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Robust selection of clean swept-sine measurements
in non-stationary noise

Karolina Prawda,a) Sebastian J. Schlecht,b) and Vesa V€alim€aki
Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, FI-02150 Espoo, Finland

ABSTRACT:
The exponential sine sweep is a commonly used excitation signal in acoustic measurements, which, however, is

susceptible to non-stationary noise. This paper shows how to detect contaminated sweep signals and select clean

ones based on a procedure called the rule of two, which analyzes repeated sweep measurements. A high correlation

between a pair of signals indicates that they are devoid of non-stationary noise. The detection threshold for the

correlation is determined based on the energy of background noise and time variance. Not being disturbed by non-

stationary events, a median-based method is suggested for reliable background noise energy estimation. The pro-

posed method is shown to detect reliably 95% of impulsive noises and 75% of dropouts in the synthesized sweeps.

Tested on a large set of measurements and compared with a previous method, the proposed method is shown to be

more robust in detecting various non-stationary disturbances, improving the detection rate by 30 percentage points.

The rule-of-two procedure increases the robustness of practical acoustic and audio measurements. VC 2022 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY)
license (http://creativecommons.org/licenses/by/4.0/). https://doiorg/10.1121/10.0009915
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I. INTRODUCTION

An impulse response (IR) measurement is one of the

most common procedures to assess the acoustic qualities of

various systems, including physical spaces, such as concert

halls and rooms,1–5 electronic devices,6 audio software,7 and

more. IR measurements can be conducted using a variety of

excitation signals, including impulses, which are produced

with sources such as pistols and balloon pops;8,9 noise-based

methods, e.g., maximum-length sequence (MLS)10–12 and

inverse repeated sequence (IRS);13 and linear and exponen-

tial swept-sine signals. Each of these methods has its strong

sides and shortcomings.14

The exponential swept-sine (ESS) as an excitation sig-

nal for measuring IRs was introduced in the form used now-

adays by Farina over 20 years ago.15 Currently, it is widely

used as it provides the best consistency and highest robust-

ness of measurements.14,16 The ESS technique also rejects

most of the harmonic distortion,16 a bane of noise-based

methods, such as MLS and IRS.14,17–19 However, ESS is

sensitive to non-stationary noise, which causes artifacts in

IRs obtained in the deconvolution process, and may lead to

errors in the estimation of acoustic parameters.14,20–23 The

present study investigates the ESS technique and discusses

the disturbances that may occur during measurements and

negatively affect the resulting IRs. A novel method to dis-

criminate between clean and corrupted sweeps is proposed.

The ESS technique is known for its excellent signal-to-

noise ratio (SNR)14 that results from a long excitation of

low frequencies, which are usually more susceptible to con-

tamination by background noise than high frequencies. This

feature of swept-sine signals can be employed to achieve

target SNR values for different frequencies by adjusting the

time over which specific frequencies are excited.24–30 The

vulnerability of the ESS method to non-stationary noise,

however, grows proportionally with the length of the sweep

signal. This may force a compromise between lengthening

the ESS signal to increase the SNR and shortening it to min-

imize the risk of the occurrence of non-stationary noise.19,20

In this light, Stan et al.14 recommend using the swept-sine

technique only for measurements in empty, quiet spaces.

Currently, there is no established method to identify

non-stationary noise in sweep measurements. Manual detec-

tion works only for singular measurements, but in the case

of numerous unsupervised measurements, automatic detec-

tion is necessary. Guski31,32 presented an algorithm address-

ing the problem of automatic classification of contaminated

sweeps. Relying, however, on the separation of IR and back-

ground noise, this method is prone to errors when estimating

decay and noise floor. Therefore, the need for a simpler and

more reliable procedure remains.

This paper proposes to identify clean and contaminated

ESS measurements based on their similarity to each other,

expressed by the Pearson correlation coefficient (PCC). Used

in applications such as pattern recognition33 and as a criterion

for filter optimization,34 PCC proved to be more advanta-

geous than the mean square error criterion. Similarly, cross

correlation was used as a measure to estimate IRs sensitivity

to small changes in sound-source position35 as well as for

robust IR measurement against nonlinearities.36–38 This sug-

gests that parameters related to similarity are good indicators
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of changes in audio signals, even when the environment is

not free from noise.

The present work studies the problem of ESS measure-

ments corrupted by non-stationary noise and introduces a

procedure called the rule of two (Ro2). Ro2 is a method to

identify a pair of clean sweeps, those not contaminated by

non-stationary noise, from a series of measurements in a

noisy environment. The method is based on the correlation

between measured ESS signals. Various factors impacting

the correlation are examined. The threshold separating clean

sweeps from corrupted ones is determined. The Ro2 proce-

dure is tested on a big dataset of ESS measurements and is

compared to another method aimed at detecting impulsive

noise in sweep measurements.

