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Abstract
Aerospace welds are non-destructively evaluated (NDE) during manufacturing to identify defective parts that may pose
structural risks, often using digital radiography. The analysis of these digital radiographs is time consuming and costly.
Attempts to automate the analysis using conventional computer vision methods or shallow machine learning have not, thus
far, provided performance equivalent to human inspectors due to the high reliability requirements and low contrast to noise
ratio of the defects. Modern approaches based on deep learning have made considerable progress towards reliable automated
analysis. However, limited data sets render current machine learning solutions insufficient for industrial use. Moreover,
industrial acceptance would require performance demonstration using standard metrics in non-destructive evaluation, such
as probability of detection (POD), which are not commonly used in previous studies. In this study, data augmentation
with virtual flaws was used to overcome data scarcity, and compared with conventional data augmentation. A semantic
segmentation network was trained to find defects from computed radiography data of aerospace welds. Standard evaluation
metrics in non-destructive testing were adopted for the comparison. Finally, the network was deployed as an inspector’s aid
in a realistic environment to predict flaws from production radiographs. The network achieved high detection reliability and
defect sizing performance, and an acceptable false call rate. Virtual flaw augmentation was found to significantly improve
performance, especially for limited data set sizes, and for underrepresented flaw types even at large data sets. The deployed
prototype was found to be easy to use indicating readiness for industry adoption.

Keywords Deep learning · Non-destructive evaluation · Welding · Data augmentation · Probability of detection

1 Introduction

Radiography is used extensively in inspections of castings
and welds in the aerospace, nuclear and automotive
industries. The main task is to find discontinuities that
cannot be seen via visual inspection, like gas pores and
embedded cracks, or surface breaking defects invisible to
the naked eye. Jonsson et al. [24] provide guidelines to
how weld imperfections affect fatigue strength. Because
discontinuities reduce structural properties and may lead
to unpredictable failure, non-destructive evaluation (NDE)
has high requirements for reliability. The requirements are
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especially strict in safety-critical components, like those
used in aerospace.

In NDE of welds, radiography data is most commonly
analysed by experienced human inspectors. This manual
process is time consuming, operator dependent and expen-
sive. Components often have large amounts of acceptable
flaws, and very few unacceptable ones. The rarity of criti-
cal flaws and the monotony of the inspection data risk errors
related to human factors. Bertović [4] summarizes human
factors research in NDE. Traditionally, the individual skill
of the inspector and psychological aspects like tiredness or
stress have been considered to be the main human factors
that affect NDE quality. The effects of inspection pro-
cedures, human-machine interactions and group influence
on inspection reliability are increasingly considered. The
development of highly capable automatic tools that work
well with human operators is a key step in improving the
reliability of NDE [5].

The workload of manual analysis in inspections are
a limiting factor in terms of robustness and capacity.
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Defect acceptance criteria may be related to size, shape,
location and proximity between defects [20]. Complex
criteria with precise size definitions pose the risk of operator
subjectivity affecting the outcome, leading to inconsistent
results. Moreover, because of the costly analysis, resources
for radiography are often only allocated to the detection
and classification of critical defects that require repair or
rejection of the part. Collecting statistics of acceptable
defects, like the average amount of porosity in welds, may
be unexplored regardless of the potential benefit of more
fine-grained quality control. With more economical and
accurate analysis, improvements in manufacturing could
be made just by analysing existing inspection data, which
further drives the interest for automation.

Several automation techniques have been developed in
the attempt to alleviate the difficulties of manual analysis,
either partially or fully. Automated analysis relying on
conventional computer vision or shallow machine learning
[34, 36, 45] have seen some use, especially in casting
inspections. They have not been widely adopted in welding
applications due to challenges like varying component
geometry, low or inconsistent contrast and brightness, and
flaw-like anomalies or geometry that produce excessive
false calls. Figure 1 shows examples of defects and potential
false indications in radiography data from the material used
in the current work.

Recently, a surge of interest has centred machine learning
and deep learning for image analysis in particular. Deep
learning models are developed by learning from massive

sets of data containing thousands or millions of examples.
Resources of annotated training data are limited for many
NDE applications [11, 13], and thus, the potential of deep
learning may not be fully utilized. Recent deep learning-
based segmentation methods, like the U-net proposed by
Ronneberger et al. [42], make it possible to develop
well performing models using smaller data sets. Data
augmentation or simulation methods are often used to
compensate for the lack of natural training examples with
promising results [11, 13, 26, 33]. Even with improving
methodology, industry adoption may be delayed due to
differences between the standard evaluation metrics in NDE
and deep learning which make it difficult to show that
sufficient performance has been achieved.

1.1Weld defects

Welding processes can cause many different types of
defects, the classification of which is standardized in
for example ISO 6520-1:2007 [19]. Six imperfection
categories are listed: cracks, cavities, solid inclusions, lack
of fusion and penetration, imperfect shape and dimension,
and miscellaneous imperfections. Some welding processes
only risk the occurrence of some of these categories.
This study is concerned with a welding process where
the defects of interest are cracks and cavities. Cracks
are linear imperfections in welds commonly caused by
solidification or residual stresses. In many applications,
cracks are a rare but most critical in terms of structural

Fig. 1 Weld radiography data
features. (a) Non-defective
crack-like anomaly (white
arrow). (b) Small pore in a weld
(white arrow), and lead letters
with holes resembling pores
(black arrow). (c) A pair of pores
with unacceptable combined
size (merged white circles), and
smaller, acceptable pores (black
circles). (d) A non-defective
area on the edge of an imaging
plate, resembling a large cavity
(white arrow). (e) A chain of
small pores (white arrows)
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risk. Cavities are caused by trapped gas or shrinkage. Gas
pores, characterized by round shape, are most common. ISO
5817:2014 [20] provides an example of acceptance levels
for weld defects, often used in the industry as basis for more
case-specific acceptance criteria.

1.2 Industrial radiography

Radiography is a common inspection method in man-
ufacturing processes, especially castings and welds. An
overview of the technique is provided in the ASM handbook
by Greene et al. [14]. The three most prominent methods for
capturing the image are film, computed radiography (CR)
and digital detector array (DDA). Film radiography works
similarly to regular film photography: Images are devel-
oped in a darkroom and viewed on an illuminating device
with an adjustable back light or digitized. CR is based on
storing the image a reusable imaging plate containing phos-
phor, which is then digitized by scanning with a laser [43].
DDAs directly produce a digital output from the radiogra-
phy. Despite some differences in usage and image quality,
film, CR and DDA techniques produce quite similar data,
thus similar computer vision methods can be used for all of
them. This study is conducted for a CR-based inspection.

ISO 10675-1:2017 [21] describes some limitations of
radiography for defect detection. Surface imperfections like
undercut or weld spatter may not be possible to evaluate due
to geometry. Additionally, because radiography produces
a 2D-image over the entire thickness of the studied
part, thicker areas with similar volumetric imperfection
density seem more severe. Cracks that open horizontally
(parallel with respect to the imaging plate or film) are
also undetectable due to the minute thickness of the crack
not producing enough difference in intensity. These effects
make the inspection more challenging. NASA-STD-5009B
[37] provides values of minimum detectable crack sizes
for radiographic NDE, depending on component thickness.
The minimum detectable crack length for 2.72-mm-thick
components is 3.8 mm, which is a suitable rough reference
value for the application area in this work.

Greene et al. [14] summarize how the radiographic
imaging process produces artefacts that reduce data quality.
Shadows are formed due to the radiation point source: thick
geometry casts a shadow away from the source because
less of the beam is absorbed by the image conversion
medium. Any geometry that is at an angle with respect to
the imaging plate results in a distorted view. Many sources
of unsharpness (blurring effects) exist, the most significant
of which is usually geometric unsharpening, i.e. the partial
shadow cast due to the width of the radiation source.
Unsharpness effects limit the effective resolution, making
small imperfections under some threshold undetectable.
Radiation scatters when interacting with the test object

or the surface directly under the object, contributing to
blurriness and causing significant background noise. Small
defects can be difficult to distinguish from this noise,
exhibiting a small contrast to noise ratio (CNR).

