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ABSTRACT
Gesture recognition on smartwatches is challenging not only due
to resource constraints but also due to the dynamically changing
conditions of users. It is currently an open problem how to en-
gineer gesture recognisers that are robust and yet deployable on
smartwatches. Recent research has found that common everyday
events, such as a user removing and wearing their smartwatch
again, can deteriorate recognition accuracy significantly. In this pa-
per, we suggest that prior understanding of causes behind everyday
variability and false positives should be exploited in the develop-
ment of recognisers. To this end, first, we present a data collection
method that aims at diversifying gesture data in a representative
way, in which users are taken through experimental conditions
that resemble known causes of variability (e.g., walking while ges-
turing) and are asked to produce deliberately varied, but realistic
gestures. Secondly, we review known approaches in machine learn-
ing for recogniser design on constrained hardware. We propose
convolution-based network variations for classifying raw sensor
data, achieving greater than 98% accuracy reliably under both indi-
vidual and situational variations where previous approaches have
reported significant performance deterioration. This performance is
achieved with a model that is two orders of magnitude less complex
than previous state-of-the-art models. Our work suggests that de-
ployable and robust recognition is feasible but requires systematic
efforts in data collection and network design to address known
causes of gesture variability.
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1 INTRODUCTION
Owing to their superior performance in classification tasks, ma-
chine learning (ML) and in particular deep learning (DL) have
gained popularity as a technique for gesture recognition on mobile
and wearable devices. There is interest in expanding DL also to
challenging consumer devices, such as smartwatches, with first
demonstrators emerging for recognition of mid-air hand and finger
gestures [32, 63]. However, a significant question about real-world
deployment remains: how reliably do these techniques work when
users, tasks, and contexts change; in other words, how robust are
they? Moreover, for deployment, DL models should be able to run
in energy- and computation-impoverished settings, which limits
model sizes and architectural solutions.

This paper looks at the problem of developing robust and de-
ployable deep learning methods for gesture recognition. The first
key challenge we address is robustness: As a data-driven technique,
accuracy is highest with DL within the envelope defined by the
training dataset. Noise, out-of-distribution (OOD) samples, and
distributional shift pose serious issues to recognition. In a recent
practical demonstration of this, Laput and Harrison [31] reported a
decrease from 95% accuracy to 88% when testing a trained model
with a user who was not in the training data (leave-user-out), and
from 95% to 75% when users changed the watch strap from tight to
loose fit. A question stands out how to improve the robustness of
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DL-based methods for gesture recognition in real-world conditions.
A robust algorithm would be able to support users of all walks of
life, young and old, tall and short, across the conditions they want
to use their devices in. The success of gestural interaction arguably
lies in its flexibility and how gestures can be used to interact with
digital content in varying and mobile contexts.

A second key challenge we address is deployability: Modern
DL models are known to be too large for deployment on resource-
constrained devices. For example, the acclaimed GPT-3 model [11]
has 175 billion parameters and a file size of 350GB after some opti-
mizations such as 16bit float precision. This is obviously not possible
to deploy on commodity hardware. Smartwatches are not known
for their computational prowess compared to the smartphones they
are wirelessly tethered with. They are made to be energy efficient
and are desirable by the average consumer if they tend to last longer
on a single charge. A typical user has less use for running heavy
computation tasks and would rather find a long-lasting battery life
more appealing. Thus, for deployment purposes, it is necessary
to consider the size of the classifier because having a large model
run continuously on the smartwatch itself with copious compute
operations will have a significant impact on its longevity. In this
context, it is important to aim for model architectures that are not
only accurate but also efficient and with a minimal footprint (i.e.,
small file size and a small number of FLOPs).

DL has changed the requirements for the development of robust
recognition algorithms. In the past, robustness came with the price
of implementing time and space agnostic gesture techniques, such
as dynamic time warping algorithms trialled for contextual mid-air
gesture recognition [4] and extending gesture elicitation techniques
to identify contextual variations in gestures [3]. DL-based recogni-
tion techniques have transformed the gesture recognition landscape
with deep recognisers seemingly able to achieve very high perfor-
mance as long as the right kinds of datasets are available for training.
Besides collecting better datasets, the ML community has turned
to look at learning techniques that better generalize in the context
of noise, OODs, and distributional shift [1, 41, 61].

We propose that prior domain knowledge on causes behind every-
day variability and false positives should be exploited in both data
collection and the design of the recogniser itself. Along these lines,
we make two contributions towards training a more robust gesture
recogniser. First, we present a variant of the obstacle course-based
methodology that aims at collecting more representative yet diverse
training datasets. Here, participants are taken through simulated
conditions, such as walking, that are representative of everyday
situations which are hypothesised to be challenging for recogni-
tion. The novel aspect we investigate is deliberate diversification
of gesturing, with the intuition of encouraging a classifier’s robust-
ness to distribution shifts. In practice, participants are instructed
to create realistic but varying levels of alterations to the gestures.
Second, we review known approaches to exploit domain knowl-
edge in recogniser design with the aim of deployability. We propose
variations of convolution-based networks for classifying raw and
processed sensor data which perform reliably under both individ-
ual and situational variations. We then present an implementation
for the recognition of gestures on a smartwatch trained on our
collected dataset. The recogniser achieves upwards from 98% ac-
curacy on gesture recognition across conditions where previous

approaches have reported failing [31]. This work highlights the
need for Human-Computer Interaction (HCI) research to contribute
to the training of better recognition algorithms for real-world use
on commodity hardware.

2 RELATEDWORK
ML is increasingly being used in everyday sensing tasks, including
gesture recognition, natural language processing, computer vision,
or information retrieval. Therefore, it has become important that the
algorithms we develop for ML are robust to different working envi-
ronments. In this section, we relate to previous work on robustness
in gesture recognition, and more concretely on smartphones and
smartwatches. For a general overview of robust machine learning
we recommend reviews by Xu et al. [65] and Shafique et al. [53].

2.1 Robust Gesture Recognition
Robustness is synonymous with algorithmic stability, a property
that characterises how effective an ML classifier behaves on un-
seen data. For example, learning in the presence of outliers [2]
or adversarial examples [25]. In the domain of ML, with a wide
variety of architectures and training recipes, there are many cards
one can play to address and attempt to solve the issue of robust-
ness. Adversarial robustness is an area of active research due to
the pervasive use of deep models in detection and authentication
[34]. Choosing between classification robustness and accuracy has
been considered a trade-off given how classifiers tend to evolve
decision boundaries around clusters of data points during training
[42, 59, 67]. Feature redundancy and the inability of neural net-
works to learn high-level features have also been implicated for a
decreased robustness in distribution shifts and OOD generalisation
[40, 54]. Works addressing and providing solutions to these issues
vary significantly – from suggesting data augmentations [22], and
change in architecture [68] to change in training strategies and
loss functions. For example, Zhang et al. [67] formulate a loss func-
tion that comprises the natural classification error along with a
boundary smoothing term to encourage decision boundaries which
allow for slight OOD samples. Generalised loss functions have also
been shown to improve robustness in vision tasks for clustering
and classification [7, 48]. Work towards multimodality has also
demonstrated an improvement in robustness via the principle of
robust overdesign through highly correlated inputs from different
sources [6].

