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Abstract
Assessing goodness of fit to a given distribution plays an important role in computational statistics. The probability integral
transformation (PIT) can be used to convert the question of whether a given sample originates from a reference distribution
into a problem of testing for uniformity. We present new simulation- and optimization-based methods to obtain simultaneous
confidence bands for the whole empirical cumulative distribution function (ECDF) of the PIT values under the assumption
of uniformity. Simultaneous confidence bands correspond to such confidence intervals at each point that jointly satisfy a
desired coverage. These methods can also be applied in cases where the reference distribution is represented only by a
finite sample, which is useful, for example, for simulation-based calibration. The confidence bands provide an intuitive
ECDF-based graphical test for uniformity, which also provides useful information on the quality of the discrepancy. We
further extend the simulation and optimization methods to determine simultaneous confidence bands for testing whether
multiple samples come from the same underlying distribution. This multiple sample comparison test is useful, for example,
as a complementary diagnostic in multi-chain Markov chain Monte Carlo (MCMC) convergence diagnostics, where most
currently used convergence diagnostics provide a single diagnostic value, but do not usually offer insight into the nature of
the deviation. We provide numerical experiments to assess the properties of the tests using both simulated and real-world data
and give recommendations on their practical application in computational statistics workflows.

Keywords PIT · ECDF · Uniformity test · Simulation-based calibration · MCMC convergence diagnostic

1 Introduction

Tests for uniformity play an essential role in computational
statistics when estimating goodness of fit to a given dis-
tribution (Marhuenda et al. 2005). This is because, even
when the distribution of interest is not uniform, there are
methods to reduce the problem into testing for uniformity
by transforming a sample from the given distribution to
a (discrete or continuous) uniform distribution. Common
use cases in Bayesian workflow (Gelman et al. 2020) are
simulation-based calibration andMarkov chain Monte Carlo
convergence diagnostic, which we also use as examples in
this paper. A graphical test can provide additional insight to
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the nature of discrepancy that goes beyond the dichotomy of
the uniformity test.

1.1 Probability integral transformation

Transforming sampled values to a uniform distribution is
usually achieved via the probability integral transform (PIT),
provided that the distribution of interest has a tractable cumu-
lative distribution function (CDF) (D’Agostino and Stephens
1986). Let y1, . . . , yN ∼ g(y) be an independent sample
from an unknown continuous distribution with probability
density function (PDF) g. We want to know whether g = p,
where p is the PDF of a known distribution with a tractable
CDF. The PIT of the sampled value yi with respect to p is

ui =
∫ yi

−∞
p(x) dx . (1)

If g = p, the transformed values ui are continuously, inde-
pendently, and uniformly distributed on the unit interval
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(a)

(b) (c)

Fig. 1 Given y1, . . . , yN ∼ g(y), and a distribution p(x), the hypoth-
esis g = p can be assessed in two ways. (1) If the CDF or the PDF of p
has a closed form, the PIT values ui are continuous and, if g = p, uni-
formly distributed. (a) The pointwise confidence intervals (red bars) for
the ordered statistic u(i) are beta-distributed, and the simultaneous con-
fidence intervals for the ECDF of ui are given by Aldor-Noiman et al.
(2013). (2) If one can draw an independent sample, xi1, . . . , x

i
S ∼ p(x),

for each yi , the empirical PIT values ui are discrete and, given g = p,
uniformly distributed. (b) The pointwise confidence intervals of the
discrete ordered statistic u(i) could be solved from Eq. (3). (c) The
pointwise confidence intervals for the values of the ECDF of ui at
evaluation points zi ∈ [0, 1] are binomially distributed, and the simul-
taneous confidence intervals are obtained by the method presented in
this paper

[0, 1], reducing the evaluation of the hypothesis into test-
ing for uniformity of the transformed sample u1, . . . , uN . If
the integral (1) does not have the closed form, the CDF (and
hence the PIT values) can still be computed with sufficient
accuracy through numerical integration (e.g. quadrature), if
at least the corresponding PDF is tractable.

If neither the CDF nor the PDF have closed form, but
a comparison sample of independent values xi1, . . . , x

i
S ∼

p(x) can be drawn separately for each yi , the hypothesis
g = p can be evaluated through the empirical PIT values

ui = 1

S

S∑
j=1

I(xij ≤ yi ), (2)

where I is the indicator function.Now, given g = p, the trans-
formed values u = u1, . . . , uN are independently distributed
according to a discrete uniform distribution with S+1 values
(0, 1/S, . . . , (S − 1)/S, 1). Accordingly, we can still apply
uniformity tests to assess g = p, just that this time, we need
to test for discrete uniformity.

If either sample has dependencies, like an autocorrelated
sample from aMarkov chain, the ordered statistics is affected
by the dependencies and the empirical PIT values (2) are not
distributed uniformly even if g = p (unless the sample size
goes to infinity). For Markov chains, the usual remedy is to
thin the chain to obtain an approximately independent sam-
ple. This issue is illustrated, and thinning recommendations
are provided in Appendix A.

Figure 1 shows an example of the empirical cumulative
distribution function (ECDF) for u obtained through both
Eq. (1) and Eq. (2). The figure also shows an example of a
pointwise confidence interval for each ECDF. For the con-
tinuous integral of Eq. (1), the pointwise confidence interval
can be computed from the continuous uniform ordered statis-
tics distribution which is a common beta distribution. For the
discrete sum of Eq. (2), the pointwise confidence interval
can be computed from the discrete uniform ordered statistics
distribution, with the cumulative distribution function of the
i th ordered statistic u(i) given as

Fi (z) =
N∑
k=i

(
N

k

)
zk (1 − z)N−k , (3)

for z ∈ (0, 1/S, . . . , (S − 1)/S, 1) (Arnold et al. 2008,
Example 3.1). The corresponding pointwise intervals do not
have a nice form in general, and, more importantly, the dis-
crete ordered statistics do not exhibit Markovian structure
(exploited by our new optimization based approach) if there
are possible ties in u (Arnold et al. 2008, Theorem 3.4.1).

