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1  |  INTRODUC TION

The optical properties of leaves, understory, and woody tree struc-
tures have been studied using in situ and lab measurements (e.g., 
Gates et al., 1965; Miller et al., 1997; Williams, 1991), but there 
remains an imbalance between the amount of spectroscopic in-
formation available on the different forest components. This gap 

is important to fill because the different elements together con-
stitute the total reflectance of forest canopies, albeit with varying 
weight. Research on the spectral properties of woody structures of 
trees (i.e., stem and branch bark) has been sparse, as reviewed by 
Rautiainen et al. (2018). Yet, woody material can contribute to as 
much as 5–35% of the total plant area in a forest (Gower et al., 1999). 
As such, woody material has a significant effect on the total forest 
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Abstract
The woody material of forest canopies has a significant effect on the total forest 
reflectance and on the interpretation of remotely sensed data, yet research on the 
spectral properties of bark has been limited. We developed a novel measurement 
setup for acquiring stem bark reflectance spectra in field conditions, using a mobile 
hyperspectral camera. The setup was used for stem bark reflectance measurements 
of ten boreal and temperate tree species in the visible (VIS) to near-infrared (NIR) 
(400–1000  nm) wavelength region. Twenty trees of each species were measured, 
constituting a total of 200 hyperspectral reflectance images. The mean bark spectra 
of species were similar in the VIS region, and the interspecific variation was largest 
in the NIR region. The intraspecific variation of bark spectra was high for all studied 
species from the VIS to the NIR region. The spectral similarity of our study species did 
not correspond to the general phylogenetic lineages. The hyperspectral reflectance 
images revealed that the distributions of per-pixel reflectance values within images 
were species-specific. The spectral library collected in this study contributes toward 
building a comprehensive understanding of the spectral diversity of forests needed 
not only in remote sensing applications but also in, for example, biodiversity or land 
surface modeling studies.
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reflectance and on the interpretation of remote sensing data (Hall, 
Huemmrich, Goetz et al., 1992).

The spectral signatures of woody tree structures are highly 
variable in reflectance. The variability is due to species-specific dif-
ferences in optical properties, which are driven by biochemical and 
structural traits of bark material, and moisture (Roberts et al., 2004). 
In general, bark spectra can be described as “soil-like,” in that they in-
crease monotonously as a function of wavelength (Rautiainen et al., 
2018). However, there are considerable differences in bark spectra 
depending on tree species (Hadlich et al., 2018), bark moisture con-
tent (Elvidge, 1990), or position of the woody material in the canopy 
(Juola et al., 2020). The majority of previous studies that analyzed 
the variability of bark spectra were based on measurements of de-
tached pieces of bark, which were conducted in the laboratory with 
a spectrometer and an integrating sphere (Asner, 1998; Campbell & 
Borden, 2005; Forsström et al., 2021; Roberts et al., 2004; Williams, 
1991), whereas less research has been conducted outdoors for bark 
on living trees (Girma et al., 2013; Hadlich et al., 2018). Better un-
derstanding of bark optical properties in their natural state and envi-
ronment would provide valuable and complementary knowledge to 
studies conducted in the laboratory with destructive sampling that 
require the cutting of branches or felling of trees. In addition, Hovi 
et al. (2021), Lang et al. (2002), and Spencer and Rock (1999) have 
published open-access data of bark spectra that can be used as ref-
erence data in remote sensing. Very recently, there has been also 
research on the spectro-directional behavior of stem bark of trees 
(Juola et al., 2020). However, to our knowledge, there has not been 
a study that has collected systematically a spectral library of stem 
bark of boreal and temperate tree species of Europe and analyzed 
the intra- and interspecific variations of the spectra. Spectral librar-
ies with species-specific spectra could be utilized, for example, as 
input in forest reflectance models.

Understanding the intra- and interspecific variation of plant 
spectra is also important for species identification, and for studying 
taxonomic relatedness. For example, classification of tree species 
based on stem bark spectra was demonstrated by Hadlich et al. 
(2018), but there could also be potential in assessing taxonomic di-
versity of a vegetation community through its spectral variation. 
Overall, investigating the links between phylogeny, functional 
traits, and optical properties of plant species has seen increas-
ing interest in biodiversity research (e.g., Asner & Martin, 2016). 
However, to date, the majority of studies interested in phyloge-
netic relatedness and taxonomic diversity have analyzed leaf op-
tical properties (Asner & Martin, 2011; Asner et al., 2009, 2011, 
2014; Frye et al., 2021; McManus et al., 2016; Meireles et al., 2020; 
Schweiger et al., 2018). Woody structures, such as bark, have not 
been utilized as widely (Lang et al., 2017), and therefore it remains 
unknown if taxonomic relatedness of species could be determined 
from bark spectra.

