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Probabilistic modeling methods for cell‑free 
DNA methylation based cancer classification
Viivi Halla‑aho* and Harri Lähdesmäki* 

Background
In recent years the interest in utilizing circulating cell-free DNA (cfDNA) for cancer 
diagnostics has grown, enhanced by the development of next-generation sequencing 
(NGS) technologies. Cell-free DNA refers to DNA fragments that are not associated 
with cells and is considered to originate from cell apoptosis and necrosis [1, 2]. In the 
case of a presence of a tumor, it can be the source of part of the cfDNA. cfDNA released 

Abstract 

Background: cfMeDIP‑seq is a low‑cost method for determining the DNA methyla‑
tion status of cell‑free DNA and it has been successfully combined with statistical 
methods for accurate cancer diagnostics. We investigate the diagnostic classification 
aspect by applying statistical tests and dimension reduction techniques for feature 
selection and probabilistic modeling for the cancer type classification, and we also 
study the effect of sequencing depth.

Methods: We experiment with a variety of statistical methods that use different 
feature selection and feature extraction methods as well as probabilistic classifiers for 
diagnostic decision making. We test the (moderated) t‑tests and the Fisher’s exact test 
for feature selection, principal component analysis (PCA) as well as iterative supervised 
PCA (ISPCA) for feature generation, and GLMnet and logistic regression methods with 
sparsity promoting priors for classification. Probabilistic programming language Stan is 
used to implement Bayesian inference for the probabilistic models.

Results and conclusions: We compare overlaps of differentially methylated genomic 
regions as chosen by different feature selection methods, and evaluate probabilistic 
classifiers by evaluating the area under the receiver operating characteristic scores 
on discovery and validation cohorts. While we observe that many methods perform 
equally well as, and occasionally considerably better than, GLMnet that was originally 
proposed for cfMeDIP‑seq based cancer classification, we also observed that perfor‑
mance of different methods vary across sequencing depths, cancer types and study 
cohorts. Overall, methods that seem robust and promising include Fisher’s exact test 
and ISPCA for feature selection as well as a simple logistic regression model with the 
number of hyper and hypo‑methylated regions as features.

Keywords: CfMeDIP‑seq, Cell‑free DNA, DNA methylation, Feature selection, 
Probabilistic modeling
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by a tumor is called circulating tumor DNA (ctDNA). Cell-free DNA can be extracted in 
a minimally non-invasive manner from a bodily fluid sample, such as blood, to identify 
and detect cancer-type specific biomarkers [3].

ctDNA is believed to represent the tumor burden and to carry the same genomic 
and epigenetic properties as the tumor of origin [3]. Therefore multiple types of can-
cer biomarkers can be identified and detected from cfDNA, including mutations, epige-
netic modifications and copy-number alterations [3]. The DNA fragmentation profiles 
of cfDNA can also be used to classify cancer types [4]. Compared to quantification of 
somatic mutations from sequencing data which necessarily requires a high sequencing 
coverage, using methylation biomarkers can significantly reduce costs. Consequently, in 
this work we concentrate on cancer classification which is based on DNA methylation 
biomarkers. The most common way to measure DNA methylome is bisulfite sequenc-
ing (BS-seq), and tools such as CancerLocator [5] utilize BS-seq data to learn machine 
learning models to classify different cancer types. However, bisulfite conversion step of 
the BS-seq method leads to high degradation of the input DNA [6], making it unsuitable 
for cfDNA analysis where the amount of sequencing material is small.

Cell-free methylated DNA immunoprecipitation and high-throughput sequencing 
(cfMeDIP-seq) is a protocol for measuring the methylation status of cell-free DNA [7]. 
cfMeDIP-seq is a version of the MeDIP-seq method that takes into account specific 
needs of cfDNA sequencing. The amount of cfDNA material available for sequencing is 
often very small, so filler DNA from Enterobacteria phage � is used in cfMeDIP-seq to 
increase the amount of DNA material [7]. Compared to bisulfite sequencing, cfMeDIP-
seq is even more cost-effective, as only the methylated reads are sequenced in the immu-
noprecipitation-based approach [8]. While bisulfite sequencing provides information of 
the methylation status in a single-base resolution, cfMeDIP-seq can give information on 
the methylation status of genomic regions of length around 100 bp or more [8].

Along with the cfMeDIP-seq protocol, statistical methods for finding differentially 
methylated regions (DMRs) and machine learning methods for classification of the can-
cer types were proposed in [7]. In brief, DMRs are found for each cancer type and healthy 
controls (i.e., a class) using a moderated t-test that separately compares each class to 
other classes in one-vs.one manner. Then binary GLMnet [9] classifiers are trained for 
each of the classes, using the DMRs found in the previous step. The results of these 
methods presented in [7] show high accuracy both in the discovery and validation data 
cohorts. The results for renal cell carcinoma (RCC) class were further validated in [10], 
where the same methods were applied to classify RCC patients from healthy controls. 
The cfMeDIP-seq assays and analysis steps were performed not only for plasma cfDNA, 
but also for cfDNA of urine origin. Both resulted in high AUROC scores, although the 
plasma-based classifier performed slightly better. In [11], the cfMeDIP-seq data set from 
[7] was extended with samples from intracranial tumor patients.

There are also other works reporting usage of cfMeDIP-seq or MeDIP-seq measure-
ments of cfDNA for cancer classification [12–15]. Similar to [7], GLMnet models were 
utilized to classify pancreatic cancer patients and healthy controls in [12], but the model 
features were based on both cfMeDIP-seq and cell-free 5hmC sequencing data. Peak 
calling was performed for both cfMeDIP-seq and cell-free 5hmC signals with MACS2 
tool [16], and differential peaks between the cancer samples and healthy controls were 
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then determined with t-test. Both 5mC and 5hmC peaks used separately as model fea-
tures gave high prediction accuracies, but using both peak types together yielded even 
better results. In [13], the performances of detecting metastatic renal cell carcinoma 
(mRCC) using cfMeDIP-seq based cfDNA methylation analysis and cfDNA variant anal-
ysis were compared. The TMM-normalized cfMeDIP-seq count data was used to find 
DMRs with limma-voom [17] and the DMRs were then utilised as features in a GLM-
net model, similar to the approach in [7]. The comparison showed that the classification 
method based on cfMeDIP-seq data had considerably higher sensitivity than cfDNA 
variant analysis. MeDIP-seq has also been applied to small number of cfDNA samples to 
find DMRs between cancer patients and healthy individuals, in particular for lung cancer 
[14] and pancreatic cancer [15]. In these cases the DMRs were found using MEDIPS tool 
[18] and they were further used for analyzing methylation data of tissue origin. MEDIPS 
is a tool for quality control and analysis of immunoprecipitation sequencing data, and it 
performs differential coverage analysis using negative binomial model from edgeR pack-
age [19].