To make the computation of the simultaneous confidence
bandsmore straightforward and efficient, we proposemaking
an additional transformation by computing the ECDF of u at
chosen evaluation points zi :

F(zi ) = 1

N

N∑
j=1

I(u j ≤ zi ). (4)

123
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Fig. 2 Simultaneous confidence
bands: a Method by
Aldor-Noiman et al.: Beta
distribution-based 95%
simultaneous confidence bands
for quantiles are provided for
reaching a set of ECDF values
(along the x-axis). b Our
method: For a set of evaluation
quantiles, we provide binomial
distribution-based 95%
simultaneous confidence
intervals for the ECDF value
(along the y-axis)
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We recommend choosing zi as the ordered fractional ranks
r̃i of yi , defined as

r̃i = 1

N

N∑
j=1

I(y j ≤ yi ). (5)

The ordered fractional ranks form a uniform partition of the
unit interval independent of the distribution of yi . Thus, they
provide an ECDF that is easier to interpret than the corre-
sponding ECDF based directly on the original sample yi .
The resulting ECDF is illustrated in Fig. 1c. As wewill show,
useful properties of this ECDF are that 1) its pointwise con-
fidence intervals can be computed easily from the binomial
distribution, with a quantile function already implemented
in most widely used environments for statistical computing,
and 2) the distribution of the ECDF trajectories isMarkovian,
which is exploited in Sect. 2.3.

1.2 Simultaneous confidence bands

The major challenge that arises when developing a uni-
formity test based on the ECDF is to obtain simultaneous
confidence bands with the desired overall coverage. For this
purpose, one needs to take into account the inter-dependency
in the ECDF values and adjust the coverage parameter
accordingly. (We will discuss this in more detail in Sect. 2.)

When considering whether a given ECDF could present a
sample from a uniform distribution, we need to jointly con-
sider all pointwise uncertainties. For a set of evaluation points
(zi )Ki=1, we provide lower and upper confidence bands Li and
Ui , respectively, that jointly satisfy

Pr (Li ≤ F(zi ) ≤ Ui for all i ∈ {1, . . . , K }) = 1 − α, (6)

where F(zi ) is the ECDF of a sample from either the stan-
dard uniform distribution or discrete uniform distribution on
the unit interval evaluated at zi ∈ (0, 1) and 1 − α is the
desired simultaneous confidence level. In addition to offering
a numerical test for uniformity, the simultaneous confidence

bands provide an intuitive graphical representation of possi-
ble discrepancies from uniformity.

Aldor-Noiman et al. (2013) presented a simulation-based
approach for computing simultaneous confidence band for
the ECDF of the transformed sample acquired from Eq. (1)
under the assumption of uniformity. In this paper, we present
a simulation method inspired by Aldor-Noiman et al. (2013)
as well as a new, faster optimization method for comput-
ing simultaneous confidence bands under uniformity, when
the ECDF is computed from the empirical PIT values using
Eqs. (2) and (4). Figure 2 contrasts the simultaneous con-
fidence bands by Aldor-Noiman et al. (2013) against those
obtained from our proposed method. Furthermore, we gener-
alize our method and simultaneous confidence bands to test
whether multiple samples originate from the same underly-
ing distribution.

1.3 Related work

The idea of utilizing the ECDF to test uniformity is not new,
but its potential has not yet been realized in full. For exam-
ple, the well-known Kolmogorov–Smirnov (KS) test, first
introduced by Kolmogorov (see e.g. Massey (1951), original
article in Italian is Kolmogorov (1933)), is based on eval-
uating the maximum deviation of the sample ECDF from
the theoretical CDF of the distribution to be tested against.
Unfortunately, the KS test is relatively insensitive to devi-
ations in the tails of the distribution (Aldor-Noiman et al.
2013), and numerous tests have been proposed to replace the
KS test. An extensive comparison of more than thirty tests
of uniformity of a single sample is provided by Marhuenda
et al. (2005).

Due to its ease of interpretation and familiarity to people
even with basic statistical knowledge, a graphical method for
assessing uniformity commonly used as part of many statisti-
cal workflows is plotting histograms. This can even be turned
into a formal test of uniformity with confidence intervals for
the individual bins (e.g. Talts et al. 2020). Drawbacks of his-
tograms are that binning discards information, there can be
binning artefacts depending on the choice of bin width and
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Fig. 3 Four visualizations depicting the same random sample of 250
values. To assess uniformity of the sample, histograms a and b show a
95% confidence interval for each bin. Histograms can be sensitive to the
number and placement of the bins selected, and the confidence intervals
do not take into account possible inter-dependencies between the bin
heights. For example, given the same sample, a 20-bin histogram stays

within the confidence interval a, but a 50-bin histogram exceeds the
confidence interval b. The ECDF plot c and ECDF difference plot d
with 95% simultaneous confidence bands for the ECDF both show the
sample staying within the given limits with the ECDF difference plot
providing a more dynamic range for the visualization

placement, and they ignore the dependency between bins.
The proposed ECDF-based method does not require binning
or smoothing, provides intuitive visual interpretation, and
works for continuous Eq. (1) and discrete Eq. (2) values. An
illustration and comparison of histograms with two binning
choices and our new method is shown in Fig. 3. The visual
range between the simultaneous confidence bands for the
ECDF is often narrowwhen visualizing a sample with a large
number of observations. Thus, to achieve a more dynamic
range for the visualization, we recommend to show ECDF
difference plots, instead, as illustrated in Fig. 3d. The ECDF
difference plot is obtained by subtracting the values of the
expected theoretical CDF (i.e. the identity function in [0,1] in
case of standard uniformity) from the observedECDFvalues.

