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Abstract— In quantum private information retrieval (QPIR),
a user retrieves a classical file from multiple servers by download-
ing quantum systems without revealing the identity of the file. The
QPIR capacity is the maximal achievable ratio of the retrieved file
size to the total download size. In this paper, the capacity of QPIR
from MDS-coded and colluding servers is studied for the first
time. Two general classes of QPIR, called stabilizer QPIR and
dimension-squared QPIR induced from classical strongly linear
PIR are defined, and the related QPIR capacities are derived.
For the non-colluding case, the general QPIR capacity is derived
when the number of files goes to infinity. A general statement on
the converse bound for QPIR with coded and colluding servers
is derived showing that the capacities of stabilizer QPIR and
dimension-squared QPIR induced from any class of PIR are
upper bounded by twice the classical capacity of the respective
PIR class. The proposed capacity-achieving scheme combines the
star-product scheme by Freij-Hollanti et al. and the stabilizer
QPIR scheme by Song et al. by employing (weakly) self-dual
Reed–Solomon codes.
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I. INTRODUCTION

W ITH the amount of data stored in distributed storage
systems steadily increasing, the demand for user pri-

vacy has surged in recent years. One notion that has received
considerable attention is private information retrieval (PIR),
where the user’s goal is to access a file of a (distributed)
storage system without revealing the identity (index) of this
desired file. In their seminal work Chor et al. [2] introduced
the concept of PIR from multiple non-colluding servers, each
storing a copy of every file. More recently, the capacity,
i.e., the highest achievable rate, for this setting [3] was
derived, which led to similar derivations in more general
settings admitting for colluding servers [4], coded storage [5],
and symmetric privacy [6], [7]. While the capacity of PIR
from coded storage with colluding servers remains an open
problem, some progress was made in [8]–[10]. Among other
things, [9], [10] introduce the practical notion of strongly
linear PIR. Informally, this class is given by PIR schemes
where both the computation of the server responses and
the decoding of the desired file from these responses is
achieved by applying linear functions. The capacity of this
class of schemes coincides with a conjecture on the asymptotic
(in the number of files) capacity for this setting [11] and is
known to be achievable by schemes with requiring only small
subpacketization, such as the star-product scheme of [12].

Quantum PIR (QPIR) considers accomplishing the
PIR task with quantum communication between the user and
the servers [13]–[20]. Following the study on the classical
PIR capacity [4], the papers [21]–[24] considered the capacity
of QPIR and quantum symmetric PIR (QSPIR), where the
user obtains no other information than the desired file in
addition to the requirements of PIR. The QPIR schemes
in [21]–[24] are conducted by the following procedure:
a user uploads classical queries; multiple servers sharing
entanglement apply quantum operations on their quantum
systems depending on the queries and the files and respond
quantum systems to the user; the user finally retrieves the
desired file by quantum measurement on the responded
systems. When each of the n servers stores a copy of every
file, the QPIR/QSPIR capacity with multiple non-colluding
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TABLE I

KNOWN ASYMPTOTIC (m → ∞) CAPACITY RESULTS WITH n SERVERS. THE RESULT IN RED IS A CONJECTURE IN ITS FULL GENERALITY [12],
BUT SHOWN TO HOLD FOR STRONGLY LINEAR [10] AND FULL SUPPORT RANK [9] PIR. A SCHEME ACHIEVING THAT

RATE WAS PROPOSED IN [12]. THE RESULTS IN GREEN ARE PROVED IN THIS PAPER FOR STRONGLY LINEAR PIR

servers [21] and t colluding servers [23] are proved to
be 1 and min{1, 2(n − t)/n}, respectively. On the other
hand, when the files are stored in a distributed storage system
coded by an [n, k] maximum distance separable (MDS) code,
QSPIR schemes with colluding servers are constructed [24],
but the result was limited to the case t + k = n.

A. Contributions

As a generalization of [24], we study the QPIR/QSPIR
capacity from [n, k] MDS coded storage with t colluding
servers for any t + k ≤ n. Since the capacity of this
setting is even unsolved for the classical case, similar to [9]
and [10], we define two new classes of QPIR, which include
the existing QPIR schemes [21]–[24], and derive the capacity
for these classes. The first class is stabilizer QPIR induced
from classical PIR. Stabilizer QPIR is a class of QPIR that
naturally imports linear PIR schemes in quantum settings
while doubling the PIR rate. More specifically, the user
and the servers simulate the classical PIR scheme, except
that the servers’ prior entangled state is a state in a stabi-
lizer code and the servers apply Pauli X and Z operations
on each quantum system depending on the answers of the
classical PIR. The second class is dimension-squared QPIR,
which is a broader class of QPIR that includes stabilizer
QPIR. Whereas the stabilizer QPIR is defined with restric-
tions on the encoding, decoding, and shared entanglement,
dimension-squared QPIR is defined only with restriction on
dimensions of the answered quantum systems, which is a
sufficient condition for our converse proof. Similar to the
stabilizer QPIR, dimension-squared QPIR can also be induced
from classical PIR and the existing QPIR schemes [21]–[24]
are dimension-squared QPIR induced from strongly linear PIR.

For stabilizer QPIR and dimension-squared QPIR induced
from strongly-linear PIR, we prove that the asymptotic
QPIR/QSPIR capacities with MDS-coded and colluding
servers are min{1, 2(n − k − t + 1)/n}. Furthermore, for
non-colluding case t = 1, we prove that the general asymptotic
QPIR/QSPIR capacity is min{1, 2(n − k)/n}. The derived
quantum capacities double the classical asymptotic capacities
of PIR and SPIR, as compared in Table I.

The capacity achieving scheme is based on the strongly-
linear star-product scheme of [12] for classical PIR from
MDS-coded storage and the QPIR scheme of [23] for repli-
cated storage, both in the presence of t colluding servers.
A generalization of these schemes, which employs (weakly)

self-dual Generalized Reed–Solomon (GRS) codes, results in
the first known QPIR scheme from MDS-coded storage in the
considered setting. The scheme is non-trivial for two main
reasons. First, the chosen codes must behave well with the
star-product operation: one example is the polynomial-based
codes class, that includes GRS codes. This requirement comes
from the classical PIR scheme described in [12]. Second, the
star-product of the storage code and the query code must be
a (weakly) self-dual code in order to employ the stabilizer
formalism and get the advantage of quantum communication.
To the best of our knowledge the combination of these two
properties was not considered in previous literature. In this
paper, we prove that for any given GRS storage code we
can find a GRS query code such that their star-product is
a (weakly) self-dual code.

The converse bounds are proved separately for the colluding
and non-colluding cases. First, the converse for colluding
case is derived generally for any PIR classes. Namely, when
the classical capacity of any PIR class is C, we prove that
the rates of stabilizer QPIR and dimension-squared QPIR
induced from the same class of PIR are upper bounded by
min{1, 2C}. Then, from the capacity of strongly linear PIR
for coded and colluding servers (n − k − t + 1)/n [9], [10],
we obtain our converse bound for colluding case. Second,
the converse for non-colluding case is proved for general
QPIR schemes with the following idea. We prove that the
k servers obtain negligible information of the user’s informa-
tion. Combining this fact and the entanglement-assisted clas-
sical capacity [26], we prove that the desired converse bound
C ≤ min{1, 2(n− k)/n}.

Similar to the existing multi-server QPIR studies [21]–[24],
the communication model in this paper is classical query
and quantum answers with entanglement. This model is
the hybrid model of classical and quantum communication
for classical file retrieval. Compared to the non-quantum
model, our main theorem implies that the capacity doubles
only with the one-way quantum communication from the
servers to the user. On the other hand, compared to the
purely quantum model, which allows quantum queries, our
model has three practical advantages. First, since the quantum
communication is hard to be implemented with the current
technology, our one-way communication model is a more
realizable model than the two-way quantum communication.
Second, in our scheme, most of the quantum resources
and computations are operated by the servers, and the only
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quantum device required for the user is a fixed measurement
apparatus.1 The same kind of outsourcing also appears
in the computation by measurement-based quantum
computation [28]. Third, since the storage is still classical,
we can just employ quantum communication technology and
quantum memory to double the rate of an already existing
MDS-coded storage implementing a classical PIR scheme.

B. Organization

The remainder of the paper is organized as follows.
Section II is a preliminary section for notation, linear codes
and distributed data storage, quantrum information theory, and
stabilizer formalism. In Section III, we formally define clas-
sical PIR, QPIR, and the related QPIR classes. In Section IV,
we present our main capacity results. Our capacity-achieving
QPIR scheme with MDS-coded storage and colluding servers
is proposed in Section V and the converse bound is derived
in Section VI. Section VII is the conclusion of the paper.

