides evidence that including the acceleration of rigid-
body particles in the loss is unnecessary as it affects adversely
when learning granular particle behaviour.

2) Control inputs: We investigated whether including con-
trol inputs ct as a node attribute improves the model accuracy.
Considering the quartiles of the models in Fig. 3 we can observe
lower loss for the model that includes control inputs. This is
to be expected since it gives additional information about the
movement of the rigid-body, which improves the predictions of
the granular material particles.

3) Message-passing steps: We also experimented on the
number of INs in the processor. [10] suggests that using a
higher number of message-passing steps provides better results.
We selected K = 10 as maximum and evaluated how models
with smaller values perform. The range of values selected was
K ∈ {1, 2, 4, 5, 6, 8, 10}. We can notice in Fig. 3 that the highest
K value indeed does perform best. The message-passing steps
affect on how far the particle information reaches in the graph
and, thus, how many interactions affect the particles. With
K = 4 the performance is not significantly worse than K = 10.
This suggests that K = 4 message-passing steps is enough to
capture the system behaviour. However, the third quartile of
K = 6 and K = 8 are higher than for K = 4, which suggests
otherwise.

4) Node velocity history length: Finally, we assessed how
the number of previous velocities included in the node at-
tribute affects the performance. The values we tested were
C ∈ {1, 2, 3, 4, 5}. One would hypothesise that C = 3 would
be sufficient to capture the dynamics, as granular materials
can be approximated via a second-order system. However, the
performance of C = 4 and C = 5 is significantly better than
the other models. This suggests that knowing the three previous
velocities is not enough to accurately predict rollout dynamics
in our system.

Overall, the results show that including the control input and
the Lg loss function yield drastically lower values compared
to the other variants, as the interquartile range improves by
almost one order of magnitude. The results for the number of
message-passing steps showed that with K = 10 the mean and
interquartile range are lowest within the tested models. The node
velocity history lengthC = 5 provided slightly higher mean and
median thanC = 4, but presented lowest interquartile range. For
this reason we choose to use C = 5, K = 10, control inputs and
Lg as loss function for the GNN model in the trajectory planning.
This model speeds up the computation of the rollout dynamics
by 20 times the high-fidelity simulator.

E. Trajectory Planning Results

The Sinkhorn loss for each of the four test cases is shown in
Table I. The initial loss Sε(Pg,G, Pg,0) measures the distance
between the distribution of the particles in the initial configura-
tion of the cup and its target. We also provide the loss for the
end distribution of the particles following the initial trajectory
Pg,H . This is used as a reference to highlight the improvement on

TABLE I
SINKHORN LOSS BETWEEN THE TARGET SHAPE Pg,G, THE INITIAL MATERIAL

DISTRIBUTION Pg,0, THE FINAL DISTRIBUTION FOLLOWING THE INITIAL

TRAJECTORY Pg,H , AND THE OPTIMAL TRAJECTORY Pg,H∗ , FOR EACH TEST

SET OVER FIVE DIFFERENT RANDOM SEEDS

Fig. 4. Qualitative results for each test case showing the granular material
final configuration (predicted) and goal configuration (desired) after following
an optimal trajectory.

matching the target distribution using the proposed algorithm.
We can notice that the order of magnitude improves by an order
of two following the optimal trajectory Pg,H∗ . Our experiments
showed that two particles distributions are well matched when
the Wasserstein distance is in the order of 10−6, whereas dis-
tances larger than 10−4 are far from the target distribution. The
results indicate that our method is able to consistently reduce the
distance between the end and target particle distributions by an
order of magnitude. The particles distribution after following
the optimal trajectory as well as the desired distribution for
each test case are shown in Fig. 4. The final distribution for
the test cases one, two and four nicely overlays the desired
configuration of the material. On the other hand, the third test
case Sinkhorn loss is reduced by an order of magnitude from the
initial loss (see Table I). However, the final configuration does
not accurately match the target shape. We hypothesise that with
a larger population of CMA-ES the Algorithm 1 would find a
better solution.
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Fig. 5. Qualitative results of pouring ground coffee. The images show front and top views of the particles distribution after following the optimised trajectories
on the real robot (left) and target distribution using the ground-truth simulation (right).