The remainder of this paper is organized as follows.

Section II discusses the correlation between acoustic signals

and describes the proposed method. In Sec. III, the expected

contamination, such as stationary noise and time variance,

are presented. Section IV elaborates on the types of non-

stationary contamination and their effect on the correlation.

Section V describes the validation procedure for the pro-

posed method, discusses the experimental results, and com-

pares the proposed method with another technique. Section

VI concludes the paper.

II. METHOD

This section tackles the detection of non-stationary

events in an ESS signal and proposes a novel method called

Ro2. The correlation of acoustic signals is also discussed.

A. Problem formulation

Assessing whether the signal obtained during acoustic

measurement is free of non-stationary noise or other arti-

facts is often a difficult task. Therefore, a good practice is to

record a few test signals so as to be able to choose the best

one, should unexpected acoustic events occur. In this case,

recordings of the same conditions of the system under test

can be compared to one another.

Given two acoustic measurements y1 and y2, we want

to determine whether they are clean or not. Assuming that

contamination is a random occurrence, we measure the

similarity of y1 and y2 as an indicator of contamination:

if the similarity is low, then the contamination is indi-

cated (in either one or in both of the signals), whereas a

great similarity denotes an uncontaminated pair. We pro-

pose PCC as a robust measure of similarity. PCC is

defined as

qy1;y2
¼covðy1;y2Þ

ry1
ry2

¼

1

N�1

XN

k¼1

ðy1ðkÞ�ly1
Þðy2ðkÞ�ly2

Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N�1

XN

k¼1

ðy1ðkÞ�ly1
Þ2 1

N�1

XN

k¼1

ðy2ðkÞ�ly2
Þ2

s ;

(1)

where covðy1; y2Þ is the covariance of signals y1 and y2, ry1

and ry2
are their standard deviations, ly1

and ly2
are the

mean values, and N is the number of samples in the signals.

In acoustic measurements, the mean of the measured signals

is removed,39 transforming Eq. (1) to

qy1;y2
¼

XN

k¼1

y1ðkÞy2ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

y1ðkÞ2
XN

k¼1

y2ðkÞ2
s : (2)

Assuming that the system under test is free of noise,

and neither the system nor the measurement equipment

changes between or during the recording of both signals,

i.e., y1 ¼ y2, then qy1;y2
¼ 1. Consecutive measurements,

however, are never strictly the same, and the PCC of two

clean measurements is impacted by two classes of factors:

(1) expected disturbances including stationary background

noise and time-variances of the measured system and (2)

non-stationary occurrences such as impulsive noise or sound

dropouts.31,40

Note that in the present study the term “clean signal”

refers to a measured signal that contains stationary back-

ground noise and effects of time variance only, whereas the

term “contaminated” is used for the signals containing both

expected and unexpected disturbances.

An example of a set of measured ESS signals is shown

in Fig. 1, where one of five sweeps is contaminated with

impulsive noise. The corresponding PCC matrix is presented

in Table I together with the total energy of each sweep in dB.

The contaminated signal displays lower similarity with the

other sweeps, while also having higher energy than the rest.

B. Proposed method

The proposed method presents a systematic criterion to

distinguish expected disturbances from non-stationary noise

FIG. 1. (Color online) Spectrogram of a measurement consisting of five

consecutive swept-sine signals. The arrow points to an impulsive noise

event appearing in sweep #3 at about 14 s.
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to create a meaningful and robust measure for the level of

contamination. The Ro2 method requires a correlation

threshold q̂y1;y2
separating clean signals from contaminated

ones. Thus, the Ro2 is

if qy1;y2
> q̂y1;y2

then y1 and y2 are a clean pair: (3)

When non-stationary noise occurs in the measure-

ment, the PCC value does not point directly towards the

contaminated sweep. Thus, when qy1;y2
< q̂y1;y2

, the mea-

surement should be repeated and the correlation of all cap-

tured signals should be estimated. The measurement can

end when at least two signals fulfill the requirement in Eq.

(3). Section III shows how to determine the threshold

q̂y1;y2
.

III. EXPECTED CONTAMINATION

In the following, we present the two main sources of

“unavoidable” impacts on correlation that are identified

here, namely, background noise and time-variance. The fol-

lowing discussion leads to the determination of the expected

PCC q̂y1;y2
, which serves as the detection threshold.