1.4 Summary of contributions

In this article, we focus on use case examples arising
from inference validation and Markov chain Monte Carlo
(MCMC) convergence diagnostics as part of a Bayesian
workflow (Gelman et al. 2020), but our developed methods
are applicable more generally. Our use cases can be divided
into two main categories: a single sample test for uniformity
and a multiple sample comparison where the hypothesis is
tested that the samples are drawn from the same underlying
(potentially non-uniform) distribution.We discuss both cases
in more detail below.

We offer a graphical test for uniformity by providing
simultaneous confidence bands for one or more ECDF tra-
jectories obtained through the empirical probability integral
transformation.

As our first contribution, we modify an existing ECDF-
based approach proposed by Aldor-Noiman et al. (2013) to
take into account the discreteness of the fractional rank-based

PIT values. This forms the basis for our proposed single- and
multi-sample tests.

As our second contribution, we provide both a simula-
tion and optimization method to determine the adjustment
needed to achieve a desired simultaneous confidence level
for the ECDF trajectory given the fractional rank-based PIT
values. In addition to presenting a simulation-based adjust-
ment following the method of Aldor-Noiman et al. (2013),

we introduce a new optimization method that is com-
putationally considerably more efficient in determining the
needed adjustment, especially when bands with high resolu-
tion are desired for a large sample size.

Although our focus is on providing a test with an intuitive
graphical representation, we show that our method performs
competitively when compared to existing uniformity tests
with the state-of-the-art performance. We demonstrate the
usefulness of this graphical test in context of simulation-
based calibration approach for assessing inference methods
(Talts et al. 2020).

Finally, as our third contribution, we generalize the graph-
ical test as well as both the simulation and optimization
methods to evaluate the hypothesis that two or more sam-
ples are drawn from the same underlying distribution. We
demonstrate the usefulness of this graphical test in MCMC
convergence diagnostics, where the currently most common
graphical tools for assessing convergence are trace plots of
the individual sampled chains.

1.5 Outline of the paper

In Sect. 2, we first provide a simulation-based method to
determine simultaneous confidence bands for the ECDF of a
single uniform sample and then present new more efficient
optimization-based method.
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In Sect. 3, we extend the test to multiple sample com-
parison and follow a similar structure by offering both a
simulation and an optimization-based methods.

We continue in Sect. 4 with simulated and real-world
examples illustrating the application of our proposed method
and end with a discussion in Sect. 5.

2 Simultaneous confidence bands for the
empirical cumulative distribution

We propose simulation- and optimization-based approaches
to providing the ECDF of a uniform sample with 1 − α-
level simultaneous confidence bands that are compatiblewith
empirical PIT values, that is, confidence bands with a type-
1-error rate of α. Our approach is similar to that presented by
Aldor-Noiman et al. (2013) with one central distinction illus-
trated in Fig. 2. The method by Aldor-Noiman et al. (2013)
obtains simultaneous confidence bands for the evaluation
quantileswith fixedECDFvalues based on beta distributions,
that is, it obtains confidence bands along the horizontal axis
(Fig. 2a). In contrast, our new method provides simultane-
ous confidence bands for the ECDF values at fixed evaluation
quantiles based on binomial distributions, that is, it obtains
confidence bands along the vertical axis (Fig. 2b). In the limit,
as the sample size approaches infinity, there is no practical
difference between the methods. However, when the num-
ber of possible unique ranks is small, our proposed method
behaves better for smallest and largest ranks and consistently
if the ranks are further binned.

2.1 Pointwise confidence bands

Determining the pointwise confidence interval for the ECDF
value of a sample from the continuous uniform distribution at
a given evaluation point zi ∈ (0, 1) is rather straightforward.
By definition, given a sample u = u1, . . . , uN , the ECDF
value is

F(zi ) = 1

N

N∑
j=1

I(u j ≤ zi ). (7)

As the sampled values, u j ∈ (0, 1), are expected to be con-
tinuously uniformly distributed, Pr(u j ≤ zi ) = zi for each
j = 1, . . . , N . Thus, the values resulting from scaling the
ECDF with the sample size N are binomially distributed as

NF(zi ) ∼ Bin (N , zi ) . (8)

If we instead expect u to be sampled from a discrete
uniform distribution with S distinct equally spaced values,
s j = j/S, by choosing the partition points to form a subset

of these category values, we again have Pr(u j ≤ zi ) = zi
for j = 1, . . . , N , and the marginal distribution of the scaled
ECDF follows Eq. (8). Therefore, the methods introduced
in Sects. 2.2 and 2.3 can be used to determine simultaneous
confidence bands for both continuous and discrete uniform
samples, allowing for testing uniformity of both the contin-
uous PIT values of Eq. (1) and the discrete empirical PIT
values in Eq. (2).

From Equation (8), it is straightforward to determine the
1− α level pointwise lower and upper confidence bands, Li

andUi , respectively, satisfying for all i = 1, . . . , N individ-
ually

Pr (Li ≤ F(zi ) ≤ Ui ) = 1 − α. (9)

In contrast, determining the simultaneous confidence bands
for ECDF trajectories (i.e. sets of ECDF values) is more
complicated. In Fig. 4, we illustrate the dependency between
ECDF values at distinct evaluation quantiles, together with
simultaneous confidence bands computed via either of the
new methods described in the following sections. As is illus-
trated in the figure, ECDF values evaluated at two quantiles
close to each other are strongly dependent, while ECDF val-
ues evaluated at two quantiles far away from each other are
onlyweakly dependent. In any case, these dependencies need
to be taken into accountwhen constructing simultaneous con-
fidence bands.