In this study, our goal was to collect and analyze a spectral library 
of bark of European tree species. First, we constructed a measure-
ment setup for a mobile hyperspectral camera that is applicable in 
demanding forest conditions. Then, we used the setup to collect a 

spectral library of stem bark spectra and respond to the following 
research questions:

1.	 What are the intra- and interspecific variations of bark spectra 
between 415 and 925  nm?

2.	 Is it possible to detect taxonomic relatedness of our study species 
based on reflectance spectra of bark?

3.	 How does reflectance of bark samples vary within hyperspectral 
images?

2  |  MATERIAL S AND METHODS

2.1  |  Study site and stem bark samples

We measured in situ reflectance spectra of stem bark of ten common 
tree species found in boreal and temperate forests of Europe (Table 1). 
The main study areas were located in Finland within the Capital 
Region (approximate coordinates: Viikki Arboretum 60°13′13″N 
25°00′25″E, Helsinki Central Park 60°15′36″N 24°55′19″E, and 
Espoo Central Park 60°11′13″N 24°42′25″E), and in Estonia in prox-
imity to the Järvselja Training and Experimental Forestry District 
(approximate coordinates: 58°17′13″N 27°18′50″E). We measured 
20 trees per species, accounting to a total of 200 unique stem bark 
samples. One sample refers to a hyperspectral reflectance image 
taken of a single tree stem (Figure 1). The measurement campaign 
was conducted from May to August 2020.

Minimum diameter at breast height (DBH) for the measured trees 
was 15 cm. This was to include trees with commercial value, but also 
to ensure uniform measurement and analysis protocol for all trees: 
the image size in our measurement setup was 11.1 × 11.1 cm, and 
therefore measuring small trees would have required either bringing 
the camera closer to the tree (i.e., reducing the pixel size), or using 
only a limited area of the image. Thus, the measured stands were 
selected so that a sufficient fraction of trees exceeded the minimum 
DBH. The site fertility varied, but all stands were on forest land and 
were tree-covered (basal area >8  m2/ha), that is, measurements 
were not performed for solitary trees in parks or on, for example, 
extremely barren rocks or peatland. We measured tree height and 
DBH of every sampled tree, together with the basal area of each of 
the surrounding stands (Table 1).

2.2  |  Sample selection

The same measurement protocol was followed throughout the 
campaign to maintain repeatability and to ensure as objective and 
randomized sampling as possible. In each forest stand, an imagi-
nary North-to-South line was drawn with a hand-bearing compass. 
This North-to-South line denoted the path from which every third 
tree was selected, and a hyperspectral image was taken from the 
northern side of the tree trunk at breast height (1.3 m). The north-
ern side of the tree stem was measured to support diffuse and 
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stable measurement conditions and to avoid possible sunflecks, sun-
patches, and shadows (i.e., effects of sunlight penetration through 
the canopy) (Smith et al., 1989). Each drawn measurement line was 
allowed an approximately 2  m perpendicular buffer to the sides, 

which helped to select sample trees even in more sparse forest 
stands. To ensure variation of forest stands and individual tree ages, 
we measured a minimum of two separate stands per species and a 
maximum of ten trees per stand.

In addition to the minimum DBH requirement, if the tree stem 
had qualities at breast height that made measurements impractical 
or useless (e.g., damaged stem, large growth of epiphytal vegeta-
tion, or abnormal angle of stem), the next tree in the compass line 
was measured instead. A visual limit of 10% for epiphytal vegetation 
(e.g., lichens or fungi) and other nonstem material (e.g., branches) 
was set to ensure as pure bark samples as possible, while allowing 
small amounts of naturally occurring features to remain. The physi-
cal state of the bark in the sample area was not altered.

2.3  |  Mounting setup

We designed and constructed a novel camera mounting setup for 
tree trunks, made specifically for field measurement conditions 
(Figure 2). Common challenges for measuring tree stem bark in the 
past have included unstable measurement geometry (e.g., spectrom-
eter or white reference panel held approximately in place by hand), 
labor-intensive protocol (e.g., measurements have required two op-
erators), use of impractical measurement accessories (e.g., tripods), 
and fixed sensor alignment (e.g., inflexible measurement distance or 
sensor angle).

The frame for the entire setup was constructed of steel piping 
that were measured, fitted, and welded to produce two separate 
yet interlocking pieces (Figure 2a). The horizontal “arm” with a fitted 
aluminum railing allowed the camera to be mounted on a standard 
ball head mount that can be locked to a custom distance (Figure 2). 

TA B L E  1 List of measured tree species, families, and structural characteristics of the measured trees and forest stands they were located 
in. Bolded names are used throughout this study. Number of samples was 20 per species

Species

Family

Tree diameter at breast 
height [cm] Tree height [m]

Stand basal 
area [m2/ha]

Scientific Common Min. Max. Median Min. Max. Median Min.–Max.

