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Efficient Privacy Protection Protocols for 5G
Enabled Positioning in Industrial IoT

Shushu Liu, Member, IEEE, Zheng Yan, Senior Member, IEEE

Abstract—High-accuracy positioning has drawn huge attention
with the potential in enhancing location-aware communications,
intelligent transportation, and so on. The emergency of the
fifth-generation (5G) technologies like device to device (D2D)
communications, vehicle to vehicle (V2V) communications and
crowdsourcing networks is expected to help achieve highly
accurate positioning. By employing nearby mobile terminals to
estimate position cooperatively, these technologies can improve
positioning accuracy effectively, especially in indoor and urban
areas. Despite the benefit, the potential information disclosure
in these positioning systems threatens the engagement of public
participants (also known as reference points). The location of
the reference points and their distances to a target point is quite
sensitive since they can be easily used to locate the reference
points once exposed. Though existing solutions based on Paillier
homomorphic encryption have been proposed to preserve the
privacy of distance information. The sensitivity of reference
points’ locations is ignored. Additionally, the adoption of Paillier
introduces a high computation cost, which is impractical in
reality. To address the above problems, this paper proposes two
efficient protocols, named Pub-pos and Pri-pos. By leveraging
matrix concatenation and multiplication, these two protocols
can disguise the original sensitive data, including both distance
and location information, into a random matrix while keeping
a positioning result intact. We analyze security strength, com-
plexity and optimal variable selection of the proposed protocols.
Numerous experiments verify that our proposed protocols have
significant efficiency improvement in both system and individual
levels compared with a Paillier based solution.

Index Terms—Location Privacy Protection, D2D Positioning,
D2D Communications, 5G, V2V, Cloud Computing.

I. INTRODUCTION

THE industrial internet of things (IIoT) improves the
industry productivity and efficiency significantly with

the connectivity and smart automation enabled by Internet
of Things (IoT) devices and cloud computing technology.
As one of the central technical enablers in the emerging
IIoT, high-accuracy positioning has drawn huge attention with
the potential in enhancing location-aware communications,
intelligent transportation, and so on [1]. Positioning is also a
crucial function in location-based services (LBS) like Google
Maps, Uber, Wolt, etc.

Owing to the crucial importance of positioning and urgent
expectation on accurate solutions, the fifth-generation (5G)
network aims to provide the ubiquitous positioning of below
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Fig. 1: Example of D2D enabled positioning

one-meter accuracy, especially in indoor and urban areas [2].
The emergence of new technology like device to device (D2D)
communications [3], vehicle to everything (V2X) communica-
tions [4], crowdsourcing [5], and even unmanned aerial vehicle
(UAV) [6] creates the possibility for this goal. With these
technologies, two mobile terminals can communicate directly
without going through the core network. For positioning,
these technologies enable mobile terminals to cooperate for
achieving accurate coordinates by allowing directly exchang-
ing necessary data through the enabled communication links.
These enabled communication links provide more Line-of-
sight (LOS) communication and can reduce network delay in
data exchange, thus achieving better positioning results.

Figure 1 shows an example of D2D enabled positioning.
It involves three types of participants: a target point, sev-
eral reference points and a computation server. The target
point is the device requests for positioning services, and
the reference points are nearby devices ready to provide
positioning assistance. The computation server is a center
with computation power, which can be an edge point or
a cloud platform. The target point communicates with the
reference points nearby through enabled D2D links while the
computation server communicates with both the target point
and the reference points through cellular links. Each reference
point is in possession of its coordinate (x, y, z) and can easily
estimate its distance (di) to the target point by measuring
the message travelling time from reference point to the target
point. The computation server collects this information from at
least four reference points and finds their intersection point by
solving the quadratic equations based on Euclidean distance.
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The intersection point is the estimated location of the target.
The same model is adopted in vehicular ad hoc network
(VANET) positioning systems [7], sensor network positioning
systems [8] and so on. In VANET, the target point is normally
a car and the reference points can be roadside units or other
surrounding cars while the base station nearby can serve
as the computation server. Extensive studies [9]–[11] have
been devoted to improving the accuracy and efficiency of this
positioning process.

Despite the benefits of these positioning systems, the risk
of information disclosure threatens the engagement of their
participants. The threat resides in three aspects: (1) The
estimated coordinate of the target point. This results from the
sensitivity of location as the possibility of inferring sensitive
information related to the location owner. For example, a user’s
home address could be inferred if his location is in a residential
area or his health status could be inferred if his location is a
hospital for some specific disease treatment. (2) The coordinate
of the reference point. It should be kept secret to prevent the
potential information leakage of reference points just like the
above discussion. However, the exception also exists when
the reference points are public infrastructures with no privacy
required such as base stations and roadside units in VANET.
(3) The distance between the target point and reference points.
This is treated as sensitive for two reasons. First, it risks the
privacy of the target point as adversarial attackers can use it to
locate the target point when combined with public reference
points. Second, it risks the privacy of the reference point as a
malicious target point could use it reversely to locate a private
reference point based on the historical interaction data. Thus,
distance information is sensitive and should be kept secret.

The challenge to provide a privacy-preserving positioning
solution is to solve quadratic equations when multiple par-
ticipants are involved. Solutions based on cryptographic tools
have been proposed. Based on a one-pass authentication key
agreement protocol, Pei et al. [7] implemented two secure
and privacy-preserving 3D positioning schemes. Hussain and
Koushanfar [12] proposed vehicle positioning solutions with
Garbled Circuit and Beaver Micali Rogaway. However, these
solutions are impractical owing to their high computational
overheads. Shu et al. [13] solved the problem with a new
perspective. They first formulated the triangulation into a least-
square-error (LSE) estimation problem and then implemented
its privacy-preserving computation with matrix multiplication
and homomorphic encryption. However, this model is con-
structed in a pervasive environment where the target point is
used as the computation center. While this paper considers an
untrusted computation center, which is a general case for cloud
or edge computing settings. Another solution is presented by
Jiang et al. in [14]. Based on the homomorphic property of
Paillier encryption, they implemented location calculation over
protected distance. However, this solution is infeasible to the
crowdsourcing environment when the reference points could
be a private worker who requests to protect its location privacy.
Besides, the overhead introduced by Paillier is prohibitive in
practice.