To accurately capture small thickness differences,
radiographic images are captured in high dynamic range.
Twelve bit (4096 gray values) or 14 bit (16384 gray values)
are most common, while images used in the large deep
learning data sets like ImageNet [10] have 8 bit depth (256
values per channel). However, the theoretical dynamic range
is often not utilized completely to avoid an excessively
long exposure time. Areas outside the region of interest
(ROI) like a bare imaging plate (maximum intensity) or
lead lettering (minimum intensity) occupy the extreme ends
of the dynamic range, while the interesting features are
often small deviations in gray values. In components with
varying thickness, like welds or non-planar geometry, flaw
indications could be present on highly different ranges
of intensities. This adds to the challenge of the operator,
since absolute intensity cannot be used to determine the
severity of the detected imperfection. Computer monitors
can display 8 bits (256 gray values). High-end radiologist
monitors can display 10 bits (1024 gray values) or even
more, however, Kimpe and Tuytschaever [25] estimate that
the human eye can only differentiate between about 900
gray values. To make use of the dynamic range that is
larger than what the human eye or display can differentiate,
operators repeatedly adjust the brightness and contrast
levels to focus on small sections of the entire range at a time.
The speed and quality of industrial radiography are in this
sense limited by human physiology.

1.3 Automation in digital radiography NDE

Computer vision algorithms, and more recently deep learn-
ing, have been researched extensively to automate analysis
in industrial radiography. The most common goals of the
proposed methods are image enhancement, segmentation
(marking the areas with defects), and classification between
different flaw types. Compared to other fields of NDE like
ultrasound or eddy current, radiography can more readily
leverage developments in more general fields of automatic
image analysis, since digital radiographs are essentially
images with some differences as described in Section 1.2.

To compensate for the limitations in radiographic image
quality, several enhancement and segmentation algorithms
have been developed before the recent advances in deep
learning. Edge detectors and sharpening filters are routinely
used in industry. Nacereddine et al. [36] proposed image
enhancement for digitized radiographs of welds by taking
a user-defined ROI and applying median filtering for
noise removal and contrast enhancement by look up
table transformation. They studied different thresholding
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approaches for defect segmentation, with image dilation and
erosion post-processing. Schwartz [45] used a step wedge
type penetrameter to link the luminosity of a digitized film
X-ray image to material thickness. They segmented defects
using Canny edge detection [7] and a threshold which
was derived from the material thickness information, and
reported high detection accuracy on X-ray images of welds
and on a test object with drilled artificial flaws. This type
of approach requires a uniform thickness and the use of
specific equipment. In terms of industrial use, segmentation
based on traditional computer vision is limited to cases
where the acquired images do not display large variability.

Key developments in deep learning-based classification
and segmentation by, e.g., Krizhevsky et al. [28] and Long
et al. [31] have lead to machine learning reaching main-
stream use in image analysis applications like self-driving
cars [3]. Some differences exist between radiography and
the common image analysis applications. In NDE, the
detection of the objects of interest is the main focus and
subsequent classification is more straightforward, because
the objects are simpler and there are only a few categories
present. In many cases, binary classification of background
versus defect is sufficient, and further division can be
achieved by observing the shape (aspect ratio) and size of
defects via conventional computer vision. This is in con-
trast to the generic image classification, where the main
challenge is to make sense of images with often a diverse
range of features. The main challenges of deep learning-
based radiography analysis are related to the small size and
CNR of the defects, image quality limitations described in
Section 1.2, and other features that are difficult to distin-
guish from the objects of interest (as shown in Fig. 1).

Deep learning approaches rely on a representative and
large distribution of examples in order to achieve general
knowledge on previously unseen input. As with many
other fields, the use of machine learning for automated
defect detection is limited by the available labeled training
data. Especially some critical flaw types, like cracks, are
relatively rare. Direct manual labeling becomes increasingly
problematic with increasing data volume, because it is
labour-intensive and susceptible to errors or inconsistency
between labels. Mery et al. [35] published the GDXray
database which contains about 20000 X-ray images in
various categories. Notable for industrial radiography are
2727 images of castings and 88 images of welds. At present,
it is the only publicly available database in this domain.
This data set has been used for both early and more recent
research in defect detection [32, 33, 44]. The castings set is
suitable for deep learning bench marking, but the size of the
welds data set is still limited in size.

Mery and Arteta [34] provide a good summary on the
early automated classification of X-ray data using sparse
representations, support vector machine (SVM) classifiers,

deep learning and other methods. They also extracted a
voluminous data set of defected and non-defected image
patches (32 × 32 pixels) from the GDXray database [35].
Working with small patches provides a way to increase
the apparent data volume for the training set, but it also
necessarily limits the network from making predictions
based on larger scale features that may provide important
context, like the area where the defect is located. They
report high performance (95.2% accuracy) with hand-tuned
extracted features and a SVM classifier. They also noted
that the plain use of features extracted from convolutional
neural networks (CNNs) pretrained in ImageNet (VGG,
Simonyan and Zisserman [46]; AlexNet, Krizhevsky et al.
[28]; and GoogleNet, Szegedy et al. [47]) did not work
well for these X-ray images, despite being a successful
tool for recognition in natural images. More recently, Du
et al. [11] used a feature pyramid network (FPN) [30]
approach to detect various defects in cast components. As in
many cases, the data for training an X-ray detection system
was limited and data augmentation (rotation, cropping and
histogram equalization) was used to utilize the available
data more efficiently. The authors also demonstrated that
this conventional data augmentation has limited scope and
additional data augmentation offers diminishing returns.
Jiang et al. [23] proposed a novel pooling strategy for CNNs
to better represent dark and light defects like slag and
tungsten inclusion, and classified defects into six categories:
crack, lack of fusion, lack of penetration, slag inclusion,
porosity and non-defect. They used a set of 3486 32 × 32
pixel images divided into the six categories for training.

Simulated defects and physical artificial flaws have
been used to generate training data with promising results.
Recently, Gamdha et al. [13] used a combination of real
and simulated synthetic X-ray images to train a mask R-
CNN [17] segmentation network. Defects were introduced
by simulating X-ray images from generated computer-aided
design (CAD) models with shapes depicting characteristic
flaws, like pores and voids. The addition of synthetic images
improved the network performance and 87% accuracy was
reported. Konnik et al. [26] proposed to address the same
issue by making physical artificial flaws for computed
tomography (CT). The artificial flaws were manufactured
layer-by-layer by laser machining and then stacked for
CT scanning, thus obtaining an accurately labeled 3D
representation of defects. Mery [33] trained several modern
deep learning classifiers on the GDXray [35] castings data
set using simulated ellipsoidal defects superimposed onto
defect-free areas, achieving high accuracy on true data.

1.4 Automatic radiograph evaluation in other fields

In the medical field, automatic X-ray analysis using deep
learning has sparked broad interest. Rajpurkar et al. [38]
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detected pneumonia from chest X-ray images using a
DenseNet proposed by Huang et al. [18], along with class
activation mapping developed by Zhou et al. [54] to achieve
a coarse localization. They reported prediction scores
surpassing the average score of experienced radiologists on
a test set of about 400 images. Similarly, Li et al. [29] Used a
combination of Resnet by He et al. [16], YOLO by Redmon
et al. [40] and a fully convolutional network (FCN) by Long
et al. [31] to annotate diseases in the Chestx-ray8 [51] data
set. Successes in medical radiography suggest that good
performance can also be achieved in industrial applications.

The medical X-ray applications centre around topics for
which there are public data sets available of hundreds of
thousands of images, like CheXpert [22] with 224,316 chest
radiographs. Consequently, simulation or augmentation
methods are not widely used. In NDE, the available data
sets are usually much smaller. The largest public X-ray NDE
data set, GDXray [35], only contains 88 images of welds.
However, the detection task may also be simpler in nature,
as defects can be more clearly characterized by shape
and mainly vary in size and aspect ratio. Because NDE
data are scarce but relatively simple, simulation methods
and manufacturing artificial flaws [13, 26, 32] have been
focused on in research.

1.5 Deep learning architectures for segmentation

Image analysis tasks can be divided into classification,
where a label is assigned to an entire image without
localization, and localizing tasks for which we use the same
terms as He et al. [17]: object detection, where objects
are marked by bounding box; semantic segmentation,
where each pixel is classified to produce a fine-grained
separation between classes; and instance segmentation,
where (possibly overlapping) objects are individually
detected in addition to the pixel-wise classification.

Commonly used architectures for classification include
Resnet by He et al. [16] and Densenet by Huang
et al. [18], that are characterized by very deep stacks
of convolutional layers and an output vector describing
predicted class probabilities. Zhao et al. [53] summarize
recent developments in object detection models: For
instance, YOLO networks by Redmon and Farhadi [39]
and Bochkovskiy et al. [6] are commonly used. Long
et al. [31] introduced FCNs for semantic segmentation,
and greatly improved results in several tasks including
PASCAL VOC [12]. The network consists of convolutional
encoder and decoder stages with skip connections between
them. Ronneberger et al. [42] developed the U-net for
segmentation tasks on biomedical images. It is based on
the FCN with the addition of more learnable upsampling
layers and a weighted loss function for class balancing
and instance separation. He et al. [17] proposed the Mask

R-CNN (based on Faster R-CNN by Ren et al. [41]),
which outputs instance segmentation from region proposals
generated by a CNN.