The issues of robustness in classifiers may be addressed on
domain-specific applications. In the area of gesture recognition,
Miao et al. [35] proposed a hand gesture recogniser that uses classic
computer-vision features (Hu invariant moments and HOG fea-
tures) and a sparse representation. They found that such a sparse
representation improved the accuracy and robustness of gesture
recognition. Schak [50] presented an analysis of the robustness
of deep Long Short-Term Memory (LSTM) networks for freehand
gesture recognition against temporal shifts. They concluded that
including artificial gesture onset variability in the training data
leads to high robustness against various tested effects.

Recent works use acoustic signals to track hand movement and
recognise gestures [62], although they require dedicated, specialised
hardware that might not be available in everyday conditions. For

278



Robust and Deployable Gesture Recognition for Smartwatches IUI ’22, March 22–25, 2022, Helsinki, Finland

example, Vimos et al. [60] proposed to correct the hand orienta-
tion using surface electromyography, which resulted in a boost in
recognition accuracy of more than 30% over the baseline case.

2.2 Gesture Recognition on Mobile Consumer
Devices

Mobile phones find increasing use in everyday tasks like naviga-
tion, shopping, and communication [5]. Proliferation in embedded
electronics is enabling new consumer markets and applications for
mobile technology. Smartwatches have gained attention as wear-
able fitness and activity trackers, including special solutions for
wheelchair users [18]. There seems to be a general trend towards
consumers interacting within ecosystems of devices and smart
things. Thus, one of the main challenges at present is to address
the increasing complexity and diversity of user interfaces to aid a
consumer’s seamless access to services reliably [69].

Previous research in implicit interaction techniques [9, 27, 47]
and intelligent user interfaces [15, 51, 64] allows to expand into
new forms of contextual interactions, including gestural interaction,
and customisation and automation of services tailored to customer
behaviours, preferences, and contexts [12, 43, 45].

Deep networks are fueling many recognition techniques includ-
ing hand gesture recognition, which has been an active field since
the introduction of smartphones. Techniques for statistical mod-
elling [36], 3D hand recognition [13] and vision-based gesture recog-
nition [46] have been novel milestones. Until recently, popular deep
learning frameworks like Tensorflow and PyTorch were not avail-
able for mobile phones and researchers had to, for example, boot
Linux-based OS on smartphones to explore deep mobile recognis-
ers and perform on-device transfer learning on the resource-scarce
device [52]. However, such an OS and solution swiftly deplete the
battery. While the general field of gesture recognition is vast with
applications in gaming, automotive, sign language, and so on. In-
ertial Measurement Units (IMUs) have been used for deep hand
gesture recognition on smartwatches, although it is a rather new
field with Laput and Harrison’s work [31]. Previous gesture and
activity recognisers on smartwatches relied on shallow classifiers,
such as Bayesian networks [16] with significantly less accurate
results for fine-grained gestures and activities.

In light of recent ML/DL and deployment of models on resource-
constrained devices, Branco et al. [10] highlight challenges, such
as memory footprint, execution time, power consumption, and
scalability. Ultimately, there is a trade-off between performance
and resource deprivation that we need to be especially aware of
when dealing with resource-constrained devices. Direct design
of smaller DL models for deployment on low-end hardware has
been demonstrated to achieve similar results [26] which could
be reduced further by model compression techniques. Laput et
al. [32] have shown that one can achieve superior results with
really high sensor sampling rates of 4 kHz. However, access to
higher sampling rates impacts the number of data points that need
to be stored in the buffer, computed, and potentially transferred.
Moreover, a higher sampling rate directly corresponds to increased
power consumption [19, 58]. This consumption spans computations
in pre-processing steps to, for example, generate spectrograms for
applying Convolutional Neural Networks for recognition. Laput

and Harrison [31] report a drop of ≈15% when the sensor signals
are downsampled from 4 kHz to 200Hz.

3 DATA COLLECTION
A key goal in our data collection was to obtain diverse but rep-
resentative gestures in conditions that resemble those real-world
conditions that might pose challenges to smartwatch-based gesture
recognition. With this goal in mind, we extended the familiar obsta-
cle course-based methodology [30]. First, we identified conditions
for the obstacle course that are known to be challenging, such as
mobility (walking) and tightening/loosening the watch strap [31].
Second, when going through the obstacle course, participants were
asked to produce diverse but realistic variants of gestures under
a simulated payment scenario (see below). Third, we ensured that
our sample of participants has people with different heights, ages,
gender, handedness, and previous exposure to smartwatches. Fi-
nally, building on previous work, we also collected several everyday
gestures that could produce false positives [31].

3.1 Participants
Twenty-four participants took part in the data collection study (7
female, 3 left-handed) with a mean age of 26.4 years and a mean
height of 174.6 cm. Six of them had previously or currently owned
a smartwatch, three of them for more than one year, one of them
for less than a month, and the rest had experience from one month
to a year. The sample was stratified using the following variables:

• Age (2 groups): young adults (18-30 years), middle-aged
adults(31-45 years)

• Gender (2 groups): female, male (self-identified)
• Height (3 groups per tertiles): less than 179 cm, 179 cm or
more (males); less than 166 cm, 166 cm or more (females)

The stratified sample consisted of 2 x 2 x 3 = 12 cells, with 2 partici-
pants in each cell.

Due to COVID-19 restrictions, only university employees and
students were recruited through internal mailing lists. Each partici-
pant was compensated with 30€ of taxable rewards. All participants
had normal or corrected-to-normal vision and hearing, with no
known cognitive impairments or regular medication.

3.2 Experimental Design
The experiment was arranged into four blocks. The first three blocks
had two levels of watch tightness, and two levels of instruction
for the payment scenario. The payment scenario further had three
levels for body posture. The last block consisted of the “false positive
gestures” and was the same for all participants. The levels are
described below.

• Watch tightness: The wrist band tightness levels were “tight”,
in which the participant was instructed to put the watch on
so that it was tight but comfortable, and “loose”, in which
the participant was first instructed to tighten the watch as in
the “tight” condition, and then loosen the wrist band by two
notches. So, if the tertile was for a tight strap then it would
be left as is, and if it was for the loose strap, it would be
loosened by two strap notches starting from the initial setup.
This helped ensure that the conditions cover the different
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ways users may wear watches, however without imposing
them to wear in an unrealistic or contrived way.