II. PRELIMINARIES

A. Notation

We denote by [n] and [n1:n2] the sets {1, 2, . . . , n}, n ∈ N

and {n1, n1 + 1, . . . , n2}, n1, n2 ∈ N, respectively, and by Fq

the finite field of q elements. For a linear code of length n
and dimension k over Fq we write [n, k]. For random variables
A1, . . . , An, quantum systems A1, . . . ,An and a set S ⊂ [n],
we denote AS := (Aj |j ∈ S) and AS :=

�
j∈S Aj .

For a matrix A we write A� for its transpose and A† for
its conjugate transpose. The function δi,j is the Kronecker
delta and Iν is the ν × ν identity matrix. For an n × m
matrix A = (aij)i∈[n],j∈[m], S1 ⊂ [n], and S2 ⊂ [m], we
denote AS1

S2
= (aij)i∈S1,j∈S2 and AS1 = (aij)i∈S1,j∈[m],

AS2 = (aij)i∈[n],j∈S2 . Throughout this paper, we use log for
the logarithm to the base 2.

B. Linear Codes and Distributed Data Storage

We consider a distributed storage system employing
error/erasure correcting codes to protect against data loss.
To this end, let X be an mβ × k matrix containing m files
Xi ∈ Fβ×k

q , i ∈ [m]. This matrix is encoded with a linear code
C of length n and dimension k over Fq. The mβ × n matrix
of encoded files is given by Y = X · GC , where GC ∈ Fk×n

q

is the generator matrix of C. Server s ∈ [n] stores the s-th
column of Y, which is denoted by Ys.

In this work we consider systems encoded with MDS codes.
A linear code C is called an MDS code if any k columns of
the generator matrix GC are linearly independent. Since we
consider a MDS coded data storage, we have the following
properties.

1) The matrix Xi can be recovered from any k elements of
{Yi

1, . . . ,Y
i
n} for any i ∈ [m].

2) Any k columns of Y are linearly independent.

1QPIR problem can also be considered for the retrieval of quantum states,
i.e., QPIR with quantum storage. A part of authors discussed this problem in
a recent paper [27].

C. Preliminaries on Quantum Information Theory
In this subsection, we introduce the preliminaries on quan-

tum information theory. To be precise, we introduce quantum
systems, states, operations, and measurements. Further, after
the introduction, we explain the quantum information theory
is a generalization of classical information theory. For more
details the reader is referred to [29] and [30].

A quantum system H is represented by a finite dimensional
complex vector space. Vectors in a quantum system are written
with bra-ket notation as |ψ� ∈ H and their complex conjugates
are as �ψ|. The computational basis of a d-dimensional
quantum system H is a fixed orthonormal basis written as
{|0�, . . . , |d−1�}. The composite system of multiple quantum
systems H1, . . . ,Hn is represented by the tensor product
H1 ⊗ · · · ⊗ Hn.

A state σ on H is represented by a positive-semidefinite
matrix on H with trace 1, which is called a density matrix.
When a density matrix σ is a rank-one matrix, i.e., σ = |ψ��ψ|,
the state is equivalently represented by a unit vector |ψ�, called
a pure state. When a state is not a pure state, the state is called
a mixed state. On a composite system H1 ⊗ · · · ⊗Hn, a state
is called separable if the state is written as σ =

�
i piσ1 ⊗

· · · ⊗ σn with pi ≥ 0,
�
i pi = 1, and density matrices σi for

all i. A state on a composite system is called entangled if it is
not a separable state. When the state on H1 ⊗ · · · ⊗Hn is σ,
the reduced state on Hk is written as Trkcσ, where Trkc is
the partial trace over

�
i�=kHi.

A quantum operation κ from H1 to H2 is represented by
completely positive trace-preserving (CPTP) map defined as
follows. A linear map κ from matrices on H1 to matrices on
H2 is called completely positive if for all positive integer n, the
map κ⊗ idCn maps positive-semidefinite matrices to positive-
semidefinite matrices, where idCn is the identity map over the
matrices on idCn , and trace-preserving if Tr(κ(M)) = Tr(M)
for all matrices M on H1. A CPTP map κ is called a unitary
map if κ(M) = U †MU with a unitary matrix U on H.

A measurement on a quantum system H is represented
by a set of positive-semidefinite matrices M = {Mω}ω∈Ω

on H with
�

ωMω = I , called a positive operation-valued
measure (POVM). When a POVM is performed on a state σ,
the measurement outcome is ω with probability Tr(MωσMω).
If all elements of a POVM {Mω}ω∈Ω are orthogonal
projections, the POVM is called the projection-valued
measure (PVM).

Classical information theory is included in the framework
of quantum information theory in the following sense. A finite
set [0 : d − 1] corresponds to a d-dimensional quantum sys-
tem with computational basis {|0�, . . . , |d− 1�}. An instance
x ∈ [0 : d − 1] and a random variable X with proba-
bility {px|x ∈ [0 : d − 1]} correspond, respectively, to a
pure state |x� and a mixed state σ =

�
x∈[0:d−1] px|x��x|.

A transition matrix Q = (Qx,y)x∈[0:d−1],y∈[0:d�−1], which
satisfies Qx,y ∈ [0, 1] and

�
y Qx,y = 1, corresponds to a

CPTP map κ(σ) =
�

x,yQx,y|y��x|σ|x��y|. For example,
if the state σ corresponds to the random variable X , i.e.,
σ =

�
x∈[0:d−1] px|x��x|, the resultant state after applying κ is�

y(
�

x pxQx,y)|y��y|, i.e., the random variable after apply-
ing Q on X . Sampling a random variable X with the outcome
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x corresponds to performing PVM M = {Px = |x��x|} and
obtaining the measurement outcome x with probability px.

D. Stabilizer Formalism

Stabilizer formalism is an algebraic structure in quantum
information theory and is often used for the quantum error
correction [31], [32]. In the context of QPIR, it is also an
essential tool to design most of the existing multi-server QPIR
schemes [21]–[24]. With the stabilizer formalism, we will
define a new class of QPIR, called stabilizer QPIR in
Section III-B.1, and design our capacity-achieving schemes
in Section V. As a preliminary, in this section, we first
define stabilizer formalism over finite fields Fq. Then, to help
understanding how the mathematical definition of the stabilizer
formalism is used for information processing tasks, we briefly
explain the application to the quantum error correction.

1) Stabilizer Formalism Over Finite Fields: Let q = pr

with a prime number p and a positive integer r. Let H be
a q-dimensional Hilbert space spanned by orthonormal states
{|j�|j ∈ Fq}. For x ∈ Fq, we define Tx on F

r
p as the linear

map y ∈ Fq 	→ xy ∈ Fq by identifying the finite field Fq with
the vector space Frp. Let tr x := TrTx ∈ Fp for x ∈ Fq. Let
ω := exp(2πi/p). For a, b ∈ Fq, we define unitary matrices
X(a) :=

�
j∈Fq

|j + a��j| and Z(b) :=
�

j∈Fq
ωtr bj |j��j| on

H. For s = (s1, . . . , s2n) ∈ F2n
q , we define a unitary matrix

W̃(s) := X(s1)Z(sn+1) ⊗ · · · ⊗ X(sn)Z(s2n) on H⊗n. For
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ Fn

q , we define the
tracial bilinear form �x,y� := tr

�n
i=1 xiyi ∈ Fp and the

trace-symplectic bilinear form �x,y�S := �x,Jy�, where J is
a 2n × 2n matrix

J =
�

0 −In

In 0

�
.

The Heisenberg-Weyl group is defined as HWn
q :=

{∗}cW̃(s)|s ∈ F2n
q , c ∈ C. A commutative subgroup of HWn

q

not containing cIqn for any c �= 0 is called a stabilizer.
A subspace V of F2n

q is called self-orthogonal with respect to
the bilinear form �·, ·�S if V ⊂ V⊥S := {s ∈ F2n

q |�v, s�S =
0 for any v ∈ V}. Any self-orthogonal subspace of F2n

q

defines a stabilizer by the following proposition.
Proposition 2.1 ([23, Sec. IV-A]): Let V be a

self-orthogonal subspace of F2n
q . There exists {cv ∈ C|v ∈ V}

such that

S(V) := {W(v) := cvW̃(v)|v ∈ V} ⊂ HWn
q (1)

is a stabilizer.
In the next proposition, we denote the elements of the

quotient space F2n
q /V⊥S by s := s + V⊥S ∈ F2n

q /V⊥S .
Proposition 2.2 ([23, Sec. IV-A]): Let V be a d-

dimensional self-orthogonal subspace of F2n
q and S(V)

be a stabilizer defined from Proposition 2.1. Then, we obtain
the following statements.