We noticed that our GNN model was unable to generalise to
rotation and angular velocities greater beyond those seen during
training, where the model would predict the material leaking
from the rigid-body (see supplementary material). This limited
the range of actions the trajectory planning algorithm could
apply. Extensions of this work could focus on finding a model
that generalises to any rigid-body action or training the model
with a wider range of actions.

F. Granular Manipulation in Real-World

We perform experiments on a real set-up where we use a
Franka Emika Panda robot to manipulate the cup. We selected
ground coffee as the granular material to pour into the container.
We executed the best four trajectories optimised in simulation
using the real robot and qualitatively evaluated the end result of
the ground coffee particles. Prior to running the trajectories, we
transform the reference frame of the rigid-body into the robot
end-effector reference frame. The robot is controlled via a Carte-
sian controller [32], where each trajectory point is interpolated
from the simulation frequency (100 Hz) to the robot frequency
(1KHz).

We show the qualitative results in Fig. 5. We can observe that
the first and second test cases, (Fig. 5(a), (b)), match closely the
desired distribution. In contrast, the fourth test case, Fig. 5(d),
slightly differs from the target distribution. Furthermore, the
third test case, Fig. 5(c), which required pouring in both left
and right side of the container was the distribution furthest
to the target. In addition, in the supplementary material we
provide the real-world performance of the predefined trajectories
used for generating the target distributions. These show that the
distributions generated in the simulator do not exactly match the
real-world, with some spilling of the material for the first test
case, and a slight mismatch for the third and fourth test cases.
This provides further evidence of the sim-to-real gap between
the simulated and the real material.

As a summary, our results provide evidence that the proposed
method is able to optimise the trajectory of the cup and pour the
material in the desired configuration using the GNN rollout. In
addition, the results on the real-world highlight that the proposed
method is able to effectively pour the material in some of the
presented test cases without gathering data from the real-world
to train the model. However, some of the test cases were far from
the results using the GNN rollout. This is at least partially caused
by imperfect simulation. Particles sometimes leak through the

rigid body in the simulation, which is also illustrated in the sup-
plementary material. We hypothesise that with a higher fidelity
simulation that resembles better the granular material, such as
the one proposed by [17], the proposed model would be able to
match better the real material and pour precisely the granular
material.

V. CONCLUSION

In this letter, we introduced a model-based approach for
manipulating granular materials into a desired configuration
by interacting with a rigid-object. The proposed method uses
a GNN to learn the interactions of the granular material from
simulations, as well as the interactions of the material with
the rigid-body that manipulates it. We presented a trajectory
planning routine that uses the GNN model to rollout the dynam-
ics and optimises the trajectory by minimising the Wasserstein
distance between the rollout result and the goal distribution of
the poured material. We provided a study of the GNN model
architecture as well as the graph attributes that can accurately
predict the interactions between the material and the manipu-
lated rigid-body. Our results show that the planning routine is
able to find the required motions to pour the material in the
desired configuration. We also demonstrated that the optimal
trajectories used with the GNN rollouts are able to effectively
pour the material in a real-world set-up.

One of the main limitations of using data from a simulator for
planning is the simulation-to-real world gap. Naturally, using a
high fidelity simulation is beneficial but the calibration of any
simulation with a particular real world setting is difficult. Thus,
it is an important avenue for future to study how simulation can
be combined with limited data from the real world in order to
achieve complex granular manipulation tasks across a variety of
materials and tasks.
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APPENDIX

ADDITIONAL TRAINING DETAILS

We defined four sets of trajectories equations to generate the
data for training the Graph Neural Network:
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1) The first trajectory rotates following a cosine function with
zero-mean Gaussian noise. The rotation stops for several
timesteps once the maximum rotation is reached and then
rotates back to upright position. The translation is given by
a zero-mean Gaussian noise which is added to the position
at the previous timestep.

2) The second trajectory follows sinusoidal to translate and
rotate the cup.

3) The third trajectory is given by a linear translation and
rotation that tilt the cup a single time in both directions
with constant velocity.

4) The last trajectory is given by a linear translation and
rotation with Gaussian noise N (0, 10−3) and N (0, 1)
respectively. The trajectory is defined as 300 time-steps
where the first third is limited to translation, the second to
rotation, and the last to going back to the origin position
and orientation.

All the trajectories have randomised direction, maximum
rotation angles and frequency for the sine and cosine trajectories,
and maximum velocities for the linear trajectory. The specific
details as well as the open source code can be found at.1
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