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a b s t r a c t

Background: Transcranial magnetic stimulation (TMS) is widely used in brain research and treatment of
various brain dysfunctions. However, the optimal way to target stimulation and administer TMS thera-
pies, for example, where and in which electric field direction the stimuli should be given, is yet to be
determined.
Objective: To develop an automated closed-loop system for adjusting TMS parameters (in this work, the
stimulus orientation) online based on TMS-evoked brain activity measured with electroencephalography
(EEG).
Methods: We developed an automated closed-loop TMSeEEG set-up. In this set-up, the stimulus pa-
rameters are electronically adjusted with multi-locus TMS. As a proof of concept, we developed an al-
gorithm that automatically optimizes the stimulation orientation based on single-trial EEG responses.
We applied the algorithm to determine the electric field orientation that maximizes the amplitude of the
TMSeEEG responses. The validation of the algorithm was performed with six healthy volunteers,
repeating the search twenty times for each subject.
Results: The validation demonstrated that the closed-loop control worked as desired despite the large
variation in the single-trial EEG responses. We were often able to get close to the orientation that
maximizes the EEG amplitude with only a few tens of pulses.
Conclusion: Optimizing stimulation with EEG feedback in a closed-loop manner is feasible and enables
effective coupling to brain activity.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Transcranial magnetic stimulation (TMS) [1] has shown thera-
peutic promise in various brain disorders [2] with almost no side
effects [3]. Rapidly repeated magnetic pulses can modulate
neuronal activity and yield, for instance, anti-depressant effects
and improved recovery from stroke [2]. Although TMS has been

investigated for decades and applied in therapeutic use for several
years, the optimal way to deliver TMS therapy in different clinical
conditions and individuals is still unclear.

TMS-induced brain activation is produced by inducing a focused
electric field (E-field) in the brain with a coil placed on the head.
Targeting the stimulating E-field, i.e., selecting the location and
orientation of its estimated focus on the cortex, is a key step in TMS.
Other stimulus parameters include, for example, the stimulation
intensity and the time between consecutive pulses, making the
space of available TMS parameters huge. In TMS treatments and
TMS studies investigating brain mechanisms, these parameters
have been chosen in different ways. A common approach has been
to observe and map functional responses to TMS, including motor-
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evoked potentials measured with electromyography when stimu-
lating the motor cortex [1], subject-reported phosphenes or visual
suppression upon stimulating the occipital cortex [4], and speech
disruptions when perturbing language areas [5]. Stimulation loca-
tions have also been selected based on bony landmarks [6] or
standard electroencephalography (EEG) electrode positions [7,8].
TMS targeting and mapping of functional responses got more
precise with the introduction of neuronavigation systems [9,10],
which guide and record the selection of the locations and orien-
tations of the E-field focus based on individual structural brain
scans.

Accurate TMS target selection is crucial: TMSeelectromyography
studies have shown that even subtle changes in the stimulation
parameters may lead to large changes in the motor responses
[11e14]. There are changes also in TMS-evoked potentials (TEPs)
measured with EEG when the stimulation parameters change
significantly [15e19], although detailed mappings of TEPs are lack-
ing. Detailed TEPmaps as a function of different stimulus parameters
would increase understanding of the brain dynamics underlying
TMSeEEG, which provides a direct measure of evoked brain activity.
TMSeEEG is effective in investigating brain mechanisms and
neuronal connections [20,21]; it has shown promise as a biomarker
in predicting the outcome andmonitoring the clinical efficacy of TMS
or other neuromodulatory treatments [21e23].