A. Effect of background noise

The term “background noise” in acoustic measurements

refers to any type of unwanted extra sound event. Since this

definition includes non-stationary noise, the distinction

needs to be made that in this study “background noise” is

used to describe only the stationary noise.

The presence of stationary noise in the sweep signals

affects their correlation. Therefore, in Eq. (2), we need to

consider two noise signals n1 and n2 with zero mean.

For this subsection, the background noise is the only dis-

turbance such that the measurement signal is a mixture of

the signal with the background noise, i.e., y1 ¼ xþ n1,

where

x ¼ s � h (4)

is the convolution of the ESS s and room impulse response

h, denoted by an asterisk �. Similarly, y2 ¼ xþ n2. The

resulting correlation is then

qy1;y2
¼

XN

k¼1

ðxðkÞ þ n1ðkÞÞðxðkÞ þ n2ðkÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

ðxðkÞ þ n1ðkÞÞ2
XN

k¼1

ðxðkÞ þ n2ðkÞÞ2
s : (5)

If the noise signals are uncorrelated with the ESS signals as

well as with each other, i.e.,
PN

k¼1 n1n2 ¼ 0;
PN

k¼1 x n1 ¼ 0,

and
PN

k¼1 x n2 ¼ 0, then, Eq. (5) can be simplified to

qy1;y2
¼

XN

k¼1

xðkÞ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

ðxðkÞ2 þ n1ðkÞ2Þ
XN

k¼1

ðxðkÞ2 þ n2ðkÞ2Þ
s : (6)

Thus, the signal energies are related by

qy1;y2
¼ E x½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE x½ � þ E n1½ �ÞðE x½ � þ E n2½ �Þ
p ; (7)

where the energy of a signal is computed as

E x½ � ¼
XN

k¼1

jxðkÞj2: (8)

When the noise signal energies are equal, i.e.,

E½n1� ¼ E½n2� ¼ E½n�, the PCC can be estimated using the

SNR value,

q̂y1;y2
¼ E x½ �

E x½ � þ E n½ �
¼ SNR

1þ SNR
; (9)

where the SNR is expressed in terms of signal energies,

SNR ¼ E x½ �
E n½ �

: (10)

In practice, E½x� is unknown as it is affected by the room

impulse response h. However, it can be inferred from the

difference E½x� ¼ E½y1� � E½n1� ¼ E½y2� � E½n2�.

B. Correlated background noise

Equation (9) provides an expected PCC value based on

the assumptions that (1) the sweep responses are identical

and (2) the background noise is uncorrelated and stationary.

In the following, we discuss these assumptions.

The background noise is likely to contain strong har-

monic content caused, for instance, by electric humming.

Depending on the phase relation between measurements,

harmonic background noise can be strongly correlated.

Let us consider the two extreme cases: when the noise

signals n1 and n2 are fully correlated positively or negatively

(anticorrelated). Thus, n1 ¼ 6n2, ergo
PN

k¼1 n1n2 ¼ 6E½n�.
This yields the following bounds to Eq. (9):

TABLE I. PCC matrix for a series of five sweeps, cf. Fig. 1. Sweep #3 is

less similar to the other signals, indicating the presence of non-stationary

noise. The largest energy of sweep #3 also suggests the presence of addi-

tional noise. The smallest PCC values and the largest energy are

highlighted.

Sweep # 1 2 3 4 5 Energy (dB)

1 1.000 0.999 0.995 0.999 0.999 71.76

2 0.999 1.000 0.995 0.999 0.999 71.75

3 0.995 0.995 1.000 0.994 0.994 71.83

4 0.999 0.999 0.994 1.000 0.999 71.74

5 0.999 0.999 0.994 0.999 1.000 71.73
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E x½ � � E n½ �
E x½ � þ E n½ �

� q̂y1;y2;f �
E x½ � þ E n½ �
E x½ � þ E n½ �

¼ 1; (11)

where f ¼ qn1;n2
is the correlation between two stationary

noise terms. Note that perfectly correlated background

noise, as part of the measurement signal, is virtually indis-

tinguishable from an ESS.

To this end, an experiment showing the relation

between PCC and SNR values was conducted. A 3-s-long

ESS was synthesized and convolved with a synthetic IR

having reverberation time (RT) of 2 s. This signal was

then added to a set of white and pink noise signals

having various energies so that different values of SNR

could be obtained. The noise signals were either uncorre-

lated (f ¼ 0) or anticorrelated (f ¼ �1). The PCC values of

these combined signals were calculated using Eqs. (9)

and (11).