(a) For any v ∈ V , the operation W(v) ∈ S(V) is simulta-
neously and uniquely decomposed as

W(v) =
�

s∈F2n
q /V⊥S

ω�v,s�SPV
s (2)

with orthogonal projections {PV
s } such that

PV
s PV

t
= 0 for any s �= t, (3)�

s∈F2n
q /V⊥S

PV
s = Iqn . (4)

(b) Let HV
s := ImPV

s . We have dimHV
s = qn−d for any

s ∈ F2n
q /V⊥S and the quantum system H⊗n is decomposed

as

H⊗n =
�

s∈F2n
q /V⊥S

HV
s = W ⊗ C

qn−d

, (5)

where the system W is the qd-dimensional Hilbert space
spanned by {|s�|s ∈ F2n

q /V⊥S} with the property HV
s =

|s� ⊗ Cq
n−d

:= {|s� ⊗ |ψ�||ψ� ∈ Cq
n−d}.

(c) For any s, t ∈ F2n
q , we have

W(t)|s� ⊗ C
qn−d

= |s + t� ⊗ C
qn−d

, (6)

W(t)
�
|s��s| ⊗ Iqn−d

	
W(t)† = |s + t��s + t| ⊗ Iqn−d .

(7)

(d) For any v ∈ V and any |ψ� ∈ |0� ⊗ Cq
n−d

, we have

W(v)|ψ� = |ψ�. (8)
2) Application to Quantum Error Correction: Next,

we explain how the stabilizer formalism is used for quantum
error correction [31], [32]. Similar to the classical case, the
structure of error correction will be used for accomplishing
PIR tasks in the later sections.

Consider the transmission of a quantum state from a sender
to a receiver over a noisy channel. When the sender’s message
state is σ on Cq

n−d

, the sender encodes the state σ as |0��0|⊗σ
on the quantum system |0� ⊗ Cq

n−d ⊂ H⊗n defined in (b) of
Proposition 2.2, and send the quantum system H⊗n to the
receiver. Suppose the noise of the channel is W(s), i.e., the
operation W(s) is applied to the state. Then, the receiver’s
state is in the space |s�⊗Cq

n−d

by (c) of Proposition 2.2. For
the decoding of the error, the receiver detects s by performing
the PVM measurement {PV

s |s ∈ F2n
q /V}, defined from the

projections in (a) of Proposition 2.2. This PVM is called
syndrome measurement in the similar context to the classical
error correction. Then, the receiver applies error correction
by choosing an element s	 ∈ s and applying W(−s	), which
maps the received state to the original space |0�⊗Cq

n−d

. Since
the noise and error correction operation are combined as the
unitray matrix W(s)W(−s	) = W(s− s	), if s− s	 ∈ V , the
decoded state is |0��0|⊗σ from (d) of Proposition 2.2. That is,
σ is correctly recovered by the receiver. The characterization
of the noise s and the corresponding choice of s	 in decoding
are essential problem in quantum error correction to achieve
more reliable communication.

III. NOTIONS OF PIR

A. Classical PIR

We formally define a classical PIR scheme with MDS-coded
storage (MDS-PIR). In a general MDS-PIR scheme, one user
and n servers participate.
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Distributed Storage The m files are given as uniformly
and independently distributed random variables
X1, . . . , Xm in Fβ×k

q . As described in Section II-B,
the files X = ((X1)�, . . . , (Xm)�)� are encoded
with an MDS code C as Y = (Y1, . . . , Yn) = XGC ∈
Fβm×n
q and is distributed as the s-th server contains
Ys ∈ Fβm

q .
Shared Randomness The servers possibly share randomness

H = (H1, . . . , Hn), where Hs is owned by server s.
Query Let K be a uniform random variable with values in

[m]. The user desiring the K-th file XK prepares
QK = (QK1 , . . . , Q

K
n ) with local randomness R by

the encoder Encuser:[m]×R → Q := Q1×· · ·×Qn,
where R is the alphabet of the user’s local random-
ness and Qs is the alphabet of the query to server s,
and sends QKs to server s.

Response With the encoder Encservs :Fβm
q ×Hs×Qs → Bs, the

s-th server responds BKs = Encservs
(Ys, Hs, Qs) ∈

Bs to the user. We denote BK = (BK1 , . . . , BKn ) and
B = B1 × · · · × Bn.

Decoding With the decoder Dec:[m] × Q × B → Fβ×k
q , the

user obtains an estimate X̂K = Dec(K,QK , BK) ∈
Fβ×k
q of XK .

As described above, an MDS-PIR scheme Φ is defined as
ΦC = (C, σinit,Encuser,Encserv,Dec) with the MDS code
for storage C, the initial state σinit, the query encoder of the
user Encuser, the answer encoders of the servers Encserv :=
{Encservs

|∀s ∈ [n]}, and the decoder of the user Dec.
The correctness of MDS-PIR is defined as follows.
Definition 3.1 (Correctness): The correctness of a

MDS-PIR scheme ΦC is evaluated by the error probability

Perr(ΦC) := max
ι∈[m]

Pr[Xι �= X̂ι]. (9)

We also consider the following secrecy conditions with a
positive integer t with 1 ≤ t < n.

Definition 3.2 (Privacy With t-Collusion): User t-secrecy:
Any set of at most t colluding servers gains no information
about the index ι of the desired file, i.e., pQT |K=ι = pQT |K=ι�

for any ι, ι	 ∈ [m] and T ⊂ [n] with |T | ≤ t, where pQT |K=ι

is the distribution of QT conditioned with K = ι.
Server secrecy: The user does not gain any information

about the files other than the requested one, i.e.,

I(Bι;X |Qι,K = ι) = H(Xι). (10)
As customary, we assume that the size of the query alphabet

is negligible compared to the size of the files. This is well
justified if the files are assumed to be large, as the upload cost
is independent of the size of the files. For simplicity, we only
consider files of sizes kβ log q in the following. However, note
that repeatedly applying the scheme with the same queries
allows for the download of files that are any multiple of
kβ log q in size at the same rate and without additional upload
cost.

When user t-secrecy is satisfied, the scheme is called
[n, k, t]-PIR and leaks no information of the index K to any
t colluding servers. When both user t-secrecy and server
secrecy are satisfied, the scheme is called symmetric and we
denote it by [n, k, t]-SPIR.

As a measure of efficiency of the MDS-PIR scheme ΦC is
defined as follows.

Definition 3.3 (MDS-PIR Rate): The MDS-PIR scheme ΦC
is defined as

R(ΦC) =
H(X i)�n
j=1 log |B| . (11)

Definition 3.4 (Achievable MDS-PIR Rate): A rate R is
called �-error achievable [n, k, t]-PIR ([n, k, t]-SPIR) rate with
m files if there exists a sequence of [n, k, t]-PIR ([n, k, t]-
SPIR) schemes with m files {Φ�}� such that the PIR rate
R(Φ�) approaches R and the error probability satisfies
lim�→∞ Perr(Φ�) ≤ �.

Definition 3.5 (MDS-PIR Capacity): The �-error [n, k, t]-
PIR ([n, k, t]-SPIR) capacity with m files C [n,k,t]

m,�,cl (C [n,k,t],s
m,�,cl )

is the supremum of �-error achievable [n, k, t]-PIR ([n, k, t]-
SPIR) rate with m files.

Remark 1: Our definition of the achievable rate and capac-
ity with asymptotic � error generalizes the case of � = 0, which
have been discussed in other PIR studies [3], [6].

We define two well-known classes of classical PIR. For a set
I ⊆ [n] and γ ∈ N, we define ψγ(I) :=



i∈I [(i−1)γ+1:iγ].

For example, if I = [n], we have ψγ([n]) = [γn].
Definition 3.6 (Linear PIR [9, Definition 1]): A PIR sche-

me is called linear if

• the query Q is represented by a matrix Q ∈ Fβm×γn
q ,

where Qψγ(s) is the query to server s, and
• the classical answer Bs of server s is represented by

Bψγ(s) = Y�
s Qψγ(s) ∈ F

1×γ
q . (12)

We also define strongly linear PIR, which requires the
linearity also for the reconstruction of the targeted file.

Definition 3.7 (Strongly Linear PIR [9]): A linear PIR
scheme is called strongly linear if there exist linear maps
{fi,j|(i, j) ∈ [β] × [k]} such that

Xi
j = fi,j

�
(B(s−1)γ+ti,j

|s ∈ [n])
�

for some ti,j ∈ [γ].
One of our main results is on the MDS-QPIR capacity

induced from strongly linear PIR. The capacity of strongly
linear PIR is derived in [9] as follows.

