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A B S T R A C T   

Neonatal seizure detection algorithms (SDA) are approaching the benchmark of human expert annotation. 
Measures of algorithm generalizability and non-inferiority as well as measures of clinical efficacy are needed to 
assess the full scope of neonatal SDA performance. We validated our neonatal SDA on an independent data set of 
28 neonates. Generalizability was tested by comparing the performance of the original training set (cross-vali-
dation) to its performance on the validation set. Non-inferiority was tested by assessing inter-observer agreement 
between combinations of SDA and two human expert annotations. Clinical efficacy was tested by comparing how 
the SDA and human experts quantified seizure burden and identified clinically significant periods of seizure 
activity in the EEG. Algorithm performance was consistent between training and validation sets with no sig-
nificant worsening in AUC (p > 0.05, n = 28). SDA output was inferior to the annotation of the human expert, 
however, re-training with an increased diversity of data resulted in non-inferior performance (Δκ = 0.077, 95% 
CI: − 0.002-0.232, n = 18). The SDA assessment of seizure burden had an accuracy ranging from 89 to 93%, and 
87% for identifying periods of clinical interest. The proposed SDA is approaching human equivalence and 
provides a clinically relevant interpretation of the EEG.   

1. Introduction 

Clinical suspicion of neonatal seizures or an identified risk of seizures 
due to e.g. hypoxic–ischaemic encephalopathy (HIE), meningitis or 
stroke are key indications for electroencephalography (EEG) monitoring 
in neonatal intensive care units (NICU) [1]. To guide interventions and 
inform prognosis, reliable and accurate detection of seizures is essential 
[2,3]. Recent guidelines insist that neonatal seizures must have an EEG 
correlate as clinical recognition of seizures is confounded by a range of 
factors [4]. Neonatal seizure burden (the total accumulated duration of 
seizures) is associated with poor neurodevelopmental outcome [5]. As 
such, clinical practice aims to treat neonatal seizures with an array of 
anti-seizure medications to reduce the seizure burden over the first few 
days of life. As clinical experts are often not available on demand in the 
NICU, automated decision support systems to assist rapid clinical deci-
sion making are needed to reduce seizure burden as much as possible. 
Neonatal EEG monitoring generates a considerable amount of data and 

its interpretation is a challenge that has led to the development of 
several automated seizure detection algorithms (SDA) [6–19]. 

While the performance of many of these algorithms has thoroughly 
been assessed within the training data, few of them have been validated 
on an independent data set [9,18,20–23]. This step is essential as it 
ensures that SDAs built on relatively small data sets of neonatal EEG 
generalize to the larger population of neonatal EEG recordings. While 
generalizability is important, it alone does not suffice to define SDA 
performance. An SDA must also be accurate and clinically useful. The 
complete assessment of SDAs, therefore, must address four important 
questions: 1) does the SDA performance generalize? 2) does the SDA 
generate an annotation that is non-inferior to the human expert, taking 
into account ambiguity in the annotations of human experts? 3) does the 
annotation of the SDA accurately reflect the seizure burden experienced 
by a neonate over a clinically relevant period of time (e.g. birth to 72–96 
h post-natal age)? and 4) will the implementation of the SDA improve 
clinical practice? 
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The SDA developed by Temko et al. (2011) has the most compre-
hensive assessment to date [24]. Promising early performance was 
validated on an independent data set and the annotation of the SDA was 
shown to provide an accurate reflection of seizure burden [23]. 
Non-inferiority of the SDA annotation to the annotation of the human 
expert was, however, not comprehensively answered and the perfor-
mance of the SDA when clinically trialled was underwhelming [25]. 
Recent advances in SDAs and subsequent improvements in accuracy, 
hold out hope that modern SDAs will soon achieve a level of perfor-
mance that will, ultimately, improve clinical practice. 

In this paper we developed a novel process for validating a neonatal 
SDA by 1) assessing the generalizability of our previously developed 
SDA on an unseen validation data set; 2) determining if the SDA gen-
erates an annotation that is non-inferior to the human expert; and 3) 
determining if the annotation of the SDA accurately estimates the 
seizure burden on a neonate. In addition, we proposed several modifi-
cations to the SDA to improve its performance on unseen data. We also 
compared the performance of our SDA to a state-of-the-art SDA by 
Temko et al. (2011). While we do not have access to the implementation 
of the SDA of Temko et al. (2011), we will use our implementation of 
their feature set, trained on our data, as a benchmark. 

2. Materials and methods 

This study utilizes two cohorts of EEG recordings. The first data set 
(training data set) is used to develop and train the neonatal SDA. The 
second data set (validation data set) is used to validate the SDA. To test 
the ability of the SDA to generalize to unseen data, several performance 
measures evaluating differences between the SDA and human annota-
tion of the EEG, were compared between the training and validation 
data sets. The smaller the difference in these performance measures the 
more generalized the SDA. The non-inferiority of the SDA annotation 
compared to the human annotation of the validation set was examined 
using measures of inter-observer agreement (IOA). Clinically relevant 
measures of seizure burden were compared between the SDA and human 
expert annotations to assess the clinical efficacy of the algorithm. 
Finally, the validation data set was split in two, with the first third (n =
10) added to the training set and the latter two thirds (n = 18) saved as a 
final test set. This process helps determining if more diverse training 
data allows improving SDA generalizability or non-inferiority. 