The results in [7] showed that methylation-based cfDNA biomarkers have a great 
potential in cancer classification and that cfMeDIP-seq is a sensitive yet low-cost method 
for measuring the methylome. However, if the cfMeDIP-seq method was to be applied 
in clinical use, we hypothesize that for enhancing cost-efficiency the sequencing depth 
would have to be lower than in the demonstrative data set shown in [7]. But how well 
would the classification methods presented in [7] cope with lower sequencing depth? 
In this work we attempt to simulate a situation where the sequencing depth is consider-
ably lower. Additionally, we present statistical methods for improving the feature selec-
tion and probabilistic modeling to improve the classification of the cancer types. We 
compare our approaches to the machine learning methods presented in [7]. For feature 
selection, we experiment with classical principal component analysis (PCA) and itera-
tive supervised PCA (ISPCA) [20], which can utilize the class information for finding 
the optimal principal components for separating classes from each other. We also apply 
Fisher’s exact test for DMR finding, as a simpler statistical test could be more robust 
when the sequencing depth is lower. For the classification methods, we experiment with 
logistic regression with regularized horseshoe (RHS) prior [21] and logistic regression 
with DMR count variables, both implemented with probabilistic programming language 
Stan [22].

Methods
Aim of the study

The aim of this study was to design and test various feature selection and probabilistic 
classification methods and compare them to the methods presented in [7] on cfMeDIP-
seq data across varying sequencing depths and cancer types.

Description of materials

The cfMeDIP-seq data set used in this work was received from the authors of [7] by 
request. We used preprocessed read count data, where the sequencing read counts have 
been determined for genomic windows of length 300 bp. The details of the data process-
ing can be found from [7]. The discovery and validation cohorts consist of 189 and 199 
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samples respectively. The number of samples in each of the eight classes (corresponding 
to the healthy controls and 7 cancer types) is presented in Table 1. As in [7], the features 
for the classifiers are selected from a set of 505,027 genomic windows, which consists of 
CpG rich regions, CpG islands, shores and shelves and FANTOM5 enhancers.

Workflow

We followed the workflow of the feature selection, model training and evaluation of the 
models presented in [7] but some modifications and additions were done. The workflow 
is illustrated in Fig. 1. First, we subsampled both discovery and validation cohort data 
sets and generated 100 data splits of the discovery cohort. In each data split, the discov-
ery data was divided with 80–20% ratio into balanced training and test sets using caret 

Table 1 Number of samples in each class in discovery and validation cohorts

Class Discovery cohort Validation 
cohort

Healthy controls (normal) 24 62

Renal cancer (RCC) 20 –

Pancreatic ductal adenocarcinoma (PDAC) 24 47

Colorectal cancer (CRC) 23 –

Bladder cancer (BLCA) 20 –

Breast cancer (BRCA) 25 –

Lung cancer (LUC) 25 55

Acute myeloid leukemia (AML) 28 35

Total 189 199

Fig. 1 Workflow of the analysis. The boxes with dashed lines are steps that are performed when applicable. 
The validation data transformation, normalization and feature scaling are performed using scaling factors 
based on the training data. Each step after the generation of data splits is performed for each data split 
separately
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R package [23]. We utilized the scripts from [7] for generating the data splits. For each 
data split, we selected features with different feature selection methods using the corre-
sponding training data set, with a data transformation applied when applicable.

We trained the classifiers with the training data, using the found features. This resulted 
in 100× 8 binary classifiers for each classification method. We made predictions for the 
corresponding test data sets to evaluate the classifier performances. Finally, we applied 
the trained models to the validation cohort and the classifier performances were again 
evaluated.

Our modifications and additions to the workflow of [7] include data subsampling, 
introduction of another version of the data transformation, addition of Fisher’s exact test 
for DMR finding and PCA and ISPCA methods for feature extraction, training the origi-
nal classifier method with different types of features and addition of two different logis-
tic regression classifiers with sparsity promoting priors.

Data preprocessing

Data subsampling

The read count data was subsampled to simulate a lower sequencing depth than in the 
original data. The total read count in the discovery cohort data set, calculated from the 
preprocessed read count data, varies between 10,659,729 and 67,228,099 before extract-
ing the 505,027 genomic windows of interest. The thinning was carried out by randomly 
sampling the desired number of reads without replacement from all genomic windows. 
All reads had equal probability of being picked, and the probability of getting a read 
from a genomic window was proportional to the read count of the window in question. 
The subsampling was performed for all samples separately. This way we generated three 
subsampled versions of the data set with 104, 105 and 106 reads per sample. The highest 
value, 106 , is already a magnitude lower than in the original, non-thinned data. After the 
thinning the 505,027 genomic windows could be extracted.

Data transformation

Depending on the classification model, the count data can be used as it is or trans-
formed. We used logarithmic transformations as proposed in [7]

The transformation used in [7] is obtained with c = 0.3 and s = 10−6 , but we also experi-
mented with a modified version where s = 0.5 . Transformation was applied to both dis-
covery and validation cohorts when applicable. The difference of these transformations 
is best visible for the zero-count genomic windows. The original transformation maps 
the zero counts far away from the nonzero counts, while with the modified version the 
gap between the zero counts and nonzero counts is more moderate.

Scaling and normalization

Before fitting probabilistic classification methods, the count data was normalized based 
on the total read count in the 505,027 genomic windows. This was done by dividing the 
read counts of these genomic windows with the sum of the read counts and multiply-
ing with the mean of the read count sums over the discovery cohort. The read count 

(1)XT = log2(c · X + s).
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normalization accounts for possible differences in sequencing depth between samples. 
In the case of the subsampled data, where the total read counts per sample were equal, 
this step should have affected only little. However, this is not the case with the non-
thinned data where the total read counts varied greatly. Furthermore, the features were 
standardized to have zero mean and standard deviation of 1, so that the same prior mean 
and scale can be used for all features during the probabilistic classification step. The 
scaling factors were calculated based on the training data of each data split. Validation 
cohort was normalized and scaled accordingly, using normalizing and scaling factors of 
the training data.