To simulate background noise with harmonic content,

sawtooth waves were added to the aforementioned noise sig-

nals. The phase shifts between these signals were random-

ized between 0 and p. The results of the experiment, shown

in Fig. 2, indicate that for clean signals, i.e., without non-

stationary noise, PCC calculated as a function of SNR

reaches high values close to unity. The results show that the

spectral characteristics of the stationary noise have a negli-

gible effect on the correlation as long as the noise does not

contain periodic components that may result in sharp peaks

or dips in the spectrum, e.g., sine waves.

The results also illustrate that harmonic content in a

noise signal can heavily influence the correlation in both

positive and negative directions. In Fig. 2, phase shifts for

different SNR values create lines parallel to the ones result-

ing from the assumptions of uncorrelated and anticorrelated

stationary noise. Small phase shifts close to 0 produce a

highly correlated signal, whereas the increase in phase shift

towards p decreases the PCC values, placing the signals

with the biggest shift between the uncorrelated and anticor-

related boundaries.

In principle, estimating the correlation of the back-

ground noise between measurements is possible if there is

a sufficiently long time interval without any other signals.

However, the time intervals between measurements can be

several seconds such that the stationarity of the back-

ground signals needs to be fulfilled precisely to reliably

estimate the correlation. Here, we adopt the worst-case

scenario of anti-correlated noise as a lower bound for the

expected PCC.

C. Transfer-function variation

The measured system itself can undergo change. For

instance, the position of the microphone and loudspeakers

may vary due to vibrations, or the propagation paths can be

altered due to variations in the air caused by temperature

and humidity fluctuations or air movement (e.g., due to ven-

tilation).17,31,40–43 Unlike background noise, the measure-

ment variations impact the impulse response h directly such

that the signal model is

x ¼ s � ðhþ vÞ; (12)

where h is some “ideal” room impulse response and v is the

variation of the impulse response between measurements.

Thus, the energy relation of two measurements are

E y1½ � ¼ E s � h½ � þ E s � v1½ � þ E n1½ � ;
E y2½ � ¼ E s � h½ � þ E s � v2½ � þ E n2½ �: (13)

The difference between the two measurements is then

y1 � y2 ¼ s � ðv1 � v2Þ þ n1 � n2: (14)

The energy relation is

E y1 � y2½ � ¼ E s � ðv1 � v2Þ½ � þ E n1 � n2½ �: (15)

We choose the variation energy between two measurements

such that E½v1� ¼ E½v2� and E½s � v1� ¼ E½s � v2�. Thus,

E s � ðv1 � v2Þ½ � ¼ E s � v1½ � þ E s � v2½ � ¼ 2E s � v1½ � (16)

since the variations v1 and v2 are uncorrelated (as the corre-

lated part belongs to h by definition). Thus, we define the

transfer-function variation factor

s ¼ E s � ðv1 � v2Þ½ �
E s � h½ � ¼

2E s � v1½ �
E s � h½ � ¼

2E s � v2½ �
E s � h½ � ; (17)

where E½s � ðv1 � v2Þ� can be retrieved from the difference

y1 � y2 using Eq. (15), and E½s � h� can be retrieved from

the measurement as E½s � h� ¼ E½y1� � E½s � v1� � E½n1�
using Eq. (13) and Eq. (16).

The PCC of the transfer-function variation is

FIG. 2. Comparison of the PCC values for different SNRs of uncorrelated

and anticorrelated stationary noise, as well as noise with harmonic content.

2120 J. Acoust. Soc. Am. 151 (3), March 2022 Prawda et al.

https://doi.org/10.1121/10.0009915

https://doi.org/10.1121/10.0009915


qy1;y2
¼

XN

k¼1

y1ðkÞy2ðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN

k¼1

y1ðkÞ2
XN

k¼1

y2ðkÞ2
s

¼ E s � h½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE s � h½ � þ E s � v1½ �ÞðE s � h½ � þ E s � v2½ �Þ

q
¼ E s � h½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ s=2Þ2ðE s � h½ �Þ2
q ¼ 1

1þ s=2
: (18)

Therefore, the transfer-function variation factor s serves as a

tolerance parameter for the expected PCC from Eq. (11),

q̂y1;y2;f;s ¼
q̂y1;y2;f

1þ s=2
: (19)

The effect of time variances on the impulse response

measurements can be modeled with time-stretching40 or by

introducing sinusoidal jitter to the signal.17 The complexity

and unpredictability of such variations, however, might ren-

der these experiments insufficient to predict s values cor-

rectly. Therefore, in this study, transfer-function variation is

estimated from the measured signals in Sec. V.