Jiang et al. [23] used a CNN with classification output
for weld defect detection. Segmentation offers advantages
over classification in NDE applications: Defects can be
measured and counted, and their shape can be determined,
which is important for defect acceptance as discussed in
Section 1.1. Furthermore, segmentation models provide a
more explainable prediction by default. With classification
models, there is a risk of making seemingly correct
predictions based on irrelevant features, like a scratch next
to a crack. With a segmentation model, this would be
exposed as only the pixels belonging to the scratch would
be indicated. Object detection and instance segmentation
architectures have also been used in NDE. Mery [33] used
YOLO networks [6, 39] to output bounding boxes and
Gamdha et al. [13] used mask R-CNN [17] for instance
segmentation.

1.6 Data augmentation for segmentation tasks

Ronneberger et al. [42] developed the U-net for segmenta-
tion on biomedical images: cells in differential interference
contrast and phase contrast microscopy, and neuronal struc-
tures in electron microscopic recordings. The tasks they
showcase are similar to those in radiography NDE in that
the data is 2-dimensional (can be described by a grayscale
image) and the features of interest are less varied than in
general image segmentation tasks. Moreover, the features
differentiate from background faintly or have unclear, soft
boundaries. When using small data sets, they found data
augmentation by random elastic deformations significantly
improved segmentation accuracy. The augmentations were
made by generating deformation fields via interpolation
from random displacement vectors and applying them on
the training images.

Weld radiographs differ from the cell microscopy
images by having a more varied background with back-
ground objects like geometry, markings, scratches and
imaging artefacts that resemble the features of interest
(defects). Moreover, straight lines like cracks or lack of
fusion bear significance making random displacements less
representative.

1.6.1 Virtual flaw data augmentation

Usually, augmentation consists of geometrical operations
like flips, rotations, shear, random crops and scaling, and
other image manipulations like random noise and bright-
ness. In the context of NDE, conventional augmentation
provides no variation for defect location. Simulation tech-
niques, proposed by Gamdha et al. [13] and Mery [33],
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achieve variation of shapes and locations. Simulation, how-
ever, relies on idealizations of true defects, potentially
leading to the loss of some naturally occurring variability.
Furthermore, imperfections with more complicated shapes,
like cracks, lack of penetration in welds, or cracks stem-
ming from pores, require an increasing effort to capture
accurately.

Virkkunen et al. [49] introduced a method of creating
virtual flaws for UT data to use in NDE qualification as
alternatives to defects in physical mock-ups. The principle
of the virtual flaw is to extract real flaw signals from
inspection data, augment the flaw signal separately, and re-
introduce it into another location. They generated a large set
of data from limited real defects to more accurately measure
inspector performance. Virkkunen et al. [50] used the virtual
flaw technology as data augmentation for a deep learning
classifier for ultrasonic testing (UT) data. Koskinen et al.
[27] compared different types of virtual flaws and simulated
flaws as training data for UT, finding that virtual flaws
outperformed purely simulated data, and that the simulated
data on its own was insufficient for generalization. The
advantage of virtual flaw is that is generates variability to
both background and flaw signals, while having both the
defects and background drawn from real data. Xu et al. [52]
used a somewhat similar technique to train a network for
image matting, by extracting foreground objects manually
from images with simple backgrounds and compositing
them onto new backgrounds, reporting good performance
on natural images.

Another key advantage of the virtual flaw is the ability to
combine defects from several sources. For example, cracks
are important to find yet very rare in actual data — by
using virtual flaws, cracks can be extracted from other
components or artificially manufactured cracks in validation
samples, and transferred onto the case-specific background.

1.7 Validation

Evaluating the quality of inspection is an integral part
of NDE. Overestimating capabilities is an obvious safety
hazard, and underestimating leads to increased costs. The
common measurements are reliability, accuracy, and false
call rate. Reliability, the most important metric, is the ability
to detect defects, and accuracy is the quality of determining
the defect sizes. False call rate measures the frequency of
making false indications.

A hit/miss probability of detection (POD) curve is a
standard reliability measure in NDE. A comprehensive
description is available in MIL-HDBK-1823A [1]. In a
hit/miss POD evaluation, inspection data with known defect
locations and sizes is inspected, documenting detected and
undetected defects. A generalized linear model is then
fitted to hit/miss data denoting the probability of detection

with respect to defect size. A standard performance value
obtained from the POD curve is the a90/95, meaning the
defect size that has 90% probability of detection with 95%
confidence bounds. This measure is used to determine the
smallest defect that can reliably be found. Notably, hit/miss
POD does not take into account false calls, and assumes a
steadily more difficult detection with smaller imperfection
size. Other approaches for POD determination include â
vs. a, described in ASTM E3023-21 [2] and model assisted
POD [8, 9].

The false call rate is analysed separately from reliability.
In MIL-HDBK-1823A [1], false call rate is defined as false
positives divided by number of opportunities. The definition
of opportunities is case-specific, and should be made in a
way that reflects the inspection well.

Deep learning segmentation performance is often mea-
sured by intersection over union (IoU), which is the overlap
of the true and predicted areas divided by the unions of the
true and predicted areas. In contrast to the NDE metrics,
IoU combines detection and false calls into a single value,
and does not link object size to detection rate like POD. The
IoU can also be calculated separately between each ground
truth defect and overlapping prediction. A threshold is often
set to determine the minimum amount of overlap required
accept a correct segmentation. As discussed by Mery [33],
the defects in radiographs can be very small, spanning only
a handful of pixels, which makes the IoU threshold harder
to reach than for most applications where the features of
interest are larger. Another case is flaw clusters, where one
prediction can correctly span two very close defects, but
produce a low IoU score due to not giving two separate
indications. Hit/miss POD does not necessitate correct size
measurement, only detection.

1.8 Objectives of presented work

We identify the key issues in developing automated, deep
learning-based systems for industrial radiography to be the
scarcity of annotated data, specific challenges related to
radiography data that differ from common images, and
a need to adopt deep learning metrics to follow industry
standards in NDE validation.

The contributions of this paper are as follows. First, we
show that modern semantic segmentation networks can be
used to find weld defects on a real inspection case, using
CR data of welds in aerospace components. Secondly, we
explore the added benefit of virtual flaw augmentation at
different data set sizes, by first collecting and annotating
a large data set and progressively testing performance on
smaller subsets of the original material. Thirdly, we take
metrics from standard practices in NDE and adapt them
for a deep learning setting to facilitate deployment in
industrial applications. Finally, we assess the effectiveness
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of the system as an assisting tool in radiographic inspection
by conducting a field experiment. We take the imaging
process as given, i.e. changes to the data acquisition are
not made. Performance is compared to evaluations by
human inspectors, and not to, say, metallographic evaluation
results.

2Materials andmethods

The experiment was divided into the following phases. First,
raw data were gathered from a real radiographic inspection
of aerospace welds and annotated manually. Additionally,
sample plates with thermal fatigue cracks were imaged
with the same radiography unit and annotated. Secondly,
conventional and virtual flaw augmentation were utilized
to generate training data sets from progressively smaller
subsets of the entire data. A third, combined data set
was created by equally sampling the two augmented data
sets. Next, a modified U-net model [42] was trained using
the different data sets to generate semantic segmentation
masks of defects vs. background. Model performances were
compared by using the relevant NDE metrics of POD,
sizing accuracy and false call rate. After validation, the
deep learning model for defect detection was deployed on
a standalone device with a graphics processing unit (GPU).
We created visualizations from the generated segmentation
masks by applying size, shape and proximity criteria to
separate acceptable and unacceptable defects. The system
was tested by expert inspectors to qualitatively assess its
readiness for industrial use.

2.1 Inspection case

The application investigated in this work is inspection
of welds in aerospace components based on digital X-
ray images. Flaws in the inspected welds are mainly
small pores. Larger pores and pore clusters are the most
common unacceptable imperfections encountered. The X-
ray inspection is setup with CR and deploy source energies
of roughly 150 kV and above. The CNR of the flaws can
be very small, sometimes close to unity. Images have a high
dynamic range which makes the inspection process arduous,
as operators may need to navigate the images by zooming
and manually adjusting brightness and contrast for different
areas.