2.1. EEG acquisition and annotation 

Training data set: This data set consists of EEG recordings from a 
cohort of 79 neonates with a variety of aetiologies. These neonates were 
recorded with a short duration paradigm and a whole scalp, 10–20 EEG 
system between 2010 and 2014. The EEG was recorded using a Nicolet 
One EEG monitor (Nicolet One, Natus Medical Incorporated, USA) with 
19 scalp electrodes placed on positions Fp1, Fp2, F3, F4, F7, F8, T3, T3, 
C3, C4, T5, T6, P3, P4, O1, O2, Fz, Cz, Pz with sampling rate of 256Hz. 
The median duration of each recording was 74 min (IQR: 64–96 min). A 
bipolar derivation (double banana) was annotated by three clinical ex-
perts and used to train the SDA. The data set contains 460 seizures from 
39 neonates (in consensus). 

When training the SDA, it is noted that there is a preponderance of 
data in the non-seizure class compared to seizure class (458796 non- 
seizure epochs vs 20373 seizure epochs [16]). Class imbalance in the 
databases has been shown to be a problem when constructing adult 
SDAs [26]. However, this is not as significant a problem in neonatal 
SDAs, particularly SVM based methods, where seizures are more prev-
alent and the process of annotation is more concerned with false posi-
tives (seizures) than false negatives [19,27]. More details on the data set 
can be found in Ref. [28]. 

Validation data set: This data set consists of EEG recordings from a 
cohort of 28 neonates with stroke or HIE (Table 1). This validation set is 
a subset of the cohort first studied in Ref. [29]. 

These neonates were recorded with long duration brain monitoring 
between 2011 and 2016. The signal was acquired at 250Hz using a 
Nicolet One EEG monitor (Nicolet One, Natus Medical Incorporated, 
USA) and four needle electrodes placed on positions F3, F4, P3, P4. The 
total length of all recordings was 86 days 16 h (median 77 h 50min, IQR: 
48 h 20min - 94 h 35min). A three channel, bipolar derivation (F3–P3, 
F4–P4, P3–P4) was annotated by two clinical experts (PN, SV: both 
employed at Helsinki University Hospital) and processed by the SDA. 
The start and stop times of each seizure were noted. For annotations, the 
internationally approved neonatal seizure definition by Clancy et al. was 
used [30]. Clinical experts were blinded to each others annotations. 

The training and validation sets were both collected in the neonatal 
intensive care unit (NICU) of the Children’s Hospital, Helsinki Univer-
sity Hospital, Finland. The EEG was recorded as standard of care in our 
NICU. The use of the training EEG recordings were approved by the 
Ethics Committee of the Helsinki University Children’s Hospital, 
Finland. The Institutional Research Review Board at Helsinki Children’s 
Hospital approved the extraction and collation of the validation data set 
from hospital records and waived consent due to the study’s retro-
spective and observational nature. 

2.2. SDA 

This SDA is based on a ’bag of features’ calculated on 16s epochs of 
EEG. The combination of features to form a decision statistic was per-
formed with a support vector machine (SVM) [16]. We used 22 summary 
EEG measures/features to represent a 16 s epoch of EEG. One additional 
feature to the previously published algorithm was maximum amplitude, 
which we used to discard epochs with high amplitude. To improve the 
robustness of the SDA, we incorporated an outlier detection system into 
our SDA. This was due to the relatively small size of our database and the 
expected difference in EEG quality between high density, short duration 
training data and low density, long duration validation data. Therefore 
we used a modified version of our previous system that was first pro-
posed in Refs. [16,31]. Post-processing of the initial SDA output 
included eliminating outliers (we also eliminated EEG epochs detected 
as ’bad electrode’ by the EEG monitor), applying a temporal moving 
average to each channel, taking the maximum value across channels and 
thresholding to form a binary (seizure/no seizure) decision. The binary 
decision was then extended in time using a collar. The parameters for 
outlier determination and seizure detection were optimized on training 
data by maximizing the agreement between the SDA and human 
annotation. 

In summary, the algorithm works as follows. Neonatal EEG is first 
pre-processed before features are extracted from 16 s epochs. The fea-
tures are combined by the SVM into a decision statistic which is then 
post-processed (median filter in time, maximum across channels and 
collaring) to form the final output of seizure and non-seizure. The post- 
processing steps, feature calculation, selection, and post-processing 
steps are explained in detail in the original SDA publication [16]. The 
flowchart of the SDA is presented in Fig. 1. 

Table 1 
Table of patient characteristics for the validation data set (n = 28). Data 
shown as n (%), or mean (standard deviation).  