Another important remark is that, as the marginal dis-
tribution of the scaled ECDF is discrete, the simultaneous
confidence intervals do not in all cases meet the desired cov-
erage level exactly. Brown et al. (2001) provide a thorough
exploration of the effect discreteness plays in the coverage
level of various interval estimations for binomial proportion,
with listings of what the authors call lucky and unlucky sam-
ple lengths. In our experience, even though discreteness plays
a role in the coverage level of the pointwise confidence inter-
vals, this effect is reduced to deviation of under ±1% for
N ∈ [50, 2000] in the coverage level of the resulting simul-
taneous confidence bands we introduce next.

2.2 Simultaneous confidence bands through
simulation

Our goal is to define simultaneous confidence bands for the
ECDF of a sample of N values drawn from the standard
uniform distribution so that the interior of the confidence
bands contains trajectories induced by that distribution with
rate 1 − α, where α ∈ (0, 1).

In this section, we describe a simulation-based method
for determining the simultaneous confidence bands for the
ECDF trajectory.

We follow steps similar to those introduced by Aldor-
Noiman et al. (2013); with the exception that instead of
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Fig. 4 Dependence between the ECDFvalues of standard uniform sam-
ples evaluated at three distinct points. Simultaneous 95% confidence
bands for the ECDF computed via either of the new methods intro-
duced in this paper are shown on the left. In the middle, one can see

a stronger dependency between the ECDF values obtained at evalua-
tion points close to each other, whereas on the right the ECDF values
are only weakly dependent as the evaluation points far away from each
other

determining limits for the Q-Q plot, we now determine the
upper and lower limits of the ECDF values at the evaluation
points zi :

1. Choose a partition (zi )Ki=1 of the unit interval.
2. Determine coverage parameter γ to account for multi-

plicity in order to obtain the 1 − α-level simultaneous
confidence bands:

Pr (Li (γ ) ≤ F(zi ) ≤ Ui (γ ) for all i ∈ {1, . . . , K }) = 1−α.

(10)

In determining these confidence bands, we use the knowl-
edge from that the values of the scaled ECDF at each point
zi follow a binomial distribution and denote the value of the
cumulative binomial distribution function with parameters
N and zi at k ∈ N by Bin(k | N , zi ) and its inverse by
Bin−1(q | N , zi ) for quantile q ∈ [0, 1].

To find the desired coverage value γ , we simulate M
draws of size N from the standard uniform distribution.
Let Fm denote the ECDF of the mth sample, um1 , . . . umN ∼
uniform(0, 1). For each sample, we find the value of γ such
that the equal tail quantiles

Li (γ ) = 1

N
Bin−1

(γ

2
| N , zi

)
, (11)

and

Ui (γ ) = 1

N
Bin−1

(
1 − γ

2
| N , zi

)
(12)

provide the tightest possible lower and upper limits, respec-
tively, to the sample ECDF, Fm , at each zi . This value of γ

for the mth sample is

γm = 2min
i

{
min

(
Bin(NFm(zi ) | N , zi ),

1 − Bin(NFm(zi ) − 1 | N , zi )
)}

(13)

As now we have for γm equally that

γm = argmax
γ

{γ

2
≤ Bin(NFm(zi ) | N , zi )≤1−γ

2
| ∀i

}

(14)

and as it holds that

γ

2
≤ Bin(NFm(zi ) | N , zi ) ≤ 1 − γ

2

⇒ Bin−1
(γ

2
| N , zi

)

≤ NFm(zi ) ≤ Bin−1
(
1 − γ

2
| N , zi

)

⇒ Li (γ ) ≤ Fm(zi ) ≤ Ui (γ ),

γm defines a set of upper and lower limits to the ECDFwhich
is byEq. (14) the tightest possible pair of limits defining equal
tail quantiles for the ECDF at each zi . To obtain bands cover-
ing a 1− α fraction of the ECDFs of the simulated samples,
we set γ to the α quantile of the values {γ 1, . . . , γ M }. Since
γm > 0 by construction, we also have γ > 0.

The following steps summarize the algorithm for simulat-
ing the adjusted coverage parameter γ and determining the
1 − γ level simultaneous confidence bands:

1. For m = 1, . . . , M :

(a) Simulate um1 , . . . , umN ∼ uniform(0, 1).
(b) For i = 1, . . . , K , compute Fm(zi ).
(c) For i = 1, . . . , K , compute

Bin(NFm(zi ) | N , zi ) and Bin(NFm(zi ) − 1 | N , zi ).
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(d) Find the minimum probability

γm = 2min
i

{
min

(
Bin(NFm(zi ) | N , zi ),

1 − Bin(NFm(zi ) − 1 | N , zi )
)}

.

2. Set γ to be the 100α percentile of {γ 1, . . . , γ M }.
3. Form the confidence bands

[
Li (γ ) ,Ui (γ )

]

=
[
1

N
Bin−1

(γ

2
| N , zi

)
,
1

N
Bin−1

(
1 − γ

2
| N , zi

)]

for i = 1, . . . , K .

2.3 Simultaneous confidence bands through
optimization

We also propose a computationally more efficient
optimization-based method for determining the simultane-
ous confidence bands.

In the following derivation of the optimization method,
we denote the interior of the confidence bands for the ECDF
at quantile zi as Ĩi (γ ). By denoting ri = NF(zi ), the scaled
interior Ii (γ ) for ri is given by

Ii (γ ) =
{
r ∈ {0, . . . , N } | Bin−1

(γ

2
| N , zi

)

≤ r ≤ Bin−1
(
1 − γ

2
| N , zi

)}
. (15)

As is common for discrete statistical tests, we treat the bor-
ders between the interior and exterior as being within the
confidence bands. Based on Ii (γ ), we can easily obtain Ĩi (γ )

as r ∈ Ii (γ ) is equivalent to r/N ∈ Ĩi (γ ).
A scaled ECDF trajectory defined as

t K0 =
(
(zi )

K
i=0, (ri )

K
i=0

)
(16)

with z0 = 0 and zK = 1 stays within the simultaneous
confidence bands completely if and only if ri ∈ Ii (γ ) for all
i ∈ {0, . . . , K }. If we denote the set of trajectories fulfilling
ri ∈ Ii as Ti , we can write the set of trajectories which are
completely within the simultaneous confidence bands as

T (γ ) =
K⋂
i=0

Ti (γ ). (17)

In order for the simultaneous confidence bands to have con-
fidence level 1 − α, we must have

Pr (T (γ )) = 1 − α. (18)

Due to the pairwise independence of the original draws ui
(by assumption), the distribution of the ECDF values within
a single trajectory is Markovian in the sense that the ECDF
value F(zi+1) only depends on the observed value at the pre-
vious evaluation point, F(zi ) and not on the earlier behaviour
of the ECDF trajectory.