Proposition 3.1 ([9], [10]): The zero-error capacity of any
strongly linear PIR with [n, k]-MDS coded storage and t
colluding servers is

sup
kβ log q�n
i=1H(Bi)

= 1 − k + t − 1
n

(13)

for any number of files m.

B. Quantum PIR (QPIR)

1) QPIR From MDS-Coded Storage: We formally define
a QPIR scheme with MDS-coded storage (MDS-QPIR),
depicted in Figure 1.

Distributed Storage The same as classical PIR.
Shared Entanglement The initial state of the n servers is

given as a density matrix σinit on quantum system
H = H1 ⊗ · · · ⊗ Hn, where Hs is distributed to
server s. The state σinit is possibly entangled.
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Fig. 1. Quantum private information retrieval scheme.

Query The same as classical PIR.
Response Each server s applies a CPTP map Encservs

[QKs , Ys]
from Hs to As depending on QKs and Ys, where
As is a d-dimensional quantum system, and returns
As to the user.

Decoding Depending on K and QK , the user applies a POVM
Dec[K,QK ] on A = A1 ⊗ · · · ⊗An and obtains the
measurement outcome X̂K .

As described above, an MDS-QPIR scheme Φ is defined
as Φ = (C, σinit,Encuser,Encserv,Dec) with the MDS code
for storage C, the initial state σinit, the query encoder of the
user Encuser, the answer encoders of the servers Encserv :=
{Encservs

|∀s ∈ [n]}, and the decoding measurement of the
user Dec.

Definition 3.8: The correctness, privacy, rate, and
capacity of QPIR are defined in the same way as
Definitions 3.1, 3.2, 3.3, and 3.5, respectively, except
that (10) and (11) are replaced as

I(A;X |Qι,K = ι) = H(Xι), (14)

and

R(Φ) =
H(X i)�n

j=1 log dimA . (15)

Notation 3.1: We denote by C
[n,k,t]
m,� (C [n,k,t],s

m,� ) the
�-error [n, k, t]-QPIR ([n, k, t]-QSPIR) capacity with
m files.

In Definition 3.2, user t-secrecy is defined as the indepen-
dence of the index K and the queries QT of the colluding
servers. Although this user secrecy condition is natural in
classical PIR, one may be unsure whether this condition
is sufficient for the QPIR setting because the servers share
quantum entanglement. To justify this condition in the QPIR
setting, we consider the malicious scenario where the servers
apply malicious operations on the answered systems in order
to extract the information of the user’s request K . Even in this
malicious scenario, the servers cannot exploit entanglement to
break the user’s secrecy because of the no-signaling princi-
ple [33]. No-signaling principle states that two parties sharing
an entangled state cannot communicate any information from
their local measurements. From this principle, even if the
colluding servers share entanglement with the other servers or

the user throughout the scheme, the only information obtained
by the colluding servers is the queries QT . Thus, the user
t-secrecy condition guarantees the secrecy of K from the
colluding servers.

2) Example of QPIR Scheme: With stabilizer formalism,
we give an example of two-server QPIR, which corresponds to
the QPIR scheme in [21]. Let H1 and H2 be two-dimensional
quantum systems, which are also called qubits. From
Proposition 2.1, we define a stabilizer on H1 ⊗ H2 with the
self-orthogonal subspace

V = {(0, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (1, 1, 1, 1)} ⊂ F
4
2.

The space V satisfies V = V⊥S . With this stabilzer, we set
the initial entangled state of the two servers as |0� ∈ H1 ⊗
H2, where s = s + V⊥S for all s ∈ F4

2. The two servers
have H1 and H2, respectively. The files are prepared as mi =
(miX ,miZ) ∈ F2

2 for all i ∈ [m]. For querying the k-th file,
the user sends queries

q1 = (ek, ek) + r ∈ F
2m
2 , (16)

q2 = r ∈ F
2m
2 , (17)

where ek is the k-th standard vector in Fm
2 and r is a random

vector in F2m
2 . After receiving queries, the servers generates

(a1, b1) = q1 ·m = mk + r ·m, (18)

(a2, b2) = q2 ·m = r · m, (19)

where m = ((m1X ,m2X , . . . ,mmX), (m1Z ,m2Z , . . . ,mmZ))
∈ F2m

2 . Then, the server i applies X(ai)Z(bi) on Hi and
sends Hi to the user. The user receives the states

W̃(a1, a2, b1, b2)|0� = |(a1, a2, b1, b2)� (20)

= |(mkX , 0,mkZ , 0)�, (21)

where the first equality follows from (6) and the second
equality follows from (1, 1, 1, 1) ∈ V⊥S = V . By applying
measurement on the received state, the user retrieves mk =
(mkX ,mkZ) ∈ F2

2 correctly. The user secrecy is satisfied
from the query structure, and the server secrecy is satisfied
because the user’s state only depends on mk as in (21). The
QPIR rate is 1 because 2 bits are retrieved and 2 qubits are
downloaded.

3) Classes of QPIR: As a general class of QPIR schemes,
we introduce a new class called stabilizer QPIR, which
includes the example in Section III-B.2 and most of the known
multi-server QPIR schemes [21]–[24].

Definition 3.9 (Stabilizer QPIR): A QPIR scheme is called
a stabilizer QPIR induced from a classical PIR scheme ΦC if

• the initial state of the servers σinit is a state in HV
0

=
|0� ⊗ Cq

n−d ⊂ H⊗n defined with a self-orthogonal
subspace V by Proposition 2.2,

• the query is the same as ΦC , and
• the s-th server’s operation is the Weyl operation

X(as)Z(bs), where (as, bs) ∈ F2
q is the s-th server’s

answer of ΦC .
In Section V, we construct a stabilizer QPIR scheme, which

achieves the capacities in Corollaries 4.1 and 4.2.
Further, we define a more general class of QPIR as follows.
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TABLE II

SUMMARY OF SYMBOLS

Definition 3.10 (Dimension-Squared QPIR): A QPIR sch-
eme is said to be dimension-squared if the s-th server’s
operation is determined by classical information Bs ∈ Bs
with |Bs| ≤ d2 for all s ∈ [n].

Furthermore, if B = (B1, . . . , Bn) is the answer of a
classical PIR scheme ΦC and the query of the QPIR scheme
is the same as ΦC , the QPIR scheme is called a dimension-
squared QPIR induced from the classical PIR scheme ΦC .

Any stabilizer QPIR scheme is a dimension-squared
scheme induced from a classical PIR scheme. Accordingly,
the example in Section III-B.2 and the multi-server QPIR
schemes [21]–[24] are also dimension-squared schemes
induced from strongly linear schemes. In Section VI,
we derive the converse bound for dimension-squared QPIR
schemes.

When a classical PIR scheme ΦC induces a QPIR scheme
without the condition of dimensions, then the scheme can be
modified to induce dimension-squared QPIR in the following
way. First, we make the n answers the same size by repeating
ΦC multiple times while reordering the roles of the servers
for all possible cases. Let d	 be the size of one answer and
Φ	
C be the repeated PIR scheme. Again, let Φ		

C be the PIR
scheme made by repeating Φ	

C d	 times, and then, the size of
each answer of Φ		

C is (d	)2. Thus, a dimension-squared QPIR
scheme ΦQ is induced from Φ		

C if ΦQ can be made to satisfy
the correctness condition. For convenience, we consider a
dimension-squared QPIR scheme induced from Φ		

C as induced
from ΦC .

Notation 3.2: We denote by C[n,k,t]
m,�,stab, C [n,k,t]

m,�,dim (C [n,k,t],s
m,�,stab,

C
[n,k,t],s
m,�,dim) the �-error [n, k, t]-QPIR ([n, k, t]-QSPIR) capacities

of stabilizer QPIR induced from strongly linear PIR and
dimension-squared QPIR induced from strongly linear PIR.

From the definitions, the capacities are decreasing for t and
increasing for �, and satisfy

C
[n,k,t],s
m,�,stab ≤ C

[n,k,t],s
m,�,dim ≤ C [n,k,t],s

m,�≤ ≤ ≤

(22)

C
[n,k,t]
m,�,stab ≤ C

[n,k,t]
m,�,dim ≤ C [n,k,t]

m,� .

IV. MAIN RESULTS

In this section, we give our two main results of the paper.
The first result is the asymptotic capacity of stabilizer QPIR
and dimension-squared QPIR induced from strongly linear
PIR. The second result is the general asymptotic capacity
without collusion, i.e., the case t = 1. Before our capacity
result, we state a general upper bound of dimension-squared
QPIR capacity.

Theorem 4.1 (Converse for Dimension-Squared QPIR
Induced From Classical PIR): Let A be a set of assumptions
on classical PIR and C�[A] be the �-error capacity of the
classical PIR with assumptions A. Then, for any �	 ∈ [0, 1),
the �	-error capacity of dimension-squared QPIR induced
from classical �-error PIR with the assumptions A is upper
bounded by min{1, 2C�[A]}.