Patient characteristics (n = 28)  

Gestation age (weeks) 39.2(±2) 
Birth weight (g) 3300(±550) 
pH 7.2(±0.11) 

Etiologies  

Stroke 25 (89%) 
Hypoxic-ischemic encephalopathy 3 (11%)  
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2.2.1. Outlier detection 
Outlier detection identifies periods of the EEG recording that fall 

outside its experience; in our case the span of the feature set calculated 
on the training data. These methods are important to incorporate into 
clinical decision algorithms as the full variety of EEG patterns may never 
be captured in training data sets and when the detection of the rarer, 
clinically important class (seizure) is critical. The implementation of 
outlier detection, therefore, ensures that unusual EEG patterns (typically 
associated with artefact or rare neurological conditions) which fall 
outside the span of training data are dealt with differently. For our SDA, 
we adhere to the principle of primum non nocere and annotate ’no 
seizure’ when an outlier is detected. 

The effect of outlier detection on seizure annotation is shown in 
Fig. 2. The example is based on a 2 feature SVM. In 2A, the original SVM 
shows the separation between the two classes, ’seizure’ and ’no seizure’. 
In 2B the black outlier boundary is included and is based on distances of 
the 3 nearest neighbours within the training data. Any data falling 
outside the decision boundary is labelled as ’no seizure’ resulting in a 
smaller decision space for ’seizure’. 

As not all features in our original feature set are best suited for outlier 
detection, we use both general feature space distances, k-nearest 
neighbours (kNN) search, and feature specific (EEG amplitude) dis-
tances. If an incoming data point is either greater than a threshold 
Euclidean distance from the k-nearest neighbours in the training data set 
or greater than a threshold EEG amplitude, then an outlier is detected 
and no seizure annotated. 

We used the knnsearch function in Matlab [32], which outputs 
ascending Euclidean distances of an incoming data point to an array of 
training data points. In the case of our SVM-based detector, this data 
point is represented by a vector of features computed on a single epoch 
of EEG. The number of distances measured, that is the number of 
neighbours, is defined by parameter k. 

We complemented our thresholding of feature space distances with a 

stricter, separate threshold on EEG amplitude. The number of neigh-
bours, distance threshold for the kNN search, EEG amplitude threshold, 
decision collar and decision threshold were, therefore, optimized on the 
training data set. 

2.3. Analysis of algorithm performance 

The most commonly used measure in SDA performance assessment is 
the area under the curve of the receiver operator characteristics (AUC), a 
second by second comparison of the algorithm annotation to the human 
annotation. It combines two important measures, true positive rate (or 
sensitivity) and false detection rate (or specificity) on multiple detection 
thresholds. These measures can be defined with the numbers of true 
positives/seizure (TP), true negatives/non-seizure (TN), false positives 
(FP) and false negatives (FN). Sensitivity is defined by TP/(TP + FN) and 
specificity by TN/(TN + FP). In addition to these temporal measures we 
assessed seizure detection rate (SDR), that is the number of correctly 
detected seizure events, and false detections per hour (FD/h), which is 
the number of falsely detected seizure events divided by the duration of 
the recording in hours. These measures can be supplemented with 
measures such as the Kappa family of statistics; we use Cohen’s kappa as 
we only compare between two annotations at a time [33]. 

We calculated performance measures on individual neonates and 
also on a single, concatenated, consensus of human expert annotation 
for comparison. As each data set contained neonates with no seizure, a 
concatenated annotation avoids complications of per neonate assess-
ments (sensitivity/AUC and SDR cannot be calculated on neonates who 
do not have seizure). It also provides a more useful assessment of event 
based measures as several recordings in the training data set had limited 
events on relatively short recordings resulting in poor quantization per 
neonate. 

Fig. 1. Flowchart of the algorithm with outlier rejection. The first row presents the structure of the original SDA. In this validation study, the masking of outliers and 
bad electrodes (dotted box on the second row) was included for robustness on new data. The final evaluation of the SDA provides measures for generalizability, non- 
inferiority to human annotation and assessment of clinical relevance. 

Fig. 2. The effect of outlier detection on SDA 
annotation. The blue dots denote most of the 
training samples in the database. A) The 
original SVM based SDA. The thick red line is 
the SVM decision boundary for determining 
‘seizure’ or ‘no seizure’ and the yellow circles 
represent incoming, unseen data (potential 
false detections). B) SVM based SDA with 
outlier detection. The black boundary is 
based on kNN distances of the training data; 
the updated decision boundary reduces the 
size of the feature space assigned to ’seizure’.   
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2.3.1. Implementation of outlier detection 
The cross-validation results of the original SDA and SDA with outlier 

detection were compared using statistical testing. Differences between 
AUC, sensitivity and specificity calculated on a per neonate basis were 
tested using Wilcoxon signed rank test (for paired data) due to non- 
normal distribution of these values across training and validation co-
horts. AUC and sensitivity can only be calculated on neonates with 
seizure, while specificity was calculated on all neonates in the training 
and validation cohorts. All tests were two-sided and the level of signif-
icance was 0.05. 