Given the varying practices in TMS targeting and the sensitivity
of the TMS responses to the stimulus parameters, it is unsurprising
that the observed TMS effects are often different and difficult to
interpret; sometimes they even appear contradictory [2,24,25]. To
make TMS more effective and more comparable, the stimulation
parameters should be adjusted with neurophysiological feedback,
regardless of the cortical target region. This concerns not only the
initial stimulation parameters selected at the beginning of a TMS
session but also the real-time adjustment of the TMS parameters
during treatment sessions tomaximize the desired plastic effects. It
has been suggested that TMS parameters could be adjusted with
feedback from EEG [21,22,26], which provides a readout signal from
superficial brain areas. Procedures for selecting initial stimulation
parameters in TMSeEEG measurements by visually inspecting
averaged EEG responses and manually adjusting the TMS settings
have been applied, e.g., in Refs. [27e29] to acquire high-quality,
artifact-free TEPs. There are, however, also other situations, such
as selecting stimulus parameters for TMS treatments, that could
benefit from EEG-based targeting. To make EEG-guided TMS prac-
tical and generally applicable, the analysis of EEG data and the
adjustment of TMS parameters must be easy and fastdleaving
automated closed-loop control [30] as the only feasible approach.
Previously, the timing of TMS pulses has been automatically
adjusted based on the phase of the pre-stimulus EEG [31,32]. Such
methods are, however, considered only as state-dependent stim-
ulation, not closed-loop stimulation that would utilize TMS re-
sponses in the process [33]. We hypothesized that TMS parameters
could be automatically and adaptively adjusted based on the
cortical effects of TMS as measured by EEG, even though TEPs
exhibit high variation.

In this paper, we show that guiding TMS with online EEG re-
sponses is possible and present an automated algorithm for
determining an optimal stimulation orientation based on TEPs. In
our closed-loop set-up, the stimulation parameters are adjusted
electronically with multi-locus TMS [14], which avoids conven-
tionally required manual coil positioning by simultaneously oper-
ated overlapping coils (see Fig. 1a). We show how TEPs depend on
the stimulation orientation on the left pre-supplementary motor
area (pre-SMA). Moreover, we demonstrate the functioning of the
automated TMSeEEG targeting (Fig. 1b) in the search of an optimal
stimulation orientation tomaximize the peak-to-peak amplitude of

the early TEP deflections. The presented algorithm enables user-
independent and individually optimized TMS targeting, especially
outside the primary motor cortex. Furthermore, the possibility for
automatic tuning of stimulus parameters with EEG feedback during
TMS sessions has great potential for increasing the efficacy of TMS
treatments.

2. Methods

We performed two experiments. In Experiment 1, we system-
atically recorded TEPs as a function of stimulation orientation.
Experiment 2 comprised repeated testing of the automated opti-
mization of the stimulus orientation with EEG feedback. At the
beginning of the TMSeEEG measurements, we performed a pre-
paratory experiment comprising testing of the auditory noise
masking and selection of the stimulation location and intensity.

Six healthy participants (2 males, 1 left-handed [34], aged
22e42) volunteered for the study. The participants were divided
into two groups of three subjects. Group A had the preparatory
experiment and Experiment 1 in a single session, and the corre-
sponding data were used to tune the algorithm validated in
Experiment 2 about 1e2 months later. For the Group B subjects,
Experiment 2 was performed first to provide an independent
validation of the algorithm, and Experiment 1 was carried out
about one week later. Prior to the TMSeEEG experiments, the
subjects underwent structural magnetic resonance imaging (MRI)
with T1-, fat-suppressed T1-, and T2-weighted sequences (cubic
voxel size 1 mm3). The study was accepted by the ethical com-
mittee of the Hospital District of Helsinki and Uusimaa and carried
out in accordance with the Declaration of Helsinki. The subjects
signed a consent form before the experiments.

2.1. Measurement set-up for TMSeEEG

With our multi-locus TMS system [14] and a 2-coil transducer
[35], we applied a monophasic magnetic pulse (60-ms rise time, 30-
ms hold period, and 44-ms fall time [36]), producing a biphasic E-
field in the cortex. The multi-channel TMS system allowed elec-
tronic adjustment of the stimulus orientation, here defined as the
direction of the peak E-field computed on the cortex at 15-mm
depth in a spherical head model of 85-mm radius. We attached a
thin foam pad under the transducer to reduce the vibration of the
electrodes and bone-conducted transmission of the stimulus
sound. The transducer placement relative to the subject's head was
tracked with an eXimia NBS 3 neuronavigation system (Nexstim
Plc, Finland), which during repeated stimulation helped to keep the
transducer within 2 mm and 2� from the intended coil placement.

