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Abstract 10 

Thanks to the advances in the Internet of Things (IoT), Condition-based Maintenance (CBM) has 11 

progressively become one of the most renowned strategies to mitigate the risk arising from failures. 12 

Within any CBM framework, non-linear correlation among data and variability of condition 13 

monitoring data sources are among the main reasons that lead to a complex estimation of Reliability 14 

Indicators (RIs). Indeed, most classic approaches fail to fully consider these aspects. This work 15 

presents a novel methodology that employs Accelerated Life Testing (ALT) as multiple sources of 16 

data to define the impact of relevant PVs on RIs, and subsequently, plan maintenance actions through 17 

an online reliability estimation. For this purpose, a Generalized Linear Model (GLM) is exploited to 18 

model the relationship between PVs and an RI, while a Hierarchical Bayesian Regression (HBR) is 19 

implemented to estimate the parameters of the GLM. The HBR can deal with the aforementioned 20 

uncertainties, allowing to get a better explanation of the correlation of PVs. We considered a 21 

numerical example that exploits five distinct operating conditions for ALT as a case study. The 22 

developed methodology provides asset managers a solid tool to estimate online reliability and plan 23 

maintenance actions as soon as a given condition is reached. 24 

Keywords: Condition monitoring, Condition-based maintenance, Hierarchical Bayesian Regression, 25 

Generalized Linear Model, Online Reliability Estimation 26 

1. Introduction 27 

In recent years, the advances related to the Internet of Things (IoT) technology have facilitated the 28 

implementation of an effective Condition-Based Maintenance (CBM) policy (Morimoto et al., 2017) 29 

(previously known as predictive maintenance policy (Prajapati et al., 2012)). The development of 30 

newer sensors and advanced data mining and feature extraction techniques have led to a more accurate 31 



condition monitoring process. The major advantage of CBM compared to other Preventive 32 

Maintenance (PM) policies is the ability to schedule maintenance actions depending on the monitored 33 

condition of an asset, rather than planning maintenance interventions based on reliability parameters 34 

such as the Mean Time To Failure (MTTF). Although CBM requires more efforts related to the 35 

installment of sensors and much more responsiveness compared to Time-Based or Aged-Based PM 36 

regarding logistics aspects and maintenance squad deployment, it could lead to a lower waste of 37 

equipment useful life. According to the aforementioned statements, CBM has attracted the attention 38 

of many researchers over the past decade (Cipollini et al., 2018; Hao et al., 2020; Hu et al., 2021; 39 

Jiang et al., 2021; Omshi & Grall, 2021; Xu et al., 2021).  40 

We could divide any CBM policy into three consecutive steps, which are denoted as i) data 41 

acquisition, ii) data processing, and iii) maintenance decision-making (Jardine et al., 2006). The first 42 

step consists of collecting useful data, usually from sensors, while during the second one, noise 43 

components are filtered out from the physical observations, and subsequently, data analysis is 44 

conducted. The combination of data acquisition and data processing is regarded as condition 45 

monitoring, representing a precursor of any CBM. Finally, it is worth mentioning that distinct kinds 46 

of condition monitoring could be implemented, such as online condition monitoring (Wang et al., 47 

2020), quasi-online condition monitoring (Zhang et al., 2021), and remote condition monitoring 48 

(Memala et al., 2021).  49 

Within the process of condition monitoring, there is a distinction between classification and 50 

regression approaches. A classification approach aims at identifying the state of an asset-based on the 51 

monitored parameters. On the other hand, a regression framework aims to evaluate how a given 52 

response variable denoting the degradation of the system develops in time based on some monitored 53 

parameters. Moreover, in classification problems, the response variable is categorical, while in 54 

regression methods, the response variable is real-valued (Murphy, 2012). Since condition monitoring 55 

plays a pivotal role in conducting an efficient and effective CBM plan, there is an ongoing effort for 56 

both classifications (Brito et al., 2022; Potočnik & Govekar, 2017; van den Hoogen et al., 2021) and 57 

regression purposes (Dave et al., 2021; Ferrando Chacón et al., 2021). This fundamental vision has 58 

resulted in the adoption of a wide variety of tools such as autoregressive moving average (ARMA) 59 

(Baptista et al., 2018), Fast Fourier Transform (FFT) (Gowid et al., 2015), FFT combined with SVM 60 

(Pandarakone et al., 2017) and wavelet approach (Benkedjouh et al., 2018). The aforementioned tools 61 

can analyze an input signal, eventually, remove noisy components, and study the degradation of 62 

devices. A relevant example is a work proposed by Gowid et al. (2015), who applied FFT to analyze 63 

acoustic data and perform fault diagnosis in a centrifugal device. FFT is also used for fault detection 64 

of bearings by Pandarakone et al. (2017), who subsequently adopted SVM for fault diagnosis. All the 65 



aforementioned methods present some limitations. For instance, ARMA is characterized by a tuning 66 

process to determine the most accurate parameters of the model, while FFT could lead to a loss of 67 

features that vary over time because of its integral nature.  68 

Meanwhile, Bayesian inference, such as Bayesian Network (BN) and Hierarchical Bayesian 69 

Modelling (HBM), has also become a popular tool for condition monitoring purposes, thanks to its 70 

features, among which the ability to deal with source-to-source variability (Kumari et al., 2020). 71 

Moreover, Bayesian Inference can provide better results than other parametric regression methods, 72 

such as Maximum Likelihood Estimation (MLE) (BahooToroody et al., 2020a). Finally, the adoption 73 

of a hierarchy structure allows addressing the correlations among nonlinear data and the variation of 74 

non-stationary data, leading to a more coherent regression model compared to other classic 75 

approaches (BahooToroody et al., 2019b). A relevant example of a BN-based condition monitoring 76 

approach is presented by BahooToroody et al. (2019b). In their paper, they integrate an Empirical 77 

Mode Decomposition with a Statistical Significant Test for noise removal, while they employ a 78 