• Instructions for Payment: the instruction levels were either
“instructed”, in which the participant received both verbal
and visual instructions on how to perform a payment gesture
and was asked to follow the instructions precisely, or “free”,
in which the participant only received the verbal instructions
and was asked to interpret them in a way that came naturally
to them in order to execute the payment.

• Gesture: the payment gestures were either shaking or tilting.
The intended motion of these gestures is shown in Figure 1

• Body posture: the payment gestures were performed first
in a sitting position, then in a standing position, and finally
while walking in a circle.

The gesture conditions in the first three blocks, as well as the
first two gestures of the everyday block, had 10 repetitions of each
gesture. The remaining everyday conditions had three repetitions
of each gesture/activity. This diverse set of everyday hand gestures
and activities forms a strong basis for a rejection class to enable a
recogniser to reliably classify negative samples. Table 1 shows a
detailed description of the everyday superclass with a schematic of
the structural hierarchy in the Supplementary Material.

3.3 Apparatus
We rely on the already available and widely used Android Sensor
API for the Wear OS which restricts the sampling rate of the IMU
sensor data to a maximum of 100Hz for the Ticwatch Pro 3 smart-
watch. Measurements from the smartwatch’s accelerometer, gravity
sensor, and gyroscope were recorded. Each recorded with approxi-
mately 100 to 102Hz sampling rate. The sampling rate fluctuated,
possibly due to the delay in I/O operations while recording the data.
Each sensor recorded data on three channels corresponding to the
three axes in Cartesian coordinates in the device frame of reference.
Additionally, a video was captured with the phone’s front camera
to help synchronise the sensor data during annotation.

3.4 Procedure
COVID-19 Precautions. The participant was brought into the

test room while the study conductor remained in the observation
room. Henceforth, the participant received instructions audibly
via an online conference call, and visually by observing the study
conductor through the window between the two rooms. The study
conductor controlled the recording phone with scrcpy [17], which
gives the conductor the ability to control an Android device through
Android Debug Bridge. The laboratory setup for the gesture data
collection is shown in Figure 2.

The first 11 participants wore the watch on their dominant hand,
while the rest wore it on the hand theywould normallywear awatch
on (“preferred hand”). All the participants in the preferred hand
condition wore the watch on their non-dominant hand, though this
was by chance and not part of the procedure.

Instructions for Gesturing. The participants received visual in-
structions for the payment gestures and some of the everyday
gestures by watching the study conductor perform the gesture. For
other gestures, the participant received verbal instructions only. In
the free condition, the participants only received verbal instructions

and were prompted to interpret them as they “would feel the most
natural”.

In the “everyday” condition, the participants were instructed to
execute the gestures only three times each, varying the gesture
every repetition, and every repetition lasting for at least three
seconds.

3.5 Preprocessing and Annotation
After the data was collected, we produced Comma-Separated Values
(CSV) files from the processed sensors to be importable in the NOVA
(Non-Verbal Annotator) software [8, 21] for human-supervised la-
beling. The processing script also calculated the sample rates for
each sensor file, to help align the files properly in NOVA. Since the
recorded rates were not constant, the script calculates an average
based on the number of measurements and the duration of the
recording.

In this annotation phase, the video and three sensor readings
were utilised to make an annotation track for each of the data files.
These were processed as described above and loaded into NOVA; the
annotators then labeled each gesture in the data by visual cues. The
gravity sensor was used as the main indicator for the beginning and
the ending of the payment gestures. These gestures were perceived
to begin when the gravity sensor displayed a rise, indicating the
arm had been lifted, and the label was placed approximately to start
from the “rising” slope of the gravity sensor’s waveform and end
on the “lowering” slope of the same waveform. This is illustrated
in Figure 3. This point was chosen as the starting point because
many of the participants started their gestures early, even though
instructed to first lift their arm and only then begin the gesture.
Because of ambiguity in human movement, it was decided safer
to start the label preferably a little before the gesture starts rather
than miss the start and begin the label in the middle of the gesture.
In some of the “everyday” gestures, the video was utilised more,
since in them a rising arm didn’t necessarily signal the start of a
gesture of interest.

The video recording was used as a reference but could not be
used as a reliable source of gesture duration, since it did not en-
tirely match up with the sensor data, because of the aforementioned
delays. The regions of no significant activity or “rest” labels were
added post-annotation by automation. The gesture labels also in-
cluded a “secondary gesture” to denote any meaningful gestures the
participants performed during the recording but weren’t supposed
to (e.g. scratching themselves or adjusting the watch).

One participant was excluded during the recording stage due to
data corruption mid-experiment; this participant was replaced to
bring the number of participants back to 24. Additionally, the first
two participants did not have data for “everyday” gestures since the
condition was added to the experiment design after these two had
already been measured. In total, three unique conditions were not
recorded completely or were corrupted and are therefore missing
from the data set.

4 METHODOLOGY
With the primary goal of deploying a robust recogniser on a smart-
watch, we try to design a DL model architecture that runs on the
raw sensor data. Considering the meagre computational resources
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(a) Shaking gesture (b) Tilting gesture

Figure 1: The two gesture motions to be used as triggers for the intent of payment.

Table 1: Gesture and activity classes recorded under the “everyday” superclass. The participants performed three repetitions
of each gesture, varying the mannerism in each repetition. The exception were the cup conditions, where the participant did
ten similar repetitions.

Gesture/activity code Description

cup - shake Performing the shaking gesture while holding a cup.
cup - tilt Performing the tilting gesture while holding a cup.
wave Waving.
jog Pretending to jog on place.
comb Combing or pretending to comb his or her hair.
phone Using the phone.
bottle Opening or closing the cork of a bottle.
drink Pretending to drink from a cup.
knife Cutting food with a knife and a fork.
fork Pretending to eat with a fork.
spoon Pretending to eat with a spoon.
burger Pretending to eat a burger.
dust Cleaning the table with a paper towel.
dishes Pretending to wash a plate.
washer Putting utensils into an imaginary dishwasher.
door Opening and closing a door.

(a) Participant performing the gesture while sitting. (b) Another participant performing the gesture while walking.

Figure 2: Frames from the video captured by the smartphone during data collection in the laboratory setup.
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(a) An annotation sample for tilt gesture in the sitting posture
with tight strap.

(b) An annotation sample for shake gesture in the sitting pos-
ture with loose strap.

Figure 3: Two examples showing how the gravity sensor (middle signal) is used as a guide for placing the annotations. The
other two waveforms (accelerometer (top) and gyroscope (bottom)) were used as reference, when the gravity sensor’s readings
were unclear.

available to us on a smartwatch, we try to minimise both the pre-
processing steps as well as the operations in the classifier itself.
We do acknowledge the state-of-the-art results achieved by using
high-resolution spectrograms by Laput and Harrison (L&H) [31].
So, we devise a similar architecture but with a smaller footprint to
compare against the classifier that works on the raw sensor data
and the L&H baseline.