To mitigate the privacy risk in these emerging positioning
systems, two protocols, named Pub-pos and Pri-pos, with

different privacy constraints are proposed in this paper. Pub-
pos is a privacy-preserving positioning protocol that assumes
the public availability of reference points’ locations. It aims to
prevent the privacy leakage of measured distance and compute
the location of the target point. Pri-pos is designed for the
scenario where the locations of reference points are also sensi-
tive, needed to be protected. Our general idea is to implement
privacy preservation by leveraging matrix concatenation and
multiplication. Specifically, an encryption key that includes
several random matrices is firstly generated and distributed
by the target point. Based on the key, the reference point
disguises its original data as random by matrix concatena-
tion and multiplication operations before sending it to the
computation server. With these random data, the computation
server computes and sends an encrypted location back to the
target point, where the location can be easily revealed with the
encryption key. The designed protocols are useful in many use
cases. For example, Pub-pos is helpful in privacy preservation
for outdoor positioning based on base stations [15] or VANET
positioning based on roadside units [16], where the locations
of reference infrastructures are normally known. Pri-pos can
be applied to scenarios where not only the distance but also
the coordinates of references are quite sensitive and request
protection, e.g., indoor positioning based on crowdsourcing
workers or VANET positioning based on vehicles.

In general, the contributions of this paper can be summa-
rized as follows.

• For preserving privacy in D2D based positioning, we
design two protocols, Pub-pos and Pri-pos, based on
matrix concatenation and multiplication. Compared with
traditional cryptographic solutions, the proposed proto-
cols present superiority with regard to high efficiency and
low service latency.

• The correctness and security of the proposed protocols
are theoretically proved.

• Extensive discussion is conducted on Pub-pos and Pri-pos
in terms of security strength, complexity and the optimal
selection of variables.

• The performance of proposed protocols are evaluated
both theoretically and experimentally. Experimental re-
sults show the high efficiency of our proposed protocols
compared with existing solutions.

The rest of the paper is structured as follows. We review
the related work in Section II. An overview of three di-
mensional (3D) positioning and its threat model is presented
in Section III. Depending on privacy protection demands, a
privacy preservation protocol based on public reference points
is presented in Section IV, followed by a privacy-preserving
protocol based on private reference points in Section V.
Analysis on security strength, complexity and selection of
variables are presented in Section VI. Section VII presents
our experimental results and comparison with related work.
Finally, we summarize the paper in the last section.

II. RELATED WORK

Privacy-preserving positioning aims to protect the private
information of the participants involved in the positioning
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process. A variety of privacy-preserving schemes are proposed
for both indoor [17] and outdoor [18], [19]. For indoor
positioning based on RSS, Konstantinidis et al. [20] proposed a
scheme based on bloom filter and k-anonymity. A localization
query is first mapped into a Bloom filter vector and further
obfuscated with another k − 1 vectors before sending it to a
computation server. Although privacy can be protected under
k-anonymity, it requires a trusted third party for obfuscation.
Similar work is also presented by Sazdar et al. in [21] based
on a bloom filter.

Also for indoor positioning, Li et al. [22] implemented
a privacy-preserving solution for fingerprint-based localiza-
tion. By leveraging the homomorphic property of the Paillier
cryptosystem, computation servers can compute the Euclidean
distance between a query and database in the ciphertext and
respond with the nearest location. In this way, the privacy
of the query can be protected. However, this solution is
discovered with disclosure of the server’s database when the
client is not totally ”honest” and is allowed to send fabricated
queries to the server as spotted by Yang and Järvinen in
[23]. They further enhanced the scheme with two solutions
based on fully homomorphic encryption and garbled circuits
separately. Even though, the heavy computation cost generated
from cryptographic protocols is still a burden to prevent the
scheme in practice.

Schauer, Dorfmeister and Wirth [24] proposed a method to
prevent privacy leakage in indoor positioning. To prevent user
privacy leakage in probe requests when accessing localization-
based services, they adapted the communication protocol IEEE
802.11 used between an access point and a user device from
active scan to passive scan, so that the user device only listens
to periodical signals sent by access points. By abandoning
active communication from mobile users to access points, this
method suffers from positioning accuracy decrease.

Apart from indoor positioning, related work also appeared in
VANET and image-based positioning. Based on a one-pass au-
thentication key agreement protocol, Pei et al. [7] implemented
two secure and privacy-preserving 3D positioning schemes.
Hussain and Koushanfar [12] proposed vehicle positioning
methods with garbled circuits and Beaver Micali Rogaway.
A privacy preservation scheme for image-based localization
was presented by Speciale et al. [25] to avoid the confidential
information deduction from the collected 3D scene while
allowing reliable camera pose estimation. This scheme lifts
a map representation from a traditional 3D point cloud to a
3D line cloud.

Shu et al. [18] solved the problem with a new perspective.
They first formulated the localization as least-square-error
(LSE) estimation and then implemented its secure computa-
tion with matrix multiplication and homomorphic encryption.
However, this model is constructed based on a pervasive envi-
ronment where the target point is used as the computation cen-
ter. While this paper considers an untrusted computation center
which is a more general case for cloud or edge computing set-
tings. Another solution is presented by Jiang et al. [14] based
on Paillier encryption. It implemented location calculation
over encrypted distance information with distance protection.
However, their solution is only limited to scenarios when the
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Fig. 2: Overview of trilateration based 3D positioning

location information of reference points are available. It is not
feasible to D2D scenarios when the reference points could be a
crowdsourcing worker who requires location privacy. Besides,
the overhead introduced by Paillier is prohibitive in practice.

III. POSITIONING AND THREAT MODEL

A. Overview of Trilateration based 3D Positioning

As the most representative positioning method for both
indoor and outdoor, trilateration solves the problem by finding
the intersection of spheres which are defined as a system of
quadratic equations. Fig. 2 is an example of 3D positioning
based on trilateration. It normally includes a target point and at
least four reference points with known locations. We suppose
that these reference points are not in the same plane and the
target point is located in the range of these reference points.
At least four spheres should be created to estimate the location
of the target point. The sphere can be expressed as a quadratic
equation according to Euclidean geometry, based on the co-
ordinates of target point (x, y, z), reference points (xi, yi, zi)
and the distance di from reference points to the target point.
The target point communicates with reference points nearby
through enabled D2D links. During the communication, the
reference point can easily estimate its distance (di) to the
target point through message travelling time. All four spheres
are created similarly. The location of the target point can be
obtained by finding the intersection point of four spheres,
which in theory is equivalent to solving the independent linear
equations as shown in Equation 1.