Theorem 4.1 will be proved in Section VI-A. Notice that
Theorem 4.1 is proved for dimension-squared QPIR induced
from any classical PIR class. Intuitively, the dimensional
condition in the dimension-squared QPIR is the key factor
for doubling the capacity of any classical PIR. On the other
hand, it should be noted that classical PIR schemes do not
necessarily induce QPIR schemes, i.e., the existence and the
construction of QPIR induced from the classical PIR is not
trivial as discussed in Section I-A.

Our first capacity result is on the capacities of stabilizer
QPIR and dimension-squared QPIR induced from strongly
linear PIR. An upper bound of the capacities C[n,k,t]

m,�,dim and

C
[n,k,t],s
m,�,dim is derived by Theorem 4.1 and Proposition 3.1 as

C
[n,k,t]
m,0,dim, C

[n,k,t],s
m,0,dim ≤ 2

�
1 − k + t − 1

n

�
. (23)

Furthermore, we prove the following theorem in Section V.
Theorem 4.2 (Achievability): Let n, k, t be positive integers

with 1 ≤ n/2 ≤ k + t − 1 < n. There exists a stabilizer
QPIR scheme induced from strongly linear PIR with [n, k]-
MDS coded storage and t-colluding servers achieving (23)
with equality for any number of files m and without error.
Combining Eqs. (22), (23), and Theorem 4.2, we obtain the
first capacity result.

Corollary 4.1 (MDS-Q(S)PIR Capacity With Colluding
Servers): Let n, k, t be positive integers such that 1 ≤
k ≤ n and 1 ≤ t < n. Then, for any Cm,0 ∈
{C [n,k,t]

m,0,stab, C
[n,k,t],s
m,0,stab, C

[n,k,t]
m,0,dim, C

[n,k,t],s
m,0,dim},

Cm,0 =

⎧⎨
⎩

1 if k + t − 1 ≤ n/2,

2
�

1 − k + t − 1
n

�
otherwise.

(24)

In Corollary 4.1, the case for k + t− 1 ≤ n/2 is proved as
follows. When k+ t−1 = n/2, Theorem 4.2 proves the rate 1
is achievable. If t ≤ t	, the QPIR scheme for t	 colluding
servers also has the user secrecy against t colluding servers.
Therefore, when k+t−1 ≤ n/2, we can apply the scheme for
k+ t	−1 = n/2 with n even to achieve the rate 1. Finally, the
tightness of the rate 1 follows trivially from definition. If n is
odd, we just consider n − 1 servers and t = (n + 1)/2 − k in
order to achieve rate 1.

As the second result, when no servers collude, i.e., t = 1,
we prove the general asymptotic capacity theorem. Without
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the assumption of dimension-squared QPIR, we prove the
following upper bound of QPIR.

Theorem 4.3 (Converse of QPIR Without Collusion): Let
n, k be positive integers with 1 ≤ n/2 ≤ k < n. Then, we have

lim
�→0

lim
m→∞

C [n,k,1]
m,� ≤ 2

�
1 − k

n

�
. (25)

Theorem 4.3 will be proved in Section VI-A. Combining
Eq. (22), Theorem 4.3, and Theorem 4.2 for the case t = 1,
we obtain the second capacity result.

Corollary 4.2 (MDS-Q(S)PIR Capacity): Let n, k be pos-
itive integers such that 1 ≤ k ≤ n. For any Cm,� ∈
{C [n,k,1]

m,�,stab, C
[n,k,1],s
m,�,stab , C

[n,k,1]
m,�,dim, C

[n,k,1],s
m,�,dim , C

[n,k,1]
m,� , C

[n,k,1],s
m,� },

lim
�→0

lim
m→∞

Cm,� =

⎧⎨
⎩

1 if k ≤ n/2,

2
�

1 − k

n

�
otherwise.

(26)

In Corollary 4.2, the smallest capacity in the six capacities
is C [n,k,1],s

m,�,stab from (22), and this value is asymptotically lower
bounded by the RHS of (26) from Theorem 4.2. On the other
hand, the greatest capacity is C [n,k,1]

m,� , which is upper bounded
by the RHS of (26) from Theorem 4.3.

V. ACHIEVABILITY

We will frequently deal with mβ × 2n matrices, where
sub-blocks of β rows and the pair of columns s and n + s
semantically belong together. We therefore index such a
matrix Y by two pairs of indices (i, b), i ∈ [m], b ∈ [β]
and (p, s), p ∈ [2], s ∈ [n], where Yi,b

p,s denotes the
symbol in row (i − 1)β + b and column (p − 1)n + s, i.e.,
the symbol in the b-th row of the i-th sub-block of rows and
the s-th column of the p-th sub-block of columns. Omitting
of an index implies that we take all positions, i.e., Yi denotes
the i-th sub-block of β rows, Yi,b the row (i − 1)β + b,
Yp the p-th sub-block of n columns, and Yp,s the column
(p−1)n+s. For the reader’s convenience, we sometimes imply
the separation of the sub-blocks of columns by a vertical bar
in the following. We denote by eλγ the standard basis column
vector of length λ in Fλq with a 1 in position γ ∈ [λ]. Given
a ∈ [α], b ∈ [β], it will help our notation to call coordinate
(a, b) the position β(a− 1) + b in a vector of length αβ. For
instance, e2·3

(2,1) = e6
4 = (0, 0, 0, 1, 0, 0). For a zero matrix 0

and matrices M1,M2 ∈ Fμ×νq

diag (M1,M2) =
�
M10
0M2

�
∈ F

2μ×2ν
q .

For a matrix M, the space spanned by the rows of M is
denoted by �M�row.

For two vectors c,d ∈ Fn
q we define the (Hadamard-) star-

product as c � d = (c1d1, c2d2, . . . , cndn). For two codes
C,D ⊆ Fn we denote C � D = �{c � d | c ∈ C,d ∈ D}�.
Observe that, as the star-product is an element-wise operation,
we have

(C × C) � (D ×D) = (C �D) × (C �D) . (27)

A. Generalized Reed–Solomon Codes

We consider systems encoded with (the Cartesian product
of) Generalized Reed–Solomon (GRS) codes (cf. [34, Ch. 10]),
a popular class of MDS codes.

Definition 5.1: Let L = {αi ∈ Fq:i ∈ [n]} and M =
{βi ∈ Fq:i ∈ [n]} be the sets of the code locators and of
the column multipliers, respectively. The Generalized Reed–
Solomon (GRS) code C of dimension k is given by

C = {(β1f(α1), . . . , βnf(αn)):f ∈ Fq[x], deg(f) < k}.
Among coded storage systems, these have proven to be

particularly well-suited for PIR and general schemes exist
for a wide range of parameters [11], [12], [35]. The key
idea is to design the queries such that the retrieved symbols
are the sum of a codeword of another GRS code (of higher
dimension), which we refer to as the star-product code, plus
a vector depending only on the desired file. To obtain the
desired file, the codeword part is projected to zero, leaving
only the desired part of the responses. In the QPIR system
we consider in the following, this projection is part of the
quantum measurement. This imposes a constraint on this star-
product code, namely, that the code is (weakly) self-dual.
In the following, we collect/establish the required theoretical
results on GRS codes and their star-products.

Definition 5.2 (Weakly Self-Dual Code): We say that an
[n, k] code C is weakly self-dual if C⊥ ⊆ C and self-dual if
C⊥ = C. It is easy to see that any such code with parity-check
matrix H has a generator matrix of the form G = (H� F�)�

for some (2k − n) × n matrix F.
Lemma 5.1 (Follows From [36, Theorem 3]): For q = 2r

there exist self-dual GRS [2k, k] codes over Fq for any k ∈
[2r−1] and code locators L.

Lemma 5.2: Let q be even with q ≥ n. Then there exists a
weakly self-dual [n, k] GRS code C for any integer k ≥ n

2 and
code locators L.

Proof: First consider the case of even n. Let S be an
[n, n/2] self-dual GRS code with code locators L ⊆ Fq,
as shown to exist in [36, Theorem 3] (see Lemma 5.1).
It is easy to see that this code is a subcode of the [n, k]
GRS code C with the same locators and column multipliers.
The property C⊥ ⊂ C follows directly from observing that
C⊥ ⊆ S⊥ = S ⊆ C.