2.2 Raw data, annotations andmanufactured cracks

A data set consisting of 223 CR images was collected,
each containing several welded areas. The defects in the
data set were mostly pores. To expand the training set with
crack data, 5 thermal fatigue cracks were manufactured

onto samples of a similar material. To make the added data
representative, the cracked samples were scanned with the
same radiography equipment.

The annotation process is outlined in Fig. 2. The flaws
were annotated manually for each image, resulting in 3500
separate indications, out of which 4 were cracks found
in the original images and 5 were manufactured thermal
fatigue cracks. In addition to annotating the defects, two
types of masks were manually marked on each image. The
weld areas were masked for later use in the virtual flaw
data augmentation step and evaluation. Drilled holes in
image quality indicators (IQIs) looked very similar to pores
and lowered performance slightly when included as non-
defective examples. Thus, they were masked to allow them
to be excluded from the training data.

For the initial development phase, the raw images were
randomly divided into training (60%), validation (20%) and
test (20%) data sets. The number of original cracks was
insufficient for both training and validation, thus all images
with original cracks were placed in the validation or test
sets, and the training set contained all of the manufactured
cracks, i.e. only virtual flaws were used in the case of
cracks. The training and validation sets were later combined
for use in cross-validation to compare the three different
augmentation methods. The test set was reserved for a final
evaluation.

2.3 Evaluating the significance of virtual flaw data
augmentation

We compared 3 different data augmentation strategies:
standard (using random shear, rotation, crop and resize,
flips, noise, brightness and contrast), pure virtual, using
virtual flaws only, and combined, an even sampling of
the first two with 50% of each. The processing pipelines
resulting in the three augmented data sets are presented in
Fig. 2.

For standard augmentation, 512 × 512 pixel patches
were randomly extracted from the original images, half
containing defects and half being clean. Because the
linearity of features, like weld edges or cracks, have
significance in our case, we used affine transformations
that preserve straight lines as opposed to the random elastic
deformations used by Ronneberger et al. [42].

For virtual flaw augmentation, we used a method simi-
lar to Virkkunen et al. [50], modified for radiography data.
The annotated flaws were extracted from background. The
extracted flaws were augmented with affine transforma-
tions, random noise and flips, and then re-introduced onto
non-defected areas on the welds by utilizing the manu-
ally marked weld masks. Again, size 512 × 512 pixels
image patches were randomly sampled from the training
images, with 50% flawed and 50% non-flawed examples. To
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Fig. 2 Data processing steps resulting in three different augmented inputs: standard, pure virtual, and combined. The processing consists of four
stages: collecting raw data, making annotations, image processing, and sampling the standard and pure virtual data sets for a combined input

represent clustered defects commonly found in welds, up to
five virtual flaws were randomly implanted into each flawed
example, but with fewer (1–2) being most common.

Extracted thermal fatigue crack signals were added in
the virtual flaw augmentation. To compensate for the small
number of cracks, the crack signals were over-represented
in comparison to their number in the original data set,
so that they made up 5% of all the implanted flaws. The
resulting implanted cracks have lower natural variation than
the pores, but the affine transformations make up a fairly
representative distribution of flaws for the task, similarly to
the defects in a simulation approach by Mery [33].

Previous studies by Virkkunen et al. [50] and Koskinen
et al. [27] using virtual flaw augmentation on UT data
had a limited amount of real flaws in their data sets,
so a pure virtual flaw approach was used. However, the
material in this study provides a larger representation of
defect locations in its original form, without possibility
for artefacts or skewed distribution that may be present in
the virtual flaw process. Thus, we studied if combining
standard augmentation and virtual flaw augmentation can
improve results by creating a 50/50 sampled data set from
the standard and pure virtual augmentation. Examples of
standard and virtual flaw augmentation are shown in Fig. 3.
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Fig. 3 Patches of training data and their labels for virtual flaw
and standard augmentation. First row: Virtual flaw. (a) After flaw
implanting. (b) Corresponding ground truth mask. (c) After further
augmentation. (d) Corresponding ground truth mask. Second row:

Standard augmentation. (e) Unedited patch. (f) Corresponding ground
truth mask. (g) After augmentation. (h) Corresponding ground truth
mask

2.4 Model architecture

We chose a semantic segmentation approach based on the
following considerations. Defects that are intersecting or
are close to each other are usually treated as a single
large indication in terms of inspection acceptance, thus it
is not necessary to accurately separate defects. In cases
like this, semantic segmentation architectures can be used
instead of instance segmentation without loss of benefit
for the use case. This simplifies the annotation process,
because overlapping or adjacent indications do not have
to be separated. Object detection networks (which output
bounding boxes), on the other hand, give less information of
the shape of defect, which can be problematic for example
in the case of a diagonally placed crack, that would produce
an approximately square bounding box. We later used post-
processing steps dependent on the linearity of the defect, so
the per-pixel annotation was necessary.

We preprocessed the data by unsharp masking to
highlight flaws, similarly to what is used by human
inspectors, and concatenated the blurred and sharpened
images into a 2-channel input image to preserve the original
information. We downsampled the input from 512 × 512
to 256 × 256 pixels to reduce computational costs on the
very high resolution input images. This was done by first
inverting the images, so that the defects were light (large
values), and then max pooling. Finally, we normalized the

images batch-wise by subtracting the mean and dividing by
the standard deviation.

A modified U-net by Ronneberger et al. [42] was chosen
due to promising performance in similar segmentation
tasks, a simple implementation, and its speed at inference
time. A schematic of the architecture used in this work is
shown in Fig. 4. It is a fully convolutional encoder-decoder
architecture with skip connections between matching
encoder and decoder stages. The inputs are size 256 ×
256 pixels image patches, and the output is a pixel-
wise classification mask with 0-valued pixels denoting
background and 1-valued pixels indicating defect. The
model architecture is shown in Fig. 4. The differences to the
original U-net are as follows. We used less filters to make
training and inference faster, since no loss of accuracy was
found from reducing the model size. We changed upwards
convolution to upsampling + convolution for compatibility
with an optimized TensorRT version of the model used
in deployment. We used padding in the convolutions
to keep the height and width constant between pooling
layers. Finally, we used a sigmoid activation to produce
binary classification (defect vs. background) instead of
3-class (foreground, background, edge) output since we
did not require instance-aware segmentation (separating
overlapping flaws).

To account for the unbalance between the number of
background and flaw pixels, we used a weighted binary
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Fig. 4 A schematic of the modified U-net model architecture used for
detecting flaws in radiographs. The rectangles represent a single exam-
ple as it propagated trough the network. Their dimensions reflect the
dimensions of the data. The value on top or bottom of each rectangle
shows the depth of the processed tensor (or image), while the values
inside each rectangle are the width and height. The input image, on the
left, is a 512×512 pixel monochromatic image. The image is first pre-
processed by unsharp masking, normalizing and max pooling to half
dimensions, followed by two sets of 3×3 convolutions with 32 filters

each. The max pool and two convolutions block is repeated two times,
doubling the filters each time. Two 3×3 convolutions are done between
the encoder and decoder stages as shown in the bottom middle section.
This is followed by 3 upsampling blocks: upsampling, convolution,
concatenation from the equally sized encoder stage, and another con-
volution. Finally, a 1×1 convolution with sigmoid activation produces
the binary segmentation masks, which are upsampled to original size.
In total, the model has 1.7 million trainable parameters

cross-entropy that weighs losses in flawed pixels higher than
background pixels similarly to Ronneberger et al. [42]. The
weight was a tuned hyperparameter, we found 3 to work
best. The model was trained using the Adam optimizer with
a batch size of 32. Learning rate was halved every 2500
steps if no improvement to validation loss occurred. The
weights producing the lowest validation loss during training
were saved.

2.5 Inference and post-processing of model output

To facilitate the memory-intensive computations, the model
takes much smaller image patches as input than what
the original radiographs are. For inference on these
large images, a sliding window was first used to divide
each image into patches with some overlap to increase
robustness. As in the inference approach by Ronneberger
et al. [42], the borders are reflected to better find defects

in the edges of the image. After inference, the resulting
masks are joined back into a full-size annotation mask.
Overlapping regions are joined by an OR-operation, that
is, an indication in either overlapping patch is added to the
full-sized mask.

After generating full-sized masks for input images,
further post-processing was done to apply acceptance rules
based on size, shape, and proximity. The classification
masks were post-processed as follows. The individual
indicated areas were measured by fitting a circle around
each masked area. The image pixel to millimeter scaling
information was used to give each indication’s diameter
in millimeters. Indications very close to each other were
merged, according to acceptance rules stating that defects
near enough to each other are interpreted as a single
large defect. Linearly shaped defects were classified by
fitting a rectangle around each indication and flagging those
with a narrow aspect ratio. Flaw clusters were detected
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by proximity and porosity chains were detected from
clusters by using the same linearity test as for individual
defects.