IV. NON-STATIONARY NOISE EVENTS

During an acoustic measurement, various non-

stationary disturbances can occur. Such artifacts are, e.g.,

impulses, low-frequency noises, and sound dropouts, which

originate from door slams, heavy vehicles moving outside

of the measured space, and errors in measurement software.

This section examines how different types of non-

stationary noise impact the PCC values, depending on their

energy, frequency content, and time of occurrence. The

effect of contamination on the correlation threshold estima-

tion is also discussed.

A. Impulsive noise

The relation between the energy added to the sweep and

the drop in PCC values can be concluded from Eq. (5) when

we consider that one of the signals is contaminated with

additional non-stationary noise nns, which is also assumed to

be zero-mean and uncorrelated with both sweeps and sta-

tionary noise signals. Following the same reasoning leading

from Eq. (5) to Eq. (7), we arrive at the following formula:

qy1;y2
¼ E x½ �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðE x½ � þ E nns½ � þ E n½ �ÞðE x½ � þ E n½ �Þ
p ; (20)

where E½nns� is the energy of non-stationary noise.

The theoretical values of correlation estimated with the

aforementioned formula are presented in Fig. 3. Equation

(20) predicts the general trend of decrease in the PCC with

the growing energy difference between the clean and

contaminated ESS. The energy difference DE is a quotient

of the energy of the two signals,

DE ¼
E y1½ �
E y2½ �

¼
E x½ � þ E n½ � þ E nns½ �

E x½ � þ E n½ �
: (21)

In the experiment, a synthetic sweep signal containing

stationary noise, as described in Sec. III B, with an SNR of

84 dB was further contaminated with impulsive noise and

low-frequency noise. Broadband, lowpassed, and band-

passed impulses served as impulsive disturbances. Lowpass-

filtered white Gaussian noise lasting 1 s was used to elevate

the noise floor of the measurement. One hundred signals of

each type of non-stationary noise were used. The disturban-

ces appeared at different times within the sweep, and their

energy varied as well to obtain various changes to the con-

taminated signal’s energy.

All signals used in the experiment had a different fre-

quency content: the broadband impulse spanned across all

frequencies, the lowpassed one had its cutoff frequency at

100 Hz, the bandpassed extended between 500 and 5000 Hz,

whereas the white noise was lowpass filtered at 300 Hz.

The results of this experiment, presented in Fig. 3, show

that increasing the signal’s energy causes the PCC values to

drop in accordance with Eq. (20). They also reveal that the cor-

relation between the sweeps may vary for disturbances that add

the same amount of energy. This phenomenon is especially

prominent for the narrowest-band disturbances, such as low-

passed impulse and low-frequency noise, which might be

because non-stationary disturbance is not completely uncorre-

lated, but displays similarity to either the ESS or stationary

noise. This is especially possible in the low-frequency region,

where the sound is usually less diffuse.44

Note that the energy differences represented by DE and

mentioned in Table I are often small (<0.1 dB) and may

fall below the uncertainty of the measurement equipment

FIG. 3. Comparison of the PCC values for different non-stationary noise

types for synthetic sweep with pink stationary noise and SNR of 84 dB. The

areas cover the minimal and maximal values of measured correlation for

the respective type of disturbance and DE.
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uncertainty. Therefore, the Ro2 should be applied to mea-

surements performed within a short time, using the same

measurement equipment, and the same settings.

B. Median-based background noise energy estimation

Another problem related to the presence of non-

stationary noise in the measurement is the possibility of con-

taminating the background noise used to estimate the SNR

and thus, PCC threshold. A wrongly estimated noise energy

E½n1� leads to an underestimated PCC threshold and thus to

the incorrect classification of clean and contaminated

sweeps.

When a non-stationary random event contaminates the

background noise, the affected samples carry more energy

than the clean ones. Therefore, the contamination skews the

amplitude distribution of noise in the positive direction. The

nature of the stationary noise does not allow for the use of

the PCC values as a discriminant for finding the non-

stationary noise, as with sweep signals. However, if the

amplitude distribution of the noise signal is Gaussian, i.e.,

n1ðkÞ � N ð0; r2Þ, a robust estimator can be used.

The energy of Gaussian noise is essentially a scaled

mean value of the squared signal. The drawback of such an

estimator is its high sensitivity to outliers, resulting in false

estimations for contaminated signals. The median, however,

is less influenced by the outliers than the mean, since its

breakdown point, i.e., the maximum proportion of contami-

nated observations that do not force the estimator to result in

an aberrant value, is higher than that of mean: The break-

down point for the median is 0.5 whereas it is 0 for the

mean.45–47 This means that if at least 50% of samples are

not contaminated, the median values are not skewed.