Methods for feature selection

Moderated t‑statistic

To generate results with the same methods as in [7], we used the same DMR finding 
method. Moderated t-statistic implementation from the limma R-package [24] was 
applied to pick 150 hypo- and hypermethylated DMRs for each one-vs-one comparison, 
totaling in 7× 300 = 2100 DMRs per class. The 2100 DMRs are necessarily not unique, 
so the number of unique DMRs can be lower. This was repeated for each class and each 
100 data split. DMR sets were produced with both of the data transformations described 
above.

Fisher’s exact test

Fisher’s exact test was performed to the count data as an alternative method to the mod-
erated t-statistic based DMR finding. For each genomic window, a contingency table 
with one-vs-one comparison setting was formed of the training data and p-value was 
calculated with fisher.test function from the R package stats [25]. Genomic win-
dows with zero counts for all samples in the training data set were removed before con-
ducting the tests. The DMR finding over classes and data splits was performed in similar 
manner as in the case of moderated t-test described above.

PCA

We utilized the 2100-dimensional1 set of DMRs as the input for principal component 
analysis (PCA). The resulting projections of the DMR vectors on the principal compo-
nents are then given as features for the binary classifiers. PCA was conducted for each 
data split and each class separately, using prcomp function from R package stats [25]. 
The data was shifted to be zero-mean and scaled to have unit variance by using center 
and scale options of the prcomp function. The found components were standardized 
by dividing them with their standard deviations. Test and validation data was normal-
ized and scaled with scaling factors calculated with the training data.

ISPCA

Iterative supervised principal component analysis (ISPCA) [20] is a method for finding 
features that are most relevant for predicting the target value. Following the notation of 

1 In case of overlapping DMRs, the dimension is less than 2100.
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the description of the algorithm in [20], let us call the matrix of size Nsamples × Nfeatures 
containing the original features as X and the target value vector of length Nsamples as y . 
The process of finding supervised components iterates three steps. First, scores S(xj , y) , 
j = 1, . . . ,Nfeatures which tell how relevant each feature xj is for predicting target value 
y are calculated and the features that have a score higher than threshold γ are chosen. 
From these features, Xγ , the first principal component vγ is calculated. The threshold 
γ should be chosen so that the score S(zγ , y) , where zγ is the projection of Xγ onto the 
principal component, is maximized. Finally, the variation explained by the found feature 
is substracted from X , so that a modified feature matrix X′ is retrieved. X′ is then used as 
the starting point for the next iteration.

For our case with eight classes, both binary and multiclass approaches are possible. In 
the multiclass setting, features maximizing the score for one class versus other classes 
are searched for each class separately, and the feature with maximum score is picked. 
That is, the new component separates one of the classes from the others the best. With 
the multiclass approach ISPCA needs to be run only once per data split. For the binary 
approach, the multiclass labels have to be transformed into one-vs-rest binary labels 
before running ISPCA. ISPCA is then run for each class separately.

As finding too many supervised components might lead to overfitting, the ISPCA 
method includes a permutation test approach to calculate the p-value of there being 
relevant information left in X′ . This test can be conducted after each iteration of find-
ing supervised components and when the p-value exceeds a desired threshold, no more 
supervised components are searched. Non-supervised PCA can then be performed for 
X

′ to retrieve up to Nsamples − 1 components in total. We used the default threshold for 
the p-value, which is 0.1.

We used the ISPCA implemention from R package dimreduce [26], namely func-
tion ispca. We gave the read counts for all 505,027 genomic windows as input to the 
analysis. Before running ISPCA, the data was normalized for total read counts and 
transformed with the new version of the data transformation. We used the center 
and scale options of the ispca function to standardize the input data and the option 
normalize to scale the returned components. Test and validation data were standard-
ized and scaled accordingly.

Classification methods

GLMnet

GLMnet classifiers were trained and evaluated as described in [7] by utilizing the pro-
vided R scripts. Briefly, the model training utilities from R package glmnet [9] were 
employed to learn a binomial one-vs-rest GLMnet classifier with the found DMRs as 
model features. The binomial GLMnet model corresponds to the logistic regression with 
elastic net regularization on the model coefficients [9]. The model is fitted by maximiz-
ing the penalized log-likelihood

(2)max(b0,b)∈Rp+1

1

N

N
∑

i=1

yi

(

b0 + x
T
i b

)

− log
(

1+ e(b0+x
T
i b)

)

− ωPα(b),
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where yi is the binary response variable, xi is the corresponding feature vector, N is the 
number of observations, b0 and b are the intercept and coefficient parameters of the 
model and Pα(b) is the penalty term multiplied with penalty parameter ω . Elastic net 
penalty is the sum of ridge-regression and Lasso penalties

where mixing parameter α controls the proportions of the two penalty terms. If α = 0 , 
elastic net simplifies into ridge regression and if α = 1 the penalty term becomes the 
same as in Lasso. As in [7], the parameters ω and α were optimized using three itera-
tions of 10-fold cross validation for grid values ω = {0, 0.01, 0.02, 0.03, 0.04, 0.05} and 
α = {0, 0.2, 0.5, 0.8, 1} . Before training the binary classifiers, data transformation was 
applied. We also trained GLMNet classifiers with the DMRs found with Fisher’s exact 
test and with the moderated t-test using the modified version of the transformation.

Logistic regression with regularized horseshoe prior

In logistic regression model, each of the elements in the target vector y = (y1, . . . , yN ) con-
taining binary outcomes is assumed Bernoulli distributed with parameter pi, i = 1, . . . ,N  , 
where N is the number of samples. A linear model can then be connected to parameter pi 
with inverse-logit function

where β0 is an intercept term, β is a coefficient vector and xi is a vector containing the 
values for the chosen features for sample i. After estimating the model coefficients, the 
class of a new sample can be predicted by calculating p̂ and using 0.5 (or some other 
value) as decision boundary. To classify the eight different classes, we trained logistic 
regression models for each class separately by first binarizing the class labels using one-
vs-rest approach.