Now consider the case of odd n. First, observe that this
implies n < q and � n

2� = n+1
2 . Then, by Lemma 5.1, there

exists a self-dual [n+1, � n
2�] GRS code S	 with code locators

L	 = L∪{α}, where α ∈ Fq \L. Let j ∈ [n+1] be the index
of the position corresponding to α. Now consider the code C
obtained from puncturing this position j, i.e., the set

S = {c[n+1]\{j} | c ∈ S	}.
It is well-known that the operation dual to puncturing is
shortening and therefore the corresponding [n, � n

2� − 1] dual
code S⊥ is given by

S⊥ = {c[n+1]\{j} | cj = 0, c ∈ (S	)⊥}
= {c[n+1]\{j} | cj = 0, c ∈ S	}.

Clearly, this operation preserves the weak duality, i.e., S⊥ ⊂
S. Again, it is easy to see that S is a subcode of the [n, k]
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GRS code C with the same locators and column multipliers
for any k ≥ n

2 . The statement follows from observing that we
have C⊥ ⊆ S⊥ ⊂ S ⊆ C �

Lemma 5.3: Let q be even with q ≥ n. For any [n, k] GRS
code C there exists an [n, t] GRS code D such that their star-
product S = C � D is an [n, k + t − 1] weakly self-dual GRS
code.

Proof: By [37] the star product between an [n, k] GRS
code C with column multipliers MC and an [n, t] GRS code D
with column multipliers MD, both with the same locators L,
is the [n, k + t − 1] GRS code with column multipliers
MC �MD and code locators L. Denote by MS the column
multipliers of a weakly-self dual [n, k+ t− 1] GRS code with
code locators L, as shown to exist in Lemma 5.2. Then, the
lemma statement follows from setting MD = (MC)−1 �MS ,
where we denote by (MC)−1 the element-wise inverse of MC.

�

B. Description of the Coded QPIR Scheme

In this subsection we describe the required preliminaries for
the capacity-achieving QPIR scheme. Afterwards, we give a
compact list of the steps followed by the protocol.

1) Storage: We consider a linear code C of length 2n and
dimension 2k, which is the Cartesian product of an [n, k] GRS
code C	 over Fq with itself,2 i.e., C = C	 × C	. It therefore
has a generator matrix GC = diag (GC� ,GC�), where GC� is
a generator matrix of C	. The mβ×2n matrix of encoded files
is given by Y = X ·GC . Server s ∈ [n] stores columns s and
n+s of Y, i.e., it stores Y1,s and Y2,s (for an illustration see
Figure 2). For a given integer c, which will be defined in the
next paragraph, the parameter β is fixed to β = lcm(c, k)/k.

2) Query and Star-Product Code: Let t be the collusion
parameter with n

2 ≤ k+ t−1 < n. By Lemma 5.3 there exists
an [n, t] GRS code D	 such that S	 = C	�D	 is an [n, k+t−1]
weakly self-dual GRS code. We define the query code as the
Cartesian product D = D	 ×D	. Thus, for a generator matrix
GD� of D	, the matrix GD = diag (GD� ,GD�) ∈ F2t×2n

q is a
generator matrix of D.

Define S = C � D and S	 = C	 � D	. By (27) we have
S = C �D = S	×S	, so S is the Cartesian product of two star
product codes. Define c = dS�−1, where dS� = n−k−t+2 is
the minimum distance of S	.

Let HS� ∈ F
(n−k−t+1)×n
q be a parity-check matrix of S	.

By Definition 5.2, the code S	 has a generator matrix of the
form GS� = (H�

S� F�
S�)� for some FS� ∈ F

[2(k+t−1)−n]×n
q .

Hence, S has a generator matrix of form

GS =
�

diag (HS� ,HS�)
diag (FS� ,FS�)

�
∈ F

2(k+t−1)×2n
q . (28)

Lemma 5.4: Let GS be the matrix defined in Eq. (28) and
let HS be the submatrix of GS containing its first 2(n−k−t+
1) rows. Let w1, . . . ,w2n be the column vectors of GS . Then,
they satisfy conditions (a) and (b) of [23, Lemma 2], i.e.,

2We choose this description of the storage code because this structure is
required for the quantum PIR scheme. However, note that the system can
equivalently be viewed as being encoded with an [n, k] code over Fq2 , where
each of the servers stores one column of the resulting codeword matrix.

(a) wπ(1), . . . ,wπ(k+t−1),wπ(1)+n, . . . ,wπ(k+t−1)+n are
linearly independent for any permutation π of [n].

(b) HSJ�G�
S = 0.

Proof: It is well-known that any subset of k+t−1 columns
of the generator matrix of an [n, k + t− 1] MDS code are lin-
early independent. Hence, the columns wπ(1), . . . ,wπ(k+t−1)

are linearly independent, as the first n columns of GS
generate S. The same holds for wπ(1)+n, . . . ,wπ(k+t−1)+n.
Trivially, any non-zero columns of a diagonal matrix are
linearly independent and property (a) follows.

Property (b) follows directly from observing that, by def-
inition, HSG�

S = 0 for any linear code with generator
matrix GS and parity-check matrix HS . �

Let V be the space spanned by the first 2(n − k − t + 1)
rows of GS , i.e., V = �diag (HS� ,HS�)�row. By Lemma 5.4,
the space V is self-orthogonal and the rows of GS span
the space V⊥S . Notice that V is defined from a classical
code E = �HS��row, which satisfies E ⊂ E⊥S . Thus,
the stabilizer S(V) defines a Calderbank–Steane–Shor (CSS)
code [38], [39], which is defined from the self-orthogonal
space �diag (GC1 ,GC2)�row with the generator matrices GC1

and GC2 of two classical codes C1 and C2 satisfying C1 ⊂ C⊥S

2 .
Our QPIR scheme will be constructed with the CSS code.

3) Targeted Positions: Let ρ = lcm(c, k)/c. Fix J =
{1, . . . ,max{c, k}} to be the set of server indices from which
the user obtains the symbols of Yι. We consider J1 = [c] ⊆ J
and we partition it into subsets J b

1 = {i + (b − 1)c/β|i ∈
[c/β]}, b ∈ [β]. Then, for r ∈ [2 : ρ] we define recursively
J b
r = {(j + c/β − 1) (mod |J |) + 1|j ∈ J b

r−1} and
Jr =



b∈[β] J b

r . We will construct our scheme so that during

the r-th iteration the user obtains the symbols (Yι,b
1,a,Y

ι,b
2,a)

for every a ∈ J b
r and b ∈ [β].

We define

N(r) = (en
a)

�
a∈Jr

∈ F
c×n
q , (29)

where en
a is the standard basis column vector of length n

with a 1 in position a. Then, the matrix (G�
S (M(r))�)�,

with M(r) = diag
�
N(r),N(r)

	
∈ F2c×2n

q , is a basis for F2n
q .

To see that this is in fact a basis observe that the row span of
N(r), by definition, contains vectors of weight at most c. The
span of GS� contains vectors of weight at least dS� = c+ 1.
It follows that the spans of N(r) and GS� intersect trivially,
which implies that their ranks add up.

4) A Capacity-Achieving QPIR Scheme: In our scheme,
we use the the stabilizer formalism for the transmission of the
classical files. On the other hand, as discussed in Section II-D,
the stabilizer formalism is often used for the transmission
of quantum states, which is performed by four steps of the
encoding of the state, transmission over the error channel,
syndrome measurement, and error-correction. For the trans-
mission of the classical files, similar to the QPIR scheme [23],
we construct our scheme so that the desired file is extracted by
the syndrome measurement of the stabilizer code. Then, by the
same property as the superdense coding [40], our scheme
can convey twice more classical information compared to the
classical PIR schemes. We refer to [23, Sec. IV-B] for the
detailed explanation of this idea.
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Fig. 2. Illustration of a DSS storing m files, each consisting of 2βk symbols. The matrix GC is a generator matrix of a [2n, 2k] code C.

Suppose the desired file is Xι. The queries are constructed
so that the total response vector during one iteration is the
sum of a codeword in S and a vector containing 2c distinct
symbols of Yι in known locations, and zeros elsewhere.

We now describe the five steps of the capacity-achieving
QPIR scheme Φ�.

Protocol 5.1: The first four steps are repeated in each round
r ∈ [ρ].

1) Distribution of entangled state. Let H1, . . . ,Hn be q-
dimensional quantum systems, σinit = qn−2(k+t−1) ·
Iq2(k+t−1)−n and F2n

q /V⊥S = {w = w + V⊥S:w ∈
�M(r)�row}. By Proposition 2.2.(b) the composite quan-
tum system H = H1 ⊗ · · · ⊗ Hn is decomposed as
H = W ⊗ Cq

2(k+t−1)−n

, where W = span{|w�|w ∈
F

2n
q /V⊥S}. The state of H is initialized as |0��0| ⊗ σinit

and distributed such that server s ∈ [n] obtains Hs.
2) Query. The user chooses a matrix Z(r) ∈ Fmβ×2t

q

uniformly at random. We define E(ι) ∈ Fmβ×2c
q with

E(ι),p,a = emβ
(ι,a), p ∈ [2], a ∈ [c], where emβ

(ι,a) is the
standard basis column vector of length mβ with a 1 in
coordinate (ι, a). We denote by Q(r) ∈ Fmβ×2n

q the matrix
of all the queries, which are computed as

Q(r) =
�
Z(r)E(ι)

�
·
�

GD
M(r)

�
=Z(r) ·GD+E(ι) · M(r).