EEG signals were recorded with BrainAmp DC amplifiers (Brain
Products GmbH, Germany). The signals were low-pass filtered with
a 1000-Hz cut-off frequency and sampled at 5000 Hz. During
TMSeEEG data acquisition, subjects were instructed to be relaxed,
avoid swallowing, keep their sight fixated to a point, and when
needed, blink preferably about 1 s after the pulses. To minimize the
auditory responses evoked by the click sound of the TMS pulse,
subjects were presented via earbuds auditory masking that con-
tained white noise and randomly jittering click noise from a
recorded coil click [37] (https://github.com/iTCf/TAAC). Subjects
wore earmuffs to additionally attenuate the TMS click.

2.2. Preparatory step: selecting fixed experimental parameters

Suitable auditory noise masking was determined by delivering
TMS with the maximum intensity with the transducer a few cen-
timetres above the head while the noise volume was increased
until the subject did not hear the coil click. The effectiveness of the
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noise masking was tested by recording sets of 20 TEPs, which were
evaluated with the help of a TMSeEEG data visualization tool
presented and shared in Ref. [29] (https://github.com/iTCf/rt-TEP).
This tool allowed cutting out the high-amplitude TMS pulse artifact
within the first few milliseconds after the pulse and showing
average-referenced signals to ease the visual inspection of the data.
If auditory components were present, the noise masking volume
was increased until the auditory components were negligible or the
subject's comfort limit or a 90-dB safety limit (measured with an
SM20-A sound meter, Amprobe, USA, in a plastic ear canal) was
reached.

The stimulation location (site of the estimated E-field
maximum) on the left pre-SMA was placed over the superior
frontal gyrus approximately 1e1.5 cm anterior to the vertical
anterior commissure line [38]. The stimulation intensity was
adjusted until in 20 trials, the average peak-to-peak amplitude of
the deflections 15e50 ms after the pulse was 5e10 mV (similar
approach as in Refs. [28,29]). We assessed the signal quality with
the data visualization tool [29] with the induced peak E-field in the
posterioreanterior and medialelateral directions. If large stimula-
tion artifacts were present in the electrodes close to the stimulation
site, the location was changed a few millimetres to reduce the
artifacts.

2.3. Experiment 1: systematic mapping of orientation dependency
of TEPs

In Experiment 1, 48 TMS pulses were delivered in each of the 36
orientations (with 10� steps) on the left pre-SMA, with the stimulus
placement and intensity being as determined in the preparatory
experiment. The 1728 pulses were divided into 12 blocks (a few
minutes break between), each of them including four pulses in all
36 orientations in a pseudorandom order. At the beginning of each
block, we gave one additional pulse in a random orientation; the
corresponding data were excluded from the analysis. The inter-
stimulus interval (ISI) was 2.4e2.7 s.

The EEG data were processed and analysed with Matlab scripts
(version R2020b or newer; The MathWorks, Inc., USA). In each trial