(x− x1)2 + (y − y1)2 + (z − z1)2 = d1
2

(x− x2)2 + (y − y2)2 + (z − z2)2 = d2
2

(x− x3)2 + (y − y3)2 + (z − z3)2 = d3
2

(x− x4)2 + (y − y4)2 + (z − z4)2 = d4
2

(1)

Through multinomial expansion, Equations 1 can be ex-
pressed as matrix computation as

AX = B, (2)
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where,

A = 2

(x1 − x2) (y1 − y2) (z1 − z2)
(x1 − x3) (y1 − y3) (z1 − z3)
(x1 − x4) (y1 − y4) (z1 − z4)

 , X =

xy
z



B =

d22 − x22 − y22 − z22 − d12 + x1
2 + y1

2 + z1
2

d3
2 − x32 − y32 − z32 − d12 + x1

2 + y1
2 + z1

2

d4
2 − x42 − y42 − z42 − d12 + x1

2 + y1
2 + z1

2


Thus, the intersection point in equation 1 can be revealed

by one matrix inverse and one matrix multiplication as

X = A−1B. (3)

B. Threat Model

As presented in Fig. 1, the whole positioning system is
composed of the target point, the reference points and the com-
putation server. The reference points are always listening to
the target point and measuring their distances once requested.
Afterwards, all the reference points send their coordinates
(xi, yi, zi) and the measured distance di to the computation
server. Based on these collected data from reference points,
the computation server can determine the coordinates of the
target point by applying Equation 3 directly.

We assume that all participants of the positioning system
are honest but curious. An honest but curious participant may
execute the proposed protocol as designed but is also eager in
collecting related information of others that could be leaked
during the positioning process. An observation of the definition
of A and B in Equation 2 reveals that normally calculating
X requires all reference points to disclose their coordinates
(xi, yi, zi) and distance di to the computation server. Since the
sensitivity of this information, we need to provide a solution
to prevent its leakage while allowing the positioning process
to run smoothly.

Besides, we also suppose that the communications between
participants are reliable, based on secure authentication or
encryption techniques, so that privacy leakage does not come
from the communications channel. In addition, we assume
three types of participants are all independent parties and
there is no collusion between any two parties. The target
point does not collaborate with either the reference points or
the computation server since this is against its privacy. Since
the reference points are normally independent crowdsourcing
workers, their collusion with the computation server may
reveal their private information and also negatively impact
their reputations. Thus, collusion among the three types of
system participants is not considered in our research. Besides,
we do not consider any active attack of participants, such as
false location information injection of the reference points,
manipulation of the computation, or modification of results,
to mislead or cheat the target. All the above attacks are valid
to the positioning system and could be detected through data
analysis and machine learning-based methods [26]. However,
it is out of the scope of this paper. Here we mainly focus on
preventing privacy leakage in a normal positioning computa-
tion.

IV. PUB-POS: PRIVACY PRESERVING POSITIONING BASED
ON PUBLIC REFERENCE POINTS

Algorithm 1: Privacy-preserving Positioning Based On
Public Reference Points
Result: U with coordinates X
Private Inputs: Ri with distance di
Public Inputs: Ri with coordinate (xi, yi, zi) ;
Step1 (Target Point U ):
1.1: generate four 3× l matrices RB1, RB2, RB3, RB4

with k-bits random value and
RB1 = RB2 +RB3 +RB4;

1.2: generate a (l + 1)× 1 matrix KB with k-bits
random value ;

1.3: distribute (RB1,K
B), (RB2,K

B),
(RB3,K

B), (RB4,K
B) to reference points

R1, R2, R3, R4 randomly;
Step2 (Reference Points R1, R2, R3, R4):
2.1: each accept key pair (RBi,K

B) respectively;
2.2: each compose a matrix with its distance d as

B1 =

d21d21
d21

 , B2 =

d220
0

 , B3 =

 0
d23
0

 , B4 =

 0
0
d24


2.3: each merge B and RB by row concatenation, as
D =

[
B RB

]
;

2.4: each encrypt D with KB as E = DKB ;
2.5: each sends it E denoted as E1, E2, E3, E4 to the

computation server S;
Step3 (Computation Server S):
3.1: accept E1, E2, E3, E4 ;
3.2: compose A and B5 based on public coordinates as

A = 2

(x1 − x2) (y1 − y2) (z1 − z2)
(x1 − x3) (y1 − y3) (z1 − z3)
(x1 − x4) (y1 − y4) (z1 − z4)


B5 =

−x22 − y22 − z22 + x1
2 + y1

2 + z1
2

−x32 − y32 − z32 + x1
2 + y1

2 + z1
2

−x42 − y42 − z42 + x1
2 + y1

2 + z1
2


3.3: compute
C = A−1(−E1 + E2 + E3 + E4), F = A−1B5;

3.4: send C and F to U ;
Step4 (Target Point U ):
4.1: accept C and F ;
4.2: reveal the location as X = Cm−1 + F where
m = KB

1 ;

Pub-pos assumes that the coordinates of each reference
point are public. They obtain their coordinates from GPS and
publicise them for assisting positioning services. However,
the distance information held by these reference points is
sensitive and required to be kept secret from the computation
server. The computation server is responsible for collecting the
positioning-related data from each reference point and sending
its computation result to the target point. Notably, such a
localization model is popularly used in outdoor positioning
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based on base stations and VANET positioning based on
roadside units.

The protocol to achieve the above requirements is presented
in Algorithm 1. Target point U starts the protocol by generat-
ing four 3× l matrices RB1, RB2, RB3, RB4 and a l + 1× 1
matrix KB . It is required that 1 ≤ l so that random matrix
RB is not empty. Also, 13l+1 ≤ 2k so that there are enough
random values for selection. Further discussion of the selection
of parameters can be found in Section VI. It is also required
that RB1 = RB2 +RB3 +RB4 and all random values in the
matrix are no longer than k-bits. Herein, the selection of ran-
dom values distribution is flexible. We generate random values
following a uniform distribution, but other distributions like
Gaussian or Laplace can also be applied since the privacy of
our protocol can be preserved with no dependence on the dis-
tribution of the random values. U then distributes (RB1,K

B),
(RB2,K

B) , (RB3,K
B) and (RB4,K

B) randomly to four
reference points (R1, R2, R3, R4) through secure channels.
The reference point Ri accepts RBi and KB . At the same
time, it composes its distance information di into a 3 × 1
matrix Bi, as shown in step 2.2 of Algorithm 1. To randomize
the distance matrix Bi, Ri first merges it with RBi by row
concatenation and further encrypts the merged matrix with
random matrix KB . The encrypted matrix denoted as Ei can
then be sent to the computation server S. At S, A−1 and
B5 are first initialized according to the public knowledge of
{(x1, y1, z1), (x2, y2, z2), (x3, y3, z3), (x4, y4, z4)}, as shown
in step 3.2 of Algorithm 1. Once accepting the encrypted
matrices from all reference points, S integrates the obtained
matrix B1, B2, B3, B4 with A−1 as C = A−1(−B1 + B2 +
B3 +B4). Meanwhile, it computes F = A−1B5. Both C and
F are sent back to U once completed. Based on C and F ,
U reveals its location easily with X = Cm−1 + F where
m = KB

1 , as shown in step 3.2 of Algorithm 1.