Pinus sylvestris L. Scots pine Pinaceae 16 47 28 10 30 18 12–44

Picea abies (L.) Karst Norway 
spruce

Pinaceae 15 47 26 13 31 24 22–48

Betula pendula Roth silver birch Betulaceae 15 36 25 17 29 22 8–36

Alnus incana (l.) Moench gray alder Betulaceae 15 26 19 12 26 20 12–48

Alnus glutinosa (L.) Gaertn. black alder Betulaceae 18 36 25 20 30 24 18–52

Quercus robur L. English oak Fagaceae 21 40 29 19 28 25 30–54

Populus tremula L. European 
aspen

Salicaceae 20 44 29 17 31 25 22–42

Fraxinus excelsior L. European 
ash

Oleaceae 15 47 30 10 37 24 20–52

Acer platanoides L. Norway 
maple

Sapindaceae 19 42 26 16 27 21 26–48

Tilia cordata Mill. littleleaf 
linden

Malvaceae 18 48 31 19 33 28 36–72

F I G U R E  1 Visual examples showing a subset of tree stem bark 
samples of the study species (red-green-blue image composites 
derived from original hyperspectral reflectance images)
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In addition, the railing made it possible to attach a white reference 
panel firmly onto the setup (Figure 2b). The horizontal “arm” was 
built with two receiving ends in the piping, which could be pushed 
onto the horizontal bars welded on the vertical frame (Figure 2a). 
The two interlocking pieces were tightened together with two 
screws below the horizontal “arm.” The system was built this way 
to be able to disassemble the framing into a backpack that could 
be carried even in field measurement conditions. The two separate 
pieces were fitted to be 90° relative to one another, and the ball 
head mount had a bubble level that was used to verify that the cam-
era was perpendicular to the tree stem during measurements. The 
entire frame was secured to the tree stem with two drivebelts and 
four stabilizing bolts (Figure 2b). The belts and stabilizing bolts se-
cured the frame from rotating around the stem at a set height and 
allowed the user to level the entire system to be perpendicular to the 
tree stem (Figure 2b).

2.4  |  Spectral measurements

We measured hemispherical-directional reflectance factors 
(HDRF) (Schaepman-Strub et al., 2006) of stem bark samples. The 
measurements were made with a Specim IQ (Specim, Spectral 
Imaging Ltd., Oulu, Finland, serial number: 190-1100152) mobile 
hyperspectral camera that was attached to the mounting setup 
(Figure 2b). The spectral range of the hyperspectral camera is 
400–1000  nm, which covers the regions of visible (VIS, 400–
700 nm) to near-infrared (NIR, 700–1000 nm). The spectral reso-
lution (full-width-at-half-maximum) of the camera is 7 nm and the 
total number of bands recorded is 204. Field-of-view of the cam-
era is 31° × 31° and the dimensions for the image are 512 × 512 

pixels. The hyperspectral image (i.e., data cube) with dimensions of 
512 × 512 pixels by 204 bands is constructed by the camera with 
a pushbroom line scanner with a built-in motor. Further techni-
cal details of the camera have been published by Behmann et al. 
(2018). The image acquisition distance of the setup was 20  cm, 
which provided image size of approximately 11.1 × 11.1 cm on the 
tree stem surface.

All measurements were made under natural illumination con-
ditions and the images were taken in perpendicular view-angle to 
the tree stem (Figure 2). To ensure high-quality data, we measured 
during cloudless days or days with standard overcast sky, and be-
cause the measurements were made on the northern side of the 
stem, the illumination on the sample was always diffuse. The solar 
zenith angle during the measurements varied between 35 and 65°. 
The white reference was a calibrated 25.4 × 25.4 cm Spectralon® 
(Labsphere Inc., serial number: 01EC-8777) panel that has nominal 
reflectance of 99%. We collected a white reference image and a 
sample image for every measured tree, which enabled HDRF(λ) to be 
calculated for each pixel with the following equation:

where,
λ is the wavelength of radiation [nm],
DNs(λ) is the digital number from the sample image,
DNs_dc(λ) is the dark current digital number from the sample 

image,
DNwr is (λ) the digital number from the white reference image,
DNwr_dc(λ) is the dark current digital number from the white ref-

erence image,

(1)HDRF(�) =
DNs(�) − DNs_dc(�)

DNwr(�) − DNwr_dc(�)
×

twr

ts

× Rwr(�)

(b)(a)

F I G U R E  2 (a) Sketch of the measurement setup used for mobile hyperspectral imaging of tree stems (dimensions in centimeters), and (b) 
example of the measurement setup when attached to a tree stem in the field
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ts is the integration time of used for the sample image [ms],
twr is the integration time of used for the white reference image 

[ms],
Rwr(λ) is the calibrated reflectance value for the white reference 

panel.
Integration times were selected manually, both for the white 

reference and the sample image, which is taken into consideration 
in Equation 1 (twr and ts). The equation (Equation 1) was formulated 
according to the device manufacturer's guidelines. Acceptable sig-
nal strength was ensured by monitoring intensity histograms com-
puted by the camera, and data were checked to not include any 
overexposed (signal saturated) pixels. Entire processed HDRF im-
ages were used for data analysis (i.e., HDRF was calculated using 
all 512 × 512 pixels and 204 bands). Consequently, data sizes were 
equal for all species throughout the analysis. After calculating 
HDRF with Equation 1, the spectral range was clipped to include 
only wavelengths between 415 and 925 nm. This was done due 
to a low signal-to-noise ratio between 400 and 415 nm and an in-
stability of the signal between 925 and 1000 nm (Behmann et al., 
2018). Remaining spectra did not require further smoothing with 
any filter.