The regularized horseshoe prior [21] is a technique to achieve sparsity in a regression 
model when the number of features is large and only few of them are expected to be rel-
evant, and thus should have nonzero regression coefficient. The regularized horseshoe 
prior enforces sparsity to the regression coefficients by defining the scale of the coef-
ficients to be a product of local and global terms, where the global term pulls all coef-
ficients towards zero, while the local term allows the relevant features to have nonzero 
coefficients. The prior for the regression coefficients βj can be expressed more formally 
as

where D is the number of features and the modified local scale parameter �̃2j  is defined as

where the local scale parameter �j is given a half-Cauchy prior

(3)Pα(b) = (1− α)
1

2
�b�2ℓ2 + α�b�ℓ1 ,

(4)pi =
1

1+ exp−(β0+xTi β)
,

(5)βj|�j , τ , c ∼ N(0, τ 2�̃2j ), j = 1, . . . ,D,

(6)�̃
2
j =

c2�2j

c2 + τ 2�2j
,
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The modified local scale parameter makes sure that all coefficients are shrunken at least 
a little, including the relevant coefficients as well. The parameter c controls the magni-
tude of the largest coefficients and is given an inverse-Gamma prior

where ν and s were set to 4 and 2 respectively, following the default values of the regular-
ized horseshoe prior implementation in R package brms [27]. The global scale param-
eter τ has also a half-Cauchy prior

with scale τ0 defined as

where D is the number of features, n is the number of training samples, p0 is the 
expected number of nonzero coefficients and σ is a pseudo standard deviation. The RHS 
prior enables using the knowledge on the expected number of nonzero coefficients to 
define the global scale parameter hyperprior. We set p0 = 300 after experimenting with 
a few different options and comparing the resulting coefficient posteriors. The pseudo 
variance for a model with binomial data and logit link function proposed in [21] is

where µ is replaced with sample mean y . The intercept term β0 is handled separately and 
is given a Gaussian prior with mean 0 and standard deviation of 10.

The logistic regression model with horseshoe prior was fitted with different kinds of fea-
tures: moderated t-statistic DMRs with the original data transformation, the moderated 
t-statistic DMRs with the modified data transformation, Fisher’s exact test DMRs, PCA 
coordinates and ISPCA coordinates. The original data transformation was applied before 
model fitting on the corresponding moderated t-statistic DMRs and Fisher’s exact test 
DMRs, while the modified data transformation was applied on the corresponding mod-
erated statistic DMRs. Before logistic regression we normalized the features for total read 
counts and standardized each feature to have zero mean and variance of 1.

The model was implemented with the R version of the probabilistic programming lan-
guage Stan [28]. For the logistic regression with horseshoe prior, we adopted the example 
code presented in [21], where model parametrization proposed in [29] was used.

The predictions for test and validation data sets were made by calculating the posterior 
predictive probabilities. For the ith test/validation sample (ỹi, x̃i) we compute an approx-
imation of the probability of it belonging to the class of interest ( ̃yi = 1 ) using posterior 
samples of β0 and β

(7)�j ∼ C+(0, 1).

c ∼ Inv-Gamma(ν/2, νs2/2),

(8)τ ∼ C+(1, τ0)

(9)τ0 =
p0

D − p0

σ√
n
,

(10)σ 2 = µ−1(1− µ)−1,

(11)p(ỹi = 1|x̃i, y,X) =
∫

p(ỹi = 1|x̃i, θ)p(θ |y,X)dθ
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where NS is the number of MCMC samples retrieved from the posterior distribution 
and θk = (β0,k ,βk) denotes the kth parameter sample. See description of the MCMC 
sampling method below.

Logistic regression with DMR count variables

We also formulated a simpler logistic regression model for binary classification, where 
the model includes only an intercept term and two features. These two features are the 
numbers of hypermethylated and hypomethylated DMRs with nonzero read counts. The 
DMRs can be found either with the moderated t-statistic or Fisher’s exact test. The two 
features were normalized based on total read counts. and scaled to have zero mean and 
standard deviation of 0.5. The model intercept and coefficients were given Cauchy priors 
with scale parameters 10 and 2.5, respectively, as recommended in [30]. The model was 
implemented with Stan.

The classification of the test and validation sets are done in the same way as for the 
logistic regression model with RHS prior.

Sampling from posterior distributions with Stan

Stan uses MCMC sampling to retrieve samples from the posterior distribution, specifi-
cally the no-U-turn sampler (NUTS) algorithm, which is a variant of the Hamiltonian 
Monte Carlo algorithm [22]. The parameters for sampling the user can define the num-
ber of MCMC chains, number of samples per chain, maximum tree depth and target 
acceptance rate. The sampling parameters for our models are presented in Table 2.

Evaluation of the classification methods

The evaluation of the classification methods was performed in similar manner as in [7] 
and the distributed code for the publication was utilized when implementing the meth-
ods. For each method, each of the eight binary classifiers for each data split were used 
to classify the corresponding test data set and the validation data. The performance of 
the classifiers was evaluated by calculating class-specific area under receiver-operating 

(12)≈ 1

NS

NS
∑

k=1

p(ỹi = 1|x̃i, θk)

(13)= 1

NS

NS
∑

k=1

logit−1(β0,k + x̃
T
i βk),

Table 2 Sampling parameters for the models implemented with Stan

Values marked with * are the default values in Stan

Sampling parameter LR RHS LR RHS ISPCA/PCA LR DMR counts

Number of chains 4* 4* 4*

Number of samples per chain 2000 4000 3500

Max. tree depth 10* 10* 10*

Target acceptance rate 0.8* 0.99 0.9
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characteristics curve (AUROC) and area under precision-recall curve (AUPRC) statis-
tics. The distribution of the statistics for each class over data splits can then be described 
by calculating median and quantile statistics or by plotting boxplots. The AUROC statis-
tics are presented as barplots and scatterplots. In addition, median AUROC and AUPRC 
values are presented as tables. For the validation cohort, we also calculated a mean of 
the class predictions over the data splits and plotted a receiver-operating characteristics 
curve (ROC) and calculated corresponding AUROC and AUPRC values for each of the 
four classes in the cohort.