This implies that, under uniformity of the original dis-
tribution, the remaining N − NF(zi ) = N − ri samples
are uniformly distributed on the interval [zi , 1], and thus the
growth of the scaled ECDF from ri to ri+1, between zi and
zi+1 is binomially distributed with N − ri trials and the suc-
cess probability

z̃i+1 = zi+1 − zi
1 − zi

. (19)

And so we have

Pr(ri+1 | ri ) = Bin (ri+1 − ri | N − ri , z̃i+1) . (20)

The probability for ri+1 = k ∈ Ii+1 to occur in a scaled
ECDF trajectory t K0 which stayed within the simultaneous
confidence bands until point i , that is, for which we have

t i0 ∈
i⋂

j=0

Tj (γ ), (21)

can thus be written recursively as

Pr

⎛
⎝ri+1 = k ∩

i⋂
j=0

Tj (γ )

⎞
⎠ =

∑
m∈Ii

Pr

(
ri = m ∩

i−1⋂
n=0

Tn(γ )

)
Pr(ri+1 = k | ri = m). (22)

The recursion is initialized at z0 = 0 with Pr(r0 = 0) = 1
so that Pr(T0(γ )) = 1 for all γ ∈ [0, 1]. At any point i ∈
{0, . . . , K }, we can obtain

Pr

⎛
⎝ i⋂

j=0

Tj (γ )

⎞
⎠ =

∑
m∈Ii

Pr

(
ri = m ∩

i−1⋂
n=0

Tn(γ )

)
, (23)

which is equal to Pr(T (γ )) when arriving at i = K . Clearly,
Pr(T (γ )) is monotonically decreasing but not continuous in
γ due to the discrete nature of the binomial distribution. Thus,
Equation (18) will not have an exact solution in general and
so we will not be able to meet the simultaneous confidence
level 1 − α exactly. We can, however, try to get as close as
possible by computing

γ̂ = argminγ∈[0,α] |1 − α − Pr (T (γ )) | (24)
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Fig. 5 We evaluate the
hypothesis of the four samples
on the left originating from the
same underlying distribution by
inspecting the distribution of
fractional ranks among the joint
rank-transformed, Eq. (29),
samples presented in the middle.
When comparing multiple
samples, we would like to take
into account the within sample
dependency, but also the
between sample dependency
introduced by the joint
transformation. In Sects. 3.2 and
3.3, we extend our methods in
order to provide simultaneous
confidence bands for the ECDF
and the ECDF difference plots
shown on the right
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with a unidimensional derivative-free optimizer. In our exper-
iments, the optimizer proposed by Brent (1973) (which is
implemented, e.g. in the R function optimize) converged
quickly in all cases to γ̂ values implying a simultaneous con-
fidence level very close to the nominal 1 − α.

With a 2015 laptop equipped with a 2.90GHz Intel®
CoreTM i5-5287U processor, the optimization method
reduces the time required to compute the adjustment param-
eter γ from 10s to 600ms for a sample of length 250 when
compared against the time required for 10,000 steps of the
simulation method. With N = 1000 this reduction is from
75s to 10s.

Both of the implementations used for this article only use
a single computation thread, but would benefit from paral-
lelization, as both methods include independent iterations.

The computation time required can be further reduced by
using a grid of pre-computed values as the adjustment param-
eters, and interpolate for different values of N in log-log
scale.

3 Comparison of multiple samples

In this section, we extend the uniformity test of Section 2
to test whether multiple samples originate from the same
underlying distribution. In the case of multiple samples shar-
ing the same distribution, the rank statistics of the values
within each sample, when ranked jointly across all samples,
are uniformly distributed on the interval (1, Ñ ), where Ñ is
the total length of the combined sample (Vehtari et al. 2021).
Thus, instead of considering the sampled values directly, we
consider the implied jointly rank-transformed values.

Due to this joint rank-transformation, the resulting chains
are dependent on each other and the confidence intervals we

construct in the following two sections are used to answer
whether all the two or more samples originate from the same
underlying distribution. In other words, in the case one or
more of the ECDF trajectories leaves the confidence bands,
we conclude that at least one of the samples exhibits larger-
than-expected deviance from the other samples at hand.

An illustration of the connection between the sampled val-
ues, the corresponding fractional rank statistics and the two
ECDF plots of these rank statistics are displayed in Fig. 5.