A. Correctness Analysis

The correctness analysis can be derived as follow equation
by substituting the formulas.

X = Cm−1 + F

= A−1(−E1 + E2 + E3 + E4)m
−1 +A−1B5

= A−1(−D1 +D2 +D3 +D4)K
Bm−1 +A−1B5

(4)

Firstly, we prove that

(−D1 +D2 +D3 +D4)K
Bm−1 = −B1 +B2 +B3 +B4.

Since Di =
[
Bi RBi

]
which isd2i /0 ri11 ri12 · · · ri1l

d2i /0 ri21 ri22 · · · ri2l
d2i /0 ri31 ri32 · · · ri3l


and RB1 = RB2 + RB3 + RB4. It is easy to derive that
−D1 +D2 +D3 +D4 isd22 − d12 0 0 · · · 0

d3
2 − d12 0 0 · · · 0

d4
2 − d12 0 0 · · · 0



Let KB =
[
k1 k2 · · · kl kl+1

]T
, we can have

(−D1 +D2 +D3 +D4)K
B =

(d22 − d12)k1(d3
2 − d12)k1

(d4
2 − d12)k1


Also since m = KB

1 = k1, and (−D1 + D2 + D3 +
D4)K

Bm−1 is d22 − d12d3
2 − d12

d4
2 − d12


Thus, (−D1+D2+D3+D4)K

Bm−1 = −B1+B2+B3+
B4 is proved. Based on the proof, the following equation can
be derived from Equation 4

X = A−1(−B1 +B2 +B3 +B4) +A−1B5

= A−1(−B1 +B2 +B3 +B4 +B5)

According to the definition of B1, B2, B3, B4, B5, we have
B = −B1 +B2 +B3 +B4 +B5 asd22 − x22 − y22 − z22 − d12 + x1

2 + y1
2 + z1

2

d3
2 − x32 − y32 − z32 − d12 + x1

2 + y1
2 + z1

2

d4
2 − x42 − y42 − z42 − d12 + x1

2 + y1
2 + z1

2


Thus,

X = A−1B

Thus, the correctness of the protocol can be proved.

B. Privacy Analysis

This part proves that the protocol presented in Algorithm 1
can preserve the privacy of (1) distance di of each reference
point; (2) estimated coordinate X of the target point. The
theorem and proof are presented below.

Theorem 1. For all reference points, the distance di to the
target point is protected from computation server S.

For the reference point Ri, it accepts random matrices KB

and RB from target point U and uses them to encrypt its
distance information di, as shown in steps 2.3 and 2.4 of
Algorithm 1. The computed matrix Ei is then sent to the
computation server S. We need to prove that S is unable
to infer any information about di from either Ei or its
combination.

To have a clear picture, we present Di and KB as

Di =

di1 ri11 ri12 · · · ri1l
di2 ri21 ri22 · · · ri2l
di3 ri31 ri32 · · · ri3l


KB =

[
k1 k2 · · · kl kl+1

]T
where di is the distance information, r and k are k-bits random
value. Based on Di and KB , we express Ei as

Ei =

d2i k1/0 + ri11k2 + ri12k3 + · · ·+ ri1lkl+1

d2i k1/0 + ri21k2 + ri22k3 + · · ·+ ri2lkl+1

d2i k1/0 + ri31k2 + ri32k3 + · · ·+ ri3lkl+1


Observing Ei, it contains 4l + 2 variables. It is impossible

to reverse either d, r or k through matrix decomposition since
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the insufficient equations compared with variables. Thus, it is
impossible for S to infer information about Ri from single Ei.
Another information come from the fact that RB1 = RB2 +
RB3 +RB4. It can be used to remove the random r with

−E1 + E2 + E3 + E4 =

(d22 − d21)k1(d23 − d21)k1
(d24 − d21)k1


Randomized by the random k1, both d and the difference

between d can be disguised. Thus, we can conclude that
computation server S cannot infer any information about
reference points.

Theorem 2. For target point U , the estimated coordinate X
is protected from computation server S.

For target point U , the information leakage also resides
in computation server S. The risk is that S can infer X
by reversing m, which is KB

1 from the observations. As we
have analyzed in Theorem 1, the data hosted by S during the
computation include E1, E2, E3 and E4. Based on the first
column of E1, E2, E3 and E4, there are four equations with
five variables. It is not enough to derive m from this quadratic
equation. Thus, S is unable to reverse the coordinate X .

V. PRI-POS: PRIVACY PRESERVING POSITIONING BASED
ON PRIVATE REFERENCE POINTS

This section solves the positioning with private reference
points. These reference points are location-sensitive entities
who are unwilling to share their locations even to the com-
putation server. The workflow is similar as presented in the
previous section, but the detail is revised accordingly. Notably,
such a privacy-preserving model is useful in positioning with
location-sensitive reference points, like indoor positioning
based on crowdsourcing worker, V2V assisted positioning for
autonomous driving and so on. Compared with Pub-pos, the
difference in this protocol is that the locations of reference
points are private, which makes it challenging to calculate
matrix A−1 and B5.