Analysis of concatenated recordings was also performed using 
bootstrapped statistics. In this case, a concatenated annotation from 
each data set was generated using a random sampling of neonate an-
notations (sampling with replacement). The difference between per-
formance measures were calculated on each re-sampled annotation. The 
difference in performance measures was calculated for 1000 re- 
samplings and used to estimate a 95% confidence interval of differ-
ences. If the difference spanned zero, there was no significant difference 
in performance between data sets. This statistical method was used to 
compare performance where applicable (we cannot compare boot-
strapped distributions between different data sets). 

As outlier parameters were optimized using IOA between the algo-
rithm and human experts, we used Cohen’s kappa as the primary mea-
sure of performance differences between the SDA, with and without, 
outlier detection. 

2.3.2. Generalizability of the SDA 
We measured generalization by comparing performance measures 

between cross-validation assessments of the training dataset and the 
validation dataset. If there was no statistically significant difference in 
these measures between the training and validation sets then we claim 
that the SDA generalizes to a larger population of neonates. The primary 
measure of generalizability was statistical testing of AUC. 

Differences between AUC, sensitivity and specificity calculated on a 
per neonate basis were tested similarly to the previous section, with the 
exception that a Mann-Whitney U tests (for unpaired data) was used. If 
the difference in AUCs is not significant, the SDA generalizes on unseen 
data. 

2.3.3. Non-inferiority to human annotation 
The limitation of AUC as a measure of performance is that it does not 

inherently determine if the SDA annotation of the EEG is ’good enough’. 
This is particularly valid in instances where there is ambiguity in the 
’gold standard’ used to calculate the AUC such as the manual annotation 
of the EEG by human experts. We, therefore, determined the non- 
inferiority of the SDA to the annotations of the human expert using 
bootstrapped measures of IOA. Each expert and the SDA were compared 
to each other using Cohen’s kappa statistic. The difference between the 
kappa of SDA/human expert pairs and human/human pairs was esti-
mated using a bootstrap (1000 iterations). If the difference spanned zero 
then the SDA/human kappa was assumed to be equivalent/non-inferior 
to the human/human kappa. This analysis uses the complete annotation 
of each human expert and avoids the requirement of consensus 
annotations. 

We also investigated SDA errors at the annotation and feature level. 
At the annotation level, we compared general summary measures of the 
annotation such as the total seizure burden, seizure number and seizure 
duration. At the feature level, we determined if some features were 
systematically different between the training and validation data sets. 

2.3.4. Clinical efficacy 
While non-inferiority provides an effective means to compare the 

annotation of an SDA to the annotation of human experts, it does not 
evaluate the practical clinical impact of any discrepancies. To this end, 

we determined the clinical efficacy of SDA by comparing clinically 
relevant interpretations of SDA and human annotations of the EEG. The 
first set of measures compares a continuous assessment of seizure 
burden. This measure is considered clinically important as it provides a 
clear quantitative target for treatment. 

While some clinicians are aggressively treating any amount of sei-
zures with a variety of anti-epileptic medications [1,34,35], there is also 
substantial variance among clinicians with respect to the level of seizure 
burden that is considered to prompt treatment. We compared hourly 
assessments of seizure burden using the correlation coefficient and a 
diagnostic binary decision of periods of clinical targets and periods of no 
clinical target in an EEG recording. We define a clinical target as a 2-h 
period with two 30s seizures or 3 min of accumulated seizure [4]. We 
then compare the number of clinical targets defined by the human 
annotation to the number defined by SDA annotation using sensitivity 
and specificity. 

We also evaluate the prognostic utility of the SDA. Recent work has 
shown that high total seizure burden (> 45 min) and high maximum 
hourly seizure burden (> 13 min per hour) in a long duration recording 
of EEG are associated with poor neurodevelopmental outcome in neo-
nates with HIE [5]. Note, that a high hourly seizure burden is typically 
used to define status epilepticus (>30 min per hour). We use 13 min per 
hour as an alternate definition of high seizure burden due to its associ-
ation with poor developmental outcome [5]. We compare the SDA 
annotation to the human consensus annotation for the prediction of high 
or low seizure burden in each neonate using measures of sensitivity and 
specificity. We also show how differences in human interpretations 
affect these measures by averaging sensitivity and specificity between 
experts, using expert 1 as the ’gold standard’ and using expert 2 as the 
’gold standard’. 

2.4. Re-training 

Finally, we investigated the incorporation of additional data from the 
validation set into the training set on SDA performance. We extracted 
seizure and non-seizure epochs from the first 10 neonates in the vali-
dation data set. The epochs for each class were randomly sampled from 
consensus segments, so that the size of this new training set was com-
parable to the size of the original training set. The non-seizure epochs 
were randomly sampled from the second half of the recordings only, as 
the majority of false detections occurred in this time period (see Re-
sults). To increase diversity in the training data set, not the total number 
of samples, every second sample from the new and from the original 
training data was used to re-train the SVM. Generalizability and non- 
inferiority measures were calculated on the re-trained SVM to deter-
mine the effectiveness of added diversity in the training data. 