After applying acceptance rules, the resulting annotations
were visualized by circles. Defects and clusters that were
classified as critical, either due to size or crack-like
morphology, were marked by white circles. Acceptable
defects were marked by black circles. The smallest
individual indications under a given detectability limit from
the inspection were not marked.

2.6 Evaluation

The standard validation metrics in deep learning and NDE
emphasize slightly different areas. To receive acceptance
in industry applications, the validation of an automated
system should fit NDE practices. A POD is often used to
measure the capability of the whole NDE system, including
equipment and analysis. The POD evaluation in this paper
is concerned with detection from available radiographs.

Following considerations in Section 1.7, we interpreted
any overlap as a hit when calculating the POD. We used the
POD and 95% confidence bounds to determine the a90/95
flaw size, which is the size of defect that is detected with
90% probability with 95% confidence. If significantly large
defects were present in the material, another metric would
be required, however, all flaws in the data set were small.

We defined false call rate as the number of false calls per
unit length of weld. The lengths of the welds were estimated
by skeletonizing the manually labeled masks of welds with
the thinning algorithm by Guo and Hall [15]. The number
of false calls is the number of predicted regions with no
overlapping ground truth. We observed that a significant
portion of the false calls occurred outside of the weld area.
When used as an inspector’s aid, the user is only going
to consider responses that appear on the weld. To reflect
performance in this primary use case, we also measured the
false call rate restricted to the weld area for which used
the manually annotated weld masks to filter out false calls
outside the ROIs. In a later study, we plan to automatically

segment the weld areas to exclude indications outside the
ROI.

We measured the sizing performance, or accuracy, of the
system as follows. For each hit, we used an enclosing circle
fit to measure the radius of the true and predicted indication.
If more than one prediction overlapped with the true defect,
we chose the one with the largest IoU. We calculated the
average absolute error in millimeters.

Using the aforementioned metrics, a fivefold cross-
validation with seven subsets of data was performed as
follows. For each of the five runs in the cross-validation,
a holdout set of one-fifth of the data was reserved and the
rest was used for training and validation. Within each run,
seven subsets of the training data with decreasing size were
used: 100%, 75%, 50%, 25%, 10%, 5% and finally 1.5%.
The sizes of the data sets are presented in Table 1. The
smallest data set contained about 225 unique 512 × 512
pixel patches of data and 14 defects on average, representing
an extremely limited material. The holdout sets consisted
of 35 raw images, divided as described in Section 2.5 to
form about 35000 patches (without overlap, about 7875
unique patches sized 512 × 512 pixels). The training set
was randomly sampled from the available training data
according to each subset size. A validation data set with
20% of the remaining training data was used to save the best
performing model during training. The folds had slightly
varying amounts of defects, because data was sampled as
entire images, each with a different number of defects. The
compared augmentation methods used the same subsets of
raw data.

Each training set was used to train 3 models: The
first using standard augmentation, the second using purely
virtual flaws, and the third using an even sampling of
standard and virtual flaw augmentation. Each model was
trained for 15000 steps with batch size 32, using the Adam
optimizer with initial learning rate 0.0005. The learning rate
was halved every 2500 steps if no improvement occurred
on the validation set. The training was carried out on
an Nvidia RTX 3090 GPU, and took about 1 hour per
model.

Table 1 The size of train,
validation and test data for each
run in the cross-validation for
decreasing data set size,
ranging from 100 to 1.5% of
data used: the number of
training and validation images
sized 7750 × 7750 pixels on
average per fold, the
approximate number of unique
512 × 512 pixels patches in the
images, and smallest number of
defects out of the folds in each
fraction

Subset Images Unique patches Defects (smallest fold)

Train Validation Train Validation Train Validation Test

100% 112 28 25200 6300 1711 399 497

75% 84 21 18900 4725 1276 285 516

5% 56 14 12600 3150 783 178 499

25% 28 7 6300 1575 347 69 491

10% 11 3 2475 675 173 48 472

5% 6 1 1350 225 73 9 476

1.5% 1 1 225 225 7 3 432
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2.7 Field evaluation

After quantitative evaluation (Section 2.6), a model trained
using combined augmentation was deployed in a test setting
as a part of an inspection pipeline. A standalone edge
computing unit without internet connection was used to
facilitate use in a high security environment. The model was
converted to TensorRT and integrated into a software which
generated annotations from radiograph input. The input and
output data formats were set to work with the users’ viewing
software. Visualizations based on the segmentation and
acceptance rules were evaluated by personnel working with
the radiographic inspection by comparing their analysis
with annotations provided by the model. Qualitative results
were collected by discussing with the users. The users
were asked to describe the system’s reliability, transparency,
ease of use and benefit to the inspection procedure. The
hardware of the prototype was less powerful than the
unit planned for deployment, and the system exhibited
some incompatibilities with the users’ software. The
field study had limited participants (three) and was thus
indicative. In the future, we plan to address the hardware
and software issues to conduct more comprehensive field
testing.

3 Results

3.1 Performance and POD

The models achieved a good inference speed. A size 7900×
8300 pixels image, divided into 960 patches, takes about 6
seconds (6.3 ms per patch) to annotate on an Nvidia GTX
3090 graphics card, or 15 seconds on an Nvidia Jetson AGX
Xavier running a TensorRT-converted model.

POD curves for the combined augmentation model
trained on 100% of the available training data are shown
in Fig. 5. Five curves are plotted, one for each trained and
validated model in the cross-validation. All POD curves are
shown in Appendix A. Due to the large test set size, the
lower 95% confidence bound (dashed line) is very close to
the curves. The resulting a90/95 is small, indicating that the
model is sufficiently sensitive.

3.2 Comparison of data augmentationmethods

Four metrics were used to compare standard, pure virtual
and combined augmentation. The worst case results from
cross-validation were presented for each: a90/95, sizing
error, false call rate on weld area, and false call rate on the
entire image.

Figure 6a shows results for a90/95. Combined aug-
mentation achieved best results for all fractions of data,

Fig. 5 POD curves for a deep learning model trained using the
combined (standard and virtual flaw) augmentation and 100% of
available training data. As a result of 5-fold cross-validation, 5 separate
POD curves are drawn, each for a separately trained and validated
model. Hits are marked by black dots on the top of the plot, and
misses on the bottom. The dashed curve is calculated by taking the
minimum of the lower 95% confidence bounds of each POD curve.
The intersection of the lower confidence bound with POD = 0.9,
marked by the dotted horizontal and vertical lines, is the worst case
a90/95

with significant differences to standard and pure virtual
augmentation at small data set sizes. For combined augmen-
tation, the a90/95 remained small even at very small subsets.
Virtual flaw augmentation and conventional augmentation
performed roughly equally well with the larger data sets,
indicating that the material was sufficient to largely capture
the important features in the inspection regardless of aug-
mentation method — performance was likely more limited
by the obscure line between defect and non-defect at small
indication sizes. With decreasing data set size, both methods
with virtual flaw augmentation significantly outperformed
regular augmentation. This is likely due to the insufficient
variability in flaw locations and sizes with the conventional
method.

Figure 6b presents the sizing error results. Differences
are quite small, with standard augmentation and combined
augmentation giving better results overall. The differences
between the methods were smaller than for a90/95 and the
sizing errors were generally small, indicating that once
a signal is correctly classified as a defect, its accurate
segmentation is an easier task for the deep learning
model.

The results for false call rate on weld area are shown
in Fig. 6c. The rates were quite close to each other at
about 1–2 false calls per 10 cm of weld, with no significant
increase until 5% or less of the training data was used.
At 5%, the combined method remained at the same level
while pure virtual and standard augmentation made much
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Fig. 6 Four NDE evaluation
metrics vs. fraction of data for
the three augmentation methods:
standard, pure virtual and
combined augmentation. Worst
case results from fivefold
cross-validation are displayed.
Lower is better for all metrics.
(a) a90/95. (b) Sizing error.
(c) False call rate on weld area.
(d) False call rate on image

more false calls. At 1.5%, the combined method begun to
show excessive false calls while the virtual and standard
augmentation made less.

