Rossi, Jussi; Uotila, Juho; Sharma, Sucheta; Hieta, Tuomas; Laurila, Toni; Teissier, Roland; Baranov, Alexei; Ikonen, Erkki; Vainio, Markku

Optical power detector with broad spectral coverage, high detectivity, and large dynamic range

Published in:
Optics Letters

DOI:
10.1364/OL.455191

Published: 01/04/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or part of any of the repository collections is not permitted, except that material may be duplicated by you for your research use or educational purposes in electronic or print form. You must obtain permission for any other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not an authorised user.
Optical power detector with broad spectral coverage, high detectivity, and large dynamic range

Jussi Rossi,1,* Juho Uotila,2 Sucheta Sharma,3 Tuomas Hieta,4 Toni Laurila,3 Roland Teissier,5 Alexei Baranov,5 Erkki Ikonen,3,6 and Markku Vainio1,7

1Photonics Laboratory, Physics Unit, Tampere University, Tampere, Finland
2Patria Aviation Oy, Tampere, Finland
3Metrology Research Institute, Aalto University, Espoo, Finland
4Gasera Ltd., Turku, Finland
5IES, University of Montpellier, CNRS, Montpellier, France
6VTT MIKES, Espoo, Finland
7Department of Chemistry, University of Helsinki, Helsinki, Finland
*Corresponding author: jussi.rossi@tuni.fi

Received 9 February 2022; revised 3 March 2022; accepted 4 March 2022; posted 4 March 2022; published 25 March 2022

Optical power measurements are needed in practically all technologies based on light. Here, we report a general-purpose optical power detector based on the photoacoustic effect. Optical power incident on the detector’s black absorber produces an acoustic signal, which is further converted into an electrical signal using a silicon-cantilever pressure transducer. We demonstrate an exceptionally large spectral coverage from ultraviolet to far infrared, with the possibility for further extension to the terahertz region. The linear dynamic range of the detector reaches 80 dB, ranging from a noise-equivalent power of 6 nW/√Hz to 600 mW (independent of signal averaging time).

Published by Optica Publishing Group under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

https://doi.org/10.1364/OL.455191

Power detector is one of the most important components in technologies based on light or other electromagnetic radiation. Depending on the application, typical detector parameters of interest include noise-equivalent power (NEP), linear dynamic range, speed, spectral coverage, and ease of use. Semiconductor photodetectors, such as Si photodiodes, provide excellent performance with respect to many of these parameters, but the spectral coverage is limited on the long-wavelength side by the bandgap energy of the detector material. Although extension to long wavelengths is in some cases possible by material engineering, the reduced bandgap inevitably leads to increased thermal noise and thus to the need for cooling of the detector, even down to cryogenic temperatures [1]. In practice, the responsivity of a typical state-of-the-art HgCdTe (MCT) infrared detector sharply rolls off at approximately 12 μm [2]. Beyond that, thermal detectors are often used. In a thermal detector, a black material absorbs the incoming optical radiation and the resulting temperature increase of the material is measured [2]. An advantage common to all thermal detectors is that they can be made practically wavelength independent [3]. This allows access to the long infrared part of the electromagnetic spectrum, which is becoming increasingly important due to numerous applications based on molecular spectroscopy and thermal imaging: a trend that is catalyzed by the fast development of coherent infrared light sources [4,5].

The most common thermal detectors include bolometers, pyroelectric detectors, and thermopiles, all of which use temperature dependence of an electric property of the detector material [2,6]. The photoacoustic (PA) effect offers an alternative approach [7]. In the PA effect, the temperature increase due to absorption of the incident electromagnetic radiation induces a pressure change in the surrounding gas. If the incident radiation is modulated, similar to what is done with, e.g., pyroelectric detectors, the temperature change and the corresponding pressure change become periodic [Fig. 1(a)]. That is, an acoustic signal directly proportional to the absorbed power is produced. The acoustic signal can be converted into an electrical signal by a sensitive microphone.

The photoacoustic detection principle is versatile and tailorable for various applications. As an example, ultrasound transducers that operate at MHz frequencies provide high spatial resolution in fast photoacoustic imaging in medical applications [8,9]. However, some of the best detection limits in gas-phase molecular spectroscopy have been obtained by optimizing the detection at lower (10 Hz to 100 kHz) acoustic frequencies [10,11], an approach that has recently opened new avenues also in broadband laser spectroscopy [12]. The use of the PA effect in optical power detection has been known from the 1940’s, when Golay developed a photoacoustic cell particularly designed for this purpose [13]. The Golay cell is one of the best thermal detectors in terms of detection sensitivity, but its diaphragm microphone is fragile and susceptible to technical noise caused by mechanical vibrations [6]. The dynamic range of the diaphragm microphone is also modest, limiting the measurable optical power range to approximately 100 nW to 1 mW for an optimized commercially available instrument.
In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.