Evaluation of the methods with an independent data set

To see whether the results produced with the data set from [7] generalize to other data 
sets, we ran the same analysis (excluding data subsampling) for an independent intracra-
nial tumors data set by [11]. The data was downloaded as reads per kilobase per million 
mapped reads (RPKM) values for each genomic window from [31]. The data set con-
sisted of 161 samples of 6 different tumor types. Table 3 shows the number of samples 
in each class. As the data was given as RPKM values, there was no need to perform nor-
malization with respect to total read counts.

Results
Feature selection

Comparison of the DMR finding methods

We tested three different methods to find differentially methylated regions that can be 
utilized as features in the classification: the moderated t-test method used in [7], moder-
ated t-test with new data transformation and Fisher’s exact test. To compare the DMRs 
found with the different methods, we plotted Venn diagrams to find their overlaps. In 
Fig. 2, for each method, all of the DMRs for the 100 data splits were first combined and 
duplicates were removed to keep each DMR in the set only once. This was done for each 
class separately. In Additional file  1: Fig.  S1, the Venn diagrams were generated from 
DMRs that were found in 50 or more data splits of the total 100.

Comparing Fig. 2 and Additional file 1: Fig. S1, we can see that the number of DMRs 
is overall higher in Fig. 2, where the DMRs were not filtered. This suggests, that many of 
the DMRs are only found in less than half of the data splits. In Fig. 2 we can also notice 
that overall the number of DMRs is smaller when the total read count is smaller, i.e. data 

Table 3 Number of samples in each class in the intracranial tumors data set

Class Number 
of 
samples

Brain metastases 15

Hemangiopericytoma 9

Meningioma 60

Low‑grade glioneuronal 14

IDH wildtype glioma 22

IDH mutant glioma 41

Total 161
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has been thinned more. This might mean, that when the total read count is smaller, the 
found DMRs are more consistent between different data splits, resulting in a smaller 
number of DMRs. Additional file  1: Fig.  S1 supports this, as the number of filtered 
DMRs is overall higher in Additional file 1: Fig. S1A than in Additional file 1: Fig. S1B, 
C. However, the overlap between all three methods is low in Additional file 1: Fig. S1A, 
indicating the different DMR finding methods worked rather inconsistently in the case 
where the total read count was low.

In most cases a large fraction of the DMRs was shared with all of the three methods. 
The overlap between the Fisher’s exact test and t-test with the new data transformation 
was often quite high, as was the number of DMRs unique to the original t-test method. 
The numbers of DMRs unique to either Fisher’s exact test or the t-test with the new data 
transformation were often low in comparison. The overlaps between the original t-test 
method and the two other methods separately were quite modest compared to the over-
lap between Fisher’s exact test and t-test with new transformation. Altogether, it seems 
that a large part of the DMRs was shared between all of the methods, which suggests 
that DMRs can indeed be identified reliably from cfMeDIP-seq data. On the other hand, 
there were also DMRs not shared by all three methods. These DMRs may partly explain 
the differences in the performances of the classifiers utilizing these DMR sets.

The lists of DMRs for each of the three DMR finding methods are available in Addi-
tional files 2, 3, 4. See Section Availability of data and materials for details.

Comparison to the RRBS‑seq based DMCs

In [7], DMRs identified from cfMeDIP-seq data were compared to differentially meth-
ylated cytosines (DMCs) identified from reduced representation bisulfite sequencing 
(RRBS-seq) data that was obtained from solid samples. Shen et al. (2018) presented two 
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Fig. 2 Number of overlapping DMRs between the DMRs found with Fisher’s exact test, moderated t‑test with 
the original data transformation and moderated t‑test with new data transformation. DMRs from the 100 data 
splits were combined before the comparison. The results are presented for thinning with total read counts 
104, 105 and 106 in figures A, B and C, respectively
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sets of RRBS-seq DMCs: from comparisons between normal and tumor tissues as well 
as between tumor tissue and normal peripheral blood mononuclear cells (PBMCs). The 
comparison of cfMeDIP-seq DMRs and RRBS-seq DMCs presented in [7] showed that 
there was significant enrichment in concordantly hypermethylated and hypomethylated 
cfMeDIP-seq DMR and RRBS-seq DMC pairs. To see if there was overlap still after data 
subsampling, we made a simple comparison between the DMRs found from the thinned 
cfMeDIP-seq data and the two types of DMCs provided in [7]. The comparison was car-
ried out by finding the cfMeDIP-seq DMRs from PDAC class vs. normal class compari-
son which had one or more overlapping DMCs. The direction of differential methylation 
was required to be the same in the RRBS-seq DMCs and cfMeDIP-seq DMRs when find-
ing the overlaps. The number of such cfMeDIP-seq DMRs was calculated for each data 
split for each of the three subsampling versions. This was repeated for the three DMR 
finding methods.

The results of the comparison in Fig. 3 show that the number of cfMeDIP-seq DMRs 
with overlapping DMCs in a data split was overall quite low, ranging from 0 to 14. The 
overlap with the DMCs from the comparison of tumor tissue and normal tissue was 
generally lower than with the DMCs from the comparison of tumor tissue and PBMC. 
The severity of the thinning does not seem to affect the number of cfMeDIP-seq DMRs 
with RRBS DMC overlap, suggesting that the most significant DMRs can still be identi-
fied from the subsampled data as well. Overall the level of overlaps with the RRBS-seq 
DMCs seemed to be the same for all three DMR finding methods, with the exception 
of the thinning with total read count 104 , where the moderated t-test with new data 

Fig. 3 Boxplots of the number of cfMeDIP‑seq DMRs having overlap with RRBS‑seq DMCs in one data split, 
for each of the DMR finding approaches. The left side column shows the results for the RRBS‑seq DMCs from 
comparing PDAC tumor tissue to normal tissue, while the right side column shows the results for RRBS‑seq 
DMCs from comparing PDAC tumor tissue to PBMC. The results are presented for thinning with total read 
counts 104, 105 and 106 in figures A, B and C, respectively
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transformation had considerably more DMRs with DMC overlap than the two other 
methods.

PCA and ISPCA

Figure 4 demonstrates the retrieved features from the three different dimension reduc-
tion approaches, PCA, binary ISPCA and multiclass ISPCA, for one of the data splits in 
the case of the subsampled data with total read count 106.