False call rates on entire images (also outside of the
weld area) is shown in Fig. 6d. The rates were significantly
higher than for weld areas, revealing that most false calls

Fig. 7 Segmentation masks for
a patch of test data on models
trained with 5% of the data set,
illustrating performance
differences in segmenting pore
clusters. (a) An input image with
clustered porosity on and next to
the weld. (b) Manually
annotated ground truth.
(c) Standard augmentation. The
predicted segmentation is
missing some larger pores, and
finding others seemingly
randomly. (d) Virtual flaw
augmentation. The mask is very
close to ground truth, with a
small miss in the middle.
(e) Combined augmentation
with a prediction nearly
identical to ground truth
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Fig. 8 Segmentation masks for
a patch of test data on models
trained with 5% of the data set,
illustrating performance
differences in segmenting large
cavities. (a) An input image with
an unusually large cavity.
(b) Manually annotated ground
truth. (c) Standard augmentation.
The small, insignificant pores
are found, while the large cavity
is missed. (d) Virtual flaw
augmentation, also missing the
large cavity. (e) Combined
augmentation. The large cavity
is correctly segmented

occurred outside ROIs. Pure virtual flaw augmentation
performed worse than the standard and combined methods.
The standard augmentation made least false calls overall
with combined augmentation achieving matching results for
75% of the data and better results for 5%.

3.3 Qualitative results

Segmentation examples from the models are presented in
Figs. 7, 8, 9, 10 and 11. To highlight differences between
the methods, we show predicted annotations generated by

Fig. 9 Segmentation masks for
a patch of test data on models
trained with 5% of the data set,
illustrating performance
differences in sizing.
(a) An input image with a
medium-sized pore.
(b) Manually annotated ground
truth. (c) Standard
augmentation. The defect is
found, but sized too small.
(d) Virtual flaw augmentation,
giving an accurate sizing.
(e) Combined augmentation,
giving an accurate sizing
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Fig. 10 Segmentation masks for
a patch of test data on models
trained with 5% of the data set,
illustrating performance
differences in false calls.
(a) An input image with two
pores. (b) Manually annotated
ground truth. (c) Standard
augmentation. The defects are
found, but two false calls are
made with no clear explanation.
(d) Virtual flaw augmentation.
The defects are found without
false calls. (e) Combined
augmentation. The defects are
found without false calls

models trained on a 5% fraction of the training data, where
the performances have clearly diverged. A random sample
of predictions at different data set sizes is provided in
Appendix C.

Figure 7 shows results for an input image with clus-
tered porosity. Standard augmentation performed poorly in
segmenting a pore cluster. Figure 8 displays predictions
for an input with an unusually large pore. The combined

Fig. 11 Segmentation masks for
a patch of test data on models
trained with 5% of the data set,
illustrating performance
differences in false calls.
(a) An input image with small
pores and a foreign particle,
unimportant for the inspection.
(b) Manually annotated ground
truth. Three very small
indications are included.
(c) Standard augmentation, no
false calls. (d) Virtual flaw
augmentation. The particle is
falsely segmented as a large
defect. (e) Combined
augmentation. No false calls
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Fig. 12 Segmentation masks for
a patch of test data on models
trained with 100% of the data
set, illustrating performance
differences in finding linear
defects. The virtual and standard
augmentation data sets
contained virtual flaw cracks
that were extracted from data
outside of the inspection case.
(a) An input image with a large
crack. (b) Manually annotated
ground truth. (c) Standard
augmentation. The crack is
missed. (d) Virtual flaw
augmentation. The crack is
correctly segmented.
(e) Combined augmentation.
The crack is correctly segmented

augmentation successfully segmented the defect, while the
pure virtual and standard methods missed it. Figure 9
illustrates the differences of the methods in terms of siz-
ing capability. The methods involving virtual flaws have
retained their sizing capability with small training data,
while the standard augmentation significantly underesti-
mated the pore size. Figures 10 and 11 show two cases of
false calls. In Fig. 10, some unexplained false calls were
made by the standard augmentation. In Fig. 11, a foreign
particle caused a false call for the pure virtual flaw method.

Finally, we show an example of capability in finding
linear defects in Fig. 12, this time for models trained on
100% of the available data, since the differences are clear

across all fractions. Both methods involving virtual flaws
segmented the crack correctly, while the standard method
missed it.

3.4 Field experiment results

The model prototype was successfully deployed in a high
security environment. An example of the visualizations used
in the field experiment is shown in Fig. 13. Indications
were found to match expectations fairly well. Misses were
found on the low, acceptable end of the flaw size, some
of these were indications left unmarked due to acceptance
criteria. Users found the false calls outside of the weld

Fig. 13 Visualizations used in
the deployed system. (a) Two
acceptable pores (black circles).
(b) An unacceptable pore group
(merged white circles), with an
annotation (0,3/2) indicating a
group of two pores with largest
diameter 0.3 mm
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area not to affect the inspection directly, but thought they
could be potentially distracting over a longer period of
use. The annotations provided by the model were deemed
easy to understand. When indications were not present, due
to misses or pruning small indications, the behaviour was
found more difficult to explain. In general, understanding
the way the model operated was important for the users. The
edge computing unit and the generated visualizations were
found to be easy to use. Inference speed strongly affected
the user experience. Overall, users saw potential for the
system to be used as an inspector’s aid.

4 Discussion

The a90/95 of 0.6 mm for combined augmentation (Fig. 5)
indicates high reliability for the inspection case. It more
sensitive than the NASA-STD-5009B [37] reference value
for minimum detectable crack sizes, although this is
indicative since the material mostly consists of pores. MIL-
HDBK-1823A [1] recommends a minimum of 60 flaws for a
hit/miss POD curve, which results in significant differences
between the POD curve and confidence bounds. Due to
the much larger test set sample size in this study (about
500 on average), the lower 95% confidence bound (dashed
line) is close to the POD curves. Considering the patch size
(512 × 512 pixels), the material was large in comparison to
other weld data sets [23, 35].

Adding virtual flaws improved detection at smaller data
sets. Figure 7 shows how standard augmentation segmented
a cluster poorly, likely due to the lack of flaw groups in
the training data. Adding several virtual flaws to some
examples represented clusters well. In terms of a90/95,
combined augmentation performed best on all fractions.
Even when using only one image for generating training
patches, the combined data augmentation achieved a good
a90/95 result. With pure virtual flaw augmentation, used
by Koskinen et al. [27], there can be a loss of some
subtle features related to the combination of location and
signal, not perfectly captured by virtual flaw, which is then
alleviated by mixing defects in their original locations and
new locations. Moreover, the distribution of flaw sizes and
shapes is slightly skewed from the original, the effect of
which is reduced by having half of the data set follow the
original distribution. In Fig. 8, for example, the pure virtual
flaw augmentation model missed a large cavity, which the
combined augmentation model found. The a90/95 remained
low for surprisingly small amounts of data, indicating that
the proposed system can be scaled to other inspection cases
with a moderate amount of manual annotation.

Performance differences in finding linear defects
(Fig. 12) indicate firstly that the linear defects are differ-
ent enough from pores, that if not included in the training

data, they may be missed. Secondly, using the virtual flaw
to extract suitable flaw signals from other components than
the ones being inspected was a successful strategy for cover-
ing a defect type which was scarce in the primary data. This
is a simpler approach in comparison to simulation methods
[13, 33] that require each defect type to be modeled in a
representative way. Koskinen et al. [27] also found simula-
tion to yield limited generalization. In the case of cracks, the
combined method did not differ from pure virtual, since no
cracks from the original material were present in the training
data set, but they were rather used for validation.

Pure virtual augmentation sized the defects less accu-
rately than the other two methods. The ground truth masks
for the virtual flaws, generated during the implanting, likely
caused a small discrepancy in comparison to the regular
annotations. Again, mixing regular and virtual flaw aug-
mentation resolved this. At smaller data set sizes, conven-
tional augmentation started to perform significantly worse,
in correlation with the much higher a90/95 values, indicating
that the model failed to find a reasonable fit. An example
of deteriorated sizing performance for the conventional aug-
mentation model is shown in Fig. 9, where a medium-sized
pore was significantly undersized.

The manual annotations for the smallest, acceptable weld
defects display some differences. A region of uncertainty
exists where there is no clear line between defect and non-
defect like noise or geometry, even for a human inspector.
This is the case with most NDE applications: deciding if
a signal is an imperfection becomes increasingly difficult
near the limits of what is detectable by the imaging method.
Figure 9, for instance, shows a very small pore annotated in
the ground truth, but not indicated by any of the machine
learning models. It is unclear whether the model or manual
annotation is more correct, since an indication that small
could also be just noise or geometry. A similar effect
was observed by Mery [33]. This noise in the labeling
makes the models exhibit poor separation at edge cases
in the small flaw range (which is not of interest for the
inspection), but notably, this does not hinder performance
on the larger, unacceptable defects. At small defect sizes,
the labeling noise also limits the accuracy of the calculated
POD. In medical radiography data sets, like CheXpert
[22], committees of experts have been used for improved
ground truth labeling, as well as uncertainty labels to reflect
difficult to judge cases. This is more resource intensive,
but potentially of interest in future studies. In the context
of NDE, validation via destructive testing like macrography
could provide more accurate ground truths, but is infeasible
due to the large number and small size of the defects.