3.1 Pointwise confidence bands

An important distinction to the ECDF case considered in
Section 2 is the formof themarginal distribution at quantile zi
when determining the adjusted coverage parameter γ . As our
main application is the comparison of distributions induced
by MCMC chains, we speak of the L different samples as
chains and assume all chains to have the same length N . We
define ri as the vector (of length L) of joint ranks across
chains smaller than or equal to the sample size si = 	zi N L
.
That is, for each of the L elements ril of ri , we have

ril =
⎧⎨
⎩

N∑
j=1

I{1,...,si }
(
R(ul j | u)

)
⎫⎬
⎭ , (25)

where ul j is the j th draw of the lth chain before transfor-
mation, R(ul j | u) is the rank of ul j within the vector u of
all draws across all chains, and I is the indicator function.
Clearly, because of the definition of ranks, we know for all i
that

L∑
l=1

ril = si , (26)
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and we define the set of all ri satisfying (26) as Ri . Due
to the pairwise independence of the original draws ul j (by
assumption), the marginal distribution of ri at quantile zi is
multivariate hypergeometric

ri ∼ MHyp(Ñ , si ), (27)

where Ñ = (N1, . . . NL) is the vector chain lengths (i.e.
population sizes) and N1 = . . . = NL = N as we assume
chains to have equal length. It is well known that, in this
case, themarginal distribution of ril , and thus the distribution
defining the pointwise confidence bands, is hypergeometric

ril ∼ Hyp(N , N (L − 1), si ). (28)

3.2 Simultaneous confidence bands through
simulation

In this section, we extend the simulation method presented
in Sect. 2.2 to comparison of multiple samples. Our aim is
to define simultaneous confidence bands for the ECDFs of
multiple, jointly rank-transformed distributions so that the
interior of the simultaneous confidence bands jointly contains
all trajectories induced by the rank-transformed distributions
with rate 1−α. To this end, we define ri and si as in Sect. 3.1
and denote the interior of the simultaneous confidence bands
at quantile zi as Ĩi (γ ), with γ being the adjusted coverage
parameter to be determined.

We continue the use of fractional ranks in the ECDF plots
to provide illustrations independent of the length of the sam-
pled chains. Suppose we have L chains of length N . The
fractional rank score r̃il corresponding to the i th value of the
lth chain, uli , is

r̃il = R(ul j | u)

LN
. (29)

Instead of using the adjusted value of γ to obtain the 1 −
α level simultaneous confidence bands for a single ECDF
trajectory,we adjustγ to account for the dependence between
the samples introduced in the transformation into fractional
ranks. That is, after choosing the evaluation quantiles zi , we
adjust γ to find upper and lower simultaneous confidence
bands satisfying

Pr(Li (γ ) ≤ Fl(zi ) ≤ Ui (γ ) for all i ∈
{1, . . . , K }, l ∈ {1, . . . , L}) = 1 − α, (30)

where Fl is the ECDF of the fractional rank scores of the lth
chain.

We denote the CDF of the hypergeometric distribution as
Hyp and its inverse as Hyp−1. The algorithm to approximate
the adjusted coverage parameter γ when comparing L sam-
ples is as follows:

1. For m = 1, . . . , M :

(a) For l = 1, . . . , L , simulate uml1, . . . , u
m
lN ∼

uniform(0, 1).
(b) For j = 1, . . . , N and l = 1, . . . , L , compute r̃mjl .
(c) For i = 1, . . . , K and l = 1, . . . , L , compute

Fm
l (zi ).

(d) For i = 1, . . . , K and l = 1, . . . , L , compute

Hyp
(
NFm

l (zi ) | N , (L − 1)N , si
)
and

Hyp
(
NFm

l (zi ) − 1 | N , (L − 1)N , si
)
,

where si = 	zi N L
.
(e) Find the minimum probability

γm = 2min
i,l

{
min

(
Hyp

(
NFm

l (zi ) | N , (L − 1)N , si
)
,

1 − Hyp
(
NFm

l (zi ) − 1 | N , (L − 1)N , si
))}

.

2. Set γ to be the 100α percentile of {γ 1, . . . , γ M }.
3. Form the confidence bands

[
Li (γ ),Ui (γ )

] =
[
Hyp−1

(γ

2
| N , N (L − 1), si

)
,

Hyp−1
(
1 − γ

2
| N , N (L − 1), si

)]
,

for i = 1, . . . , K .

3.3 Simultaneous confidence bands through
optimization

In this section, we extend the optimization method presented
in Sect. 2.3 to comparison of multiple samples. With the
marginal distribution of ril being hypergeometric, the rank
interior Ii (γ ) for zi is given by

Ii (γ ) =
{
r ∈ Ri | ∀rl ∈ r : Hyp−1

(γ

2
| N , N (L − 1), si

)

≤ rl ≤ Hyp−1
(
1 − γ

2
| N , N (L − 1), si

)}
. (31)

We treat the borders between interior and exterior as belong-
ing to the interior. Based on Ii (γ ), we can again easily obtain
Ĩi (γ ), as r ∈ Ii (γ ) is equivalent to r/N ∈ Ĩi (γ ).

The remainder of the proof proceeds similar to the one-
sample case, except that we replace the binomial distribution
with the (multivariate) hypergeometric distribution. A (mul-
tivariate) rank ECDF trajectory, defined as

t K0 =
(
(zi )

K
i=0, (ri )

K
i=0

)
, (32)

where z0 = 0 and zK = 1, stays within the simultaneous
confidence bands completely if and only if ri ∈ Ii (γ ) for all
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i ∈ {0, . . . , K }. If we denote the set of trajectories fulfilling
ri ∈ Ii as Ti , we can write the set of trajectories which are
completely in the interior of the simultaneous confidence
bands as

T (γ ) =
K⋂
i=0

Ti (γ ). (33)

In order for the simultaneous confidence bands to have a
confidence level 1 − α, we must satisfy

Pr (T (γ )) = 1 − α. (34)

Due to the pairwise independence of the original draws
ul j (by assumption), the distribution of the rank ECDF tra-
jectories again exhibits a similarMarkovian property as in the
single sample case. That is, any ECDF value F(zi+1) beyond
a given point zi only depends on F(zi ) but not on the earlier
history of the ECDF trajectory. This implies that, under the
assumption of all chains coming from the same underlying
distribution, the growth ri+1 − ri of the ECDF from zi to
zi+1 is multivariate hypergeometric with Ñi = Ñ − ri and
sample size s̃i+1 = si+1 − si . Accordingly, we have