The proposed protocol is presented in Algorithm 2. Apart
from the random matrix KB , target point U also generates
random matrices RA,KA, which will be used for the en-
cryption of matrix A. To align with A, the dimension of
RA is 3 × s and KA is (s + 3) × 3. For the parameters,
it shares the same requirement for l as defined in Alg. 1.
Besides, it is required that 14s + 6 ≤ 2k and 1 ≤ s as the
space requirement for random value and the random matrix.
Further discussion of the selection of parameters can be found
in Section VI. For the reference points, the matrix A and B
are composed based on their inputs locally, as shown in step
2.2 of Algorithm 2. The same operations are conducted to
encrypt A and B before sending them to the computation
server S. They merge A and B with RA and RB by row
concatenation first and then multiply with KA and KB , as
shown from step 2.3 to step 2.6 in Algorithm 2. At the side
of the computation server, it combines all received matrix
into C through matrix addition, matrix inversion and matrix
multiplication operations, as shown in step 3.2 of Algorithm

2. In the end, U reveals X with C and key KA and KB , as
shown in step 4.2 of Algorithm 2.

A. Correctness Analysis

The correctness analysis can be derived through equation
by substituting the formulas.

X = HCm−1

= H(F1 − F2 − F3 − F4)
−1(−G1 +G2 +G3 +G4)m

−1

= H(D1K
A −D2K

A −D3K
A −D4K

A)−1

(−E1K
B + E2K

B + E3K
B + E4K

B)m−1

= H((D1 −D2 −D3 −D4)K
A)−1

((−E1 + E2 + E3 + E4)K
B)m−1

(5)

Firstly, we prove the correctness of

(A1 −A2 −A3 −A4)H = (D1 −D2 −D3 −D4)K
A.

Since Di =
[
Ai RAi

]
and RA1 = RA2 + RA3 + RA4,

it is easy to get D1 −D2 −D3 −D4 as

2

x1 − x2 y1 − y2 z1 − z2 0 · · · 0
x1 − x3 y1 − y3 z1 − z3 0 · · · 0
x1 − x4 y1 − y4 z1 − z4 0 · · · 0


Let

KA =

[
k11 k12 · · · k1s · · · k1(s+3)

k21 k22 · · · k2s · · · k2(s+3)

]T
Thus, (D1 −D2 −D3 −D4)K

A is

2

a1k11 + b1k12 + c1k13 a1k21 + b1k22 + c1k23
a2k11 + b2k12 + c2k13 a2k21 + b2k22 + c2k23
a3k11 + b3k12 + c3k13 a3k21 + b3k22 + c3k23


where ai = (x1−xi+1), bi = (y1−yi+1) and ci = (z1−zi+1).

And since (A1 −A2 −A3 −A4)H is

2

a1k11 + b1k12 + c1k13 a1k21 + b1k22 + c1k23
a2k11 + b2k12 + c2k13 a2k21 + b2k22 + c2k23
a3k11 + b3k12 + c3k13 a3k21 + b3k22 + c3k23


when

H =

k11 k21
k12 k22
k13 k23

 .
Thus, the correctness of (A1 −A2 −A3 −A4)H = (D1 −

D2 −D3 −D4)K
A can be proved.

Secondly, we prove the correctness of

−B1 +B2 +B3 +B4 = (−E1 + E2 + E3 + E4)K
Bm−1.

Since Ei =
[
Bi RBi

]
and RB1 = RB2 + RB3 + RB4,

it is easy to get −E1 + E2 + E3 + E4 asd22 − x22 − y22 − z22 − (d21 − x21 − y21 − z21) 0 · · ·
d23 − x23 − y23 − z23 − (d21 − x21 − y21 − z21) 0 · · ·
d24 − x24 − y24 − z24 − (d21 − x21 − y21 − z21) 0 · · ·


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Algorithm 2: Privacy-preserving Positioning Based On
Private Reference Points

Result: U with coordinates X
Private Inputs: Ri with coordinate (xi, yi, zi) and
distance di ;

Step1 (Target Point U ):
1.1: generate four 3× l matrices RB1, RB2, RB3, RB4

with k-bits random value and
RB1 = RB2 +RB3 +RB4;

1.2: generate a (l + 1)× 1 matrix KB with k-bits
random value ;

1.3: generate four 3× s matrices RA1, RA2, RA3, RA4

with k-bits random value and
RA1 = RA2 +RA3 +RA4;

1.4: generate a (s+ 3)× 2 matrix KA with k-bits
random value ;

1.4: distribute (RA1, RB1,K
A,KB),

(RA2, RB2,K
A,KB), (RA3, RB3,K

A,KB)
randomly to P1, P2, P3 ;

Step2 (Reference Points R1, R2, R3, R4):
2.1: each accepts (RA,RB,KA,KB) respectively;
2.2: each composes matrices A and B with

A1 = 2

x1 y1 z1
x1 y1 z1
x1 y1 z1

 , B1 =

d21 − x21 − y21 − z21d21 − x21 − y21 − z21
d21 − x21 − y21 − z21


A2 = 2

x2 y2 z2
0 0 0
0 0 0

 , B2 =

d22 − x22 − y22 − z220
0


A3 = 2

 0 0 0
x3 y3 z3
0 0 0

 , B3 =

 0
d23 − x23 − y23 − z23

0


A4 = 2

 0 0 0
0 0 0
x4 y4 z4

 , B4 =

 0
0

d24 − x24 − y24 − z24


where di is the distance, (xi, yi, zi) is the coordinates;

2.3: each merges A and RA into a new matrix D as
Di =

[
Ai RAi

]
;

2.4: each merges B and RB into a new matrix E as
Ei =

[
Bi RBi

]
;

2.5: each encrypts D with KA as F = DKA ;
2.6: each encrypts E with KB as G = EKB ;
2.7: each sends F and G to computation server S;
Step3 (Computation Server S):
3.1: accept F1, F2, F3, F4 and G1, G2, G3, G4 ;
3.2: compute
C = (F1 − F2 − F3 − F4)

−1(−G1 +G2 +G3 +G4);
3.4: send C to U;
Step4 (Target Point U ):
4.1: accept C ;
4.2: reveal the coordinates by X = HCm−1 where

H =

KA
11 KA

12

KA
21 KA

22

KA
31 KA

32

 and m = KB
1 ;

Let KB =
[
k1 k2 · · · kl kl+1

]T
, linearlize the fol-

lowing matrix, we have (−E1 + E2 + E3 + E4)K
B as(d22 − x22 − y22 − z22 − (d21 − x21 − y21 − z21))k1

(d23 − x23 − y23 − z23 − (d21 − x21 − y21 − z21))k1
(d24 − x24 − y24 − z24 − (d21 − x21 − y21 − z21))k1


When m = k1, the correctness of −B1 +B2 +B3 +B4 =

(−E1 + E2 + E3 + E4)K
Bm−1 is proved.