A simpler model, with a smaller number of trainable parame-
ters, is less prone to overfitting. This translates to smoother, less
tight decision boundaries which has also been the motivation for
addressing adversarial robustness [67]. Further, architectural de-
cisions on the incorporation of certain layers have a significant
impact on controlling the number of model parameters. With these
motivations in mind, we prepare a pipeline and test-bench for the
training of situational- and individual-invariant robust recognisers.

4.1 Data preparation
4.1.1 Time-series. For classification, approximately three seconds
were considered appropriate as the maximum duration during
which a gesture takes, which has also been done previously for
activity recognition by L&H [31]. We consider it sufficiently long to
be able to reliably capture most gestures generated with intentional
hand movements. We use 304 samples at 100Hz which represents
≈ 3.04s worth of IMU sensor data. This arbitrary length of 304
samples is chosen to be able to generate spectrograms of specific
dimensions in Section 4.1.2. The raw sensor data was provided as
three CSV files for each sensor along with separate files for the
labelling scheme and annotations (units in seconds). For preparing
the dataset for use in machine learning, the label files were parsed
to obtain the row indices of the samples in the CSVs. Labelled
sequences shorter than the length of 304 samples (≈ 3.04s) are zero-
padded on both ends; the longer sequences are split into chunks of
sample lengths of 304 according to the overlapping strategy shown
in Figure 4. In summary, the number of chunks is decided based on
the minimum number of 304-sized chunks that a long signal can
contain when allowing for overlaps. These chunks are then fed to
the network as inputs for training and inference.

4.1.2 Spectrograms. Spectrograms help in visualising the evolution
of frequencies in a waveform over time. This is achieved by applying

a Short-Time Fourier Transform (STFT) with a sliding window
function over the waveform of interest. Spectrograms have found
extensive use in the field of audio signal processing. They can be
a useful tool to capture the periodic nature of human activities
[37, 66].

We use the 3.04 s long time-series data sequences prepared in
Section 4.1.1 to generate spectrograms. A Hanning window func-
tion was used for the STFT along with an FFT length of 64, yielding
a total of 33 frequency bins for a resolvable frequency range of
0-50Hz from a signal sampled at 100Hz, which gives a frequency
resolution of ≈ 1.5Hz. The STFT was calculated without padding to
minimise edge artefacts in the resulting spectrogram [38]. A sliding
window overlap of 75% was chosen to have sufficient resolution
along the temporal axis to minimise data redundancy and unnec-
essary additional compute STFT operations [58]. A 75% overlap
is recommended for periodic window functions, like the Hanning
window function, which ensures that spectral aliasing is minimised
and also encourages robust signal reconstruction if desired [56, 57].
This yields 16 rolling frames for a 304 sample long signal which cre-
ates a spectrogram of dimensions 33×16. The highest frequency bin
for the range of 48.5–50Hz is discarded to conform the dimensions
to powers of 2 for easier handling of max-pooling operations in the
deep learning network. The spectrogram matrix consists mostly of
smaller values with sparse high values in regions of interest making
the pixel distribution of the spectrogram heavily skewed and similar
to that of a power function. So, the computed spectrogram is scaled
from the amplitude scale to the logarithmic (dB) scale with the aim
of Gaussianising the pixel distribution within a single spectrogram
to enable faster convergence of the network during training.

4.2 Neural network design
Recurrent networks find common use in applications of machine
learning on sequential data of arbitrary lengths. Mobile SDKs pro-
vide native implementations on the smartwatch for common lay-
ers and operations, like vanilla Recurrent Neural Network (RNN),
CNNs, pooling, normalisations, and activations like Rectified Linear
Unit (ReLU) and TanH. However, vanilla RNNs tend to suffer from
the problem of vanishing gradients over long sequences of data
[23]. This issue is somewhat resolvable by using LSTMs [24] or
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(a) Strategy for creating chunks from a sample longer that 3.04 s.
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(b) Symmetric zero-padding for samples shorter than 3.04 s.

Figure 4: Padding and splitting strategies for fixing the input size for use in CNNs.

Gated-Recurrent Units (GRU) [14] with the additional overhead of
maintaining extra internal states, but these units were not avail-
able for deployment on the smartwatch we were using. Recurrent
network operations also tend to be less parallelisable because of
their sequential nature, making them computationally slower for
training. CNNs offer a solution around these problems with the
caveat of having a predetermined fixed-sized input. This enables
us to use CNNs for gestures, which tend to be of short durations,
by fixing a threshold duration (in our case, approximately 3 sec-
onds). This also has the added benefit that CNN-based classifiers
are easily reusable for transfer learning as feature extractors for
other domains or subsequent use with recurrent networks with the
reduced latent representations.

We consider the binary classification task of whether a triggered
gesture denotes payment or not. We design and propose variations
of simple CNN-based neural network architectures with the aim
of deployment in ready-to-use application-oriented scenarios on
the low-end hardware of smartwatches. To keep the preprocessing
overhead to an absolute minimum, we use the “raw” sensor data
from the accelerometer, gyroscope, and gravity sensors as they
come from the smartwatch API.

4.2.1 Network inputs and CNN features. Our base model’s priority
is to work on the raw sensor data for recognition. For the model
input, we use 304 time-series samples representing ≈ 3.04s of IMU
data from each of three sensors (accelerometer, gyroscope, and
gravity sensor) having 3-axis measurements. These contribute 3
channels (X, Y, Z) per sensor, resulting in a total of 9 channelled
input data sequences making the input shape 9 × 304. For the
time-series model, this is passed through 3 Convolutional Units
(ConvUnits) where each ConvUnit is defined as a block consisting
of a 1D padded convolutional operation, a 1D batch normalisation,
followed by the ReLU activation function. Normalisation techniques
like batch normalisation, and variants like layer normalisation,
and group normalisation are known to improve the robustness
of training under varying hyperparameters. Batch normalisation
achieves this by smoothing the optimisation landscape to achieve a
more stable training [49]. The design for the ConvUnit is similar to
that of a conventional convolutional block of the ResNet [20] but
extends its 2D operations for our 1D sensor signals in the case of

time-series input. The proposed architecture variation utilising the
time-series data is shown in Figure 5a.

We extend this network architecture to 2-dimensions for spec-
trogram inputs, in order to compare our approach to L&H’s, which
represents the current state-of-the-art. The 9-channel 304 sample
long time-series is converted channel-wise into spectrograms. Each
axis of the three sensors results in one spectrogram yielding a net
input shape of 9 × 32 × 16. To reduce dimensionality across the 2D
ConvUnits, we incorporate 2 × 2 maxpooling but the overall recipe
remains the same as shown in Figure 5b. We further expand this ar-
chitecture by building and training end-to-end a late fusion network
with inputs as both the time-series and spectrogrammodalities. The
motivation of using both modalities is that the resulting network
would be able to benefit from the information in both the time and
frequency domains as they are correlated [6]. This network, shown
in Figure 5c consists of a time-series head and a spectrogram head
which are the CNN feature extractors from the previously discussed
architectures.