Figure 4A shows the first six principal components from the standard PCA, two at a 
time. The input data to the analysis was the DMR set for the AML class, and based on 
the plot, the AML class could be separated well from the other classes using PC1. The 
training and test set samples from AML class seemed to mix to some extend, which indi-
cates that the principal component generalized well to the test samples. The other plot-
ted components seemed not to separate AML class from the others.

We generated similar plots for the binary and multiclass ISPCA approaches, presented 
in Fig. 4B, C, respectively. For the binary ISPCA we set the samples from the AML class 
to have label 1 and for the other classes the label was set to 0. We gave data from all 
505,027 genomic windows as input to ISPCA. This resulted again in the first compo-
nent separating the AML class from the other classes quite well, while the test samples 
blended in with the training samples. The rest of the plotted principal components did 
not separate the AML class from the other classes. The first six components from multi-
class ISPCA seemed to each separate one class from the others. The only class for which 
the test samples blended in with the plotted training samples was AML, which could 

Fig. 4 An example of the six first principal components from PCA and two ISPCA approaches for one of the 
data splits. The training and test samples from the discovery cohort were plotted with different colors to 
demonstrate how well the test samples will blend in with the training samples. A Components from PCA, 
using AML class DMRs as input. B Components from binary ISPCA, where class labels were set to 1 for the 
samples in AML class and to 0 for the samples from other classes. C Components from multiclass ISPCA
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indicate that making good predictions with a model that uses these components as fea-
tures could be hard.

With the two other subsampled data versions, with total read counts 104 and 105 , the 
ISPCA approaches occasionally ended up in a situation where no supervised compo-
nents were found. In the case of more heavily thinned data, there seemed sometimes not 
to be enough information to find any supervised components, and the method returned 
standard PCA components only. The ISPCA methods could not always separate the 
classes well, which might be because we gave all 505,027 genomic windows as input to 
them. On the other hand, the standard PCA approach which utilized the class-specific 
DMRs only did not thrive in such a situation either.

Experiments with different DMR numbers

To justify the choice of picking 300 DMRs per one-vs-one class comparison as features 
for the classifiers, we performed a comparison of GLMnet classifiers with different DMR 
numbers. The tested DMR numbers were 100, 300 and 400. The AUROC and AUPRC 
values for each class are presented in Additional file 1: Figs. S6–S9. The classifiers were 
evaluated on both discovery and validation cohorts. The figures show that the classifi-
ers performed approximately equally well with all DMR numbers. The classifiers with 
DMR number 100 have a slightly weaker performance, but there are no big differences 
between 300 and 400. The differences in AUPRC values are greater than in AUROC val-
ues. We compared DMRs from both Fisher’s exact test and moderated t-test (with new 
data transformation), and they both gave similar results. The results are as expected, as 
choosing the DMRs to be used as features works as a preselection, and the regularization 
of the GLMnet model finally picks the most important features. Based on these results, 
100 DMRs might be too few. The benefit of increasing the number over 300 seems to be 
rather small, so we decided to proceed with 300 DMRs as proposed in [7].

Discovery cohort

After finding the model features, the different classification models were fitted using the 
training data sets of the discovery cohort. The data was partitioned to training and test 
data sets 100 times, and each of the trained models was evaluated with corresponding 
test set. This resulted in 100 AUROC values per each of the eight classes, from which we 
can calculate median AUROC values which are presented in Additional file 1: Fig. S2. 
Based on this figure, the overall trend was that the lower the total read count is after the 
data subsampling, the lower the median AUROC values were. This is expected, as the 
more the data is thinned the less there is information for us to use for the classification 
task. When the total read count was 104 , the median AUROC levels were very similar 
for all methods and for all classes. When the total read count was higher, some classes 
such as AML and PDAC began to stand out with higher median AUROC values, while 
some classes such as BRCA, CRC and LUC had lower median AUROC values even with 
higher total read counts.

To better compare each of the methods to the original approach, we computed the 
differences between median AUROCs (Fig.  5). The differences were calculated for 
each class separately, but a mean over classes is also presented for overall perfor-
mance comparison purposes. Looking at the means of the AUROC median differences 
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over classes, all GLMnet-based approaches seemed to perform overall equally well. 
However, there was some variance in the class-specific median AUROC differences 
for the GLMnet with Fisher’s exact test DMRs as features when the subsampled data 
had total read count 104 or 105 . Similarly, the two logistic regression models with RHS 
prior using the original moderated t-test DMRs or the moderated t-test with new data 
transformation DMRs seemed to work equally as well as the original GLMnet method 
in all of the three thinning versions. The LR model with RHS prior and Fisher’s exact 
test DMRs, on the other hand, had a positive mean AUROC difference value when the 
sequencing depth was low. The logistic regression models with DMR count variables 
seemed to perform overall as well as the original GLMnet method or slightly worse.

Continuing the comparisons with the LR models that use dimension reduction fea-
tures, the logistic regression model with RHS prior that used PCA components as 
features worked approximately equally well as the original GLMnet method for all 
subsampled data versions. But perhaps the most promising methods in this compari-
son were the logistic regression models with RHS priors that used ISPCA components 
as features. Both the models using multiclass ISPCA and binary ISPCA components 
got higher median AUROC values than the original GLMnet method for most of the 
classes in Fig.  5A, B. Surprisingly, when the total read count after thinning was set 

Fig. 5 The differences between the test set AUROC medians over the 100 data splits for the original GLMnet 
method and other approaches. The AUROC was calculated for the test data sets in the discovery cohort. The 
results are presented for each class separately. Positive values indicate, that the compared (new) method had 
higher AUROC median than the original method and negative values indicate that the original method had 
higher AUROC median. The results are presented for thinning with total read counts 104, 105 and 106 in figures 
A, B and C, respectively. The red lines indicate the means over the eight classes
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to 106 (Fig.  5C), the model using multiclass ISPCA components performed overall 
considerably worse than the original GLMnet method. However, the mean median 
AUROC differences over all classes was still slightly on the positive side for the model 
using binary ISPCA components.

Additionally, median AUROC and AUPRC values over the data splits are presented 
in Additional file 1: Tables S1–S3. The ranking of the methods was approximately the 
same based on either AUROC or AUPRC values. However, there was more variation in 
the AUPRC values. Overall, the AUPRC values were much lower than AUROC values as 
expected, but the values tended to increase as the simulated sequencing depth increased 
in the same manner as AUROC values did.