By substituting the above equations into formula 5, we can
get

X = H((A1 −A2 −A3 −A4)H)−1(−B1 +B2 +B3 +B4)

= HH−1(A1 −A2 −A3 −A4)
−1(−B1 +B2 +B3 +B4)

= (A1 −A2 −A3 −A4)
−1(−B1 +B2 +B3 +B4)

= A−1B

Thus, the correctness of the protocol can be proved.

B. Privacy Analysis

The privacy analysis of Algorithm 2 includes protecting the
privacy of three aspects: (1) each reference point’s distance
to the target point; (2) coordinate of each reference point; (3)
estimated coordinate of the target point. The theorems and
proofs are presented below.

Theorem 3. For each reference points R, its distance to the
target point di is protected from the computation server S.

According to step 2 of Algorithm 2, the distance information
di of each reference point is first composed into matrix Bi

in the format of d2i − x2i − y2i − z2i . It is then merged with
random matrix RBi and encrypted by KB before sending to
the computation server. Thus, the knowledge obtained by the
computation server is Gi =

[
Bi RBi

]
KB . In detail, we can

linearlize Gi asBi
1k1 + ri11k2 + ri12k3 + · · ·+ ri1lkl+1

Bi
2k1 + ri21k2 + ri22k3 + · · ·+ ri2lkl+1

Bi
3k1 + ri31k2 + ri32k3 + · · ·+ ri3lkl+1


Similarly, it is impossible to reverse Bi, RBi or KB through
any Gi since the insufficient knowledge about variables. Also,
with the information of RB1 = RB2 + RB3 + RB4, it can
remove the random r and reveals −G1 +G2 +G3 +G4 as(d22 − x22 − y22 − z22 − (d21 − x21 − y21 − z21))k1

(d23 − x23 − y23 − z23 − (d21 − x21 − y21 − z21))k1
(d24 − x24 − y24 − z24 − (d21 − x21 − y21 − z21))k1


However, randomized by k1, both di and (xi, yi, zi) of

reference points can be disguised. Thus, we can conclude that
S cannot infer any information of di.

Theorem 4. For all reference points R, its coordinate
(xi, yi, zi) is protected from computation server S.

The coordinate of reference point is involved in both the
composition of matrix A and B. According to analysis of
theorem 3, the privacy of B is preserved, thus the coordinate
in B is protected. We only need to analyze the information
leakage in matrix A. As we can see in steps 2.2, 2.3 and 2.5
of Algorithm 2, Ai is merged with RAi and encrypted by
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TABLE I: COMPLEXITY ANALYSIS

Computation Cost Communication Cost
U R S U → R R → S S → U

Pub-pos 2 3(l + 1) 18 (4l + 1)× k 3× 3k 6× 3k
Pri-pos 9 (s+ 3)× 6 + (l + 1)× 3 12 (4l + 5s+ 7)× k 9× 3k 2× 6k
Note: s and l are the sizes of random matrices RA and RB, respectively; k is the bit-length of random value

TABLE II: SECURITY STRENGTH AND RECOMMENDED KEY SIZES

Security Strength Paillier Pub-pos Pri-pos
Low (112-bits) 1024 l = 36, k = 5 l = 36, s = 24, k = 5

Medium (128-bits) 2048 l = 48, k = 9 l = 48, s = 37, k = 9
High (192-bits) 3072 l = 58, k = 12 l = 58, s = 48, k = 12

Note: the variables are decided when the cost function is defined over the whole system and the percentage of
both computation and communication cost are 50% and 50%, respectively

random matrix KA as Fi =
[
Ai RAi

]
KA before sending

to computation server S. Similarly, it is impossible to reverse
Ai, RAi or KA through any Fi since insufficient number of
equations compared with the number of variables. Also, with
the information of RA1 = RA2 + RA3 + RA4, it reveals
F1 − F2 − F3 − F4 asa1k11 + b1k12 + c1k13 a1k21 + b1k22 + c1k23

a2k11 + b2k12 + c2k13 a2k21 + b2k22 + c2k23
a3k11 + b3k12 + c3k13 a3k21 + b3k22 + c3k23


where ai = (x1 − xi+1), bi = (y1 − yi+1), ci = (z1 − zi+1).
However, owing to the randomization of KA, the coordinates
of reference points are kept secret from S.

Theorem 5. For target point U , its coordinate X is protected
from computation server S.

According to the computation of target point U , H and m
are required to reveal X , where H is the first two columns of
KA and m is the first value of KB . Based on the theorem 3
and 4, KA and KB are kept secret from computation server
S. Thus, X can be decrypted by target point U only.

VI. DISCUSSION OF SECURITY STRENGTH, COMPLEXITY
AND VARIABLE SELECTIONS

A. Security Strength

Security strength is associated with the number of opera-
tions required to break an algorithm or a system [27]. NIST1

suggests to specify the security strength in bits and divide it
into five levels as {80, 112, 128, 192, 256}. The bits represent
the operations needed. For example, 280 operations are needed
to break an algorithm with 80-bits security strength, which
translates to a few days on an average computer. Normally, the
longer bits preserves a more secure algorithm. According to
the computation power nowadays, NIST recommends 112 bits
as the minimum. Throughout our experiments, we consider
the security strength with three levels, denoted as ”short (112-
bits)”, ”medium (128-bits)” and ”long (192-bits)”. Under these
settings, we can ignore the information leakage under brute
force attacks. The security strength of our proposed protocols
is derived as follows.

For Pub-pos, the security strength relies on the difficulty in
breaking E. To infer D and KB through E by brute force, it

1https://www.nist.gov/

would take 2k×(3l+1+l+1) combinations and 3l multiplication
in each combination. So the total multiplication for brute force
attack would be 2k×(4l+2) × 3l, which is corresponding to
2k×(4l+2) × 3l × k2 xor operations. According to [27], the
computation should be between 21024, 22048, 23072 to achieve
112-bits, 128-bits and 192-bits security strength respectively.
At the same time, it is required that 2k ≥ 13l + 1 since the
space of a random value should be bigger than the number of
required random values and l ≥ 1 so that random matrix RB
is not empty. Thus, it can be constrained into the following
equations: 

2t1 ≤ 2k×(4l+2) × 3l × k2 ≤ 2t2

13l + 1 ≤ 2k

1 ≤ l
(6)

with t1 and t2 are the operation required at each security
strength level. For example, t1 and t2 are 1024 and 2048 for
112-bits security strength.