4.2.2 CNN feature classification. Each ConvUnit has 64 kernels
for feature extraction and the size of kernels increases from 3 to 5
to 7 with each successive ConvUnit to view the signal at different
receptive fields. The output of the final ConvUnit is then passed
to a Global Average Pooling (GAP) layer which collapses informa-
tion along the temporal dimension. This is done with the idea of
forcing the ConvUnits to not work just as feature extractors but to
output feature scores which help the final classification task in the
subsequent layers [33]. GAP also reduces the number of learnable
parameters in the network helping to reduce the model size substan-
tially. This minimises the risk of overfitting when compared to the
conventional VGG16-like approach of flattening the convolutional
features as a vector and passing them to fully-connected layers
directly [55]. We also get around the need for using dropout for
regularisation because the fully-connected layers are small enough
to avoid overfitting on our low-dimensional dataset. Finally, the
pooled tensor is passed through a fully-connected layer which gives
the class scores.

4.3 Training
The network is trained for 60 epochs on batches of size 128 of 3.04s
samples with the Adam optimiser using an initial learning rate of

283



IUI ’22, March 22–25, 2022, Helsinki, Finland U. Kunwar et al.

3
 C

on
v1

D
, 6

4

Input = 9x304

5
 C

o
n

v1
D

, 6
4

7
 C

on
v1

D
, 6

4

Global Average 
Pooling 1D

Output = 64x304

Output = 64

F
C

 2

B
a

tc
hN

o
rm

R
e

LU

Output = 64x304

B
a

tc
hN

o
rm

R
eL

U

Output = 64x304

B
a

tc
hN

o
rm

R
eL

U

ConvUnit1 ConvUnit2 ConvUnit3

(a) 1D convolution based model architecture for time-series inputs.
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(b) 2D convolution based model architecture for spectrogram inputs.
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(c) Modality fusion model for both time-series and spectrogram inputs.

Figure 5: Proposed network architectures for use with IMU data – both for raw time-series and for preprocessed spectrograms.

0.05 and an exponential learning rate scheduler (γ = 0.9). A random
weighted sampler is used to remove bias against minority sample
classes. We use the general categorical cross-entropy loss and two
logits for the binary classification task instead of the conventional
binary cross-entropy loss (BCELoss) with a single logit to be able
to compare the effects of using different loss functions designed for
multiclass classification.

4.3.1 Loss Functions. Different loss functions provide a different
optimisation landscape affecting their convergence and sensitivity
to activations from noisy input [7]. Using loss functions well suited
to our dataset distribution can potentially help improve robustness

through either ignoring noisy samples, label noise, improving reg-
ularisation, or optimising an objective function that is closer to
the goal of the training task. With this intuition for improving the
convergence during training for obtaining more robust decision
boundaries, we compare the effect of different loss functions on the
robustness of the aforementioned 1D convolutional network. We
use the categorical cross-entropy loss for our models as the default
loss function in all experiments unless stated otherwise.

For the loss functions presented below, y denotes the true one-
hot encoded label, ŷ is the true label in +1/−1 encoding, o is the
output of the last layer of the network. j denotes the jth dimension
of a given vector, and σ (.) denotes the probability estimate.
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• Robust Adaptive Loss [7]: Uses a trainable parameter α to
learn a loss function that best suits the data and the learning
task, so that it does not get impacted by outliers or noisy
samples. Equation 1 gives the optimisation function to be
minimised.

∑
j

|α − 2|
α

©­­­­­«

(
∥y j−σ (o j )∥1

c

)2
|α − 2| + 1



α
2

− 1

ª®®®®®¬
(1)

• Expectation Losses: Expectation losses are calculated be-
tween the one-hot encoding of the label and the prediction
probabilities [28]. ℓ1 expectation loss in Equation 2 min-
imises the ℓ1-norm of the misclassification probability while
the ℓ2 expectation loss, given in Equation 3, minimises the
ℓ2-norm. This is in contrast to the cross-entropy loss which
aims to maximise the probability of correct labelling.∑

j
∥y − σ (o)∥1 (2)∑

j
∥y − σ (o)∥22 (3)

• Higher-Order Hinge Losses: Squared and Cube Hinge Loss
described by Equation 4 and 5 respectively have been shown
to report faster convergence and better performance than
cross-entropy loss [28]. Higher-order hinge losses tend to
penalise misclassified examples more severely. Margin-based
losses have also previously outperformed other loss families
in terms of generalisation ability. This is attributed to the
implicit regularisation in margin losses.∑

j
max

(
0, 12 − ŷ j · σ (oj )

)2
(4)

∑
j
max

(
0, 12 − ŷ j · σ (oj )

)3
(5)

4.4 Evaluating Robustness
We briefly compared several interpretations of robustness in liter-
ature in terms of boundary smoothness, optimisation landscape
smoothness, and robustness to adversarial inputs. However, at a
more application-oriented level, robustness in user experience can
be defined and perceived as an application or service’s reliabil-
ity of reproducing the same result under different individuals and
conditions. Our dataset divides the classes further into per-user
basis, as well as under varying situations. This enables the ability
to partition the data into user-specific and condition-specific divi-
sions for applying a modified k-fold cross-validation resulting in
leave-one-user-out (LOUO) and leave-one-condition-out (LOCO)
cross-validations [44].

For each fold, a model is trained on k − 1 folds and the remaining
fold is used for cross-validation. The payment gesture recognition
setup has three situations for strap tightness and three for body
posture for 24 participants. These cross-validations help to gather
model behaviours extensively for the entire combination of users
and situations. The metrics for all the folds are logged and the mean

metric defines the average model behaviour while the standard
deviation of the metrics justifies the model’s robustness to how an
average model performs for an unseen user or situation not in the
training set. This method of evaluation helps to narrow down the
particular situations or individuals for which the models perform
poorly.

5 RESULTS
We compare the proposed model variations with an extensive test-
bench reflective of real-life scenarios when the model is subject
to deployment. We consider the binary classification task of tilt
and shake gestures for payment authentication. The positive class
for payment consists of both the tilt and shake gestures, while the
negative class contains the everyday gestures and activities from
Table 1 along with the intermediate activities of no significance
(labelled “rest”). This results in a total of 4688 positive inputs and
10045 negative inputs for the 24 participants with each input hav-
ing a sample length of 304. Since the classes are imbalanced, a
weighted random sampler is used. All networks were trained on
a Dell Precision 5820 Ubuntu 20.04 workstation with Intel Xeon
W-2133 (12-core 1.2-3.9GHz) and an NVIDIA TU106 (GeForce RTX
2070).