Pr(ri+1 | ri ) = pMHyp

(
ri+1 − ri | Ñi , s̃i+1

)
, (35)

where pMHyp denotes the discrete PDF of the multivariate
hypergeometric distribution. The probability for ri+1 = k ∈
Ii+1 to occur in a rank ECDF trajectory t K0 which stayed in
the simultaneous confidence bands until point i , that is, for
which we have

t i0 ∈
i⋂

j=0

Tj (γ ) (36)

can thus be written recursively as

Pr

⎛
⎝ri+1 = k ∩

i⋂
j=0

Tj (γ )

⎞
⎠ =

∑
m∈Ii

Pr

⎛
⎝ri = m ∩

i−1⋂
n=0

Tn(γ )

⎞
⎠

Pr(ri+1 = k | ri = m). (37)

The recursion is initialized at z0 = 0 with Pr(x0 =
(0, . . . , 0)) = 1 so that Pr(T0(γ )) = 1 for all γ ∈ [0, 1].
At any point i ∈ {0, . . . , K }, we can obtain

Pr

⎛
⎝ i⋂

j=0

Tj (γ )

⎞
⎠ =

∑
m∈Ii

Pr

(
ri = m ∩

i−1⋂
n=0

Tn(γ )

)
, (38)

which is equal to Pr(T (γ )) when arriving at i = K . Clearly,
Pr(T (γ )) is monotonically decreasing but not continuous in

γ due to the discrete nature of the (multivariate) hypergeo-
metric distribution. We can compute

γ̂ = argminγ∈[0,α] |1 − α − Pr (T (γ )) | (39)

using a unidimensional derivative-free optimizer. In our
experiments, the optimizer proposed by Brent (1973) con-
verged in all cases to γ̂ values implying a simultaneous
confidence level very close to the nominal 1 − α.

Unfortunately, evaluating Eq. (37) suffers from combina-
torial explosion as the Ri are L-dimensional sets constraint
only by Equation (26) and as Pr(ri+1 = k | ri = m) has to
be computed for all combinations of elements k ∈ Ii+1 and
m ∈ Ii+1 at each point i . Several measures can be taken to
reduce the complexity of the computation. First, the ranks
of one of the L chains are redundant as they follow deter-
ministically from Equation (26) based on the ranks of the
other L − 1 chains. This implies in particular that the 2-
chain case has the same computational complexity as the
one-sample case as only one of the two chains needs to be
evaluated. Second, due to a priori symmetry of the chains, we
can, without loss of generality, assume at the first non-zero
quantile z1 that the elements r1l of r1 are ordered such that
r11 ≤ r12 ≤ . . . ≤ r1L . This reduces the number of trajecto-
ries to be evaluated by a factor of L(L+1)/2. Still even with
these measures in place, computation will scale badly with
L , and the simulation-basedmethod, which scales almost lin-
early, or grid-based interpolation from pre-computed values
is faster for larger number of chains.

4 Numerical experiments and power analysis

In this section, we provide insights into how the plots pro-
duced by our proposed methods should be interpreted. In
each of the following cases, we link together the histogram,
ECDF plot, and the ECDF difference plot. The code for
the experiments and plots is available at https://github.com/
TeemuSailynoja/simultaneous-confidence-bands.

4.1 Uniformity of a Single Sample

We begin by providing two examples connecting the shape
of the histogram of the transformed sample to the charac-
teristics of the corresponding ECDF and ECDF difference
plots with basic discrepancies between the sample and the
comparison distribution. After this, we illustrate an applica-
tion of our method as part of a workflow to detect issues
in model implementation or the computation of the posterior
distribution. Lastlywe provide power analysis comparing the
performance of our proposed method to existing state of the
art tests for uniformity.
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Fig. 6 Effect of the sample mean. The histogram, ECDF plot, and
ECDFdifference plot of the empirical PIT values of y = y1, . . . , y250 ∼
normal(0.25, 1) with respect to xi = xi1, . . . , x

i
250 ∼ normal(0, 1) for

i = 1, . . . , N . The larger-than-expected mean of the sample is some-

what visible as a slant to the right in the histogram, whereas the ECDF
difference plot displays a clear ∪-shape. In the histogram 95% confi-
dence intervals are provided for each of the 50 bins and the ECDF plots
show the 95% simultaneous confidence bands

With the exception of the power analysis tests in 4.1.4
where the samples are drawn directly from a continuous
uniform distribution, the samples in the following exam-
ples are transformed to the unit interval from their respective
sampling distributions through empirical PIT and are tested
against the hypothesis of discrete uniformity.

4.1.1 Effect of difference in sample mean

To observe the typical characteristics of a sample with a
mean different than that of the comparison distribution, we
draw y = y1, . . . , yN ∼ normal(0.25, 1) and N indepen-
dent comparison samples xi = xi1, . . . , x

i
N ∼ normal(0, 1)

with N = 250. We then test for y being standard nor-
mal distributed by transforming the sampled values to the
unit interval through empirical PIT. Figure 6a shows the
histogram of the transformed sample exhibiting a higher-
than-expected mean. As seen in the figure, a shift in the
sample mean leads to the histogram being slanted towards
the direction of the shift.

The ECDF plot in Fig. 6b shows this shift through the
ECDFof the PITvalues remaining under the theoretical CDF,
which is also seen in the ECDF difference plot in Fig. 6c.

If the sample in question would instead have amean lower
than expected, the histogram would be slanted to the left and
the behaviour of the resulting ECDF plot and ECDF differ-
ence plot would be reversed. That is, the ECDF plot would
stay above the theoretical CDF as a higher-than-expected
density is covered at low fractional ranks and the ECDF dif-
ference plot would, respectively, show a ∩-shape above the
zero level.