For Pri-pos, the security strength relies on the difficulty
in breaking F and G. Since G is encrypted with the same
process as Pub-pos, thus, the risk for breaking G is the
same as analyzed above. To infer D and KA through F , it
would require 2k×((3s+1+(s+3)×2) combinations and 6(s+3)
multiplication in each combination. Besides, 14s+6 ≤ 2k and
1 ≤ s are the requirements for the space of random value and
random matrix. Thus, the security strength of Pri-pos is equal
to the following equation:

2t1 ≤ 2k×(4l+2) × 3l × k2 ≤ 2t2

2t1 ≤ 2k×(5s+7) × 6(s+ 3)× k2 ≤ 2t2

13l + 1 ≤ 2k; 14s+ 6 ≤ 2k

1 ≤ l; 1 ≤ s

(7)

with t1 and t2 are the operation required at each security
strength level.

It is noteworthy that the security strength of our proposed
protocols depends on the selection of its variables. However,
to decide the optimal variables in practice, we also need to
consider the computation and communication cost generated,
which will be further discussed later.

B. Complexity Analysis
The complexity analysis of proposed protocols are listed in

Table I. It includes both the computation and communication
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costs of the two proposed protocols. U,R, S denotes the three
participants in the positioning system and → denotes the
data transformation from one to another. The computation
cost is measured by the number of the most time-consuming
operation, multiplication. The communication cost is measured
by the bit-length of transferred values with respect to the size
of the random matrix RA and RB.

In Pub-pos, U generates and distributes a (l+1)×1 matrix
KB and four 3×l matrices RB1, RB2, RB3, thus, the commu-
nication cost from U to R is (4l+1)k, where k is the bit-length
of random value. Each R locally encrypts its distance matrix
with KB and sends it to S, thus, the computation for each R is
the multiplication between a 3×(l+1) matrix and a (l+1)×1
matrix, which results in 3(l + 1) multiplications. After the
multiplication, the value of E is d2k1+ ri11k2+ · · ·+ ri1lkl+1,
which can be presented in 3k bits. Thus, the communication
cost from R to S is the size of matrix E, which equals
3 × 3k. After collecting all the encrypted matrices from R,
S executes matrix inverse computation over A and generates
6 multiplication operations, and computes C and F with 2
multiplication between a 3 × 3 matrix and a 3 × 1 matrix
which in total is 18 multiplications. The two computed matrix
C and F are sent to U later with six values and each value
is no bigger than 3k. In the end, U reveals X through matrix
multiplication with 2 multiplication operations.

In Pri-pos, U starts the protocol by generating random
matrices RA,RB,KA,KB and sends them to R, which
corresponds to 4l + 1 + 5s + 6 k-bits random values, thus,
the communication cost from U to R is (4l + 5s + 7)k.
To encrypt information matrices A and B, each R needs to
execute F = DKA and G = EKB . According to the size
of each matrix, we can conclude the computation cost of R
is (s + 3) × 6 + (l + 1) × 3 and the bit-length of F and G
after computation is 3k. Thus, the communication cost from
R to S is 9 × 3k. At the side of S, it first composes A
and B through two matrix addition respectively. Based on the
result, it computes C through one matrix inverse operation
with 6 multiplication and one matrix multiplication between a
2 × 3 matrix and a 3 × 1 matrix with 6 multiplications. The
computed C is sent to U with communication cost 2 × 6k,
where 6k is the bit-length of the value in C. In the end, U
reveals its coordinates with HCm−1, which is correspond to
9 multiplication when the size of H and C are 3×2 and 2×1.

From Table I, we can see that the computation cost of U
and S are fixed, while the computation cost of P and all the
communication costs between each participant are influenced
by the selection of l, s and k.

C. Discussion of Optimal Variables

The criterion of variable selection is to generate least
overhead while preserving the security strength. To make the
process easy to understand, we formulate the overhead into a
cost function which is defined as

Fcost = α× computation+ β × communication,

where α, β are the percentage of each cost and α + β =
1. It is noteworthy that the computation and communication

cost can be from either a single participant or from the whole
system. Let’s take Pub-pos as an example, we can define the
cost function for U as α2 + β((3l+ 1)× k + 12k) or for the
whole system as α(2+2(l+1)+14)+β((3l+1)×k+6k+12k).

Once the cost function is decided, the objective is to mini-
mize the cost function while meeting the inequalities defined
by the security strength above. The optimal variables can be
found by searching the variable space. Table II presents the
optimal variables when α and β are 0.5. Without specification,
we use it as the default setting in the following presented
experiments. For comparison, we also list the recommended
key sizes of Paillier, which were applied in a referred paper
for comparison [27].
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Fig. 3: Computation and communication comparison of dif-
ferent protocols
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Fig. 4: Computation and communication cost of target point
in different protocols

D. Discussion of Practical Usage

Due to the influence of noise, there is an error between
a measured distance and the real distance, which results in
deviation of positioning results or even failure of positioning
calculation. The proposed protocols are theoretically accurate
for trilateration positioning on clean data. However, the influ-
ence of noise data is an unavoidable issue in practice.

This problem can be solved by integrating effective noise
reduction methods with our proposed protocols. For example,
Yan et al. [28] proposed a method to enhance the reliability of
measured information by deducting environmental noise with
a model trained from historical measurement data. Li et al.
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[26] proposed a method to estimate a position precisely by
applying two machine learning models for position calculation
with attack detection and tracing. By integrating these methods
with our proposed protocols, it is possible to achieve highly
accurate positioning with privacy preservation.

VII. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
protocols and compare them with Paillier based solution
denoted as Pai, which is presented by Jiang et al. in [14]. Pai
assumes the public availability of reference points location
and the privacy of measured distance and computed results.
In [14], based on the public availability of reference points
location, A−1 can be calculated by the computation server
easily. Also, the homomorphic addition property of Paillier
makes it possible to calculate A−1B based on the encrypted
B, which contains the sensitive distance information. However,
Pai can only solve the positioning based on public reference
points. For positioning based on private points, the challenge
also resides in the computation of A−1, since Paillier is unable
to support the division and multiplication operations. Pri-pos
is the first work solving the privacy protected positioning
on private reference points. Therefore, we only compare the
performance between Pub-pos and Pai.