Validation cohort

The models trained with the discovery cohort training sets were used to predict the class 
of samples in validation data set. The validation data was also thinned in the same man-
ner as the discovery cohort data. The predictions were made with the models for each of 
the 100 data splits, and AUROC values were calculated for each set of predictions.

The AUROC medians over the 100 values were calculated and they can be found from 
Additional file  1: Fig.  S3. As for the discovery cohort in Additional file  1: Fig.  S2, the 
median AUROC values seemed to be overall higher when the total read count is higher. 
When compared to the discovery cohort results, there seemed to be more variance in 
the performance of different methods for the validation data.

We also calculated the median AUROC differences between the original GLMnet 
method and the new methods (Fig.  6). The logistic regression models with RHS prior 
that used the components from multiclass or binary ISPCA did well in the discovery 
cohort performance comparison. Conversely, these two models did not perform very 
well with the validation data and at best performed equally well as the original GLM-
net method. Logistic regression with RHS prior using PCA components seemed to do 
slightly better than the ISPCA approaches, as the mean of median AUROC differences 
reached positive value for the case with total read count 105 . The overall performance of 
the logistic regression models with DMR count variables was usually as good or slightly 
weaker than for the original approach. However, for the subsampled data with total read 
count 104 , the approach using Fisher’s exact test DMRs had a considerably positive mean 
difference value. The GLMnet methods with the alternative DMR choices both per-
formed approximately equally well as the original GLMnet method with all of the three 
subsampling versions.

All in all, compared to the discovery cohort results, there seemed to be a lot more vari-
ation in the AUROC differences for the validation data set. When the total read count 
was 106 , i.e. closest to the original read counts, none of the methods had positive mean 
difference over the classes. But when the thinning became more severe, there were some 
cases where other methods outperformed the original method.

As in [7], we also calculated the mean of the validation set predictions over the 100 
data splits and produced ROC curves for each class. In Fig. 7, we can see a general trend 
of the area under the curves getting higher the higher the total read count is. The ROC 
curves confirm the findings we did based on the median AUROC differences. When the 
total read count was 106 , several methods performed approximately equally well as the 
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original GLMnet method, but rarely outperformed it. When the total read count was 105 
or 104 , some methods had their ROC curves surmounting the original method’s curve 
for some of the classes.

Again, the corresponding median AUROC and AUPRC values are presented in Addi-
tional file 1: Tables S4–S6. The conclusions about the AUPRC values are the same as for 
the discovery cohort.

Non‑thinned data

Until now, the results we have presented have been for the thinned data set. To assess 
how well the classifiers presented in this work perform with the original non-thinned 
data set, we ran the feature selection methods and classifier training to the data without 
thinning it first. We calculated the median AUROC values, the median AUROC differ-
ences between the original GLMnet method and the other classifiers for both the dis-
covery and validation cohorts and produced ROC curves of the mean predictions for the 
validation cohort. The results are presented in Additional file 1: Figs. S4 and S5.

The median AUROC values over the 100 data splits are presented in Additional 
file 1: Fig. S4 for both discovery and validation cohorts. We can see that overall the 
AUROC medians were higher for the more deeply sequenced, non-subsampled data, 

Fig. 6 The differences between the validation cohort AUROC medians over the 100 data splits for the 
original GLMnet method and other approaches. The results are presented for each class separately. Positive 
values indicate, that the compared method had higher AUROC median than the original method and 
negative values indicate that the original method had lower AUROC median. The results are presented for 
thinning with total read counts 104, 105 and 106 in figures A, B and C, respectively. The negative values were 
truncated to − 0.25. The red lines indicate the means over the four classes
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both for the discovery and validation cohorts, than for the thinned data sets. The dif-
ferences between the methods were moderate for the discovery cohort, but for the 
validation cohort there were greater differences. There were also differences between 
the classes, indicating that some classes were easier to distinguish from the other 
classes with the used methods. For example, considering the discovery cohort, all 
methods reached median AUROC values close to 1 for the AML class, while for LUC 
class the values were at best around 0.875.

In Additional file  1: Fig.  S5A we present the median AUROC value differences 
between the original GLMnet method and the other methods for the discovery 
cohort. For most of the methods the mean differences were close to 0, meaning that 
overall there was no difference in the median AUROC values for the original GLM-
net method and other approaches. However, the performance of logistic regression 
model with RHS prior and multiclass ISPCA components and logistic regression 
models with DMR count features, the mean difference values were negative.

Additional file  1: Fig.  S5B presents the median AUROC differences between the 
original method and the other classifiers for the validation data set. Based on this 
comparison, the overall performance of the other classifiers was again in most cases 
equally good or even considerably weaker than for the original GLMnet method. 
There were few exceptions in the case of the PDAC class, for which the logistic 

Fig. 7 Validation cohort ROCs calculated with prediction means over 100 data splits and corresponding 
fitted models. The results are presented for each class separately. The results are presented for thinning with 
total read counts 104, 105 and 106 in figures A, B and C, respectively
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regression models with RHS prior using either of the two moderated t-test or the 
Fisher’s exact test DMRs had all approximately 0.1 higher median AUROC value than 
the original method. Also, the modified GLMnet approaches both had approximately 
equally good results as the original method.

From the validation cohort ROC curves in Additional file 1: Fig. S5C we can see, that 
the original GLMnet method performed similarly as in [7], with almost equally good 
performance for LUC, AML and Normal classes and slightly weaker performance for 
PDAC class. The corresponding AUROC values in [7] were 0.971, 0.980, 0.969 and 0.918 
for classes LUC, AML, Normal and PDAC respectively. The ROC curves for the other 
two GLMnet approaches behaved quite similarly. For the rest of the methods, the ROC 
curves support the findings based on the median AUROC differences in Additional 
file 1: Fig. S5B.

The conclusions described above are supported with median AUROC and AUPRC val-
ues for discovery cohort in Additional file 1: Table S7 and for validation cohort Addi-
tional file  1: Table  S8. However, in the case of the discovery cohort, there were some 
classes (BRCA, CRC, LUC) where the methods with highest AUROC and AUPRC values 
were not the same. The method with best AUROC did still have one of the top AUPRC 
values, so the ranking of the methods was similar with both statistics.