3. Results 

3.1. Implementation of outlier detection and generalization of the SDA 

The incorporation of an outlier detection significantly improved the 
agreement between the SDA output and the consensus annotation of the 
human expert (Table 2). Slight, but significant reductions in per infant 
AUC were offset by significant improvements in specificity and false 
detections per hour. 

The SDA had consistent performance between training and valida-
tion sets with our primary measure for generalizability, the AUC, sug-
gesting that the algorithm generalizes to unseen data (Table 2). That is, 
there was no significant reduction in performance between the cross- 
validated training data set and the validation data. The decrease in 
sensitivity was significant, while there was no statistical difference for 
specificity. The proposed SDA outperformed an SDA using the Temko 
feature set (Table 2). 
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3.2. Non-inferiority to human annotation 

The SDA provides an annotation of the EEG that is slightly inferior to 
human experts (Table 3; Δκ fails to span 0). Example EEG segments that 

were correctly detected as seizure, missed or falsely labelled as seizure 
are shown in Fig. 4. 

At the feature level, the major differences between training and 
validation data sets were between the smoothed nonlinear energy 
operator feature within EEG epochs without seizure (training data: 
median [IQR] 39.2 [15.2–74.8], validation data: median [IQR] 69.9 
[43.5–111.4]; values are not normalized). Increases in the nonlinear 
energy imply increases in high frequency energy in seizure signals. 

At the annotation level, the SDA has a noticeable reduction in seizure 
detection rate and, in general, it generates an excessive number of sei-
zures compared to the consensus seizure annotation. This is in the 
context of an SDA annotation that is, nevertheless, more conservative 
and diffuse with its annotation; the SDA has lower estimates of seizure 
burden measures (maximum and total, Table 4). The SDA also tends to 
generate more false detections during the second half of recordings 
compared to the first. A representative example is shown in Fig. 3. In 
general, the median false detection rate was 0.13 per hour (IQR: 
0.03–0.17) during the first half of the recording and 0.20 per hour (IQR: 
0.06–0.42) during the second half of the recording. The second half of 
recordings is more likely to contain EEG patterns associated with re-
covery and, therefore, more normal EEG such as sleep states. These 
patterns may not be prevalent in the training data. 

Table 3 
Inter-observer agreement between human and algorithm based annotations of 
seizure/non-seizure in the validation set of EEG. E1 is human expert 1, E2 is 
human expert 2, Consensus is the consensus annotation of human experts, Δκ is 
difference in IOA between a single human expert and the SDA and the IOA be-
tween human experts (results are presented as median, 95% confidence inter-
val), FS is feature set.  

Inter-observer 
Agreement 

E1 E2 Consensus 

SDA (proposed FS) 0.591 0.703 0.729 
SDA (Temko FS) 0.511 0.600 0.623 
E1 – 0.792 0.805 
E2 – – 0.982 

SDA Δκ (proposed FS) 0.197 
(0.149–0.269) 

0.085 
(0.011–0.176) 

– 

SDA Δκ (Temko FS) 0.277 
(0.220–0.364) 

0.187 
(0.113–0.289) 

–  

Fig. 3. An example aEEG and seizure burden time course. Note the appearance of sleep-wake-cycling after 50 h. This will introduce normal EEG patterns such as 
mixed frequency activity, high voltage synchronous activity and trace alternant, that will not be prevalent in the original training data as those recordings were 
typically taken earlier in the seizure burden time course. 

Table 2 
The performance of a neonatal SDA with outlier detection. The neonatal SDA with outlier detection was applied to the original dataset (10-fold cross-validation) and 
compared to the original SDA without outlier detection. The neonatal SDA was also applied to an independent validation set and compared to an SDA based on the 
Temko feature set (Temko FS). Median (IQR) are presented for AUC, sensitivity (Sens) and specificity (Spec). The value with 95%CIs in brackets are presented for 
cAUC, cSDR, cFD/h and cKappa (estimated on concatenated recordings). a and b denote a significant increase and decrease, respectively, between the original SDA and 
the SDA with outlier detection. c denotes a significant increase in SDA performance between the training and validation data sets. d denotes significant decrease in 
performance between proposed SDA and SDA based on Temko features. Primary measures of performance are shown in bold. nt is the total number of neonates in each 
dataset and ns is the number of neonates with consensus seizure in each dataset.   