A. Experimental Setup

We implement the protocols in Java on a macOS platform
with a 3.1GHz Intel Core i5 CPU and 8G RAM. The target
point, the reference points and the computation server are
implemented with three different entities and communicating
through a client-server socket. We repeat the experiment 10
times and report average results. In each experiment, we
generate five random positions and link them to the target point
and the reference points randomly. The distances between the
target point and the reference points are calculated based on
the position information and owned by the reference points.
Based on this setting, we implement our protocols for privacy-
preserving positioning. Specifically, the reference points send
the position and distance information to the computation server
according to our protocol. The computation server processes
the information and returns the estimated position to the
target point. During the experiments, the computation and
communication costs of each entity are measured based on its
computation time and transferred data size, respectively. We
record and compare the computation and communication cost
of different protocols under different security strength. The
optimal variables of each security level are decided according
to the discussion results in Table II.

B. Performance of Positioning System

Fig. 3 shows the performance of protocols during the whole
positioning process. Fig. 3a records the processing time of
positioning in each protocol from position query to responded
result received. Fig. 3b records the transferred data between
the target point, the reference points and the computation
server. From the figure, we can see that (1) Our proposed

protocol Pub-pos and Pri-pos are at least 4.5 times faster than
Pai in terms of positioning service provision. The running
time of our protocol is always under 100ms while Pai takes
450ms for running ”short” level security and 2200ms for
”long” level security. (2) Pub-pos and Pri-pos present a stable
service latency even under different security strengths while
Pai’s latency increases exponentially to security strength. (3)
Even the communication cost of our proposed protocols are
higher than Pai, they are still in an acceptable range as the
communication cost for the whole system is no more than 35
KB. (4) The communication cost of all protocols increases
with the increase of security strength. From observation, we
can conclude that our proposed protocols are much more
efficient and stable than Pai regarding positioning service
provision (i.e., service latency) despite a slight increase in
communication cost.

C. Performance of Target Point

Fig. 4 shows the performance of the target point in each
protocol. Fig. 4a records the time that the target point spends
in generating encryption key and decryption results and Fig. 4b
records the transferred data of the target point, which include
the keys shared with the reference points and the received data
from the computation server. From the figure, we can see that
(1) The computation time of the target point in Pub-pos and
Pri-pos is much less than that in Pai. (2) The computation time
of the target point remains stable in Pub-pos and Pri-pos while
increasing linearly in Pai with the increase of security strength.
(3) The communication cost of target points in Pub-pos and
Pri-pos is higher than that in Pai but under 32 KB. (4) By
comparing Fig. 4 and Fig. 3, it is easy to find that the target
point makes up the most computation and communication cost
in the whole system.
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Fig. 5: Computation and communication cost of reference
point in different protocols

D. Performance of Reference Point

Fig. 5 shows the performance of the reference point in each
protocol. Fig. 5a records the time spent in encrypting its data
matrix at the reference point and Fig. 5b records the transferred
data of the reference point, which include the key received
from the target point and the encrypted matrix sent to the
computation server. From the figure, we can see that (1) The
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Fig. 6: Computation and communication cost of computation
server in different protocols

computation time of the reference point in Pub-pos and Pri-pos
is much less than that in Pai. (2) The computation time of all of
the protocols increases with the increase of security strength.
(3) The communication cost of the reference points in Pub-pos
and Pri-pos is higher than that in Pai, but all of them are under
11 KB. (4) The communication cost of the reference points
in all of the protocols increases with the increase of security
strength;

E. Performance of Computation Server

Fig. 6 shows the performance of the computation server
in each protocol. Fig. 6a records the time spent by it in
computation and Fig. 6b records its transferred data, which
include the data received from the reference points and data
sent to the target point. From the figure, we can see that (1)
Both the computation cost and communication cost of the
computation server in Pub-pos and Pri-pos are less than those
in Pai. (2) The computation time of the computation server
in both of the proposed protocols are quite stable even under
different security strength. (3) The communication costa of all
the protocols increase with security strength increasing, but all
of them are less than 7 KB;

In short, the computation costs of our proposed protocols are
much lower than the solution based on Paillier although with
a slight increase in communication cost. Besides, the stability
of service latency in terms of different security strength show
a specific advantage of our protocol in providing high-security
guarantee under the same constraints of service provision time.

TABLE III: Position Accuracy with Noise Influence

Methods Accuracy
Posc 0.52m
Posn 1.48m

Yan-Posn [28] 0.86m
Li-Posn [26] 0.92m

F. Performance under Noise Influence

To simulate the real world, we introduce noise into the
measured distance d. The noise is a random value generated
from the normal distribution with mean=0 and standard deriva-
tion=1. The generated random value is added to distance d.

We integrate the noise reduction methods proposed by Yan et
al. [28] and Li et al. [26] into our protocols. The influence
is measured with positioning accuracy, which is the mean
deviation of the estimated position to the true position.

Table III shows the positioning accuracy by applying four
methods. Posc stands for a positioning method that uses clean
data without any noise. Posn refers to the positioning method
that does not apply any noise reduction methods. While Yan-
Posn and Li-Posn stand for the methods that apply the noise
reduction methods proposed by Yan et al. [28] and Li et al.
[26], respectively.

By comparing Posc and Posn, we can see that the posi-
tioning accuracy is sensitively impacted by noise, which is
decreased from 0.52 meter to 1.48 meter. To improve it, we
implement Yan-Posn and Li-Posn. From the results, we can
see that both of them can improve the positioning accuracy
effectively and Yan-Posn presents a better result than Li-Posn.
This experiment shows that the influence of noise can be
removed effectively by applying noise reduction methods in
our proposed protocols.

VIII. CONCLUSION AND FUTURE WORK

This paper proposed two protocols to overcome the privacy
concern in 5G enabled positioning systems. By encrypting
the original data matrix with two random matrices through
matrix concatenation and multiplication, we can protect the
private data of reference points while keeping the positioning
service intact. We analyzed the security strength and costs of
the proposed two protocols with optimal variable selection. We
measured the performance of our protocols and compared it
with a Paillier-based solution in terms of system performance
and the performance of each participant, focusing on com-
putation cost and communication cost, as well as aggregated
overhead. The result shows that our proposed protocols present
a better performance in both system aspects and individual
aspects. Besides, the performance stability of our protocols
under different security strengths outperforms, thus they can
provide higher security guarantees under quantified time and
communication constraints.

The proposed protocols are designed based on trilateration
methods for positioning scenarios, but it can also be applied
into other privacy-preserving scenarios that can be concluded
as quadratic equation problems, such as outsourced quadratic
equation verification. In our future work, we plan to adapt
the two protocols for outsourced computation verification. We
also plan to implement the prototype and evaluate the protocols
performance on the real-world environment.
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