(�600… 600ms around the TMS pulses), the stimulation artifact in
the time interval of �2 … 8 ms was removed and replaced by
signals obtained by piecewise cubic interpolation. The signals were
high-pass filtered with a third-order Butterworth filter (cut-off
frequency 1 Hz) in the forward and backward directions. Bad trials
containing eye blinks or an excessive amount of muscle activity
were manually removed. The signals were baseline-corrected by
subtracting the mean of the signal at �200 … �10 ms from the
whole trial. Then, we applied the source-estimate-utilizing noise-
discarding (SOUND) algorithm [39,40] to diminish artifactual signal
components, such as muscle activity. SOUND was applied sepa-
rately for each pool of trials with the same stimulation orientation
and with the tuning factor for the regularization parameter set to
0.1, channel C6 serving as a high-quality reference electrode, and
the number of iterations being 10. In the minimum-norm estima-
tion included in SOUND, the lead fields were based on the indi-
vidual realistic head geometry. Structures of the head were
segmented from fat-suppressed T1 and T2 MRIs with the SimNIBS
headreco pipeline [41], followed by mesh downsampling and
smoothing. The conductivity model consisted of scalp, skull, and
intracranial volume, with conductivities of 0.33, 0.0066, and 0.33 S/
m, respectively. The lead fields were computed with the boundary
element method using a linear-collocation isolated-source
approach [42,43] (https://github.com/MattiStenroos/hbf_lc_p) for
source space on the greyewhite matter boundary discretized to
25,000 dipoles normal to the surface of the cortex. The SOUND step
was followed by low-pass filtering (cut-off frequency 45 Hz) and
downsampling of the signals to 1000 Hz. Finally, the data were
average referenced by subtracting the mean of all channels from
each channel.

The peak-to-peak amplitude of the P20eN40 complex (sub-
traction of the signal minimum within the 35 … 45 ms interval
from the signal maximum within the 15 … 25 ms interval) in
channel FC1 was extracted separately for each trial (see an example
TEP trial in Fig. 1b with the corresponding peaks and time intervals
highlighted). The dependence of the average P20eN40 amplitude
as a function of the stimulus orientation was computed for the 36
stimulation orientations as an average of the responses within 30�

Fig. 1. Benefit of multi-locus TMS in closed-loop TMSeEEG. a Instead of manual coil operation (left), multi-locus TMS (right) allows electronic adjustment of stimulus parameters (in
this example, the stimulation orientation (middle)) with no delay. The transducer consists of two tailored overlapping coils (top right). b In automated TMSeEEG targeting, the
evoked EEG responses are analysed in real-time and used to decide on the stimulation parameters for the next pulse in such a way that the optimal stimulation parameters are
found with the least number of iterations. The stimulation parameters are effortlessly adjusted with multi-locus TMS. The loop is repeated until the optimal stimulation parameters
are found.
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(inclusive) from the computation point. Between the sampled ori-
entations, the mean curve was generated by cubic interpolation.
The standard deviation of the P20eN40 amplitudes was deter-
mined by first computing the variance over the single-trial
P20eN40 amplitudes separately for each stimulus orientation,
followed by averaging the variances and taking the square root. The
signal-to-noise ratio (SNR) of the P20eN40 amplitude was deter-
mined as the ratio of the amplitude range of the mean curve over
different stimulation orientations and the standard deviation of the
single-trial P20eN40 amplitudes.

2.4. Experiment 2: automated orientation search

In Experiment 2, we performed 20 times the automated search
of the optimal stimulation orientation on the left pre-SMAwith EEG
feedback. In this experiment, we had 360 possible stimulation
orientations separated with 1� steps; the ISI was in the range of
2e6 s. The stimulus placement and intensity were as determined in
the preparatory experiment. The automated orientation search al-
gorithm was based on our previously developed algorithm for
optimizing TMS parameters with the motor response as the feed-
back signal to be maximized [44]. Here, we made that algorithm
work for maximizing TEP amplitudes (see Fig. 1b). Our adaptive
search algorithm is founded on Bayesian optimization [45], which
is an efficient approach to find a global optimum (e.g., maximum or
minimum) of an unknown function. The EEG feature to be opti-
mized was selected as the peak-to-peak amplitude of the P20eN40
complex in the FC1 electrode, as it showed orientation dependency
consistently across the Group A data (Subjects 1e3) in Experiment
1.