Bayesian Network with a hierarchical structure to predict the time of the following pressure 79 

exceedance. Another recent work by BahooToroody et al. (2020b) presented an HBR model to 80 

determine the probability of failure of a natural gas regulating and metering station based on the 81 

monitored pressure. In their work, they modeled a discrete response variable through a normal logit 82 

GLM, considering the pressure as the independent variable. Bayesian Inference has been proven itself 83 

as a solid tool for reasoning under uncertainty, however, it presents some drawbacks. Specifically, 84 

Bayesian Inference is characterized by a greater mathematical complexity compared to other classical 85 

approaches. The mathematical complexity requires a higher degree of knowledge and it could lead to 86 

greater calculation time. However, the advances of specific tools have reduced the calculation time 87 

and have taken easier the implementation of the Bayesian analysis. Moreover, the choice of the prior 88 

distribution could be tough and an improper choice could lead to some undesired results. To avoid 89 

issues related to the calculation time, a non-informative prior could be used.  90 

1.1 Background on Accelerated Life Testing  91 

Within the context of reliability estimation, one of the main issues is related to data scarcity. Indeed, 92 

most probabilistic and reliability analysis suffers from a lack of data (Z. S. Ye & Xie, 2015), leading 93 

to high uncertainty in the estimation procedures (El-Gheriani et al., 2017). To overcome such 94 

limitations and satisfy reliability requirements, Accelerated Life Testing (ALT) has become a 95 

common practice over the past few years (Escobar & Meeker, 2006). In ALT, a given component is 96 

tested under operating conditions that are more severe than the standard operating condition (e.g., 97 

higher pressure than the nominal working pressure) (Elsayed, 2012), leading to a premature failure. 98 



Accordingly, ALT allows to observe and to collect failure data in a shorter amount of time compared 99 

to real-world application, resulting in safer operations. Moreover, making ALT before producing or 100 

selling a piece of equipment gives more flexibility and precision during the definition of maintenance 101 

or insurance policies.  102 

ALT is treated through one of the following models (Moustafa et al., 2021): I) statistical models II) 103 

frailty models and III) distribution-free models. The first category of models assumes that the failure 104 

times follow a given distribution with one or more parameters that depend upon the operating 105 

condition. The statistical models are fully parametric and they allow to fit to the data different kinds 106 

of distributions such as Weibull (Lin et al., 2017) or exponential (Haghighi, 2014). On the other side, 107 

the second group of models exploits a random factor called fraility, which influences the hazard 108 

function of the latent lifetimes (Liu, 2012). Examples of frailty model adoption can be found in Z.-S. 109 

Ye et al. (2013) and Roy (2018). Finally, the distribution-free models fall within the nonparametric 110 

approaches and they have the advantage to avoid the requirement of finding a distribution that can 111 

properly fit the available data. Even though non-parametric models could lead to conservative results 112 

and do not require any distribution specification, parametric approaches such as statistical models 113 

could generate more accurate results given a proper choice of the distribution (Thomas, 2015). 114 

Furthermore, they conceal more physical meaning, leading to a more informative description of the 115 

problem.  116 

Within the context of ALT, degradation data could be exploited instead of lifetime data during ALT. 117 

In this case, the evolution of one or more degradation parameters is studied and a degradation model 118 

is fit over the data. Degradation data contain more information compared to lifetime data, however, 119 

great knowledge of the equipment is required to choose a proper degradation parameter. Furthermore, 120 

linking the degradation to a RI should be based on sound reliability requirements (Thomas, 2015). It 121 

follows that building a degradation model could not always be a viable option. Considering the 122 

aforementioned statements, a lifetime parametric model is chosen for this study.  123 

To conclude this section, it is worthwhile mentioning that Bayesian Inference has progressively 124 

become more popular to deal with ALT. A recent work by Moustafa et al. (2021) integrates frailty 125 

models and Bayesian inference to estimate the reliability of a multicomponent system through ALT 126 

conducted both at the component and system level. Particularly, in their work, the authors employed 127 

the shared frailty model to address the relationships among the failures of distinct components, while 128 

the Bayesian framework is adopted to incorporate the information coming from the component and 129 

the system level. Another recent work by Pang et al. (2021) exploited an HBM and ALT to predict 130 

the RUL of a jewel-bearing accelerometer. First, ALT is conducted to determine the distribution type 131 



and estimate the hyper-parameters of an HBM, which is later exploited to update the posterior 132 

distribution based on condition monitoring data. In the present work, ALT is exploited to extrapolate 133 

a relation between PVs and RIs through HBR, rather than finding an informative prior for Bayesian 134 

inference. 135 

1.2 Research gap and aim 136 

Despite all ongoing efforts, little attention has been devoted to determining how fluctuations in PVs 137 

influence RIs (BahooToroody et al., 2019a), which is essential to grasp the changes in risk over time. 138 

Moreover, most of the approaches related to condition monitoring of RIs fail to consider nonlinear 139 

correlation and multiple sources of data. As a result, developing a robust parametric tool capable of 140 

estimating an asset's reliability performance over time, based on monitored operational parameters 141 

and subsequently plan maintenance actions, is welcome. To this end, a methodology able to schedule 142 

maintenance according to the variation of PVs is presented in this paper. For this purpose, after 143 

extracting failure data from ALT, an HBR is employed to estimate the characteristic parameters of a 144 

GLM linking the PVs and one RI. Lifetime data are considered instead of degradation data due to the 145 

less knowledge requirement and the easiness to link a RI. In this context, the most common approach, 146 

which is the MLE (Pascual et al., 2006), neglects the variability among distinct sources of data. 147 