For squared samples from the Gaussian distribution, the

mean and median are related by a constant scaling factor

bv ¼ 1:4826.47 Thus, the robust noise energy estimate is

E n1½ � ¼
XN

k¼1

n1ðkÞ2 ¼ Nb2
v medianðn1ð1Þ2;…;n1ðNÞ2Þ: (22)

To demonstrate the effectiveness of this method, a 2-s-

long noise signal with Gaussian distribution and different

values of noise power was contaminated at random times

with impulsive noise (as described in Sec. IV A) and 200-

ms-long lowpassed Gaussian noise. The non-stationary dis-

turbances were scaled by random factors to achieve various

effects on the noise energy. Then, the mean and scaled

median values of noise energy were compared to a target

value—the energy of noise without contamination.

The results presented in Fig. 4 show that while the

mean energy value can change by tens of decibels in the

presence of non-stationary noise, the median remains essen-

tially unchanged and very close to the target (within 1 dB).

Additionally, using the median instead of the mean does not

add any processing to the detection process, making it the

recommended procedure for calculating the background

noise energy.

C. Sound dropouts

The software-related dropouts do not add energy to the

contaminated signal, but reduce it instead. Additionally,

skipping the samples creates two cropped sweeps, one of

which is shifted with respect to the clean sweep. Therefore,

the energy difference introduced by the dropout is of less

importance to the correlation between two signals than the

time at which the skipping occurrs.

To estimate the effect of the time of the dropout on the

correlation, the synthesized sweeps, as used in Sec. III B,

were contaminated with sound dropouts. The dropouts were

simulated by deleting small portions of the signal, ranging

from one to ten samples, at different times throughout the

ESS and shifting the remaining portion of the sweep by the

respective number of deleted samples. The dropouts were

broadband disturbances, since a discontinuity is an impul-

sive event affecting all frequencies.

The relation between the drop in the PCC values at

the time at which the samples were skipped is depicted in

Fig. 5. The results show that if the dropout happens in the

beginning of the sweep, the correlation between the clean

and corrupted sweeps is very low. However, if the contami-

nation occurs later in the signal, the PCC drop is less promi-

nent. Additionally, the dropouts appearing after the ESS has

finished playing (in the present case, after 3.0 s) affect the

correlation only marginally.

V. VALIDATION

In this section, the database used for testing the pro-

posed method is presented. The results of using Ro2 on this

dataset are presented, and the transfer-function variation is

determined. The proposed method is also compared with

FIG. 4. Comparison between the mean and median energy of a contami-

nated noise signal. The colored solid lines show non-stationary disturbances

of different energies corrupting background noise signals, with the loudest

impulse at the top and the quietest at the bottom. The median energy

remains closest to the target in all cases.

2122 J. Acoust. Soc. Am. 151 (3), March 2022 Prawda et al.

https://doi.org/10.1121/10.0009915

https://doi.org/10.1121/10.0009915


another procedure for coping with non-stationary noise in

acoustic measurements.

A. Validation database

Ro2 was validated on a database of swept-sine measure-

ments collected in the Arni room at the Acoustics Lab of

Aalto University, Espoo, Finland.5,48 Arni is a rectangular

room, with dimensions 8.9 m� 6.3 m� 3.6 m (length, width,

and height, respectively). The room’s walls and ceiling are

equipped with acoustic panels that can switch their state

between open and closed, changing the amount of absorp-

tion and thus varying the acoustics within the space. A view

of the space and measurement equipment is shown in Fig. 6.

The equipment used during the measurements included

a 01 dB LS01 omnidirectional loudspeaker (sound source),

two G.R.A.S. 1/2-in. diffuse-field microphones of type

40AG, two G.R.A.S. 1/2-in. free-field microphones of type

46AF, one Br€uel & Kjær 1/2-in. diffuse-field microphone of

type 4192, a G.R.A.S. power module of type 12AG, a mea-

surement laptop, and a MOTU UltraLite mk3 Audio

Interface. The measurement signal was a 3-s-long ESS19

that was played five times for each panel configuration with

2 s of silence in between to allow the sound to fully decay.

The total number of measurements was 5342, amounting to

26 710 sweeps recorded with each microphone.

Due to the size of the database and the time required for

its collection, the measurements were conducted automati-

cally, without human supervision. Therefore, when an

unwanted acoustic event occurred, no action was taken to

discard the corrupted recording and repeat the measurement.

This approach led to many sweeps being contaminated with

non-stationary noise of unknown origin, type, and energy.