2.5  |  Spectral analysis

A mean spectral signature was calculated for each sample by aver-
aging the HDRF values over all 512 ×  512 pixels per wavelength. 
To calculate spectral variation between samples, we then further 
processed the samples’ mean spectral signatures into wavelength-
specific standard deviation and coefficient of variation of HDRF 
for each species. To quantify the intra- and interspecific variation 
in HDRF spectra, we used least squares estimation to fit a linear 
model (stats, R Core Team, 2019), in which HDRF was the response 
variable and tree species the (categorical) explanatory variable, and 
computed the coefficient of determination (R2).

Multivariate analysis was conducted through two well-
established linear dimensionality reduction methods, principal 
component analysis (PCA) (Hotelling, 1933; Pearson, 1901) and 
linear discriminant analysis (LDA) (sometimes referred to as ca-
nonical discriminant analysis) (Fisher, 1936). Both analysis meth-
ods were applied separately on the full dataset having the same 
number of samples and features (i.e., wavelengths). The methods 
were used to reveal possible interspecific similarities in our study 
species based on stem bark spectra and assess the intrinsic dimen-
sionality of the data. For clarity, only the dimensionality reduction 
property of the LDA was applied to the data. This means that it 
was utilized as a linear transformation technique to project a fea-
ture space into a smaller subspace, and not used as a classifier. 
Both algorithms were implemented with a widely used and pub-
lished library called scikit-learn (version 0.24.1) coded in Python 
(Pedregosa et al., 2011).

PCA seeks to transform the original input data (e.g., the hy-
perspectral data in this study) from a high-dimensional space to a 

lower-dimensional space through linear combinations of the input 
features, while maximizing the variation found in the dataset (Jolliffe, 
2002; Pearson, 1901). PCA can be described as an unsupervised 
method, meaning that the known class labels (e.g., tree species) are 
not considered, and the method relies purely on the input data itself. 
The data are transformed into a new coordinate system, where the 
new set of orthogonal and uncorrelated features are called principal 
components (hereafter PCs) that maximize the percentage of vari-
ance retained from the input data in ascending order (i.e., PC1 holds 
maximum percentage of the total variance, PC2 holds less than PC1 
but more than PC3, and so forth). It is common, but not always the 
case, that the first few PCs retain most of the variance found in the 
input data, which can be used to assess redundancy in the hyper-
spectral data and possibly improve its interpretation. The number 
of PCs selected for further analysis was chosen according to the 
number of PCs that retained 95% or more of the total variance, or 
minimum of three PCs. The input data to our PCA (as well as to the 
LDA) were all in the same reflectance units (HDRF). No additional 
scaling was used.

LDA is a dimensionality reduction method similar to PCA. The 
LDA output features, called linear discriminants (hereafter LDs), are 
linear combinations of the input variables that represent the most 
discriminative directions obtained from the new projection. Rather 
than maximizing the variation found in the input data, like in PCA, 
the LDA seeks to maximize the between-class variance among the 
classes in the dataset (Hastie et al., 2009; Zhao & Maclean, 2000). 
LDA is considered as a supervised dimensionality reduction method 
because known class labels are required and considered in the algo-
rithm. This means that the method relies on the input data and given 
sample-specific class labels. This makes LDA well suited for sepa-
rating possibly spectrally overlapping tree species using the high-
dimensional hyperspectral measurements of their bark. The output 
features (or LDs) of LDA are restricted to be number of classes minus 
one. Consequently, for our data, all nine LDs were used for further 
analysis.

From the outputs of PCA and LDA (taking curse of dimension-
ality (Bellman, 1957) into consideration), we gained input data for a 
hierarchical clustering analysis, which was used to group the spec-
tral samples based on distances computed between them. The goal 
of this analysis was to investigate how spectral similarities (i.e., dis-
tances between clusters revealed by PCA or LDA) correspond with 
the taxonomic relatedness of our study species. We performed an 
agglomerative clustering, where the grouping method was bot-
tom-up, that is, the algorithm begins at the bottom where each sam-
ple starts in its own cluster. From there, the clustering continues 
by combining two closest clusters into one. The two single clusters 
are then removed from the pool and the new combined cluster is 
added. Each iteration of the grouping maintains and updates a dis-
tance matrix between the new and remaining clusters within the 
pool. For the agglomerative clustering, we used the Ward method 
with Euclidean distance metric from the SciPy library (version 1.6.1) 
coded in Python (Müllner, 2011). A dendrogram was formed to illus-
trate the results.
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Finally, within-sample variation of reflectance was examined 
through a histogram analysis. Histograms were computed with 
200 bins for four representative wavelengths: (1) blue (493 nm), (2) 
green (560 nm), (3) red (664 nm), and (4) NIR (866 nm). The within-
sample histograms were averaged over all samples belonging to one 
species to produce mean histograms for each species and for each 
wavelength.