Conversely, a Bayesian network with a hierarchical structure allows us to consider source-to-source 148 

variability, leading to an accurate explanation of the correlation of PVs even when multiple data 149 

sources are present. Moreover, Bayesian approaches allow users to insert available knowledge, which 150 

could be considered as supplementary data. This feature could also be useful to drive the analysis in 151 

case of data scarcity when expert judgments or prior knowledge are available. For instance, within 152 

the context of ALT, the distribution coming from similar equipment could be used as a prior choice, 153 

reducing the number of tests to perform. However, the amount of information inserted within the 154 

prior distribution should be dosed carefully to avoid a completely prior driven calculation. On the 155 

other hand, the adoption of GLM allows overcoming the main limitation of the parametric statistical-156 

based models, which is fitting a specific distribution to the data. Indeed, GLMs are more flexible 157 

compared to other approaches since they can consider a wide range of probability distributions for 158 

the data, bypassing the assumption of normal error relationships between independent and dependent 159 

variables (Guisan et al., 2002). Furthermore, they have demonstrated high efficiency and the ability 160 

to deal with nonnormal response variables (Yeganeh & Shadman, 2021).  161 

It is worthwhile mentioning that, in the context of reliability analysis, condition monitoring, and ALT, 162 

Bayesian techniques have become popular tools. However, few works related to HBM, and more 163 

specifically HBR, employed to process data coming from ALT are present. Besides, there is still 164 



space to consider a continuous response variable within an HBR framework as recommended by 165 

BahooToroody et al. (2020b). Finally, most of the statistical-based works related to ALT are mainly 166 

focused on determining the reliability parameters, while the subsequent exploitation of the statistical 167 

model from a condition monitoring perspective is disregarded. In contrast, this task is often carried 168 

out in case a degradation model has been implemented. Accordingly, during the last phase of the 169 

developed methodology, a proposal of maintenance tasks planning based on the monitored PVs and 170 

the subsequent online reliability estimation is presented. The developed framework is implemented 171 

on data extracted from ALT conducted with five distinct operating conditions.  172 

The remainder of this paper is organized as follows; Section 2 describes the material and methods, 173 

while Section 3 is about the developed methodology. Section 4 illustrates the implementation of the 174 

methodologies in the numerical example adopted as a case study, while Section 5 discusses the 175 

results. Finally, conclusions and future developments are presented in Section 6. 176 

2. Material and Methods 177 

2.1 Hierarchical Bayesian Modelling 178 

The main aim of any statistical inference is to deduce the properties or features of a population after 179 

analysing a sample of data extracted from the population itself. The HBM is a renowned statistical 180 

tool that allows conducting inference based on real-world observations through the Bayes Theorem 181 

(Eq. 1) (El-Gheriani et al., 2017). 182 

𝜋𝜋1(𝜃𝜃|𝑥𝑥) = 𝑓𝑓(𝑥𝑥|𝜃𝜃)𝜋𝜋0(𝜃𝜃)
∫ 𝑓𝑓(𝑥𝑥|𝜃𝜃)𝜋𝜋0(𝜃𝜃)𝑑𝑑𝜃𝜃𝜃𝜃

                                                                                                                                  (1) 183 

where 𝜃𝜃 is often a vector that denotes the unknown parameters to infer. 𝜋𝜋1(𝜃𝜃|𝑥𝑥) identifies the 184 

posterior distribution, representing the updated knowledge on the parameters of interest after 185 

observing the available data and conducting the inference. The posterior distribution is given by the 186 

product of the likelihood function and the prior distribution, which are respectively referred to as 187 

𝑓𝑓(𝑥𝑥|𝜃𝜃) and 𝜋𝜋0(𝜃𝜃). Accordingly, the Bayesian inference assigns a prior probability distribution to 𝜃𝜃, 188 

rather than considering it as a fixed value such as the frequentist approaches (Garthwaite et al., 2002). 189 

Particularly, the HBM is named after exploiting a multistage or hierarchical prior, expressed by Eq. 190 

2 (Kelly & Smith, 2011).  191 

𝜋𝜋0(𝜃𝜃) = ∫ 𝜋𝜋1(𝜃𝜃|𝜑𝜑)𝜋𝜋2(𝜑𝜑)𝑑𝑑𝜑𝜑∅                                                                                                                               (2) 192 

where 𝜋𝜋1(𝜃𝜃|𝜑𝜑) is called first-stage prior distribution, representing the variability of 𝜃𝜃, while 𝜑𝜑 is a 193 

vector in case the distribution of 𝜃𝜃 is a multi-parameters distribution. For instance, let 𝜃𝜃 be 194 



characterized by a normal distribution, 𝜑𝜑 would be a two-element vector representing the mean and 195 

the standard deviation of the normal distribution. However, when 𝜃𝜃 is distributed as a single 196 

parameter distribution (e.g., exponential), 𝜑𝜑 would be a scalar number. The components of 𝜑𝜑, which 197 

are called hyper-parameters, are distributed accordingly to the hyper-prior distribution denoted by 198 

𝜋𝜋2(𝜑𝜑). 199 

2.2 Generalized Linear Model 200 

The GLMs represent a practical and more flexible extension of linear models. Indeed, a GLM allows 201 

a response variable to be correlated with the covariates through a given link function, as shown by 202 

Eq. 3 (Follmann & Wu, 1995).  203 

𝑔𝑔(𝑌𝑌) = 𝛼𝛼0 + ∑ ∑ ∑ 𝛼𝛼𝑖𝑖𝑋𝑋𝑗𝑗𝑘𝑘𝑟𝑟
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1                                                                                                  (3) 204 

where 𝑔𝑔(𝑌𝑌) represents the link function, while 𝑋𝑋𝑗𝑗 are called covariates or predictors, or explanatory 205 

variables. Furthermore, 𝛼𝛼0 identifies the intercept, 𝛼𝛼𝑖𝑖 denotes the coefficients, k is an exponent 206 

integer, while n and m are the number of coefficients and predictors, respectively. Finally, Y is the 207 

response variable, which follows an exponential family distribution (e.g., normal, Poisson, or 208 

binomial) in a GLM.  209 

For condition monitoring purposes, it is worthwhile mentioning that the response variable is a RI, 210 

e.g., the hazard rate or the meantime to failure, while the covariates are the monitored process 211 

variables, e.g., pressure or temperature. Thus, the link function defines the relationship between the 212 