Looking at a90/95 and false call rate simultaneously, it
can be seen that the methods responded to insufficient data
differently: while the standard augmentation started missing
more flaws, the combined method made excessive false

659Welding in the World (2022) 66:643–671



calls. The pure virtual flaw was in the middle for both of
these metrics. The a90/95 is the more crucial metric out of
these two, indicating a safer failure mode occurred for the
methods using virtual flaws. Much of the false call rate on
the weld area can be attributed to the annotation uncertainty
at the small acceptable sizes.

Using pure virtual implanted flaws caused a higher
tendency for false calls outside of the ROI. Combined
augmentation reduced this significantly, although not
completely. Excessive false calls outside of weld areas are
not problematic for use as a human aid tool, but using more
automatic systems or collecting statistics would require
them to be reduced to lower levels. In the future, we plan to
address this by automatically segmenting the welds to prune
the indications outside of the regions of interest.

The results were reported in standard NDE metrics.
Other research in the application area [11, 13, 33] report
deep learning oriented metrics like mean average precision
(mAP) or receiver operating characteristic (ROC) curves
using an IoU threshold, which makes industry adoption and
the comparison of NDE performances more difficult. POD
gives the information of flaw size vs. detection, which is
important for NDE. Moreover, POD and false call rate in
NDE separate the analysis of detection and false calls, while
the common segmentation metrics combine them.

The U-net architecture by Ronneberger et al. [42] was
found to be flexible for small modifications. Performance
was found to be strongly driven by data set qualities like
number and type of defects, labeling noise and augmenta-
tion methods, which indicates that other architectures like
FPN by Lin et al. [30] or mask R-CNN by He et al. [17] are
not likely to make significant improvements to performance.
A comparison across multiple architectures similarly to
Mery and Arteta [34] or Mery [33] is of interest in future
research.

The field experiment gave indications of fairly good
agreement with human operators, with some issues related
to small edge-case defects and false calls outside of
the ROI. The proposed method of deployment and user
interface were found to be easy to use and well suited for
the application, and compatibility with existing industry
software made the deployment simple. The importance of
system transparency was highlighted: for example, leaving
the smallest defects unmarked likely reduced the perceived
robustness of the model, since the information of whether
defects were missed or only left unmarked due to small size
was not easily available.

To summarize, deep learning-based segmentation is a
feasible approach for automating industrial radiography
inspections for a challenging weld case, capable of fulfilling
strict requirements in the aerospace field. The proposed
model indicated good sensitivity in comparison to the
NASA-STD-5009B [37] reference value. We found a

combined approach of virtual flaw augmentation and
standard data augmentation gave a significant performance
increase in the most important metric, the a90/95, especially
at smaller subsets of data. The combined method also
performed sufficiently well in sizing and false calls,
making it the overall best method out of the three,
an improvement over pure virtual flaw augmentation.
Good performance on cracks was achieved by using
virtual flaws, which is a more straightforward strategy
than simulation methods for highly varying defect types.
By comparing with qualitative results, the adopted NDE
metrics were found to represent performance well, and they
facilitate use in industry. The field experiment gave positive
indications for future deployment as an assisting tool for
inspectors.

5 Conclusion

We developed a deep learning-based system to automati-
cally detect, segment and rate the severity of flaws in welds
in aerospace components. Standard metrics in NDE were
adopted for a deep learning approach, and three augmenta-
tion methods were compared: standard (using random shear,
rotation, crop and resize, flips, noise, brightness and con-
trast), pure virtual flaw, and a combination of the two. A
field experiment was conducted in a real industry setting.
The best method using combined augmentation achieved
high sensitivity, accurate sizing and acceptable false call
rate, sufficient for strict aerospace weld requirements. Using
virtual flaws was found to increase the detection capabil-
ity of the model, and combining original and virtual flaw
data largely alleviated possible implanting-related issues,
like artefacts, annotation noise or skewed flaw distribution.
Small, acceptable defects had inconsistencies in annotations
when close to undetectable, contributing to false call rate
and small misses, but not adversely impacting performance
on the more critical, large defects. The adoption of industry-
standard metrics advanced deep learning-based automation
methods towards commercial use in weld NDE. We demon-
strated that deep learning-based weld defect detection can
reach high performance and be deployed in real industry
environments.

Appendix A. POD curves

The POD curves of all models trained in the experiments
are shown in Figs. 14, 15, and 16. The curves are organized
in the following way. For each subset of data, ranging
from 100 down to 1.5%, three figures are presented: one
for standard augmentation, virtual flaw augmentation, and
combined augmentation respectively.
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The curves become more shallow at lower fractions of
data, resulting in higher a90/95 values and thus a poorer
performance. The spread of the curves also increases
for smaller fractions, indicating that the individual cross-
validation results start to differ significantly depending on
the random sample of data used for training, validation
and testing. The standard augmentation curves (first row
in Figs. 14, 15 and 16) have the most spread, while the
combined augmentation curves (third row) have the least.
This suggests that adding virtual flaws increased robustness.

The curves, calculated following the standard POD
approach, do not show 0% probability of detection
for zero-sized flaws. This is a known limitation in
current POD analysis methods, which stems from an
insufficient separation of hits and misses in the range
of very small flaws. The problem is sometimes alle-
viated by artificially adding near-zero misses in the
plots to force wanted behaviour. See Virkkunen [48]
for more discussion on this problem and potential
remedies.

Fig. 14 POD curves for the three augmentation methods for decreas-
ing data set size. As a result of 5-fold cross-validation, 5 separate
POD curves are drawn in each figure, each indicating a separately
trained and validated model. The number of defects used for testing
each model is shown in Table 2. Hits are marked by black dots on the

top of the plot, and misses on the bottom. The dashed curve is calcu-
lated by taking the minimum of the lower 95% confidence bounds of
each POD curve. The intersection of the lower confidence bound with
POD = 0.9, marked by the dotted horizontal and vertical lines, is the
worst case a90/95
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Fig. 15 POD curves for the
three augmentation methods for
decreasing data set size. As a
result of 5-fold cross-validation,
5 separate POD curves are
drawn in each figure, each
indicating a separately trained
and validated model. The
number of defects used for
testing each model is shown in
Table 3. Hits are marked by
black dots on the top of the plot,
and misses on the bottom. The
dashed curve is calculated by
taking the minimum of the lower
95% confidence bounds of each
POD curve. The intersection of
the lower confidence bound with
POD = 0.9, marked by the
dotted horizontal and vertical
lines, is the worst case a90/95
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Fig. 16 POD curves for the
three augmentation methods for
decreasing data set size. As a
result of 5-fold cross-validation,
5 separate POD curves are
drawn in each figure, each
indicating a separately trained
and validated model. The
number of defects used for
testing each model is shown in
Table 4. Hits are marked by
black dots on the top of the plot,
and misses on the bottom. The
dashed curve is calculated by
taking the minimum of the lower
95% confidence bounds of each
POD curve. The intersection of
the lower confidence bound with
POD = 0.9, marked by the
dotted horizontal and vertical
lines, is the worst case a90/95

Appendix B. Full cross-validation results

The results for the cross-validation are presented in Tables 2,
3 and 4. Three augmentation methods were compared:
standard, pure virtual and combined augmentation. Four
metrics were recorded for each model trained: a90/95, sizing
error, false call rate on weld areas and false call rate
on entire images. The metrics are defined in Section 2.6.
Table 2 shows results for training data sets using 100%, 75%
and 50% of available data. Table 3 displays results for 25%
and 10% of data, and Table 4 for 5% and 1.5% of data.