Original Training Original Training Validation Validation 

(10-fold CV) (10-fold; outlier detection) (outlier detection) (Temko FS) 

nt = 79, ns = 39 nt = 79, ns = 39 nt = 28, ns = 24 nt = 28, ns = 24 

AUC 0.992 (0.938–0.998) 0.986 (0.908–0.995)b 0.960 (0.896–0.980) 0.918 (0.823–0.961)d 

Sens 0.823 (0.341–0.975) 0.784 (0.363–0.958) 0.605 (0.218–0.753)c 0.385 (0.061–0.674)d 

Spec 0.993 (0.979–1) 0.996 (0.982–1)a 0.998 (0.997–0.999) 0.998 (0.994–0.999)d 

cAUC 0.956 (0.931–0.979) 0.955 (0.928–0.977) 0.967 (0.953–0.974) 0.949 (0.931–0.961)d 

cSDR 0.750 (0.582–0.851) 0.685 (0.531–0.791) 0.761 (0.631–0.841) 0.657 (0.522–0.750)d 

cFD/h 2.290 (1.312–3.897) 1.967 (0.964–3.478)b 0.357 (0.167–0.690) 0.302 (0.135–0.513) 
cKappa 0.668 (0.464–0.749) 0.672 (0.474–0.764)a 0.729 (0.656–0.789) 0.623 (0.533–0.694)d  
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3.3. Clinical efficacy 

To assess the clinical efficacy of the SDA, we used more clinically 
focused metrics (Table 5). The key component of this assessment is 
evaluation of the short-term seizure burden per hour (Fig. 5). The cor-
relation between human consensus and SDA for short-term seizure 
burden per hour on concatenated data was 0.89 (95% CI: 0.80–0.96). 
The correlation between human experts assessment of short-term 
seizure burden was 0.95 (95% CI: 0.93–0.98). 

The hourly seizure burden is commonly used as a target to initiate 
treatment in clinical studies. The SDA identifies epochs that exceed a 
target threshold with an accuracy of 87% (Table 5a). The sensitivity of 
the SDA is 83% and the specificity is 87% which are in a similar range to 

Fig. 4. Examples of a true detection, a false detection and a missed seizure.  

Table 4 
Seizure summary statistics of seizures annotated by SDAs and the consensus of 
human experts. Results are presented as median (IQR) summarized across ne-
onates with seizures. Seizure duration is presented as median (IQR) over all 
annotated seizures.1 24 neonates had seizures annotated by both human 
consensus and the SDA (proposed FS) and 2 23 by consensus and SDA (Temko 
FS).  

Seizure statistics Consensus SDA (proposed FS) SDA (Temko FS) 

Seizure patients 24 281 272 

Seizure number 33 (11–68) 29 (17–119) 14 (8–120) 
Seizures (total) 1362 2313 1749 
Seizure duration (s) 96 (55–167) 44 (32–84) 64 (52–104) 
Burden (max; min/h) 13 (3–29) 8 (3–20) 9 (2–21) 
Burden (total; min) 42 (11–163) 28 (10–138) 24 (8–201)  
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inter-observer agreement between human experts (sensitivity 89% and 
specificity 97%) for this measure. 

The sensitivity and specificity of the SDA for detecting high total 
seizure burden (> 45 minutes; compared to the consensus annotation) 
are 85% and 100%, respectively (Table 5b). The sensitivity and speci-
ficity of human experts are 85% and 79%, respectively. Finally, for 
detecting high maximum hourly seizure burden (> 13 minutes per hour; 
compared to consensus), the sensitivity and specificity for the SDA are 
79% and 100% (Table 5c), while the sensitivity and specificity of human 
experts are 94% and 92%, respectively. Importantly, the SDA does not 
detect high total or hourly seizure burden in a low seizure burden 
neonate. 

3.4. Re-training 

Incorporating seizure and non-seizure data from the first 10 re-
cordings in the validation set into the training data set improved AUC 
and Kappa on the remaining 18 neonates in the validation set (Table 6). 
Improved sensitivity was offset by a slight reduction in specificity. These 
improvements were sufficient to generate an annotation that was non- 
inferior to the human annotation (Δκ = 0.077, 95% CI: − 0.002-0.232, 

Table 5 
Agreement in clinically relevant measures between the SDA 
and human consensus annotation of the EEG on all neonates. 
POI - period of clinical interest (hourly epochs of EEG that 
exceed a treatment threshold for seizures), nPOI - not a POI, H 
- human annotation (consensus), S - algorithm annotation, HB 
- high seizure burden, LB - low seizure burden.  

(a) Period of Clinical Interest (POI)  

POI (S) nPOI (S) 

POI (H) 151 30 
nPOI (H) 103 716 

(b) Total Seizure Burden  

HB (S) LB (S) 

HB (H) 11 2 
LB (H) 0 15 

(c) Maximum Hourly Seizure Burden  

HB (S) LB (S) 

HB (H) 11 3 
LB (H) 0 14  

Fig. 5. Hourly (short-term) seizure burden evolution over time on human consensus and SDA annotation. Each marker represents an hour segment and the marker 
thickness the hourly seizure burden. Time series were cut after no more events occurred for visualization purposes. Red dots stand for no seizure. 
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n = 18). In contrast, the original SDA, when applied to the truncated 
validation data set retained its inferior annotation of seizures (Δκ =
0.084, 95%CI: 0.003–0.226, n = 18). Re-training did not significantly 
change primary performance measures when evaluated within a 10-fold 
cross-validation on the original cohort of 79 neonates (Table 6). Speci-
ficity was slightly, but significantly, reduced. 