3  |  RESULTS

3.1  |  Intra- and interspecific variation

Interspecific similarities (i.e., nearly overlapping mean reflectance 
spectra) were found prominently in VIS, while distinct differences 
between tree species were found in NIR (Figure 3a). Visual inspection 
of the overlaps revealed that the mean reflectance spectra seemed 
to form two general groups in VIS. The first group with higher reflec-
tance in VIS contained ash, gray alder, and linden, whereas the second 
group with lower reflectance in VIS was formed by aspen, black alder, 

maple, oak, pine, and spruce (Figure 3a). Birch fell between the two 
groups in VIS (Figure 3a). Between the VIS and NIR regions, the bark 
spectra exhibited the red-edge effect (i.e., there was steeper slope in 
the otherwise monotonically increasing reflectance with wavelength) 
(Figure 3a). The largest interspecific variation was observable in the 
NIR wavelengths, where the separability between tree species was 
more pronounced (Figure 3a). Gray alder had the highest reflectance 
(up to 0.68) and aspen had the lowest reflectance (up to 0.28) within 
the NIR region (Figure 3a). According to the fitted linear model, tree 
species explained the variation of spectra most in NIR (Figure 3b). In 
summary, the measured tree species had similarly shaped mean spec-
tra that varied in the level of reflectance (VIS to NIR). This was reaf-
firmed by an additional finding that reflectance values at individual 
wavelengths were highly correlated with each other within VIS and 
NIR regions, but reflectance at NIR wavelengths were not as strongly 
correlated with reflectance at VIS wavelengths.

Intraspecific standard deviations were generally higher in NIR 
than in VIS (i.e., standard deviation increased from VIS to NIR as a 
function of wavelength) (Figure 4a). However, the coefficients of 
variation decreased from VIS to NIR (Figure 4b). More specifically, 

F I G U R E  4 Interspecific (a) standard 
deviation and (b) coefficient of variation 
of tree stem bark reflectance samples 
from visible to near-infrared wavelength 
regions (415–925 nm)

F I G U R E  3 (a) Species-specific mean 
reflectance (hemispherical-directional 
reflectance factor, HDRF) spectra for ten 
different tree species, and (b) coefficient 
of determination (R2) of linear model 
that explained variation of reflectance 
in visible to near-infrared wavelength 
regions (415–925 nm), using tree species 
as a categorical explanatory variable
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aspen, black alder, maple, oak, pine, and spruce had very similar stan-
dard deviations, which all varied between 0.01 and 0.06 in VIS to 
NIR, respectively. Birch stood out with standard deviation varying 
between 0.06 and 0.13, and coefficient of variation between 34% 
and 46% (Figure 4a,b). In addition to birch, ash, gray alder, and linden 
had slightly higher standard deviation in VIS (0.03 to 0.05) and in 
NIR, than rest of the measured tree species (Figure 4a). However, 
the coefficients of variation were relatively similar for all species ex-
cept birch, varying between 8% and 32% in VIS–NIR (Figure 4b). The 
high standard deviation for birch was expected because the birch 
bark was mostly white with sporadic black spots (Figure 1). Finally, 
we examined a normal probability plot (a quantile-quantile plot) for 
each tree species per wavelength, and birch was the only tree spe-
cies in which the reflectance values were not normally distributed.

3.2  |  Multivariate analysis

3.2.1  |  Principal component analysis

The first three PCs (PC1–3) of PCA explained 91.7%, 7.6%, and 0.3% 
of variance in the spectra, respectively. As such, PC1–3 were enough 
to capture 99.6% of the variance from the data. Plotting PC1 against 
PC2 exhibited several sparse species clusters when the tree species 
were viewed separately (e.g., aspen, black alder, maple, oak, pine, 
and spruce), but the results mainly highlighted the large intraspecific 
variation if all species and samples were viewed in the same space 
simultaneously (Figure 5a). Gray alder was slightly separable (with 
few samples of ash mixed in). Selecting a two-dimensional space 
comprising PC1 against PC3 did not reveal additional information 
compared to the prior plot, where observing spectral similarities 
was difficult due to strong mixing between species and samples 
(Figure 5b). Data exploration through PCA disclosed that spectral 
samples of different tree species were heavily mixed, that is, simi-
lar to one another. There were no clear patterns observable when 