The raw images had varying amounts of defects, thus
the number of defects available for training varies between
folds. For large data sets, this effects is small (1711
vs. 1825) as shown in the second column of Table 2.
Table 4, however, shows significant relative differences in
the number of defects at small data set sizes. Even at
small data sets, the variance between folds is not directly
related to the defect counts: For instance at 1.5% of data,
standard augmentation in fold 1 with 8 defects achieved
a better a90/95 (0.60 mm) than in fold 4 with 26 defects
(0.90 mm).
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Table 2 Cross-validation
results for a90/95, sizing error,
false call rate (denoted FCR)
on weld and FCR on image for
three augmentation methods:
standard, pure virtual and
combined augmentation.
Results for 100%, 75% and
50% of available training data
used

Train set a90/95 Sizing error FCR, weld FCR, image

defects (mm) (mm) (1/cm) (1/cm)

100% of training data

Standard 1 1815 0.63 0.10 0.05 0.22

Standard 2 1825 0.81 0.11 0.08 0.29

Standard 3 1753 0.48 0.11 0.05 0.28

Standard 4 1775 0.54 0.09 0.04 0.38

Standard 5 1711 0.57 0.10 0.04 0.13

Pure virtual 1 1815 0.60 0.09 0.05 0.28

Pure virtual 2 1825 0.63 0.12 0.03 0.62

Pure virtual 3 1753 0.57 0.10 0.05 0.39

Pure virtual 4 1775 0.54 0.13 0.09 0.58

Pure virtual 5 1711 0.54 0.10 0.05 0.26

Combined 1 1815 0.60 0.10 0.06 0.23

Combined 2 1825 0.42 0.13 0.12 0.46

Combined 3 1753 0.51 0.09 0.03 0.29

Combined 4 1775 0.48 0.11 0.08 0.36

Combined 5 1711 0.51 0.11 0.10 0.30

75% of training data

Standard 1 1276 0.48 0.11 0.06 0.28

Standard 2 1364 0.48 0.11 0.16 0.44

Standard 3 1284 0.66 0.09 0.04 0.18

Standard 4 1297 0.45 0.11 0.09 0.39

Standard 5 1331 0.57 0.12 0.10 0.59

Pure virtual 1 1276 0.51 0.10 0.04 0.43

Pure virtual 2 1364 0.57 0.10 0.10 0.28

Pure virtual 3 1284 0.60 0.17 0.08 1.00

Pure virtual 4 1297 0.63 0.13 0.02 0.26

Pure virtual 5 1331 0.57 0.12 0.06 0.84

Combined 1 1276 0.48 0.10 0.12 0.59

Combined 2 1364 0.57 0.10 0.05 0.17

Combined 3 1284 0.54 0.10 0.05 0.22

Combined 4 1297 0.45 0.10 0.05 0.29

Combined 5 1331 0.51 0.12 0.07 0.38

50% of training data

Standard 1 866 0.81 0.11 0.08 0.25

Standard 2 783 0.57 0.11 0.04 0.21

Standard 3 921 0.57 0.08 0.03 0.25

Standard 4 864 0.60 0.15 0.07 0.39

Standard 5 950 0.45 0.13 0.07 0.40

Pure virtual 1 866 0.81 0.16 0.02 0.83

Pure virtual 2 783 0.51 0.12 0.06 0.34

Pure virtual 3 921 0.60 0.12 0.03 0.94

Pure virtual 4 864 0.57 0.10 0.04 0.29

Pure virtual 5 950 0.48 0.10 0.04 0.31

Combined 1 866 0.63 0.12 0.06 0.70

Combined 2 783 0.48 0.12 0.07 0.68

Combined 3 921 0.54 0.10 0.05 0.34

Combined 4 864 0.57 0.11 0.08 0.38

Combined 5 950 0.48 0.10 0.07 0.57
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Table 3 Cross-validation
results for a90/95, sizing error,
false call rate (denoted FCR)
on weld and FCR on image for
three augmentation methods:
standard, pure virtual and
combined augmentation.
Results for 25% and 10% of
available training data used

Train set a90/95 Sizing error FCR, weld FCR, image

defects (mm) (mm) (1/cm) (1/cm)

25% of training data

Standard 1 446 0.57 0.11 0.06 0.43

Standard 2 473 0.54 0.10 0.05 0.21

Standard 3 512 0.75 0.11 0.03 0.40

Standard 4 488 0.78 0.10 0.06 0.30

Standard 5 347 0.66 0.10 0.05 0.18

Pure virtual 1 446 0.51 0.11 0.17 0.66

Pure virtual 2 473 0.48 0.10 0.05 0.31

Pure virtual 3 512 0.54 0.10 0.08 0.51

Pure virtual 4 488 0.57 0.13 0.04 0.28

Pure virtual 5 347 0.69 0.10 0.12 0.92

Combined 1 446 0.57 0.09 0.05 0.30

Combined 2 473 0.51 0.11 0.06 0.86

Combined 3 512 0.51 0.12 0.16 0.53

Combined 4 488 0.54 0.12 0.05 0.31

Combined 5 347 0.60 0.12 0.05 0.44

10% of training data

Standard 1 183 0.69 0.12 0.06 0.39

Standard 2 210 0.48 0.10 0.10 0.37

Standard 3 183 0.54 0.09 0.07 0.46

Standard 4 175 0.60 0.14 0.08 0.29

Standard 5 173 0.81 0.11 0.05 0.40

Pure virtual 1 183 0.51 0.12 0.11 0.76

Pure virtual 2 210 0.63 0.14 0.07 1.28

Pure virtual 3 183 0.51 0.10 0.07 0.25

Pure virtual 4 175 0.63 0.12 0.08 0.53

Pure virtual 5 173 0.48 0.11 0.05 0.46

Combined 1 183 0.57 0.13 0.07 0.39

Combined 2 210 0.51 0.10 0.07 0.44

Combined 3 183 0.51 0.10 0.08 0.33

Combined 4 175 0.57 0.11 0.07 0.56

Combined 5 173 0.48 0.11 0.11 0.45
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Table 4 Cross-validation
results for a90/95, sizing error,
false call rate (denoted FCR)
on weld and FCR on image for
three augmentation methods:
standard, pure virtual and
combined augmentation.
Results for 5% and 1.5% of
available training data used

Train set a90/95 Sizing error FCR, weld FCR, image

defects (mm) (mm) (1/cm) (1/cm)

5% of training data

Standard 1 121 0.63 0.14 0.29 0.93

Standard 2 119 0.66 0.10 0.07 0.21

Standard 3 159 1.83 0.14 0.15 0.63

Standard 4 73 0.63 0.11 0.13 0.40

Standard 5 91 0.63 0.20 0.04 0.57

Pure virtual 1 121 0.48 0.12 0.10 0.70

Pure virtual 2 119 0.54 0.12 0.06 0.69

Pure virtual 3 159 1.11 0.13 0.07 0.45

Pure virtual 4 73 0.51 0.08 0.09 0.69

Pure virtual 5 91 0.51 0.18 0.30 1.34

Combined 1 121 0.48 0.11 0.07 0.30

Combined 2 119 0.60 0.13 0.06 0.36

Combined 3 159 0.72 0.12 0.03 0.32

Combined 4 73 0.48 0.09 0.10 0.90

Combined 5 91 0.51 0.14 0.07 0.44

1.5% of training data

Standard 1 8 0.60 0.16 0.02 1.02

Standard 2 7 0.81 0.14 0.05 0.24

Standard 3 17 1.44 0.26 0.01 0.21

Standard 4 26 0.81 0.13 0.06 1.08

Standard 5 13 0.54 0.15 0.12 0.97

Pure virtual 1 8 0.60 0.11 0.04 1.31

Pure virtual 2 7 0.60 0.13 0.11 0.31

Pure virtual 3 17 0.87 0.17 0.23 0.45

Pure virtual 4 26 0.90 0.14 0.02 2.01

Pure virtual 5 13 0.48 0.12 0.26 2.55

Combined 1 8 0.54 0.13 0.10 2.38

Combined 2 7 0.57 0.19 0.12 0.60

Combined 3 17 0.72 0.11 0.14 0.56

Combined 4 26 0.75 0.12 0.03 0.86

Combined 5 13 0.39 0.18 0.65 3.15

Appendix C. Predictionmasks

A random sampling of image patches, ground truths and
predicted segmentation masks are shown in Figs. 17 and 18.

Each of them presents results for seven input images: one
for each fraction of available data used for training, ranging
from 100 to 1.5%.
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Fig. 17 Randomly extracted patches from inference results of the dif-
ferent augmentation methods for training data set sizes ranging from
100 to 1.5%. Input images and ground truth masks are shown on

the first and second columns, respectively. The predicted masks from
the standard, pure virtual and combined augmentations are shown in
columns 3, 4 and 5
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Fig. 18 Randomly extracted patches from inference results of the dif-
ferent augmentation methods for training data set sizes ranging from
100 to 1.5%. Input images and ground truth masks are shown on

the first and second columns, respectively. The predicted masks from
the standard, pure virtual and combined augmentations are shown in
columns 3, 4 and 5
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