Re-training an SDA based on the Temko feature set showed slight, 
but not significant, improvements in performance compared to a version 
trained on the original cohort of 79 neonates. Compared to the pro-
posed, retrained SDA, SDA retrained with Temko features had inferior 
performance with all measures except specificity and false detections 
per hour (Table 6). The annotation of the EEG by the retrained SDA with 
the Temko feature set remained inferior to the human expert annotation 
(Δκ = 0.145, 95%CI of 0.083–0.287, n = 18). 

4. Discussion 

In this study, we have evaluated the performance of our neonatal 
SDA on an independent validation data set consisting of limited channel, 
long duration EEG recordings. The performance of the SDA was not 
significantly different between cross-validation on the training data set 
and the validation data set, using the primary generalizability measure, 
the AUC. While the overall performance of the SDA remained consistent, 
it was, nevertheless, inferior to the human expert annotation of the 
validation set. The inferiority of the SDA annotation was mitigated by 
retraining on a larger data set containing data portions of the validation 
data set. 

There is a limited number of validation studies performed on pub-
lished neonatal SDAs [9,20–23]. These studies provide seizure detection 
rates of 53–66% and false detections of 0.04–2.3 per hour; values that 
are compatible with our SDA performance 76% at 0.35 false detections 
per hour. The limitations of these studies are that 1) they do not test the 
generalizability of their SDAs and 2) they do not evaluate the 
non-inferiority of the SDA annotation compared to that of the human 
expert taking into account the inherent ambiguity in the annotation of 
multiple human experts. The algorithm with the highest congruence 
between training and validation sets is that of Temko et al.̇ with a seizure 
detection rate of 71% at 0.25 false detection per hour on the training set 
and a seizure detection rate of 75% at 0.36 false detection per hour on a 
validation set [23]. This algorithm was further shown to potentially aid 
clinical seizure recognition with earlier detection of seizure onset and 
improved temporal localization of clinical target periods [23]. It has 
recently been clinically trialled and shown to improve the recognition of 
hourly seizures, but not the identification on neonates with seizure, 
which may help optimize the timing of treatment [25]. We have shown 
that our feature set is capable of outperforming the feature set of Temko 

et al.̇ that underlies this algorithm, when trained on identical data. 
Initially, the SDA provided an inferior annotation of seizures 

compared to human experts on the validation data set. The most obvious 
failing of the SDA was an excessive annotation of seizures. The SDA 
annotated twice as many seizures as the human experts although the 
majority of these seizures were multiple detections within a single 
human annotated seizure. Nevertheless, a considerable proportion were 
periods annotated by human experts as ’no seizure’. Reassuringly, visual 
inspection of false detections showed EEG with repetitive characteris-
tics, activity that is commonly associated with seizure (see Fig. 4). 

There are two key differences between the training and validation 
data sets that may explain increased errors in the validation set 1) 
reduced electrode density and increased recording duration of EEG in 
the validation set, and 2) different brain injury etiologies in the two data 
sets. Firstly, EEG monitoring with a reduced electrode set is commonly 
used in the NICU as it offers less disruption for neonates, is compatible 
with visualizations such as the aEEG and reduces the demand of cot-side 
resources. While these recordings capture the majority of seizures and 
have electrodes located on regions that are more robust to artefact, we 
have shown that low density recordings result in a different annotation 
to standard EEG recordings and have a reduced prevalence of seizure 
[28,36–38]. This means that the manifestation of neonatal seizure may 
be more diffuse as the distance between seizure loci and recording 
electrodes will be higher. Long duration EEG also contains a wider va-
riety of normal EEG patterns that may not be seen in short duration, 
higher density recordings performed early to confirm the presence of 
seizures. This explains why the ’no seizure’ feature values within the 
validation data set have a larger spread compared to the training data. 
Secondly, the validation set contains seizures mostly from a single 
aetiology (stroke) whereas the training set contained seizures from 
several aetiologies (HIE, stroke, meningitis) [28]. Seizures in neonates 
with stroke may have different morphology to seizures from other ae-
tiologies and stroke was poorly represented in the training data set. This 
also means that recordings in the validation set will not contain pro-
longed periods of isoelectric EEG and burst-suppression that are 
apparent in the EEG recordings of neonates with conditions such as HIE. 
Despite these potential limitations, the SDA had consistent, general 
performance between the data sets and non-inferiority to human 
annotation could be achieved by incorporating a subset of the validation 
data set into the training set. 