The search process started by delivering a TMS pulse at a
random E-field orientation followed by a pulse in the opposite
orientation. Subsequently, we gave stimuli at orientations indicated
by a guiding function called knowledge gradient, which was
computed on a logarithmic scale for numerical accuracy [46]. The
knowledge gradient suggests sampling points balancing high ex-
pected amplitude and large uncertainty so that the optimum is
found with a minimal number of pulses. We modelled the depen-
dence of the P20eN40 amplitude as a function of the stimulation
orientation with Gaussian process regression, which estimates the
underlying function by smoothly linking the neighbouring data
points with the help of a covariance function [47]. We applied the
following periodic (periodicity of 360�) covariance kernel function

[47]: kðxn;xmÞ ¼ a0 exp
�
� 4a1sin 2

�jxn�xmj
2

��
, where xn and xm are

the orientations for which the covariance is computed for, a0 de-
termines the amplitude variance, and a1 the smoothness of the
function to be fitted. The covariance parameters a0 and a1 along
with the other parameters for the prior and the likelihood models
were defined as by Tervo et al. [44]. The posterior mean curve (see
examples in Fig. 3a,d), whose maximum indicated the estimated
optimal stimulation orientation, was computed with a grid spacing
of 0.25�. The minimum and the maximum number of samples in
the search were set to 30 and 60, respectively. We considered the
search converged when the estimated optimal stimulation orien-
tation had not changed more than 5� during 10 consecutive
iterations.

The EEG signals were transferred in real-time to another com-
puter running our Matlab-based algorithm with the help of the
code examples provided by Brain Products (https://www.
brainproducts.com/downloads.php?kid¼2&amp;tab¼5). The real-
time processing of the EEG signals was similar to that in Experi-
ment 1. However, we did not apply the SOUND algorithm, and the
filtering was combined into a sixth-order band-pass Butterworth
filter (1e45 Hz). The baseline correction (mean-computation

interval �500 … �10 ms) was applied as the second-to-last step
before average referencing. If the signal range of a processed TEP in
any channel exceeded 75 mV within the time interval of �500 …

500 ms, the trial was rejected and a new trial acquired (on average
1.8 rejected trials per search; subject-wise averages ranging from
0.1 to 5.6). However, for Subject 3, the rejection threshold was
increased to 150 mV, as the data were excessively noisy (9.7 re-
jections per search on average).

The performance of the EEG-based orientation search algorithm
was evaluated by comparing the search outcomes with the mean
curve computed from the data measured in Experiment 1 (see
Fig. 4aef); the error of each search run was defined as the absolute
difference of the optimized stimulation orientation and the closest
maximum of the individual mean curve.

3. Results

3.1. Experiment 1: orientation dependency of the TMSeEEG
responses

Fig. 2a,d,e shows how the averaged TEPs of Subject 1 varied as a
function of the E-field orientation (Fig. 2c). As expected, the largest
early responses were evoked in the channels close to the stimula-
tion site, and their amplitude varied with the stimulation direction.

Fig. 2d visualizes the time course of the TEPs in channel FC1
sited near the stimulation location. The first deflections after the
stimulus onset peaked at around 10 ms (negative), 20 ms (positive
deflection, named P20), and 40 ms (negative, N40). The amplitudes
of these early components depended on the stimulation orientation
as clearly seen in Fig. 2e. In addition, the peak-to-peak amplitude of
the P20�N40 complex varied as a function of the stimulation
orientation in a sinusoidal way, having maxima at around�90� and
90� (see Fig. 2f), when the reference orientation 0� was in the
posterior-to-anterior direction. The orientation dependency of the
P20�N40 amplitude with all six subjects is presented in Fig. 4aef.

3.2. Experiment 2: automated EEG-based orientation search

Fig. 3 presents two examples of the automated EEG-based
orientation search with Subject 1. The first example (Fig. 3aec)
displays how the search rapidly converged to one of the maxima of
the P20eN40 response curve while the second example (Fig. 3def)
demonstrates an additional switch from one maximum to another
one during the search process. Fig. 3c,f reveals that the sampling
was guided in such a way that about the first ten samples were
almost evenly distributed across the orientations, whereas the rest
of the samples were mainly centred around the current estimate of
the optimal orientation. The example search outcomes are visual-
ized in Fig. 3a,d, which also illustrates the large variation of the
single-trial responses.