Accuracy has been used as a standard metric for almost all clas-
sification tasks. But for imbalanced datasets or multiclass problems,
accuracy can be a misleading metric. To address this, we report
metrics — precision, recall, the macro-F1 score, and the balanced
accuracy which take into account these known issues. We consider
both the mean of the metrics and their standard deviations to be
important indicators during our evaluation. We prioritise a high
mean metric value but if two approaches happen to be tied for
the same place then we consider the one with the lower standard
deviation to be the better approach.

For a state-of-the-art baseline classifier, we use the model pro-
posed by L&H [31] for comparison. The L&H model takes a 3-
channel spectrogram as input of dimensions 256 × 48 from the
accelerometer sensor. As mentioned in the previous section, we
change the final layer to output for 2 classes instead of their 25
class for our gesture recognition task.

The L&H dataset is not directly usable on our proposed archi-
tectures. This is because the L&H dataset is provided in the form
of 3-channel spectrograms without the original raw time-series
data. Naive downsampling of their spectrograms for use with our
model would not be representative of real-world testing since spec-
trograms have both temporal and frequency axes which cannot
be scaled independently. Access to the raw time-series data would
have enabled us to generate spectrograms with our parameters
(Section 4.1.2). However, we can infer the parameters they used in
their study and try to simulate their procedure.

We simulate the L&H spectrogram generation process by upsam-
pling our time-series sequences from 100Hz to 4 kHz. We perform a
cubic interpolation of our time-series signal and evaluate the signal
at an effective sampling rate of 4 kHz. We then recreate their steps
for spectrogram generation with an FFT window size of 4096, a
2.998 s sample interpolated at 4 kHz, and a hop size of 168, yield-
ing a 2049 × 48 sized spectrogram. Only the bottom 256 bins are
kept representing frequencies from 0–128Hz at a resolution of
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0.5Hz. We did not have access to the high sampling rate of 4 kHz
for our data collection. Note that due to the property of the Nyquist
sampling rate, it is fundamentally impossible to resample a 100Hz
signal to 4 kHz by the Fourier method [39]. However, we have tried
to circumvent this problem with interpolation. The spectrograms
obtained with this method were visually consistent with those in
the original study as can be seen in Figure 6.

5.1 User-independent experiments
Following the conventional approach for training a deep learning
classifier for unpartitioned data, we pool together all participant
(or user) data and collapse all levels of situations (strap tightness,
body posture) under their respective superclasses of payment and
rejection. The resulting singular dataset contains samples from
all users and all situations. We randomly shuffle the dataset and
split it into 75% training, 12.5% validation, and 12.5% testing. This
experiment aims to demonstrate the model’s capability to classify
new samples from a user who is already present in the training
data. Table 2 shows the results of the experiment for the different
model architectures.

5.2 Leave-one-user-out experiments
A classifier, after deployment, seldom is retrained on fresh data. For
a classification task involving participants, it is not always possible
to train on a sample size representative of the target population.
Hence, ensuring robustness across users becomes paramount to
mitigating variability that may arise due to individual differences
in performing gestures. To demonstrate how a model (pretrained
on a set of users) performs when used by a new unseen user (not
present in the training data), we perform the leave-one-user-out
cross-validation. For each cross-validation fold, data from one user
is held out for testing and the remaining participants are used for
training the classifier. The modality fusion network performs the
best on all fronts for an unseen user as shown in Table 3 with the
extra information it gets from both the temporal and frequency
domains. The effect of the other loss functions can be seen clearly
in this experiment, with ℓ2 expectation loss and the robust adaptive
loss functions improving the baseline CCELoss, with higher metric
scores across most users. Robust adaptive loss learns the optimisa-
tion surface to minimise the effect of outliers, which would explain
the reduction in variance compared to that of the CCELoss.

5.3 Situational robustness experiments
We design an experiment similar to the leave-one-user-out where
the test dataset for the left-out user is split into multiple constituent
situations. For the payment gesture, those situations are for watch
tightness (tight, loose, free), and body stature (sit, stand, walk). The
pre-trained network from the leave-one-user-out experiment is then
evaluated against these split datasets and the results are totalled
across all user folds for these six situations. Table 4 shows the
modality fusion model is in the lead again with higher mean metrics
and smaller standard deviations inmost situations. Our spectrogram
model ranks next at similar but marginally better performance
to the baseline L&H. Note that only the CCELoss trained time-
series-based model is shown in Table 4 because CCELoss performed

the best for situational robustness tests out of all the other loss
functions.

5.4 Leave-one-condition-out experiments
Finally, we study the scenario of having a missing situation in the
training set. To demonstrate the robustness of the models against
unseen conditions, we design a leave-group-out experiment for
the different situations in the dataset. We refer to this as the leave-
condition-out experiment. For the payment scenario, we have six
situations but they are not fully independent. The first level of the
variation in the payment dataset is the watch strap tightness while
the second level is the body posture. However, variation in watch
tightness and body posture occurs together. So, the experiment is
split into two parts for a total of six leave-condition-out folds as
follows.

5.4.1 Watch tightness. The dataset has the body posture situations
collapsed and merged giving a three-situation dataset of watch
strap tight, loose, and free. A leave-group-out cross-validation is
performed on these three situations, e.g., train on tight and loose
and validate on free. This part yields three folds for the experiment.

5.4.2 Body posture. Similarly, the watch strap tightness situations
are collapsedwhich gives a dataset for sitting, standing, andwalking.
This, again, yields three leave-group-out folds for the experiment.
As shown in Table 5, the modality fusion model outperforms all the
other approaches.

Augmentation strategies and other loss functions tested on the
following experiments did not offer significant improvements over
the already mentioned results so they have been left out in the final
evaluation.

5.5 Model comparison
In Table 6, we compare the model sizes, their footprint, and their
number of parameters to gauge the deployability of these archi-
tectures on the low-end hardware of wearable devices. It can be
seen that our proposed models for the specified modalities not only
are highly accurate, as demonstrated in the previous experiments,
but also have minimal computational impact, which is desirable for
deployment on smartwatches and resource-constrained devices.

6 DISCUSSION
We have shown that robust and deployable DL models for gesture
sensing on low-resource devices are within reach, assuming an ap-
propriate approach towards data collection and neural architecture
design. In particular, we suggest a variation of an obstacle-course-
like environment for in-lab data collection to encourage diversified
data to train robust classifiers and to be able to quantify robustness
using suitable stratification methods. We suggest variations of com-
mon neural network architectures for gesture recognition that lead
to highly efficient models.

Our model achieves an upwards of 98% across challenging recog-
nition tasks, owing to both the data collection method as well as
the network design, each contributing towards its robustness to
situational and individual variations. Our collected dataset spans
a multitude of conditions that occur in our everyday lives, guar-
anteeing a rich dataset distribution. On the other hand, the low
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(a) Activity spectrogram from the
L&H dataset [31].

(b) Spectrogram from 4kHz inter-
polated gesture.

(c) 32 × 16 spectrogram from 100Hz signal for our
2DConv-based network architecture.