Nevertheless, the SDA annotation provides an accurate (∼ 90%)

representation of key interpretations of the annotations such as identi-
fying periods of EEG that meet treatment thresholds and definitions of 
high seizure burden that are associated with poor prognosis. These 
values may exceed current clinical practice when on-demand EEG 
annotation is not available, however, the risk of false identifications may 

Table 6 
The performance of the re-trained neonatal SDA. The re-trained neonatal SDA was applied to the original dataset (10-fold cross-validation) and the truncated vali-
dation set (n = 18). These values were compared to the original SDA applied to the truncated validation set and a re-trained SDA based on the Temko feature set (Temko 
FS). Median (IQR) results are presented for AUC, sensitivity (Sens) and specificity (Spec). The value with 95%CIs in brackets are presented for cAUC, cSDR, cFD/h and 
cKappa (estimated on concatenated recordings). a and b denote a significant increase and decrease, respectively, between Validation and Validation (retrained), c and 
d denote a significant increase and decrease, respectively, between Validation (retrained) and Validation (retrained Temko FS), and f denotes a significant decrease 
between Training (10-fold CV) and Training (outlier detection; 10-fold CV) in Table 2 nt is the number of infants in the cohort and ns is the number of infants with 
consensus seizure in the cohort.   

Original Training Validation Validation Validation 

(10-fold CV)  (retrained) (retrained Temko FS) 

nt = 79, ns = 39 nt = 18, ns = 14 nt = 18, ns = 14 nt = 18, ns = 14 

AUC 0.979 (0.930–0.996) 0.965 (0.880–0.980) 0.976 (0.932–0.983)a 0.953 (0.867–0.974)d 

Sens 0.816 (0.433–0.947) 0.519 (0.156–0.759) 0.648 (0.311–0.837)a 0.395 (0.057–0.645)d 

Spec 0.991 (0.973–1)f 0.998 (0.997–0.999) 0.997 (0.996–0.998)b 0.998 (0.997–0.999)c 

cAUC 0.964 (0.944–0.980) 0.964 (0.932–0.978) 0.974 (0.953–0.984)a 0.956 (0.912–0.971)d 

cSDR 0.667 (0.515–0.778) 0.679 (0.447–0.868) 0.729 (0.447–0.876) 0.600 (0.307–0.763) 
cFD/h 1.943 (0.918–3.331) 0.414 (0.145–0.976) 0.332 (0.147–0.610) 0.191 (0.092–0.303) 
cKappa 0.680 (0.507–0.769) 0.722 (0.571–0.795) 0.735 (0.560–0.808) 0.662 (0.484–0.726)  
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outweigh increased sensitivity. A risk that is minimized for a non- 
inferior annotation. 

Bag of features approaches to neonatal seizure detection are being 
superseded by deep neural networks [18]. We and others have shown 
that deep convolutional neural networks provide similar performance to 
the proposed ’bag of features’ approach when applied to our training set 
[18,31] with deep convolutional networks providing more consistent 
performance over several data sets [18]. These methods will, never-
theless, face similar challenges such as lack of diversity within training 
data sets, subjectivity in the gold standard of human expert annotation 
(the training target) and performance assessment. 

A potentially controversial component of our study is the use of 10s 
as a minimum duration of seizure. The original choice of a 10s minimum 
seizure duration was always arbitrary and acknowledges that as evolu-
tion is an important component of determining the presence of seizure 
on an EEG recording, there must be some sort of minimum duration to 
judge such an evolution [30]. This minimum seizure duration has been 
abolished in the latest recommendations on the Task Force for Neonatal 
Seizure [4] but its abolition is disputed [39]. With the lack of biophys-
ical evidence for a minimum seizure duration, it is best to turn to other 
forms of evidence such as studies of inter-observer agreement. These 
works provide the only data-driven evidence base for a minimum seizure 
duration and suggest that 30s may be a feasible option [38]. This, more 
lenient, definition of minimum seizure duration has the potential to 
improve the accuracy of SDAs. Furthermore, it is a simple way to achieve 
SDA annotations that generalize to the larger population of neonates and 
are non-inferior to the visual interpretation of the human expert. 

5. Conclusion 

We validated a neonatal SDA on an independent data set of neonatal 
EEG. We show consistent performance between training and validation 
data sets, but an SDA annotation that is inferior to the human expert. 
This annotation is, nevertheless, sufficient to provide highly accurate 
estimation of seizure burden and identification of clinical targets. 
Increasing the diversity of the training set resulted in a non-inferior SDA 
annotation for the left-out part of the validation data set. This raises key 
open questions for neonatal SDAs: 1) how much data is required and 
from what population of neonates should it be sampled to train neonatal 
SDAs that are non-inferior to the human expert, 2) is non-inferior 
annotation compared to human experts the ultimate target and 3) if 
and when validated non-inferiority is achieved, will it improve the 
clinical recognition of seizures and improve health outcomes for criti-
cally ill neonates. Once the algorithm has achieved a clinically accept-
able level of performance, it will be trialed and finally, implemented. 
This process ensures that the algorithm positively affects clinical 
practice. 
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