The ability of the closed-loop search to find the optimal stimulus
orientation is visualized in Fig. 4, which illustrates how the single
search outcomes (optimized stimulus orientation) grouped around
the ground-truth orientations (maxima of the mean curves deter-
mined in Experiment 1). The convergence of the single search runs
is presented in Fig. 4g. The average accuracy of the EEG-based
orientation search over the 120 repetitions was 18� (individual
average accuracies 5e43�; median 10�). When excluding Subject 3,
whose EEG data were excessively noisy, the average accuracy was
13� (median 9�). This 13� deviation from the ground truths corre-
sponds on average to a 0.25-mV or 3% decrease in the amplitudes of
the P20eN40 mean curve maxima. Eighty-eight per cent of the
optimization results were closer than 25� to the ground truth (77%
when including Subject 3). The average number of TMS pulses
needed in the search was 42 (range 33e48 among the subjects;
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median 37). The accuracy of the estimated optimal orientation and
the number of pulses needed in the search tended to depend on the
SNR of the optimized TEP feature as can be seen in Fig. 4h and i: the
better the SNR, the less error there was in the search outcomes and
the smaller number of stimuli needed for convergence.

4. Discussion

The ability to adjust TMS parameters automatically based on
online EEG feedback opens new prospects for scientific and clinical
applications of TMS. The results of our algorithm performance
evaluations (Experiment 2) demonstrate that our automated
closed-loop search provides an easy, fast, and user-independent
way to determine TMS targets based on evoked EEG signals. This
is, to our knowledge, the first time that post-stimulus EEG re-
sponses helped to optimize TMS efficacy in a closed-loop manner.

The automated orientation search (Experiment 2) performed
well in all subjects except one whose EEG was contaminated by
excessive scalp muscle activity present throughout the measure-
ments. The differences in the algorithm performance are explained
by the alterations in the SNR of the data: better SNR increases the
accuracy (Fig. 4h) and reduces the number of required iterations in
the search process (Fig. 4i). The accuracy of the optimized orien-
tations would likely get better by increasing the number of itera-
tions in the search, at the cost of increasing the search time.
Depending on the application, different criteria can be chosen to
terminate the search.

Even though the EEG-based orientation search worked well in
most cases, there are a few erroneous search results visible in
Fig. 4aeg. These outliers resulted from the fact that single-trial
TEPs, and thus the extracted P20�N40 amplitudes, are very vari-
able (see example distributions in Figs. 2f and 3a,b). This variation
makes the optimization challenging, as sometimes stimulation
with the optimal orientation may evoke small P20�N40 ampli-
tudes, and, with non-optimal orientation, the amplitudes can be
large by chance. The changes in the single-trial EEG responses with
different stimulation orientations are difficult or even impossible to
register and interpret visually by the operator. However, our user-
independent algorithm uncovers the optimal orientation often
even with a few tens of pulses in different directions. This is
remarkably few in contrast to traditional TMSeEEG in which
several tens or even a few hundred trials with the same stimulation
parameters are averaged together for the offline analysis and in-
terpretations. The performance of our closed-loop algorithm shows
that even single-trial TEPs contain useful information when com-
bined across different TMS parameters in a meaningful way.

The EEG feature we selected for the optimization was the
amplitude of the P20eN40 complex, as it showed apparent orien-
tation dependency in Experiment 1 across the Group A subjects
(algorithm test data). The amplitudes of the early components
(within the first 50 ms after the pulse) have been used also in other
studies to adjust TMS parameters [28,29], as the early TEP de-
flections are thought to reflect cortical excitability [29,48e50].
Furthermore, peak-to-peak amplitudes are less susceptible to
baseline drifting than the amplitudes of single peaks. In this study,