RI (dependent variable) and the monitored process variables (independent variables). 213 

2.3 Hierarchical Bayesian Regression 214 

This paragraph summarises the procedure to perform HBR. The hyper-parameters of an HBR model 215 

are the intercept and the coefficients characterizing the link function. The prior distribution and the 216 

likelihood function are expressed through Eq. 4 and Eq. 5, respectively [46]. 217 

𝜋𝜋0(𝜃𝜃) =  ∫ ∫ …∫ 𝜋𝜋1(𝜃𝜃|𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛)𝜋𝜋2(𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛)𝜕𝜕𝛼𝛼0𝜕𝜕𝛼𝛼1 … 𝜕𝜕𝛼𝛼𝑛𝑛
+∞
−∞

+∞
−∞

+∞
−∞                                            (4) 218 

𝑓𝑓(𝑌𝑌|𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛) =  ∫ 𝑓𝑓(𝑌𝑌|𝜃𝜃)𝜋𝜋1(𝜃𝜃|𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛)𝑑𝑑𝜃𝜃Θ                                                                          (5) 219 

where 𝜋𝜋1(𝜃𝜃|𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛) and 𝜋𝜋2(𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛) are the first-stage prior and the hyper-prior, 220 

respectively. Through Bayes’ Theorem (Eq. 1), the posterior distribution of the hyper-parameters is 221 

got by Eq. 6 (Zeger & Karim, 1991). 222 



𝜋𝜋1(𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛|𝑌𝑌) =223 

[∫ 𝑓𝑓�𝑌𝑌�𝜃𝜃�𝜋𝜋1�𝜃𝜃�𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛�𝑑𝑑𝜃𝜃]∗[∫ ∫ …∫ 𝜋𝜋1�𝜃𝜃�𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛�𝜋𝜋2(𝛼𝛼0,𝛼𝛼1…𝛼𝛼𝑛𝑛)𝜕𝜕𝛼𝛼0𝜕𝜕𝛼𝛼1…𝜕𝜕𝛼𝛼𝑛𝑛
+∞
−∞

+∞
−∞

+∞
−∞Θ ]

∫ [∫ 𝑓𝑓�𝑌𝑌�𝜃𝜃�𝜋𝜋1�𝜃𝜃�𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛�𝑑𝑑𝜃𝜃]∗[∫ ∫ …∫ 𝜋𝜋1�𝜃𝜃�𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛�𝜋𝜋2(𝛼𝛼0,𝛼𝛼1…𝛼𝛼𝑛𝑛)𝜕𝜕𝛼𝛼0𝜕𝜕𝛼𝛼1…𝜕𝜕𝛼𝛼𝑛𝑛
+∞
−∞

+∞
−∞

+∞
−∞Θ ]𝑑𝑑𝜃𝜃Θ

                 (6) 224 

In a Markov Chain Monte Carlo (MCMC) process, the posterior distribution is often estimated 225 

numerically by Gibbs sampling by exploiting the conjugate prior. Given a certain likelihood, choosing 226 

a conjugate prior makes the form of the posterior known. It is also possible to adopt a non-conjugate 227 

prior distribution, but it will lead to higher mathematical complexity. Moreover, the property of the 228 

conjugate prior allows the Gibbs algorithm to find the posterior distribution by first randomly 229 

sampling from both the prior distribution (Eq. 4) and the likelihood function (Eq. 5), and subsequently 230 

applying the Bayes’ Theorem. Finally, the posterior predictive distribution for the unknown 231 

parameter of interest (𝜃𝜃) is given by Eq. 7. 232 

𝜋𝜋(𝜃𝜃|𝑌𝑌) = ∫ ∫ …∫ 𝜋𝜋1(𝜃𝜃|𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛)𝜋𝜋1(𝛼𝛼0,𝛼𝛼1 …𝛼𝛼𝑛𝑛|𝑌𝑌)𝜕𝜕𝛼𝛼0𝜕𝜕𝛼𝛼1 … 𝜕𝜕𝛼𝛼𝑛𝑛
+∞
−∞

+∞
−∞

+∞
−∞                                    (7) 233 

Accordingly, the posterior predictive distribution shown in Eq. 7 is obtained by MCMC via a 234 

sampling process of the joint posterior distributions of the hyper-parameters.  235 

The remainder of this paper is organized as follows; Section 2 describes the methodology developed. 236 

Section 3 illustrates the implementation of the methodologies in the numerical example adopted as a 237 

case study, while Section 4 discusses the results. Finally, conclusions are presented in Section 5. 238 

3. Developed methodology 239 

Identifying a relationship between PVs and RIs represents a pivotal task in grasping the changing of 240 

reliability factors during operation. To this end, the primary goal of this paper is to develop a 241 

methodology that can correlate RIs and PVs (1) and estimate online reliability to schedule 242 

maintenance tasks (2). The sequence of the proposed four-stage framework is presented in Fig. 1. 243 



 244 

Fig. 1  Developed framework for online reliability estimation with HBR and GLM. 245 

3.1. Stage 1: Experimental tests and data collection. 246 

In the proposed method, ALT with fixed PVs are performed on a given device (Step 1), and 247 

subsequently, Times To Failure (TTFs) are extracted (Step 2). Each ALT identifies a source of data 248 

that is later exploited to build the regression model. 249 

3.2. Stage 2: Hierarchical Bayesian Regression 250 

We chose different GLMs to test them on the acquired failure data (Step 3). Indeed, testing more than 251 

one model can be practical since the relationship between the reliability indicator and the PVs is not 252 

clear, and more than one valid relationship can exist. In the second case, the relationship that allows 253 

modeling the data properly and simultaneously allows minimizing the complexity of the model must 254 

be chosen. The choice of the models should be based on expert judgment, available physical 255 

knowledge of the deterioration process, or historical data (BahooToroody et al., 2020b). After 256 

choosing the models, they are tested separately and independently (Step 4). At first, prior distributions 257 

are assigned to both the parameters of interest (Step 5) and the hyper-parameters (Step 6). The choice 258 

of the prior distribution could be based on knowledge or could be non-informative. In the latter case, 259 

the inference will be completely data-driven, since a non-informative prior is very diffusive and 260 

spread over the variables’ domains (e.g., a uniform prior). Besides, it is worthwhile mentioning that 261 



choosing a conjugate prior is usually convenient for mathematical purposes since it allows to obtain 262 

a closed-mathematical solution. After setting the prior distributions, the HBR is performed to get the 263 

posterior distribution of the hyperparameters and the parameters of interest (Steps 7.1-7.2). Finally, 264 

the Bayesian p-value and the Deviance Information Criterion (DIC) are estimated (Steps 8-9). The 265 