Examples of sounds recorded during the measurements are

available online.49

B. Ro2 measurement and selection procedure

The Ro2 detection proceeds as follows: before every

measurement, a short period of silence (background noise)

is captured, and its energy is calculated from Eq. (22). Next,

an ESS is captured, and its energy is calculated as well. In

the event that the noise and sweep signal lengths are differ-

ent, their energies cannot be compared, and thus, the signal

power can be used instead. The procedure is repeated so that

two sweeps are measured. The expected PCC value is then

computed from Eq. (9), and the lower bound for the

expected PCC is calculated from Eq. (11). Next, the toler-

ance resulting from transfer-function variation [obtained

from Eq. (18)] is applied according to Eq. (19). Finally, the

detection threshold is compared to the sweeps’ PCC esti-

mated from Eq. (1).

If the measured PCC is on or above the threshold, both

sweeps are classified as clean, and the measurement can

end. If, on the other hand, the correlation is below the

threshold, the presence of non-stationary noise is indicated.

The measurement must continue until two sufficiently

highly correlated sweeps are obtained. The ESSs which dis-

play low correlation with the clean sweeps are marked as

contaminated and are discarded.

C. Transfer-function variation estimation

The transfer-function variation factor was estimated for

all measurements based on the difference between signals,

as in Eqs. (15)–(17). Since this was done for both clean and

contaminated sweeps, many values are skewed in the posi-

tive direction due to non-stationary disturbances. To elimi-

nate outliers, values of s that were higher than three median

absolute deviations (MADs) from the median were

discarded.

The distribution of transfer-function variation factors is

displayed in Fig. 7. The figure shows that abnormal values

of s start just above the adopted threshold, with a prominent

rise in the number of outliers between 10�3 and 10�2.

FIG. 5. Effect of sound dropouts on the PCC between sweep signals. The

solid lines show the effect for the number of dropped samples from one

(topmost plot) to ten (bottommost plot), whereas the dashed line indicates

the PCC without dropouts.

FIG. 6. Variable acoustics laboratory Arni and the equipment used in the

measurements.
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In the present study, s ¼ 0:00019 (indicated in Fig. 7

with a solid line) was used to set the tolerance to the PCC

threshold. Thus, the detection criterion is not as strict as

when using the SNR-based threshold. Note, however, that

the value of s depends on, among others, the length of the

sweep, the time between consecutive measurements, and the

characteristics of air movement within the measured space.

Therefore, although the s presented here may be used as a

guideline for similar conditions, ideally it should be esti-

mated for each measurement scenario separately.

D. Correlation-based detection

In the present study, a period of silence before the emis-

sion of each sweep was used for background noise energy

estimation. It was certain that there would be no late part of

the decay or long-ringing modes present in that part of the

measurement.

The validation results are presented in Fig. 8, where a

two-dimensional histogram shows the relative probability of

the expected and measured PCC values. The distribution

reveals two clusters: the first one is located along the diago-

nal, where both the expected and measured PCC values are

similar. It contains clean signals and includes the largest

number of occurrences (the color bar limits the probabilities

to increase readability). The second cluster consists of

clearly contaminated sweeps. It is located below the diago-

nal in Fig. 8, meaning that the measured PCC is consider-

ably lower than the values expected based on Eq. (9).

The SNR-motivated prediction of PCC values is indi-

cated in Fig. 8 with a dashed blue line. Such a threshold is

visibly too strict since the majority of measured signals fall

below it. This proves that the tolerances due to transfer-

function variation and background noise correlation need to

be considered in Ro2. The lower bound for the expected

PCC, q̂ with f ¼ �1, is indicated in Fig. 8 with a dash-

dotted blue line. Although most of the signals are now

classified as clean, a large number of measurements still lies

below this threshold.

The final detection threshold q̂ with tolerance s
accounting for time variance is marked with a solid blue

line in Fig. 8. q̂ with f ¼ �1, and s ¼ 1:9� 10�4 identifies

most of the sweeps from the top cluster as clean, whereas

the signals from the bottom cluster are considered contami-

nated. This threshold also considers excessive time variation

as contamination, due to which sweeps that do not otherwise

contain non-stationary noise are discarded. The threshold

represented by q̂ when f ¼ �1 and s 6¼ 0 is recommended

when using the Ro2 procedure.