Fig. 2. Orientation dependency of the TMS-evoked EEG responses on the left pre-SMA (Subject 1). a Time courses of the TEPs in all channels with selected stimulation orientations
(�90� , 0� , 90�). The black cross marks the position of the transducer center relative to the electrode locations (a) and the stimulation site relative to the brain anatomy (b). In b, the
left superior frontal gyrus is highlighted in red. c The 36 stimulation orientations. The colours and line styles of the arrows indicate the corresponding stimulation orientations in a
and d. d Enlarged TEP time courses of the channel FC1 with all stimulation orientations. e Isocolour plot of the TEP time courses with different stimulus orientations in FC1. f Peak-
to-peak amplitudes of the P20�N40 complex in FC1 with different stimulation orientations. The dots depict the single-trial responses, the solid trace is a mean curve, and the
shaded area illustrates the standard deviation. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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we applied the automated search for the peak-to-peak amplitudes
in one channel, namely FC1. However, there are many other aspects
in the EEG signal that could be optimizable features in closed-loop
TMSeEEG. For example, one could employ the signal from several
channels in form of a spatial filter [32] to capture the signal from a
desired cortical area or utilize the multi-channel EEG to follow and
optimize the signal propagation between different cortical areas.

We tested the automated orientation search on pre-SMA since it
is often easy to acquire high-quality artifact-free TMSeEEG data
from that area [51]. In addition, pre-SMA is relevant when studying,
for example, cognitive control [52] or motor learning [53] with
TMS; it has been studied as a potential target for treating patients
with obsessive-compulsive disorder and essential tremor [2]. We
presume that this kind of orientation search would work also on
other brain areas, but it would require further systematic mapping
to find out what are the suitable time intervals for detecting the
peak amplitudes, as the number of TEP deflections and their la-
tencies vary across the brain [18]. Other stimulation sites, especially
lateral ones, may be more prone to muscle artifacts and require
sophisticated artifact removal methods to ensure reliable func-
tioning of closed-loop TMSeEEG algorithms. As in this work we
stimulated in all directions, we unsurprisingly observed some
muscle artifacts with certain stimulation directions with two sub-
jects (1 and 6) when visually inspecting the averaged raw signals
from Experiment 1. The muscle artifacts were relatively small
(maximum amplitude 20e30 mV) and appeared only in a few
channels (up to four) lateral or anterior to the channel of interest
(FC1). The SOUND algorithm applied offline for the data of Exper-
iment 1 diminished these muscle artifacts; the artifacts were,
however, not necessarily completely removed. Despite possible
residual artifacts with some of the subjects, the observed sinusoidal

orientation dependency in the amplitude of the P20eN40 complex
was consistent across all subjects (Fig. 4aef). Therefore, we believe
that the observed effect originates from the brain and not from
artifacts. The online preprocessing in Experiment 2 included no
artifact cleaning. Therefore, some of the single-trial responses of
Subjects 1 and 6 contained minor TMS-related muscle artifacts in
channels other than the channel of interest (FC1). All search out-
comes of these subjects were close to the ground truth optima
determined from SOUND-cleaned data (see Fig. 4a,f); thus, muscle
artifacts seem not to have affected the performance of the closed-
loop optimization.

In addition to the stimulation orientation, our algorithm could
optimize EEG responses as a function of other stimulation param-
eters, such as the stimulation location, intensity, or timing (with
respect to ongoing brain activity), or all of them simultaneously. In
this work, we determined the stimulation location and intensity
manually based on visual inspection of averaged TEPs [29]. We
believe that the whole procedure can, however, be automated by
combining the presented closed-loop algorithm, for example, with
a 5-coil multi-locus TMS system that allows adjusting the stimu-
lation location and orientation without coil movement [54]. An
advanced algorithmic implementation may thus make visual
evaluation and manual assessment redundant in the future. Such
an implementation needs, however, to be highly reliable to avoid
erroneous results. Basically, the presented automated approach is
suitable for optimizing any feature derived from EEG with respect
to one or more parameters.