Bayesian p-value determines the goodness of fit, while the DIC, given by Eq. 8, is exploited to 266 

compare distinct models.  267 

𝐷𝐷𝐷𝐷𝐷𝐷(𝜃𝜃) = −2log (𝑓𝑓(𝑌𝑌|𝜃𝜃))                                                                                                                 (8) 268 

 where 𝑓𝑓(𝑌𝑌|𝜃𝜃) is the likelihood function. The DIC is composed of two penalized functions: the first 269 

one considers the goodness of fit, while the second function evaluates the complexity of the model. 270 

Thus, assuming equal goodness of fit, the higher the complexity of the model, the higher the DIC. 271 

3.3. Stage 3: Model selection 272 

Since more models are tested on the available data, a criterion to pick one model over the others must 273 

be chosen. The p-value compares the observations with the predicted values obtained through the 274 

posterior distribution. In other words, the p-value determines how well the model replicates the data. 275 

Particularly, a p-value lower than 0.05 denotes a model that generates much higher values than the 276 

observed data, while a p-value higher than 0.95 is associated with a model which predicts much lower 277 

values compared to the observations. Consequently, the mean p-value should be around 0.5 (Kelly & 278 

Smith, 2011), and in this study, every model whose mean p-value is less than 0.05 or higher than 0.95 279 

is discarded (Step 10). Next, the remaining models are compared through the DIC; specifically, the 280 

model with the lowest DIC is selected (Step 11).  281 

3.4. Stage 4: Reliability estimation and maintenance scheduling 282 

Assuming that the considered device is working in standard operation, the fourth stage of the 283 

methodology is implemented. First, a reliability threshold is defined (Step 12). Indeed, critical 284 

equipment maintenance is usually scheduled as soon as a given reliability threshold is reached, rather 285 

than considering fixed indicators such as the Mean Time To Failure (MTTF). Subsequently, the PVs 286 

characterizing the selected GLM are monitored (Step 13), and the reliability of the component is 287 

computed at each time unit (Step 14). At last, maintenance is planned when the estimated reliability 288 

becomes lower than the aforementioned threshold (Step 15). 289 

4. Results: Application of the methodology 290 

To show the applicability of the method, we used a numerical example as a case study.  291 

4.1. Stage 1: Experimental tests and data collection. 292 



We considered pressure and temperature as process variables for the ALT. Five distinct Operating 293 

Conditions (OC) with five levels of pressure and two levels of temperature are evaluated. For each 294 

operating condition, ten components are tested until failure (step 1), and the TTFs are extracted (step 295 

2). This kind of ALT is usually called run-to-failure because the test is carried on until a failure occurs. 296 

However, the ALT may manage censored data since the tests are conducted for a limited period. Even 297 

if censored TTFs are not considered for this numerical example, they could easily be included in the 298 

analysis. It is also worthwhile mentioning that the number of operating conditions and components 299 

to test should be chosen based on company policies, available knowledge, and expert judgment. 300 

Considering as an example the study presented by Tucci et al. (2014), twenty-four components are 301 

tested in three distinct OCs, while in the work of Hamada et al. (2008) an example of forty 302 

components and four OCs is reported. Given the aforementioned examples, the authors considered 303 

fifty components in five distinct OCs. The analysed OCs and the extracted TTFs are listed in Table 1 304 

and Table 2, respectively. 305 

Table 1 Considered OCs for the accelerated testing procedure. 306 

PV  OC1  OC2  OC3  OC4  OC5 
Pressure [bar]   8   9   10   11   12 
Temperature [°C]   30   30   30   40   40 

 307 

Table 2 TTFs (hours) extracted from the accelerated tests for each OC. 308 

TTF  OC1  OC2  OC3  OC4  OC5 
TTF1   113.61   107.20   95.91   71.21   67.65 
TTF2   92.35   82.60   83.21   74.47   66.66 
TTF3   104.15   93.18   93.31   94.89   43.98 
TTF4   101.07   98.53   84.75   63.64   72.23 
TTF5   112.17   102.64   89.14   68.73   75.53 
TTF6   91.64   103.43   90.49   69.53   73.09 
TTF7   118.12   94.57   87.37   81.56   67.07 
TTF8   94.69   108.52   68.09   74.12   69.15 
TTF9   99.41   83.72   56.95   63.54   71.44 
TTF10   104.16   83.74   91.72   79.16   61.04 

 309 

4.2. Stage 2: Hierarchical Bayesian regression 310 

The third step of the methodology requires the specification of distinct models to test the data. The 311 

TTF distribution should be chosen based on prior beliefs and knowledge of the failure process. In this 312 

study, we assumed the TTF to follow a normal distribution, thus normal-normal regression models 313 

are considered: 314 



𝑇𝑇𝑇𝑇𝑇𝑇 ~ 𝑁𝑁(𝜇𝜇,𝜎𝜎2)                                                                                                                                  (9) 315 

Accordingly, the parameters of interest are the MTTF (𝜇𝜇) and the standard deviation (𝜎𝜎). Furthermore, 316 

the canonical link function for the normal-normal regression model is the identity function, as shown 317 

by Eq. 10. 318 

 𝜇𝜇 = 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = 𝛼𝛼0 + ∑ ∑ ∑ 𝛼𝛼𝑖𝑖𝑋𝑋𝑗𝑗𝑘𝑘𝑟𝑟
𝑘𝑘=1

𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1                                                                                                        (10) 319 

Based on the previous paragraph, the Bayesian regression aims to determine the relationship between 320 

the MTTF and the PVs (i.e., pressure and temperature); therefore, two distinct models are developed, 321 

as shown in Eq. 11 and Eq. 12, respectively. 322 

𝜇𝜇 = 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑐𝑐 ∗ 𝑇𝑇𝑃𝑃𝑇𝑇𝑇𝑇                                                                                                       (11) 323 

𝜇𝜇 = 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃                                                                                                             (12) 324 

where 𝑎𝑎 denotes the intercept, while 𝑏𝑏 and 𝑐𝑐 are the pressure and temperature coefficients, 325 

respectively. In the first model, the influence of both pressure and temperature on MTTF is 326 

investigated, while the second model addresses how pressure variations affect the MTTF. To 327 

conclude, the assignment of a prior distribution to each parameter of interest (step 5), a non-328 

informative gamma prior is chosen for the standard deviation (Eq. 13). Indeed, the gamma prior is 329 

the natural conjugate prior for the standard deviation, allowing for obtaining a closed-mathematical 330 

solution. Moreover, choosing a non-informative prior allows comparing the results of HBM and other 331 

estimation approaches such as MLE (D. L. Kelly & Smith, 2009). 332 

𝜎𝜎 ~ 𝐺𝐺𝑎𝑎𝑇𝑇𝑇𝑇𝑎𝑎(0.0001 , 0.0001)                                                                                                                                  (13) 333 

Next, the prior distributions for the hyper-parameters are defined (step 6). In the first model, there are 334 

three hyper-parameters (the intercept 𝑎𝑎, and the slopes 𝑏𝑏 and 𝑐𝑐), while in the second model, there are 335 

two hyper-parameters (the intercept 𝑎𝑎 and the slope 𝑏𝑏). Adopting non-informative priors is strongly 336 

recommended when enough data is available to avoid a powerful influence (of the prior choice) on 337 

the posterior distribution (Leoni et al., 2021). For each hyper-parameter, a diffusive normal prior is 338 

selected: 339 

𝑎𝑎 ~ 𝑁𝑁(0 , 104)                                                                                                                                  (14) 340 

𝑏𝑏 ~ 𝑁𝑁(0 , 104)                                                                                                                                  (15) 341 

𝑐𝑐 ~ 𝑁𝑁(0 , 104)                                                                                                                                  (16) 342 



The next phase is the development of the Bayesian regression, which is implemented through RJags. 343 

To predict the posterior distributions (step 7), the MCMC sampling process is conducted with three 344 

chains characterized by over-dispersed initial values. Considering over one chain is strongly 345 

recommended to check the convergence of the process. Each chain is simulated with 105 iterations 346 

preceded by 1,000 burn-in iterations. The statistical summaries of the posterior distributions of the 347 

hyper-parameters are reported in Table 3 and Table 4 for the first and second models, respectively. 348 

Fig. 2 illustrates the MCMC chains of the first model, while Fig. 3 shows the MCMC chains related 349 

to the second model. 350 

Table 3 Statistical summary of the posterior parameters of the first model 351 

 Parameter  Mean   Standard Deviation   2.5 percentile   97.5 percentile 
a  178.023   10.3954   157.909   198.534 
b  -9.0718   1.9926   -13.027   -5.234 
c  -0.0752   0.5714   -1.147   1.072 
sigma  10.0079   1.0569   8.193   12.326 

 352 

Table 4 Statistical summary of the posterior parameters of the second model 353 

 Parameter  Mean   Standard Deviation   2.5 percentile   97.5 percentile 
a  177.391   9.964   157.62   196.707 
b  -9.2645   0.9866   -11.172   -7.307 
sigma  9.9118   1.0352   8.135   12.188 

 354 



 355 

Fig. 2 Trace plots (on the left) and predicted posterior distributions (on the right) for the unknown parameters of the first model. 356 

 357 

Fig. 3 Trace plots (on the left) and predicted posterior distributions (on the right) for the unknown parameters of the second model. 358 



Each color of Fig 2 and 3 denotes a different chain. The convergence of the second model is successful 359 

since the three chains are well-mixed as depicted by the left graph of Fig. 3. For the first model (Fig. 360 

2), the trace plots of the pressure (b) and the temperature (c) coefficient show a worse convergence 361 

compared to the second model. However, for both models, the Gelman indexes related to the 362 

predicted parameters are equal to 1 or very close to 1. The Gelman index estimates the ratio of the 363 

within-chain variance and the between-chain variance. Thus, a Gelman index close to 1 indicates that 364 

the variance within-chain and between-chain are similar, which is an indicator of convergence. 365 

Furthermore, as revealed in Table 3, the influence of the temperature is much lower compared to the 366 

relevance of the pressure. Indeed, the temperature coefficient is lower than the pressure coefficient in 367 

the first model. The aforementioned considerations could be useful to make an informed decision on 368 

the model to pick, however, the following steps are required for a more in-depth and conscientious 369 

choice. Indeed, there are some scenarios characterized by equally suitable models when trace-plots, 370 

Gelman index, and estimated parameters are the only considered factors. The validity of the 371 

developed models is determined by estimating the Bayesian p-value (Step 8), while the choice of the 372 

model is guided by the DIC (Step 9). For the first model, the mean p-value was equal to 0.4977, while 373 

the calculation revealed a mean p-value of 0.5004 for the second model. The first model is 374 

characterized by a DIC equal to 374.6, while a DIC of 374.2 is associated with the second regression 375 

model. 376 

 4.3. Stage 3: Model selection. 377 

The validity of both regression models is proved through the Bayesian p-value, which is close to 0.5, 378 

thus no model is discarded (Step 10). Furthermore, the DIC of the second model is slightly lower than 379 

the DIC associated with the first model. Accordingly, the second model is selected, and it is 380 

considered for the remaining part of this paper (Step 11).  381 

To further prove the goodness of the model, the cost function illustrated by Eq. 17 is adopted. 382 