Figure 6: Accelerometer spectrograms for the L&H baselines and for our 2DConv-based architecture. (b) and (c) were generated
from the same gesture signal. The artificially generated spectrograms using interpolation to 4kHz in (b) have a visually similar
looking frequency distributions as in the original 4 kHz spectrograms from the L&Hdataset. Byusing the 100Hz signalwithout
interpolation, only smaller and relatively low-resolution spectrograms can be generated as shown in (c) but they provide
sufficient frequency and temporal features.

Table 2: Binary classification performance on the test set for payment gesture detection on the user-independent experiments
(averaged over 5 independent training runs).

Model Architecture Accuracy Balanced Accuracy Macro-F1 Precision Recall
Baseline L&H (nclass = 2) 0.994 ± 0.002 0.993 ± 0.002 0.993 ± 0.002 0.992 ± 0.003 0.993 ± 0.001

Time-series (1DConv, CCELoss) 0.992 ± 0.001 0.991 ± 0.001 0.990 ± 0.001 0.991 ± 0.001 0.990 ± 0.002
Time-series (1DConv, ℓ1 Expectation) 0.987 ± 0.003 0.984 ± 0.003 0.984 ± 0.003 0.983 ± 0.004 0.985 ± 0.002
Time-series (1DConv, ℓ2 Expectation) 0.990 ± 0.003 0.988 ± 0.004 0.977 ± 0.002 0.989 ± 0.002 0.999 ± 0.006
Time-series (1DConv, Squared Hinge) 0.991 ± 0.002 0.990 ± 0.002 0.990 ± 0.002 0.990 ± 0.002 0.989 ± 0.002
Time-series (1DConv, Cube Hinge) 0.991 ± 0.002 0.990 ± 0.002 0.988 ± 0.004 0.990 ± 0.001 0.990 ± 0.003
Time-series (1DConv, Robust Adaptive) 0.978 ± 0.007 0.974 ± 0.008 0.974 ± 0.012 0.978 ± 0.006 0.974 ± 0.009

Spectrogram (2DConv) 0.992 ± 0.001 0.991 ± 0.001 0.991 ± 0.001 0.990 ± 0.002 0.992 ± 0.001

Modality fusion (Time-series 0.995 ± 0.001 0.994 ± 0.001 0.994 ± 0.001 0.994 ± 0.001 0.995 ± 0.001
+ Spectrogram)

Table 3: Classification performance on unseen users for payment gesture detection in the leave-user-out experiments (nfold =
24).

Model Architecture Accuracy Balanced Accuracy Macro-F1 Precision Recall
Baseline L&H (nclass = 2) 0.979 ± 0.016 0.976 ± 0.018 0.975 ± 0.019 0.972 ± 0.024 0.980 ± 0.014

Time-series (1DConv, CCELoss) 0.976 ± 0.018 0.974 ± 0.018 0.973 ± 0.019 0.973 ± 0.021 0.974 ± 0.019
Time-series (1DConv, ℓ1 Expectation) 0.974 ± 0.019 0.969 ± 0.021 0.969 ± 0.023 0.965 ± 0.023 0.975 ± 0.016
Time-series (1DConv, ℓ2 Expectation) 0.981 ± 0.014 0.978 ± 0.015 0.977 ± 0.015 0.976 ± 0.018 0.979 ± 0.013
Time-series (1DConv, Squared Hinge) 0.975 ± 0.022 0.972 ± 0.023 0.971 ± 0.024 0.970 ± 0.024 0.974 ± 0.023
Time-series (1DConv, Cube Hinge) 0.975 ± 0.019 0.971 ± 0.022 0.971 ± 0.023 0.971 ± 0.021 0.971 ± 0.025
Time-series (1DConv, Robust Adaptive) 0.940 ± 0.045 0.934 ± 0.048 0.927 ± 0.058 0.927 ± 0.063 0.941 ± 0.042

Spectrogram (2DConv) 0.976 ± 0.022 0.973 ± 0.023 0.972 ± 0.025 0.969 ± 0.024 0.977 ± 0.024

Modality fusion (Time-series 0.982 ± 0.016 0.979 ± 0.018 0.979 ± 0.019 0.977 ± 0.024 0.982 ± 0.016
+ Spectrogram)

complexity of the DL model we propose ensures that its general-
isability is not harmed due to the common problem of overfitting,
which is particularly pressing on smaller and low-dimensional
datasets. Further, we exhibit the impact of supplementing the input
with correlated features, thereby increasing the performance of the
classifier.

The proposed model is shown to be almost two orders of magni-
tude less complex than a previous state-of-the-art approach while
ensuring no loss in classification accuracy. This opens the door for
this model to be readily deployable without the need for further
modifications or fine-tuning such as model pruning and compres-
sion. The small size and minimal preprocessing requirements of
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Table 4: Comparison of the classification performance of the models for specific situations for an unseen user. LOUO evalua-
tion on conditions taken individually for situational robustness experiments (nfold = 24).

Model Architecture Metric Tight strap Loose strap Free condition Sitting Standing Walking
Baseline L&H (nclass = 2) Accuracy 0.989 ± 0.013 0.985 ± 0.015 0.973 ± 0.028 0.974 ± 0.028 0.980 ± 0.021 0.986 ± 0.013

Balanced Acc. 0.982 ± 0.019 0.976 ± 0.022 0.956 ± 0.038 0.965 ± 0.031 0.972 ± 0.023 0.980 ± 0.018
Macro-F1 0.981 ± 0.021 0.976 ± 0.023 0.953 ± 0.045 0.963 ± 0.034 0.971 ± 0.025 0.979 ± 0.019

Time-series (1DConv, Accuracy 0.973 ± 0.019 0.980 ± 0.022 0.976 ± 0.021 0.980 ± 0.013 0.987 ± 0.011 0.985 ± 0.011
CCELoss) Balanced Acc. 0.957 ± 0.028 0.969 ± 0.034 0.967 ± 0.021 0.971 ± 0.019 0.980 ± 0.016 0.978 ± 0.016

Macro-F1 0.955 ± 0.032 0.968 ± 0.036 0.965 ± 0.023 0.971 ± 0.020 0.979 ± 0.017 0.978 ± 0.017

Spectrogram (2DConv) Accuracy 0.990 ± 0.013 0.985 ± 0.018 0.972 ± 0.029 0.978 ± 0.022 0.982 ± 0.017 0.987 ± 0.015
Balanced Acc. 0.984 ± 0.020 0.976 ± 0.027 0.956 ± 0.042 0.970 ± 0.026 0.975 ± 0.022 0.980 ± 0.021
Macro-F1 0.983 ± 0.022 0.975 ± 0.029 0.951 ± 0.050 0.968 ± 0.029 0.974 ± 0.024 0.979 ± 0.023

Modality fusion (Time Accuracy 0.994 ± 0.006 0.989 ± 0.009 0.976 ± 0.033 0.981 ± 0.025 0.987 ± 0.023 0.991 ± 0.007
-series + Spectrogram) Balanced Acc. 0.990 ± 0.010 0.982 ± 0.014 0.963 ± 0.042 0.974 ± 0.026 0.982 ± 0.022 0.987 ± 0.011

Macro-F1 0.990 ± 0.011 0.982 ± 0.014 0.958 ± 0.053 0.973 ± 0.029 0.981 ± 0.025 0.986 ± 0.011

Table 5: All-user classification performance on unseen situations in the leave-condition-out experiments (nfold = 6).