E. Comparison with a previous method

The proposed correlation-based detection is compared

with the procedure developed by Guski,31,32 since it is the

only other method created specifically for the purpose of

identifying impulsive noise in sweep measurements. In this

approach, the detection is conducted by first separating the

sweep with the IR from the background noise using the iter-

ative approach by Lundeby et al.50 Then, the logarithmic

ratio between the maximum value and the root mean square

value of the stationary noise is calculated. If the ratio is in

the range of values typical for Gaussian noise, i.e.,

12–14 dB, the measurement is classified as clean. However,

if the ratio is higher, namely, 20 dB or more, contamination

is indicated. Therefore, in the present study, the value of

20 dB is used as the threshold discriminating between clean

and corrupted sweeps for the Guski method. The implemen-

tation provided in the ITA Toolbox51 was employed when

testing this procedure.

First, the detection rate for non-stationary disturbances

from Sec. IV is compared. Since the signals were

FIG. 7. (Color online) Histogram of measured values of transfer-function

variation. The dashed line marks the median, whereas the solid line shows

the threshold of three MADs separating the outliers. FIG. 8. (Color online) Two-dimensional histogram of expected and measured

values of PCC. The dashed line represents the expected values based on the

SNR, the dash-dotted line shows the lower bound for q̂ with f ¼ �1, whereas

the solid line represents a threshold including transfer-function variation, q̂
with f ¼ �1, and s ¼ 1:9� 10�4, which is the proposed threshold.
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synthesized, it was known that f ¼ 0 and s ¼ 0. Thus, the

strictest threshold could be used for the Ro2. The results for

each type of non-stationary noise are presented in Table II.

They show that the Ro2 is superior in terms of separating

clean and contaminated sweeps, with detection rates being

higher for each type of disturbance.

The last row in Table II reveals that both methods per-

form worst when sound dropouts occur in the ESS. In the

case of the Ro2, however, only the dropouts occurring after

about 3.5 s are undetected (cf. Fig. 5). Guski’s method, how-

ever, was unable to detect this kind of disturbance alto-

gether. This was an expected result since Guski’s method

was not intended for identifying such a type of non-

stationary noise.

For the remaining types of non-stationary noise, the

Ro2 did not correctly identify the sweeps containing distur-

bances of low energy (cf. Fig. 3). The Guski method, on the

other hand, proved inconsistent in this regard, wrongly clas-

sifying the ESSs corrupted with both low- and high-energy

non-stationary noise.

The comparison was also performed on the dataset of

measured sweeps. The signals that were marked as contami-

nated by the Ro2 were further analyzed by a human annota-

tor. The measurements were checked in terms of audibility

of non-stationary disturbances as well as their visibility in

spectrograms, since often the signal itself may mask the

contamination, rendering it inaudible. The sweeps falling

below the detection threshold due to the excessive transfer

function variation were not incorporated in further experi-

ments, as the Guski method was insensitive to time

variance.

In the annotation process, 283 contaminated signals

were selected to be analyzed with the Guski method. The

results of the comparison are shown in Table III. The total

number of measurements marked as contaminated by the

Ro2 served as a reference, constituting 100% of detected

non-stationary disturbances. Seventy percent of these sig-

nals were also correctly identified by Guski’s method, while

30% were false positives. The human annotation revealed

that the majority of unidentified disturbances were short

low-frequency noise bursts. The Guski procedure also over-

looked a small number of ESSs including impulsive noise.

Both experiments show that the Ro2 outperforms

Guski’s method regardless of the type of contamination. Its

efficiency and robustness prove that it is the best available

method for separating clean sweeps from those containing

non-stationary noise. The Ro2 method can thus be recom-

mended for acoustic measurements in situations where non-

stationary noise may occur, which include most practical

scenarios.

VI. CONCLUSION

The paper introduces a novel method, called the rule of

two or Ro2, to identify a pair of clean exponential swept

sines in a series of repeated sweep measurements. The clas-

sification is based on the similarity between the ESS signals,

expressed by means of Pearson’s correlation coefficient. A

detection threshold separates signals containing expected

contamination, such as background noise and time variance,

from those contaminated by non-stationary noise. This study

also shows that using the median to estimate the background

noise energy helps avoid the bias caused by non-stationary

events.

If the resulting PCC value between two measured

sweeps is above the threshold, the measurements are marked

as clean, and both signals can be used in further analysis. If,

on the other hand, the correlation is lower than the thresh-

old, the presence of non-stationary noise is indicated and the

signals must be discarded. Therefore, the measurement

should be repeated until a pair of highly correlated ESSs is

found.

In the large set of thousands of experiments reported in

this study, the Ro2 procedure proved to be reliable and easily

applicable in acoustic measurements. It also performed better

than the previous established procedure for non-stationary

noise detection, proving its robustness and efficiency. The

Ro2 procedure increases the reliability of practical acoustic

and audio measurements using sine sweeps.
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