visually inspecting the datapoints and clusters. This also indicates 
that the required information for complete tree species separability 
after PCA transformation is not entirely held within the portion of 
variance captured by the first three PCs. Nevertheless, because the 
first two PCs explained close to 100% of variation, PCA can be useful 
for dimensionality reduction of tree bark spectra (VIS to NIR), while 
keeping low approximation error of the data present. We inspected 
the first three PCs and their loadings (Figure A1), and noticed that 
PC1 represents an equally weighted sum of the wavelengths in VIS 
and an equally weighted sum of reflectance in NIR (both positive). 
The coefficient loadings in VIS were about half of the loadings in 
NIR, so PC1  seems to explain the average or general reflectance 
of the bark samples. The second PC offers discrimination between 
the VIS and NIR wavelengths, that is, positive loadings in VIS and 
negative loadings in NIR. Despite almost a negligible percentage of 
the total variance explained, the third PC is a weighted contrast of 
the red-edge region (negative loadings), to the adjacent VIS and NIR 
wavelengths (both with positive loadings).

3.3  |  Linear discriminant analysis

Corresponding with PCA in section 3.2.1, we present the visualization 
of the first three discriminants (LD1–3) from the LDA (Figure 6, Figures 
A2 and A3). The first three LDs (from total of nine) captured 79% of the 
between-class variance in the data. In detail, LDs 1–3 retained 44.1%, 
20.7%, and 14.2% of the between-class variance, in ascending order. 
LDA produced projections of the input data that highlighted the differ-
ences between tree species more clearly than PCA (Figure 5 vs. Figure 6). 
The more tightly clustered samples made the comparison of distances 
between species visually easier, as the overlaps between species were 
kept to a minimum. The input data projected onto the first and second 
discriminants (LD1 and LD2) produced a cluster of gray alder samples that 
was clearly separated from the other species by the first LD (Figure 6a). 
The two coniferous species spruce and pine were also located separately 

F I G U R E  5 Two-dimensional 
projections of bark reflectance samples 
into principal components (a) one and two 
(PC1 and PC2), and (b) one and three (PC1 
and PC3) of the PCA. Axis labels show the 
percentage of explained variance by each 
component used
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from the deciduous species, in the opposite extremes of LD1 and LD2. 
The clusters produced by spruce and pine samples were heavily mixed 
with each other (Figure 6a). The seven remaining tree species of ash, 
aspen, birch, black alder, linden, maple, and oak formed tight clusters 
within species, but they also formed a relatively dense and mixed species 
cluster (Figure 6a). When projecting the data to the first and third LD 
(Figure 6b), gray alder and maple formed their own distinct clusters that 
were separated clearly from the other species (Figure 6b). Interestingly, 
oak and linden, spruce and pine, aspen and black alder were clustered 
closely as pairs in this projection of LD1 and LD3 (Figure 6b). Ash and 
birch remained close to the described three pairs, but more separately on 
their own (Figure 6b). From the two visualizations in Figure 6, and from 
the lesser LDs viewed, but not shown here, we discovered four clusters: 
(1) gray alder, (2) maple, (3) spruce and pine, and (4) a large group consist-
ing of species that were not clearly separated.

3.4  |  Taxonomic relatedness and 
hierarchical clustering

Because LDA was able to separate species better than PCA, we 
used the outputs from LDA as inputs for agglomerative clustering 
analysis. If ten clusters were chosen (i.e., same number as the meas-
ured tree species), the dendrogram illustrates clear species-specific 
branches, with no samples mixing with another species (Figure 7). 
On the other hand, if four clusters were chosen based on what we 
deduced from LDA, then (1) gray alder and (2) maple formed their 
own individual branches, (3) coniferous spruce and pine formed a 
branch together, and finally (4) ash, aspen, birch, black alder, linden, 
and oak clustered in one large branch (the four clusters are high-
lighted with gray dashed lined rectangles in Figure 7).

To examine whether the spectral properties of our study species 
could be linked to their taxonomic hierarchy, we compared the spectral 
similarity of our study species (Figure 7) to their general phylogenetic 
lineages (Schoch et al., 2020). We used the Taxonomy Common Tree 
tool (NCBI, 2022) within the database to generate a taxonomic tree 

(taxonomic labels at various levels of the hierarchy) with the names 
of our species. We observed that the spectral similarity (based on the 
dendrogram in Figure 7) was not clearly connected to the correspond-
ing general phylogenetic lineages. Our study species belonged to one 
of the two classes listed: Pinopsida (containing pine and spruce) and 
Magnoliopsida (containing the rest of the species). Pine and spruce 
formed a distinct cluster, but one species (gray alder) formed a sep-
arate cluster, which was not grouped with other species under the 
clades that could describe the classes of Magnoliopsida and Pinopsida. 
If we exclude gray alder, the two classes could be identified based on 
stem bark spectra. Overall, taxonomic relatedness based on stem bark 
spectra was not clear at lower than class level (Table 1).