𝐷𝐷𝐶𝐶𝑃𝑃𝐶𝐶 𝑓𝑓𝑓𝑓𝑓𝑓𝑐𝑐𝐶𝐶𝑓𝑓𝐶𝐶𝑓𝑓 = 1
2𝑛𝑛
∑ (𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖 − 𝑂𝑂𝑏𝑏𝑃𝑃𝑖𝑖)2𝑛𝑛
𝑖𝑖=1                                                                                           [17] 383 

where 𝑓𝑓 denotes the number of observations, while 𝑃𝑃𝑃𝑃𝑃𝑃𝑑𝑑𝑖𝑖 and 𝑂𝑂𝑏𝑏𝑃𝑃𝑖𝑖 are the ith prediction of the model 384 

and the ith observed value, respectively. The cost function is calculated for each value of the intercept 385 

(a) and the slope (b) within their respective 95% credible interval (listed in Table 4), using a 386 

discretization of 0.1. The cost function obtained is shown in Fig. 4, while the contour plot is illustrated 387 

in Fig. 5. 388 



 389 

Fig. 4 3D surface of the cost function. 390 

 391 

Fig. 5 Contour plot of the cost function. The red dot represents the minimum value. 392 

The minimum value of the cost function is equal to 45.6 and it is located at (𝑏𝑏,𝑎𝑎) =393 

(−9.472,179.52), which is pretty close to the mean value extracted through the HBR.  394 

4.4. Stage 4: Reliability estimation and maintenance scheduling 395 

Given a working component in a standard operating environment, the reliability decreases over time 396 

because of a degradation process that is affected by the operating condition and the process variables. 397 

For this study, the reference threshold of the reliability is set equal to 0.4 (step 12), accordingly as 398 

soon as the estimated reliability reaches this value, the operations are not regarded as safe and an 399 

intervention is required. In other words, the threshold identifies the lowest acceptable value for the 400 



estimated reliability. The reliability threshold should be chosen based on company policies, expert 401 

judgments, guidelines, or regulations. considering the second regression model, the PV of interest is 402 

the pressure monitored during the operation (Step 13). Fig. 6 shows the pressure observed during 500 403 

hours of operation. 404 

 405 

Fig. 6Monitored pressure during 500 hours of operation. 406 

Next, the reliability is estimated considering a normal distribution, whose probability density function 407 

is given by Eq. 18. 408 

𝑓𝑓(𝐶𝐶) = 1
𝜎𝜎√2𝜋𝜋

𝑃𝑃−
1
2(𝑡𝑡−𝜇𝜇𝑡𝑡𝜎𝜎 )2                                                                                                                           (18) 409 

where 𝜇𝜇𝑡𝑡 is obtained by Eq. 12, considering the predicted parameters listed in Table 4 and the 410 

monitored pressure for 𝐶𝐶. Thus, each time unit is associated with a different value of 𝜇𝜇𝑡𝑡 based on the 411 

measured pressure. Since time is considered discrete, the unreliability is approximated, as shown by 412 

Eq. 19. 413 

𝑇𝑇(𝑇𝑇) = ∑ 1
𝜎𝜎√2𝜋𝜋

𝑃𝑃−
1
2(𝑡𝑡−𝜇𝜇𝑡𝑡𝜎𝜎 )2𝑇𝑇

𝑡𝑡=1                                                                                                              (19) 414 

The reliability of each time unit is subsequently estimated as the complement to one of the 415 

unreliability, as depicted by Eq. 20. 416 

𝑅𝑅(𝑇𝑇) = 1 − ∑ 1
𝜎𝜎√2𝜋𝜋

𝑃𝑃−
1
2(𝑡𝑡−𝜇𝜇𝑡𝑡𝜎𝜎 )2𝑇𝑇

𝑡𝑡=1                                                                                                              (20) 417 

Following Equation 19, the reliability is estimated for each hour of the considered timespan (step 14). 418 

Given the reliability threshold mentioned above, a maintenance task is planned when the estimated 419 



reliability is less than 0.4 (step 15). Whenever a maintenance task is performed, the component is 420 

replaced with a new one, considering a replacement “as good as new” (AGAN). Consequently, the 421 

reliability is equal to 1 after the component is replaced. The estimated reliability and the scheduled 422 

maintenance tasks during the considered time interval are illustrated in Fig. 7. The calculation depicts 423 

three maintenance interventions: the first replacement is performed after 158 hours of operation, 424 

while the second and third are carried out after 306 and 453 hours, respectively. In Fig. 7, the red 425 

dotted lines represent a maintenance task (158, 306, and 453 hours), while the gray horizontal dotted 426 

line represents the reliability threshold (0.4). 427 

 428 

 429 

Fig. 6 Estimated reliability for each time unit based on the monitored pressure over a 500 hours period.  430 

5. Discussion 431 

5.1 Alternative model 432 

The regression model with only the pressure as relevant PV is depicted as the best due to the lower 433 

DIC and the consistent Bayesian p-value. Moreover, the posterior mean value of the temperature 434 

coefficient related to the first model revealed less influence of the temperature on the reliability 435 

indicator. Since the pressure is regarded as the most influential PV, it is worth investigating another 436 

model characterized by a quadratic dependence of the MTTF regarding the pressure. The 437 

aforementioned model is illustrated by Eq. 21. 438 

𝜇𝜇 = 𝑀𝑀𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑎𝑎 + 𝑏𝑏 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑐𝑐 ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃2                                                                                                             (21) 439 



By adopting the same prior distributions introduced in Section 3.2 the statistical summary reported 440 

in Table 5 is got. 441 

Table 5 Statistical summary of the posterior parameters associated with the model with quadratic pressure dependence. 442 