In this Letter, we introduce a novel photoacoustic power detector that surpasses the linear dynamic range of the Golay cell and other common infrared detectors by several orders of magnitudes, while offering excellent stability, rugged construction, and ease of use. Our solution is based on a silicon-cantilever tunneling displacement transducers [6,15]. The poor linearity of the diaphragm microphone poses an additional challenge [16,17]. Due to these limitations, the Golay cell mainly finds use in niche laboratory applications, although the fundamental underlying principle, photoacoustic detection, offers the possibility for one of the most versatile high-performance thermal detectors.
Fig. 2. (a) Spectral responsivity of the PA detector measured with two different absorbers at discrete laser wavelengths. The dashed line between wavelengths 1.5 and 25 µm is measured with an incandescent light source and a Fourier-transform infrared (FTIR) spectrometer. The individual data points from 325 nm to 14.85 µm are recorded with lasers. The slight discrepancy between these two datasets is due to a frequency-dependent artifact in the FTIR measurements (see Supplement 1).

response; see Fig. 2(a). The dashed-line plot in Fig. 2(b) was measured with a broadband thermal light source, while the individual dots summarize the results of laser-based calibrations at several wavelengths, from 325 nm to 14.85 µm. Measurement uncertainty estimates are shown in the figures with error bars, see Supplement 1 for details.

One of the advantages of the cantilever microphone is its excellent linear dynamic range. The linearity of a conventional microphone is limited by the nonlinear stretching of the diaphragm. An additional nonlinear contribution arises from the electrostatic forces if capacitive readout of the microphone signal is used. The silicon cantilever is attached to its frame from only one side, which results in a highly linear motion that is precisely monitored by the interferometric readout unit. The large linear dynamic range of 60 dB is exemplified in Figs. 3(a) and 3(c). With the soot-based absorber and He as the acoustic carrier gas, the normalized NEP measured at 1064 nm is 5.6 nW/√Hz, corresponding to a specific detectivity of $D^* = 1.6 \times 10^8$ cm√Hz/W. We have experimentally confirmed that, unlike with most other optical detectors, the detector noise and the PA response are independent of the absorber size or the laser spot diameter, the latter of which we varied from 1 to 3 mm. The NEP and D^* compare favorably to state-of-the-art uncooled mid-infrared detectors, such as pyroelectric detectors coated with carbon nanotubes [30,31]. The upper limit (8.2 mW at 40 Hz modulation frequency) of the dynamic range is in this case set by saturation of the readout interferometer. This linear dynamic range is at least 20 dB better than that of a typical MCT detector [32] or Golay cell [16] and can be further enhanced by varying the modulation frequency, because the photoacoustic response drops as the modulation frequency is increased [25]. Alternatively, one can avoid signal saturation by reducing the chopping duty cycle, which limits the amount of optical energy incident on the detector per pulse. These techniques allowed us to extend the maximum measurable power on the fly to over 600 mW without saturating the detector [Fig. 3(b), Supplement 1]. As a result, we achieve a total linear dynamic range of 80 dB with a detection bandwidth of 1 Hz.
As mentioned above, PA detection can be designed for different data acquisition speeds. General power measurements tend to require a low detection limit but not a fast response time, for which reason we have designed the setup for low modulation frequencies. We typically use a measurement time (FFT time constant) of 1.57 s, although much shorter times are possible, as illustrated in Fig. 1(b). Also note that by increasing the chopping frequency up to several kHz [Fig. 3(b)], one can reduce the measurement time down to the millisecond level. However, some applications can use even longer averaging times, benefiting from the excellent stability and white-noise limited performance that are demonstrated in Fig. 3(d).

In summary, we have demonstrated a next-generation photoacoustic power detector that is based on a robust silicon-cantilever microphone, is easy to use, and works without cooling. Our proof-of-concept device works from ultraviolet to long infrared wavelengths, significantly exceeding the spectral coverage of semiconductor photodetectors. Owing to the fundamental wavelength-independent nature of the photoacoustic effect, further extension to the THz region is possible by optimizing the absorber and window material of the cell. Together with the excellent linear dynamic range, the wavelength-independent concept is appealing not only for general purposes but also for the development of power meters and transfer standards that can reduce the uncertainty of long-wavelength power measurements (given that rigorous metrological characterization of the detector is first done over the entire spectral range). The strength of the PA signal scales favorably with smaller acoustic cell size, which together with the compact cantilever microphone offers room for substantial miniaturization of the instrument. Further miniaturization may be achieved by applying the light-absorbing coating directly on the cantilever, in which case the detection would be based on the photothermal (thermoeelastic) effect instead of the photoacoustic effect. In addition to super-resolution microscopy, such an approach was recently proposed for optical power detection by quartz tuning forks [28, 29]. However, our present concept is ideal for the detection of thermal light and long-wavelength radiation because the absorber diameter can be made large without compromising the measurement SNR.

Funding. Academy of Finland (314364, 320165, 320167, 326444).

Acknowledgment. The work was funded by the Academy of Finland (Project numbers 326444 and 314364) and by the Academy of Finland Flagship Programme, Photonics Research and Innovation (PREIN), decision numbers: 320167 and 320165.

Disclosures. The authors declare no conflicts of interest. T.H. works at Gasera Ltd., which fabricated some of the (commercially available) instrument parts needed in the experiments.

Data availability. Data underlying the results presented in this paper are not publicly available at this time but may obtained from the authors upon reasonable request.

Supplemental document. See Supplement 1 for supporting content.

REFERENCES