3.5  |  Reflectance distribution and 
histogram analysis

We analyzed the intraspecific distribution of reflectance values within 
hyperspectral images with average histograms for blue, green, red, 
and NIR wavelengths (Figure 8a–d). The histogram analysis supports 
the earlier results that standard deviations increase from VIS to NIR 
(Figure 2a). It also demonstrates that birch reflectance does not dis-
play normal distribution characteristics (Figure 8a–d) and that even 
though standard deviations of reflectance values within hyperspectral 
images might be similar among species, the distributions of reflectance 
can still be uniquely different (Figure 8a–d).

4  |  DISCUSSION

4.1  |  Intra- and interspecific variability of bark 
spectra

We analyzed the VIS–NIR reflectance spectra of stem bark for 
ten common boreal and temperate tree species. The spectral 
signatures were computed from hyperspectral images that were 

F I G U R E  6 Two-dimensional 
projections of bark reflectance samples 
into linear discriminants (a) one and two 
(LD1 and LD2), and (b) one and three (LD1 
and LD3). Axis labels show the percentage 
of explained between-class variance by 
each discriminant
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collected in the field utilizing a mobile imaging spectrometer. The 
results showed that the reflectance spectra of bark have generally 
similar shapes across VIS–NIR wavelengths, which differ mostly 
in the level of reflectance. This characteristic shape of bark spec-
tra can be found even from Amazonian tree species measured by 
Hadlich et al. (2018) and from the outer bark spectra of Boswellia 
papyrifera (Del.) Hochst measured in Ethiopia by Girma et al. 
(2013). Furthermore, our results indicated that the bark spectra of 
our study species are similar in VIS but more distinctly diverging 
in NIR. This suggests that NIR wavelengths are more promising for 
differentiating tree species spectrally from one another, because 
the spectra considerably overlap in VIS. Similarity of spectra in VIS 

between different species was also noted by Campbell and Borden 
(2005) for conifers and angiosperms measured in western North 
America. In our study, the interspecific similarity in VIS was pre-
sent across taxonomic families and two different forest biomes. 
In contrast, when visually comparing our results to Hadlich et al. 
(2018), the reflectance spectra of selected Amazonian tree spe-
cies were generally lower in VIS and slightly higher in NIR. Hence, 
the general increasing trend in bark spectrum as a function of 
wavelength is present in all species, but the level of reflectance 
in VIS–NIR shows slightly different trends from one forest biome 
to another. Pigmentation, chlorophyll content, surface moisture, 
carbon constituents, residual moss, and lichen (i.e., epiphytes) 

F I G U R E  7 Dendrogram visualizing the 
results of the agglomerative clustering of 
tree species based on linear discriminants 
(outputs of linear discriminant analysis) 
derived from reflectance spectra of stem 
bark. The gray dashed lined rectangles 
display four clusters of measured species 
and samples distinguished by linear 
discriminants from the measured species’ 
and samples’ reflectance (see Figure 6)
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(Asner, 1998; Goward et al., 1994; Roberts et al., 2004) have all 
been suggested to cause interspecific differences in the spectra 
of bark, but most of these spectra-biochemical relationships still 
have not been studied in depth. Finally, seasonal dynamics of bark 
spectra (due to the presence of chlorophyll in the bark, as, e.g., in 
aspen) might also affect the interspecific differences, but this has 
not been studied to our knowledge.

Spectra of four tree species could be compared with previous 
studies and were noted to have similar shape and level of reflec-
tance: silver birch (Juola et al., 2020; Lang et al., 2002), Norway 
spruce (Forsström et al., 2021; Juola et al., 2020; Lang et al., 2002; 
Williams, 1991), Scots pine (Forsström et al., 2021; Juola et al., 
2020; Lang et al., 2002), and black alder (Clasen et al., 2015; Kuusk 
et al., 2013). Notably, VIS–NIR stem bark spectra of littleleaf lin-
den, English oak, European ash, gray alder, Norway maple, and 
European aspen have not been previously published. Mean spec-
tra of our study species showed a similar transitional change in 
the red-edge region as noted by Hall, Huemmrich, Strebel, et al. 
(1992). Standard deviations and coefficients of variation of spectra 
are in line with previous studies (Asner, 1998; Campbell & Borden, 
2005; Goward et al., 1994; Hall, Huemmrich, Strebel, et al., 1992; 
Juola et al., 2020; Kuusk et al., 2013; Lang et al., 2002; Roberts 
et al., 2004), and thus confirmed the findings that stem bark spec-
tra are highly variable. Tree species with characteristic stem bark, 
such as birch, stood out clearly when inspecting variation within 

the data. Excluding birch, the intraspecific variation was similar 
between our study species and was relatively stable from VIS to 
NIR wavelengths.