(30)

Each server s ∈ [n] receives two vectors Q(r)
1,s,

Q(r)
2,s ∈ Fmβ

q .
3) Response. The servers compute the dot product of each

column of their stored symbols and the respective column
of the queries received, i.e., they compute the response
B(r)
p,s = Y�

p,s · Q
(r)
p,s ∈ Fq, s ∈ [n], p ∈ [2]. Server s

applies X
�
B(r)

1,s

�
and Z

�
B(r)

2,s

�
to its quantum system

and sends it to the user.
4) Measurement. The user applies the PVM BV =

{Pw|w ∈ F2n
q /V⊥S} on H defined in Proposition 2.2

and obtains the output o(r) ∈ F2c
q .

5) Retrieval. Finally, after ρ rounds the user has retrieved
2ρc = 2βk symbols of Fq from which he can recover the
desired file Xι.

C. Properties of the Coded QPIR Scheme

Lemma 5.5: The scheme Φ� of Section V-B is correct, i.e.,
fulfills Definition 3.1.

Proof: Let us fix the round r ∈ [ρ] and let B(r) be the
vector of responses computed by the servers. By Prop. 2.2.(c)
the state after the servers’ encoding is

W(B(r))(|0��0| ⊗ σinit)W(B(r))† = |B(r)��B(r)| ⊗ σinit.

We observe that V⊥S = S since both spaces are spanned
by the rows of GS . Notice that the row in coordinate (i, b)
of the product E(ι) · M(r) is

�2
p=1

�
a∈J b

r
δi,ι(e2n

(p,a))
�.

Remembering that e2n
(p,a) is the standard basis column vector

of length 2n with a 1 in coordinate (p, a), by definition of the
star product scheme the response vector is

B(r) =
�
B(r)

1 B(r)
2

�
=

m�
i=1

β�
b=1

Yi,b �Q(r),i,b

=
m�
i=1

β�
b=1

�
Xi,b ·GC

	
�

�
Z(r),i,b ·GD

�

+
m�
i=1

β�
b=1

Yi,b �
� �
a∈J b

r

δi,ι
�
e2n
(1,a) + e2n

(2,a)

	��

∈ S +
β�
b=1

�
a∈J b

r

�
Yι,b

1,ae
2n
(1,a) + Yι,b

2,ae
2n
(2,a)

	�

= V⊥S +
�
Yι,b

1,a Yι,b
2,a

�
a∈J b

r ,b∈[β]
·M(r). (31)

The random part is encoded into a vector in V⊥S while the
vector

�
Yι,b

1,a | Yι,b
2,a

	
a∈J b

r ,b∈[β]
∈ F

2c
q is encoded with M(r)

and hence independent of the representative of o(r). Therefore,
the user obtains the latter without error after measuring the
quantum systems with the PVM BV . Recall that we fixed
β = lcm(c, k)/k for c = dS� − 1. To allow the user to
download exactly the desired file over ρ iterations, we defined
ρ = lcm(c, k)/c. During each iteration, the user can download
2c/β = 2k/ρ symbols from each of the β rows of Yι,
where the factor 2 is achieved by utilizing the properties of
superdense coding [40]. After ρ rounds the user obtained the
2k symbols Yι,b ∈ F2k

q of each codeword corresponding to
a block Xι,b, b ∈ [β] and is therefore able to recover the
file. �

Lemma 5.6: The scheme Φ� of Section V-B is symmetric
and protects against t-collusion in the sense of Definition 3.2.

Proof: The idea is that user privacy is achieved since, for
each subset of t servers, the corresponding joint distribution
of queries is the uniform distribution over Fmβ×2t

q . Consider
a set of t colluding servers. The set of queries these servers
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receive is given by Q(r) during round r ∈ [ρ]. By the MDS
property of the code D any subset of t columns of GD is
linearly independent. As the columns of Z(r) are uniformly
distributed and chosen independently for each r ∈ [ρ], any
subset of t columns of Z(r) · GD is statistically independent
and uniformly distributed. The sum of a uniformly distributed
vector and an independently chosen vector is again uniformly
distributed, and therefore adding the matrix E(ι) · M(r) does
not incur any dependence between any subset of t columns
and the file index ι.

For each r ∈ [ρ], server secrecy is achieved because in every
round the received state of the user is |B(r)��B(r)|⊗σinit with
B(r) =

�
Yι,b

1,a | Yι,b
2,a

	
a∈J b

r ,b∈[β]
from (31) and this state is

independent of Yi with i �= ι. �
Unlike in the classical setting, the servers in the quantum

setting do not need access to a source of shared randomness
that is hidden from the user to achieve server secrecy. How-
ever, this should not be viewed as an inherent advantage since
the servers instead share entanglement.

Theorem 5.1: The QPIR rate of the scheme in Section V-B
is

R(Φ�) =
2(n − k − t + 1)

n
Proof: The user downloads ρn quantum systems while

retrieving 2kβ log(q) bits of information, thus the rate is given
by

R(Φ�) =
2kβ log(q)
log(qρn)

=
2ρc log(q)
ρn log(q)

=
2(n − k − t + 1)

n
.

�
The presented scheme is an adapted version of the

star-product scheme of [12], which is strongly linear [10].
To see that the QPIR scheme is induced by this strongly
linear scheme, it suffices to observe that for each p ∈ [2] the
second and third step in Protocol 5.1, up to the definition of
the classical responses B(r)

p,s with s ∈ [n], are the same as in
the star-product scheme. Hence, these steps can be viewed as
two parallel instances of the star-product scheme and it follows
directly from Definition 3.7 that this scheme is strongly linear.

VI. CONVERSE

In this section, we prove Theorem 4.1 and Theorem 4.3.

A. Proof of Theorem 4.1

Since the upper bound 1 is trivial, we prove the quantum
capacity in Theorem 4.1 is upper bounded by 2C�[A]. Let
ΦC be an arbitrary classical PIR scheme with assumptions
A and error probability �, and ΦQ[ΦC ] be an arbitrary
dimension-squared QPIR scheme induced from ΦC with error
probability �	. The PIR rate of ΦC is upper bounded as

kβ log q�n
s=1H(Bs)

≤ C�[A]. (32)

From the definition of dimension-squared QPIR, we have
H(Bi) ≤ 2 log d for all s ∈ [n] for ΦQ. Thus, the QPIR

rate R(ΦQ) is upper bounded as

R(ΦQ) =
kβ log q
n log d

≤ 2kβ log q�n
s=1H(Bs)

≤ 2C�[A]. (33)

Thus, the desired QPIR capacity is upper bounded by 2C�[A].

B. Proof of Theorem 4.3

Theorem 4.3 is proved with the following idea. If the
answered state from some k servers is independent of the
targeted file Xι, the user and the remaining (n−k) servers can
use the answers from the k servers as entanglement shared with
the user. Then, the entanglement-assisted classical-quantum
channel capacity [26] implies that the user can obtain at
most 2(n − k) log d bits of Xι, which implies Theorem 4.3.
Thus, we show that the answered state of the servers 1, . . . , k
have no information of Xι. For the proof, we consider the
process in which the k servers apply quantum operations
sequentially, and evaluate the information of Xι contained in
the quantum systems. Initially, the k servers have quantum
systems H1 ⊗ · · · ⊗ Hk and the state is independent of Xι.
After server 1’s operation, the state on A1 ⊗ H2 ⊗ · · · ⊗ Hk

has at most (log d)/m bits of Xι from the user secrecy.
Furthermore, we prove that as one more server applies the
operation, at most (log d)/m bits of Xι is added to the state
of the k servers, from the MDS-coded storage structure and
the user secrecy. Consequently, after all servers’ operations,
the k servers’ quantum systems contain at most (k log d)/m
bits of Xι, which converges 0 as m → ∞.

Throughout the proofs, we use superscripts c (resp. u, s, m)
over equalities and inequalities for denoting they are derived
from correctness (resp. user secrecy, server secrecy, MDS
coded storage structure) of the QPIR scheme. For example,
u= denotes that the equality is derived from the user secrecy
of QPIR scheme.