 Parameter  Mean   Standard Deviation   2.5 percentile   97.5 percentile 
a  100.251   57.6577   -24.168   208.8459 
b  6.5604   11.7032   -15.343   31.6898 
c  -0.795   0.5866   -2.062   0.3025 
sigma  10.0788   1.068   8.25   12.4237 

 443 

The calculation revealed a mean p-value of 0.4985, which is an acceptable value. However, looking 444 

at the trace plot shown in Fig. 8, the convergence is not reached. Consequently, the developed model 445 

could not be accepted as valid and must be discarded.  446 

 447 

Fig. 7 Trace plot of c (quadratic pressure coefficient), illustrating the absence of convergence for the developed regression model. 448 

5.2 Corrective maintenance and nonoperating time 449 

Fig. 5 is got considering no failure between two preventive maintenance tasks. However, failures 450 

could occur even if a CBM policy is implemented. During the non-operating time, the unreliability is 451 

often considered constant; thus, it does not increase. Both CM and standby period could be easily 452 

added into the developed method. Indeed, whenever a failure occurs, a CM task is carried out, 453 

restoring the AGAN condition (the reliability is reset to 1). Subsequently, the monitoring process is 454 

reestablished until the occurrence of another failure or the preventive maintenance requirements are 455 

met. Regarding the nonoperating time, let 𝐶𝐶 be the instant of shutdown and 𝐶𝐶 + 𝑓𝑓 the time at which 456 

the operations are re-started. To model the absence of degradation, the condition defined by Eq. 22 is 457 

imposed. 458 

𝑇𝑇(𝐶𝐶) = 𝑇𝑇(𝐶𝐶 + 𝑓𝑓)                                                                                                                               (22) 459 



where 𝑇𝑇(𝐶𝐶) is the estimated unreliability in 𝐶𝐶 , while 𝑇𝑇(𝐶𝐶 + 𝑓𝑓) is the assigned unreliability for 𝐶𝐶 + 𝑓𝑓. 460 

Through Eq. 21, the unreliability is maintained constant, which is equal to constant reliability during 461 

the non-operating period. As an example, a component operating under a normal TTF distribution 462 

whose parameters are listed in Table 4 is considered. The history of the component state is shown in 463 

Fig. 9, along with the recorded pressure. Table 6 reports a summary of the relevant events along with 464 

their occurrence time. Before reliability drops below the threshold, a failure is observed after 130 465 

hours of operation and a CM task is performed. Subsequently, the device operates until the estimated 466 

reliability reaches the threshold value of 0.4, leading to a PM intervention after 279 hours of 467 

operations. Next, another PM action is performed after 422 hours of operation. Finally, 552 hours 468 

after the start of the operation, the pressure drops to 0, identifying a standby state. Accordingly, the 469 

reliability of the component is kept equal to the reliability estimated during the last operating hour 470 

until a new operating state is observed. Considering Fig. 9, a) reports the pressure and the reliability 471 

till the CM is performed, while b) and c) displays the monitored pressure and the estimated reliability 472 

till the first and the second PM task, respectively. Finally, d) illustrates the pressure and the reliability 473 

until the end of the considered period. 474 

 475 



 476 

 477 

Fig. 9 Integration of CM and non-operating time to the developed methodology for the presented example.  478 



 479 

Table 6 List of the sequence of relevant events. PM denotes a PM task, while CM represents a CM task. Finally, SB identifies a 480 
transition to a standby state. 481 

Time 130   279   422 552 
Relevant event CM   PM   PM SB 

 482 

6. Conclusions and future studies 483 

This paper presents a novel methodology capable of developing a regression model between PVs and 484 

RIs through the exploitation of data extracted from ALT. The obtained regression function is then 485 

used for conducting an online reliability estimation. In the framework developed, HBR and GLM 486 

were integrated to determine the link function between the covariates and the dependent variable (that 487 

is, RI). A normal-normal regression model was chosen, considering the MTTF as RI, while pressure 488 

and temperature were chosen as relevant PVs. The HBR was implemented on data extracted from 489 

five distinct operating conditions, while two distinct regression models were considered. Showing a 490 

lower DIC, the model with only the pressure is selected as the best. Subsequently, the Bayesian 491 

inference is used for the online reliability estimation, considering the pressure values detected during 492 

500 working hours. Setting a reliability threshold equal to 0.4, three maintenance tasks after 158, 306, 493 

and 453 hours respectively emerged from the calculation. Finally, an extension with corrective 494 

maintenance and nonoperating time is presented.  495 

The presented approach could be adopted in any operational context where a manufacturer is testing 496 

its products through ALT. Indeed, a controlled operating environment is required to determine the 497 

relationship between the most relevant PVs and RI at first, and subsequently estimate the reliability 498 

during use. Consequently, the method could be useful both for the design and for the operating phases. 499 

During the design phase, the framework could assist the enterprises to test whether the reliability 500 

requirements are satisfied, while during the operating phase it could be helpful to optimize postsale 501 

services.  502 

Among the limitations of the developed framework, it is worthwhile to mention the absence of 503 

imperfect maintenance tasks and measurement errors arising from sensors. Thus, including these two 504 

aspects in future developments could be relevant to make the methods more realistic. Indeed, any 505 

kind of maintenance task could be affected by process error, leading to partially restoring the life of 506 

the maintained device. Additionally, measurement errors could influence the decision process related 507 

to maintenance planning. Another important limitation of the present work is that maintenance actions 508 

are considered instantaneous (i.e., with no delay between the trigger and the start of the maintenance 509 

action). Future work could consider a maintenance delay related to logistics and resource issues, 510 



anticipating the maintenance trigger based on the delay distribution and predictions regarding the 511 

values assumed by the PVs. Addressing these considerations will result in a prognostic approach. 512 

Furthermore, considering a real application could require some amendments to the framework, thus 513 

the authors are planning to test the developed framework on real industrial data. Finally, the 514 

comparison between this framework and other classic approaches could be useful to determine the 515 

advantages and disadvantages of each method, thus the authors are planning to work on this topic as 516 

well.  517 
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