Asner (1998) reported that coefficients of variation for bark 
spectra were the highest in NIR, whereas we found them to be 
higher in VIS rather than NIR. Goward et al. (1994) reported that 
bark spectra from their broadleaf species were two to three times 
more reflective than that from their conifer species, while our study 
species showed much smaller differences between the two. Roberts 
et al. (2004) described conifer bark spectra being concave and de-
ciduous broadleaf bark spectra being convex in shape, yet such 
clear distinctions between species were difficult to observe in our 
results (i.e., general shape of spectra were similar for all measured 
species). The methodological difference in our results, when com-
pared to previous studies, is that we present bark spectra that have 
been derived from hyperspectral images and not from non-imaging 
point spectrometers. Measuring small bark samples that have been 
detached from the tree, as has often been previously done, includes 
the risk of altering the natural state and spectrum of stem bark.

Finally, we utilized the data to obtain information on the distri-
butions of reflectance values within the samples for each species. 
Histogram analysis highlighted that the mean distributions were 
species-specific. Consequently, the distributions of reflectance values 
within hyperspectral images can potentially be used to retrieve infor-
mation about the differences between species that is not available in 

F I G U R E  8 Average species-specific 
reflectance histograms for four different 
wavelengths: (a) blue at 493 nm, (b) green 
at 560 nm, (c) red at 664 nm, and (d) 
near-infrared at 866 nm. Sigmas (σ) next 
to the names of tree species are the mean 
standard deviations, calculated from using 
all pixels from all samples per species
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the mean spectra of samples alone. Thus, a mobile imaging spectrom-
eter setup is a good option for acquiring spectroscopic information 
of stem bark for tree species in different biomes and remote forests.

4.2  |  Taxonomic relatedness based on 
reflectance of bark

Two different dimensionality reduction methods (PCA and LDA) were 
applied on our data to reveal possible species clustering of spectral 
samples. Application of PCA did not separate the spectral samples of 
our study species into clear clusters. This was an interesting result that 
supported the fact that stem bark reflectance spectra are very similar 
between samples of our study species in the VIS–NIR region. With 
PCA, we also found that the bark spectra in VIS–NIR could be reduced 
to 3 or 3 dimensions, from the original input of 173 wavelengths, with-
out losing much information. Hence, PCA was able to efficiently com-
press and preserve much of the information contained in the spectral 
signatures. On the other hand, LDA succeeded in maximizing the dif-
ferences between groups of species, resulting in the species clusters 
being visually more distinguishable from each other. This also means 
that known class labels (i.e., information on species) were required to 
gain best separability between the clusters of species. This supports 
the argument that the stem bark of boreal and temperate tree species 
is spectrally similar in VIS–NIR wavelengths.

In this study, we could distinguish class and higher clade lev-
els using VIS–NIR hyperspectral imaging spectroscopy of stem 
bark samples. In comparison, with Fourier transform NIR (FT-NIR) 
spectroscopy and absorbance spectra of branch bark and leaves of 
Amazonian trees, Lang et al. (2017) obtained good discrimination 
on species, genus, and family levels. On the other hand, Cavender-
Bares et al. (2016) discovered with VIS to shortwave-infrared (SWIR) 
reflectance spectra of leaves (obtained with a full range VIS–SWIR 
point spectroradiometer) that there is potential for better taxonomic 
classification when going from species level to higher hierarchical 
levels. The range of possibilities that optical spectroscopy technolo-
gies could provide for biodiversity studies and field surveys remains 
open for future research and novel implementations.

5  |  CONCLUSIONS

Our study highlighted the intra- and interspecific variation of bark 
reflectance of boreal and temperate tree species. The spectral li-
brary collected in this study contributes toward building a compre-
hensive understanding of the spectral diversity of forests needed 
not only in remote sensing applications but also in, for example, bio-
diversity or land surface modeling studies.
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APPENDIX 

F I G U R E  A 1 The loadings for the principal components (a) one and two as vectors (PC1 vs. PC3), (b) one and three as vectors (PC1 vs. 
PC3), and (c) one, two, and three (PC1–PC3, respectively) plotted against wavelengths. The red lines in (a) and (b) are the vectors and 
the black text with prefix “wl” at the end of each vector gives the wavelength it is connected to. Due to the correlation between the 
wavelengths, only every third label is shown in (a) and (b) to minimize overlapping of text
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F I G U R E  A 2 The loadings for the linear discriminants (a) one and two as vectors (LD1 vs. LD2), and (b) one and three as vectors (LD1 vs. 
LD3). The red lines are the vectors and the black text with prefix “wl” at the end of each vector gives the wavelength it is connected to. See 
Figure A3 for a different visualization of the loadings for each linear discriminant (LD1–3) separately

F I G U R E  A 3 The loadings of the linear discriminants (a) one (LD1), (b) two (LD2), and (c) three (LD3) plotted against wavelengths