Results for independent data set

We repeated the analysis with our workflow (excluding data subsampling and total read 
count normalization) using the intracranial tumors data set from [11], to see whether 
the results generalize to other data sets. AUROC barplots for the data set can be found 
Additional file 1: Fig. S10, while the AUROC and AUPRC values are presented in Addi-
tional file 1: Table S9.

Our results are in line with the classifier performances reported in [11]. The AUROC 
values presented in [11] were 0.89, 0.95, 0.93, 0.82 and 0.71 for meningioma, heman-
giopericytoma, low-grade glioneuronal, IDH mutant glioma and IDH wildtype glioma 
classes, respectively (AUROC was not reported for brain metastases).

Based on the AUROC barplots in Additional file  1: Fig.  S10, GLMnet and logistic 
regression with modified t-test (with either version of the data transformation) and 
logistic regression with PCA components as features seemed to perform the best over-
all. The logistic regression models with DMR count features had considerably weaker 
performance. Classifiers with Fisher’s exact test DMR features also had lower AUROC 
values when compared to the classifiers using modified t-test DMRs. The AUPRC values 
in Additional file 1: Table S9 support these findings. The AUROC-based ranking of the 
methods with the non-thinned cfMeDIP-seq data from [7], shown in Additional file 1: 
Fig. S4, is similar. However, the differences between the methods seemed to be bigger 
with the intracranial tumors data set than with the data set from [7].

Discussion
There seems to be a lot of variation in how well the compared methods performed with 
different classes, thinning versions and also between discovery and validation cohorts. 
For example, the LR model with RHS prior using binary and multiclass ISPCA features 
seemed to perform better than the original method when looking at the discovery cohort 
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results for the lowest sequencing depth. But looking at the validation cohort perfor-
mance, these two approaches had considerably weaker median AUROC values than the 
original GLMnet method. One possible cause to the differences between the three sub-
sampled data versions is that the subsampling is done by taking random subsets of the 
original data, and that could cause differences even if the probabilities of obtaining reads 
from each of the genomic window were the same for all three thinning versions. The dif-
ferences between the discovery and validation cohort data sets are visible with the non-
thinned data set too, and this indicates that there are perhaps differences between the two 
cohorts, making it harder for the classifiers to perform well. However, the GLMnet-based 
methods seemed to all cope quite well with the validation cohort, especially if the data 
is non-thinned or the data has not been thinned very much. It could also be, that not all 
DMR finding methods and classifiers are suited to all classes. It could be considered, that 
different classifiers would be used with different classes to obtain optimal performance.

The overlaps between the DMRs found with the three different approaches showed that 
there are indeed differences between the methods, even if many of the DMRs were shared 
between all methods. We noticed, that the Fisher’s exact test and the moderated t-test 
with new data transformation often shared DMRs which were not found by the original 
moderated t-test method, while the moderated t-test found DMRs that were not found 
by other methods. The numbers of unique DMRs to Fisher’s exact test or the moderated 
t-test with the new data transformation were often low in comparison. The DMRs that 
were not found by all methods could be a source of differences in the classification results.

The dimension reduction techniques, PCA and two versions of ISPCA, showed vary-
ing performance. While logistic regression models using ISPCA components did not 
perform well with the validation data cohort, their AUROC values were promising for 
the discovery cohorts when total read count was 104 and 105 . We also tested using DMRs 
as input data for multiclass and binary ISPCA. The classification results with LR model 
and RHS prior using the resulting principal components as features showed stable per-
formance, but these approaches did not outperform the original GLMnet method nei-
ther in the discovery or validation cohorts.

Both logistic regression with RHS prior and GLMnet methods implement the logis-
tic regression model and enable sparsity of the feature coefficients. The difference 
between these two models is the prior enabling sparsity and how the model is fitted. In 
our approach we use the regularized horseshoe prior and GLMnet utilizes elastic net 
regularization. On the model fitting side, we utilized probabilistic programming lan-
guage Stan to obtain posterior samples of the model, while GLMnet model is fitted with 
cyclical coordinate descent approach [9]. The GLMnet model fitting is very efficient, 
but while sampling with Stan requires more computational resources, we obtain sam-
ples that inform us of the whole posterior distribution. If we look at the performance of 
the LR RHS method with the moderated t-test DMRs as features, we notice that with 
the thinned data sets the performance is approximately equally good as for the original 
GLMnet method. The same applies to the LR RHS method with moderated t-test with 
new data transformation. For the validation cohort, there are both classes for which the 
performance is either considerably better or considerably weaker. Based on this compar-
ison, our implementation of the logistic regression method with enabled model sparsity 
seems to have potential to give better results than GLMnet method, but it is perhaps not 
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as stable as GLMnet. Combining promising feature selection methods such as ISPCA 
with the LR RHS model could further enhance the classification.

Based on the promising results in TCR analysis application [32], we expected the sim-
ple logistic regression model with two DMR count variables to perform well with the 
lowest sequencing coverage due to model robustness. The results with the thinned vali-
dation cohort with total read count 104 somewhat support this hypothesis, but the dis-
covery cohort results were not as impressive.

The results for the independent intracranial tumors data set seemed to support our 
findings with the non-thinned data set, indicating that these results could generalize to 
other data sets. However, the differences between methods were greater with the intrac-
ranial tumors data set than with the one from [7].

Conclusions
We performed a method comparison to investigate if we the classification accuracy of 
the classifier based on cfMeDIP-seq data could be improved in a case where the sequenc-
ing depth of a cfMeDIP-seq experiments is low. To simulate lower sequencing depths, 
we thinned a cfMeDIP-seq data set by randomly subsampling the reads of each of the 
samples. We obtained three data sets with total read counts of 104, 105 and 106 . Then we 
tested three different DMR finding methods and three different dimension reduction 
methods to find the features to be used in the classification. After finding the features, 
three different types of classifiers were trained, using the found features and performance 
was evaluated for discovery and validation cohorts. These steps were also performed for 
the non-thinned data set and an independent intracranial tumors data set.

Based on the comparisons between the performances of the classification methods, 
there seemed to be no one method that would consistently perform better with all thin-
ning versions, all classes and for both discovery and validation cohorts. But there were 
cases, where the different feature selection and classifying methods seemed to give 
advantage when the data had been thinned. Such methods include the Fisher’s exact test, 
binary and multiclass ISPCA for DMR finding and feature selection and logistic regres-
sion model with DMR count variables.
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