Model Architecture Accuracy Balanced Accuracy Macro-F1 Precision Recall
Baseline L&H (nclass = 2) 0.991 ± 0.011 0.985 ± 0.019 0.984 ± 0.020 0.976 ± 0.030 0.994 ± 0.008

Time-series (1DConv, CCELoss) 0.989 ± 0.010 0.982 ± 0.017 0.981 ± 0.018 0.976 ± 0.029 0.987 ± 0.007
Time-series (1DConv, ℓ1 Expectation) 0.985 ± 0.014 0.975 ± 0.024 0.974 ± 0.026 0.969 ± 0.040 0.981 ± 0.008
Time-series (1DConv, ℓ2 Expectation) 0.991 ± 0.010 0.985 ± 0.017 0.984 ± 0.019 0.979 ± 0.029 0.991 ± 0.006
Time-series (1DConv, Squared Hinge) 0.988 ± 0.008 0.981 ± 0.013 0.981 ± 0.014 0.974 ± 0.021 0.988 ± 0.007
Time-series (1DConv, Cube Hinge) 0.987 ± 0.009 0.979 ± 0.015 0.978 ± 0.016 0.974 ± 0.024 0.983 ± 0.024
Time-series (1DConv, Robust Adaptive) 0.956 ± 0.027 0.938 ± 0.033 0.934 ± 0.037 0.946 ± 0.040 0.931 ± 0.044

Spectrogram (2DConv) 0.990 ± 0.014 0.983 ± 0.024 0.982 ± 0.027 0.975 ± 0.039 0.991 ± 0.010

Modality fusion (Time-series 0.992 ± 0.011 0.987 ± 0.018 0.986 ± 0.020 0.981 ± 0.030 0.992 ± 0.030
+ Spectrogram)

Table 6: Comparison of the properties of network architectures and their inputs.

Model Architecture Sensor sample Preprocessing Input Number of Size Training Inference
rate (Hz) MFLOPs [29] dimensions parameters (MB) time (s) MFLOPs

Baseline L&H (nclass = 2) 4000 12.38 [3, 256, 8] 23,667,062 91 825 1895.28

Time-series (1DConv) 100 – [9, 304] 51,394 0.2 130 31.16

Spectrogram (2DConv) 100 0.02 [9, 32, 16] 308,802 1.2 178 44.54

Modality fusion (Time-series 100 0.02 [9, 304], 360,194 1.2 197 59.88
+ Spectrogram) [9, 32, 16]

our model together offer huge savings in terms of computational
resources, but more importantly in battery life for use in wearable
devices. The models make use of the OS-exposed APIs for the sensor
data which makes it developer-friendly, while the previous state-
of-the-art required low-level kernel modifications to obtain access
to a higher sampling rate for classification resulting in more power
consumption. This is a positive step as it allows the application
developers the ability to integrate these models in their applications
without the worry of having to do device-specific modifications.
The significant size improvement also enables the recogniser to be
able to run entirely “offline” on, for example, smartwatches elimi-
nating the need for distributed recognition on both smartphones
and smartwatches.

Our work, along the lines of applied research, provides a mini-
mum viable solution for gesture detection. We see several exciting
opportunities to improve and build upon our research. First, we
tackled the task of binary classification, so the next step would
be to focus on extending it to the multiclass problem. The abil-
ity of our method to be robust and resource-efficient prospects its
use as a one-vs-all (OVA) classifier unit which can then be easily
extended for multiclass classification. Second, the use of multiple
onboard sensors could potentially improve robustness further. Our
modality-fusion approach can benefit from multi-modal input, by
utilising multiple sensing sources. To this end, we have performed
the actual deployment on the wearable itself, avoiding previous
workarounds that relied on a paired smartphone to perform the
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Figure 7: Confusion matrices for the binary classification experiments for the modality fusion network architecture. If there
are multiple folds in the experiment, then the matrices are averaged across all folds to generate a “net” confusion matrix.

sensing computations. Another interesting aspect to address in-
dividual robustness could be the on-device personalisation of the
classifier for the intended owner of the device. Lastly, exploring
the feasibility of transfer learning with our CNN-based architec-
tures could substantially increase the reach of the approach in other
domains such as instrumentation and controls.

7 CONCLUSION
This paper has made two contributions toward the engineering of
gesture recognisers for challenging conditions. First, we show the
advantage of data collection with intentional variability to train
more robust recognisers. Second, we used this dataset to train CNN-
based architectures which perform at par with the state-of-the-art
models on our dataset. We further demonstrate that a small enough
architecture can accurately recognise the target gestures under
individual variations as well as situational variations and reliably
reject false positives. We believe that for practical deployment, the
pros of having a small model outweighs that of a larger network by
beingmore power-efficient as well as space-efficient, making it ideal
for deployment in wearable devices. We also explored the possible

effects of the choice of loss functions on the model training process
as a first step towards its impact on classification robustness.

Our future work aims towards the direction of using the time-
series model as an OVA unit for extending our approach to multi-
class classification, the effects of data augmentations of the different
modalities on recognition robustness, and artificial data synthesis
to compensate for limited participant’s training data.

OPEN SCIENCE
The gesture dataset for the 24 participants, along with ad-
ditional data for steering activity is available at the URL
https://userinterfaces.aalto.fi/robustgestures. The
dataset can be either used directly with the raw CSV files or
loaded from the preprocessed Pandas dataframes included for
convenience.
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SOCIETAL IMPACT
Improvements in on-device sensing have extended the uses of mo-
bile devices, enabling people to better stay connected, enhancing
safety, and helping them navigate. Mobile sensing has also been a
driver of digital transformation at large, for example supporting
more active life via services like health monitoring and features
such as fall detection. At the same time, more robust discriminative
ability, like the one presented here, could be used for biometric
identification; that is, for determining the identity of the person
performing the gestures. This may have a societal impact that is
either positive or negative. On the one hand, the system can ensure
that it is the actual owner of the device the one performing the
gestures, thereby a positive impact. On the other hand, the collected
gesture data could be used to profile the user, thereby a negative im-
pact. Finally, methods that can significantly decrease the model size,
like one presented here, should not be neglected, since even small
improvements will contribute to sustainability especially when we
have to consider that the number of devices that are in use and
need replacement regularly is very large and increasing.
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