The following proofs are written with quantum mutual
information and quantum relative entropy defined as follows.
When a quantum system A has a state σ =

�
i pi|ψi��ψi|, the

von Neumann entropy is defined as H(A)σ = Tr(σ log σ) =
−

�
i pi log pi. Similar to the classical case, the mutual infor-

mation and conditional mutual information are defined as
I(A;B)σ = H(A)σ +H(B)σ −H(AB)σ and I(A;B|C)σ =
I(A;BC)σ − I(A; C)σ , respectively. For two states σ and σ	

on A, the quantum relative entropy is defined as D(σ�σ	) =
Tr(σ(log σ − log σ	)). Similar to classical case, we have
I(A;B)σ = D(σ�σA ⊗ σB)

For the proof, we prepare two propositions.
Proposition 6.1 (Fano’s Inequality): Let X,Y be random

variables with values in [n] and Z be any random variable.
Then, H(X |Y Z) ≤ � logn+ h2(�), where ε = Pr[X �= Y ].

Proposition 6.2: Let κ be a CPTP map from A to B and σ
be a state on A⊗C. Then, I(A; C)σ ≥ I(B; C)κ⊗idC(σ), where
idC is the identity operator on C.

Proof: The proposition follows from the following
inequality

I(A; C)σ = D(σ�σA ⊗ σC)
≥ D(κ⊗ idC(σ)�κ(σA) ⊗ σC) = I(B; C)κ⊗idC(σ),
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where σA and σC are reduced states on A and C, and
the inequality is from the data-processing inequality of the
quantum relative entropy. �

Theorem 4.3 is proved by the following two lemmas.
Lemma 6.1: The size of one file is upper bounded as

kβ log q ≤
2(n − k) log d + I(A[k];Xι|Qι) + h2(�)

1 − �
, (34)

where � = maxι∈[m] Pr[Xι �= X̃ι].
Proof: Fix the index of the targeted file as K = ι =

argmaxι∈[m] Pr[Xι �= X̃ι]. The uniformity of Xι ∈ Fβ×k
q

and the Fano’s inequality (Proposition 6.1) imply

I(X̂ι;Xι|Qι) = H(Xι|Qι) −H(Xι|X̂ιQι) (35)

≥ (1 − �)kβ log q − h2(�). (36)

From Proposition 6.2, the mutual information in the above
inequality is upper bounded as

I(A;Xι|Qι) ≥ I(X̂ι;Xι|Qι). (37)

Furthermore, the left-hand side of the above inequality is upper
bounded as

I(A;Xι|Qι) = I(A[k+1:n];Xι|A[k]Q
ι) + I(A[k];Xι|Qι)

≤ 2 log dimA[k+1:n] + I(A[k];Xι|Qι)
= 2(n − k) log d + I(A[k];Xι|Qι).

Thus, combining (36), (37), and (38), we obtain the desired
lemma. �

Lemma 6.2: limm→∞ I(A[k];Xι|Qι) = 0.
With Lemmas 6.1 and 6.2, we prove Theorem 4.3 as

follows. From Lemma 6.1, the [n, k, 1]-QPIR capacity is upper
bounded as

C [n,k,1]
m,� = sup

kβ log q
n log d

(38)

≤ 1
1 − �

�
2(n − k)

n
+
I(A[k];Xι|Qι) + h2(�)

n log d

�
. (39)

Furthermore, Lemma 6.2 proves that I(A[k];Xι|Qι)
approaches zero as the number of files m goes to infinity,
and h2(�) → 0 as � → 0. Thus, as m → ∞ and � → 0,
the capacity is upper bounded by 2(1 − k/n), which implies
Theorem 4.3.

In the remainder of this subsection, we prove Lemma 6.2.
For the proof, we prepare the following lemma.

Lemma 6.3: Suppose that t ∈ [n] and T ⊂ [n] satisfy t �∈ T .
Then,

I(AtHT ;Y ιt |Qι) ≤
2 log d

m
. (40)

Proof: Since the operation from Ht to At is applied on
the quantum system of dimension of d, we have

I(AtHT ;Yt|Qι) ≤ 2 log d. (41)

On the other hand, we have

I(AtHT ;Yt|Qι) =
m�
j=1

I(AtHT ;Y jt |Y
[j−1]
t Qι) (42)

=
m�
j=1

I(AtHT Y
[j−1]
t ;Y jt |Qι) ≥

m�
j=1

I(AtHT ;Y jt |Qι)

(43)
u= mI(AtHT ;Y ιt |Qι), (44)

where the last equality follows from the user secrecy condi-
tion. Thus, combining (41) and (44), we obtain the desired
inequality (40). �

Now, we prove Lemma 6.2. Proof: [Proof of
Lemma 6.2] By mathematical induction, we prove

lim
m→∞

I(A[j]H[j+1:k];Y ι[j]|Qι) = 0 (45)

for any j ∈ [k]. Then, the case for j = k proves the lemma.
First, the case j = 1 follows from Lemma 6.3. Next,

assuming

lim
m→∞

I(A[j]H[j+1:k];Y ι[j]|Qι) = 0, (46)

we prove

lim
m→∞

I(A[j+1]H[j+2:k];Y ι[j+1]|Qι) = 0 (47)

for j ∈ [k − 1]. Since

I(A[j+1]H[j+2:k];Y ι[j+1]|Qι) (48)
= I(A[j+1]H[j+2:k];Y ι[j]|Qι)

+I(A[j+1]H[j+2:k];Y ιj+1|Y ι[j]Qι), (49)

we prove that the two terms of (49) approaches 0 as m → ∞.
Then, we obtain the desired statement by induction.

The first term of (49) is upper bounded as

I(A[j+1]H[j+2:k];Y ι[j]|Qι) ≤ I(A[j+1]H[j+2:k]Yj+1;Y ι[j]|Qι)
(a)

≤ I(A[j]H[j+1:k]Yj+1;Y ι[j]|Qι)
m= I(A[j]H[j+1:k];Y ι[j]|Qι),

where (a) follows from Proposition 6.2 and the last equality
holds because Yj+1 is independent of all other quantum
systems and random variables. Thus, by the assumption (46),
the first term of (49) approaches 0 as m → ∞.

The second term of (49) is upper bounded as

I(A[j+1]H[j+2:k];Y ιj+1|Y ι[j]Qι) (50)
m= I(A[j+1]H[j+2:k]Y

ι
[j];Y

ι
j+1|Qι) (51)

≤ I(A[j+1]H[j+2:k]Y[j];Y ιj+1|Qι) (52)

≤ I(Aj+1H[k]\{j+1}Y[j];Y ιj+1|Qι) (53)

m= I(Aj+1H[k]\{j+1};Y ιj+1|Qι) ≤
log d

m
, (54)

where (53) follows from Proposition 6.2 and the last inequal-
ity is from Lemma 6.3. Thus, the second term of (49)
approaches 0 as m → ∞. �

VII. CONCLUSION

In this paper, we have studied the capacity of QPIR/QSPIR
with [n, k]-MDS coded storage and t colluding servers.
As general classes of QPIR, we defined stabilizer QPIR
and dimension-squared QPIR induced from classical strongly
linear PIR. We have proved that the capacities of stabilizer
QPIR/QSPIR and dimension-squared QPIR/QSPIR induced
from strongly linear PIR are 2(n − k − t + 1)/n. When
there is no collusion, i.e., t = 1, we have proved that the
asymptotic capacity of QPIR/QSPIR is 2(n − k)/n, when the
number of files m approaches infinity. These capacities are
greater than the known classical counterparts. For the achiev-
ability, we have proposed a capacity-achieving QSPIR scheme.
The proposed scheme combined the star product PIR
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scheme [12] and the QPIR scheme with the stabilizer for-
malism [23].

As open problems, we state three directions for extending
our results. The first direction is to find the general capacity of
QPIR/QSPIR with MDS coded storage and colluding servers.
This problem in full generality is also unsolved in the classical
setting. Partial solutions were given in [8] and [9], which imply
that the combination of collusion and coded storage leads to
involved linear dependencies that need to be taken into account
for a general converse proof. Note that as the capacities proved
in these works depend on the number of files m, it is possible
that they exceed the asymptotic QPIR capacity proved in this
work for a very small number of files.

The second direction is to find non-stabilizer QPIR schemes.
Most of the existing multi-server QPIR schemes are stabi-
lizer QPIR schemes. Finding non-stabilizer QPIR schemes
is the first step towards the achievability part of the general
non-asymptotic capacity theorem.

The third direction is to clarify the trade-off between the
amount of entanglement and the capacity. However, even
in the case of only two servers, it is very challenging to
derive the capacity with restricted entanglement. As a related
study, the entanglement-assisted classical capacity for a noisy
quantum channel [41] has been recently studied with several
new techniques.
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