We controlled the stimulation orientation with a two-coil
transducer comprising two simultaneously operated overlapping
figure-of-eight coils. This provides an easy and effortless adjust-
ment of the stimulation orientation, as it requires no manual
movement of the transducer. The EEG-based target automation
presented here could be implemented with a robot-controlled TMS
system or with manual coil placement. However, the physical coil
shift takes time, and the movement of the coil between the
consecutive pulses causes motion artifacts in EEG data that require
a few additional seconds to get stabilized, increasing the search
time.

The systematic mappings of TMSeEEG responses as a function
of the stimulation orientation in Experiment 1 revealed that the
amplitudes of the TEP peaks depend on the stimulation direction
on the pre-SMA in a sinusoidal way. There are a few examples in the
literature showing that the stimulation orientations 45� or 90�

apart result in dissimilar TEPs on the primary motor cortex [15] and
occipital areas [16]. Thus, it was foreseeable to observe an orien-
tation dependency, but this is the first study showing examples of
the behaviour of the TEP responses when varying the stimulation
orientation systematically in all directions. The optimal stimulus
orientations that produce maxima of the P20eN40 curves were
reached with E-fields directed approximately along the
medialelateral direction. These directions are perpendicular to the
global orientation (posterioreanterior) of the targeted superior
frontal gyrus (Fig. 2b). This is in line with the behaviour of motor
responses when stimulating the motor cortex [6] and the E-field
modelling on other areas [55], which have shown that TMS is most
effective when the stimulating E-field is directed normal to the
sulcal walls. Additionally, we found that the sinusoidal form of the
TEP amplitude curve supports the cosinemodel for TMS [56], which
suggests that the TMS effect in any part of the cortex depends on
the cosine of the angle between the cortical column orientation
(normal to the cortical surface) and the direction of the E-field. E-
field can be precisely oriented based on anatomy with the help of
existing neuronavigation systems. There are, however, tight cur-
vatures in the folded structures of individual cortices, necessitating
stimulus guiding with neurophysiological feedback such as EEG.

Fig. 3. Two examples (aec and def) of the EEG-based orientation search (Subject 1).
a,d The search outcome, i.e., the found optimal orientation is marked with a black
cross. The acquired single-trial P20eN40 amplitudes are presented with black dots.
The blue trace illustrates the final posterior mean curve (modelled behaviour of the
response curve). b,e The progress of the estimated optimal orientation during the
search run. The posterior mean curves computed based on the gathered P20eN40
responses are encoded with coloured rows (grey to blue), and the black crosses indi-
cate the estimated optimal orientation (maximum of the posterior mean curve) on
each iteration. The uppermost row (indicated with a black rectangle) correspond to the
blue posterior mean curve in a and d. c,f The sampling order. After two randomly
sampled orientations (with a 180� difference), we sampled the orientation where the
knowledge-gradient function (grey-to-red-coloured rows) reached its maximum
(black dots). (For interpretation of the references to colour in this figure legend, the
reader is referred to the Web version of this article.)
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We anticipate that the presented closed-loop optimization
maximizing the TMS effect based on EEG signal would increase the
comparability of TMS research by decreasing the variation in
experimental designs. Targeting based on the amplitudes of the
early TEP deflections resembles the motor-response-based selec-
tion of stimulus location and orientation (often called hotspot
search) in the primary motor cortex. In contrast, EEG-based guiding
enables setting the stimulation parameters with neurophysiolog-
ical feedback in any part of the superficial cortex. Being able to
analyse EEG signals online and utilize them to adjust TMS delivery
enables guiding TMS therapies so that the desired plastic effects are
maximized. This is an indispensable step towards making TMS a
more effective clinical tool.

5. Conclusions

We demonstrated that it is possible to adjust the stimulation
orientation based on EEG signals effortlessly with multi-locus TMS
and showed that even single-trial TEPs contain features that can be
optimized. The presented method provides a way for automated
and individualized TMS targeting with neurophysiological feedback
over a large part of the cortex. Moreover, closed-loop TMSeEEG
holds great promise for making TMS treatments more effective.
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