4.1.2 Effect of difference in sample variance

Next, we investigate an example where the sample has a
higher-than-expected variance. To this end, we draw y =

y1, . . . , yN ∼ normal(0, 1.25) and for each yi a standard uni-
form comparison sample xi = xi1, . . . , x

i
N ∼ normal(0, 1)

with N = 250. Figure 7a shows the histogram of the
empirical PIT values. In general, a larger-than-expected vari-
ance leads to a ∪-shaped histogram and one can indeed see
some of the histogram bins breaching the 95% confidence
bounds.

In the ECDF plot shown in Fig. 7b, the larger-than-
expected variance leads to faster-than-expected growth near
the edges and slower-than-expected growth in the middle.

The shape is more clearly seen in the ECDF difference
plot in Fig. 7c depicting the difference between the ECDF
and the theoretical CDF.

If the sample would instead present a variance lower
than expected, the histogram would be ∩-shaped and the
behaviour of the resulting ECDF plot and ECDF difference
plot would be reversed.

In the ECDF plot, this is shown as faster increase near the
middle.

In general, the ECDF difference plot is decreasing when
a smaller-than-expected density of samples is covered, and
correspondingly increases when covering a higher-than-
expected density.

4.1.3 Simulation-based calibration: eight schools

The eight schools (Gelman et al. 2013) is a classic hierarchi-
cal model example. The training course effects θ j in eight
schools are modelled using an hierarchical varying intercept
model.

If the model is constructed with the centred parameter-
ization, the posterior distribution exhibits a funnel shape
contracting to a region of high curvature near the population
mean μ when sampled with small values of the popula-
tion standard deviation τ . This property makes exploring the
distribution of τ difficult for many MCMC methods. The

123



   32 Page 12 of 21 Statistics and Computing            (2022) 32:32 

0

5

10

15

0.0 0.2 0.4 0.6 0.8 1.0 0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
−0.1

0.0

0.1

0.0 0.2 0.4 0.6 0.8 1.0

(a) (b) (c)

Fig. 7 Effect of the sample variance. The histogram, ECDF plot, and
ECDFdifference plot of the empirical PIT values of y = y1, . . . , y250 ∼
normal(0, 1.25) with respect to xi = xi1, . . . , x

i
250 ∼ normal(0, 1) for

i = 1, . . . , , N . The larger-than-expected variance of the sample is
visible as a ∪-shape in the histogram, whereas the ECDF difference

plot displays rapid growth near the ends of the interval as a larger-than-
expected number of values is covered. In the histogram, 95%confidence
intervals are provided for each of the 50 bins and the ECDF plots show
the 95% simultaneous confidence bands

centred parameterization (μ, σ, μ0, τ ) of the problem is as
follows:

μ j ∼ normal(μ0, τ ) (40)

y j ∼ normal(μ j , σ j ). (41)

Cook et al. (2006) proposed a simulation-based calibration
(SBC) method for validating Bayesian inference software.
The idea is based on the fact we can factor the joint distribu-
tion of data y and parameters θ in two ways

π(y, θ) = π(y|θ)π(θ) = π(θ |y)π(y). (42)

By considering θ ′ and θ ′′ the joint distribution is

π(y, θ ′, θ ′′) = π(y)π(θ ′|y)π(θ ′′|y), (43)

and it is easy to see that θ ′ and θ ′′ have the same distribu-
tion conditionally on y. If write the joint distribution in an
alternative way

π(y, θ ′, θ ′′) = π(θ ′)π(y|θ ′)π(θ ′′|y), (44)

θ ′ and θ ′′ still have the same distribution conditionally on
y. We can sample from the joint distribution π(y, θ ′, θ ′′)
by first sampling from π(θ ′) and π(y|θ ′), which is usu-
ally easy for generative models. The last step is to sample
from the conditional π(θ |y), which is usually not trivial and
instead, for example, a Markov chainMonte Carlo algorithm
is used.We can validate the algorithm and its implementation
used to sample from π(θ ′′|y) by checking that the samples
obtained have the same distribution as θ ′ (conditionally on
y).

Cook et al. (2006) operationalize the approach by drawing
θ ′
i from π(θ ′), generating data yi ∼ π(yi |θ ′

i ) and then using

the algorithm to be validated to draw a sample θ ′′
1 , . . . , θ ′′

S ∼
π(θ ′′|yi ). If the algorithm and its implementation are correct,
then θ ′

i , θ
′′
1 , . . . , θ ′′

S conditional on yi are draws from the same
distribution. Cook et al. (2006) propose to compute empirical
PIT valued for θ ′

i that they show to be uniformly distributed
given S → ∞. The process is repeated for i = 1, . . . , N
and N empirical PIT values are used for testing. Cook et al.
(2006) propose to use χ2-test for the inverse of the normal
CDF of the empirical PIT values. However, with finite S this
approach does not correctly take into account the discreteness
or the effect of correlated sample fromMarkov chainGelman
(2017).

By thinning θ
′′
1 , . . . , θ

′′
S to be approximately independent,

the uniformity of empirical PIT values can be tested with the
approach presented in this paper. See Appendix A for more
on thinning.

Figure 8 shows the histogram and ECDF plots of 500 prior
draws of the population standard deviation τ , each ranked
based on a thinned posterior sample of 150 draws obtained
from a chain of 3000 draws. The graphical test rejects the
hypothesis of the prior draws being uniform, moreover the
ECDF plots show that the prior draws of the parameter τ

ranked in relation to the posterior samples obtained from
the centred parameterization of the eight schools model are
skewed to small ranks. This suggests that the MCMC is not
sampling correctly from the target distribution (which in this
case is known to be caused by inability to reach the narrow
funnel part of the posterior).

In Sect. 4.2.4, we will return to the eight schools model by
providing further analysis on the convergence of individual
chains in the centred parameterization case and illustrating
how our method can be used to detect these convergence
issues.
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Fig. 8 SBC of the parameter τ in the centred parameterization eight
schools model. The empirical PIT values of the prior draws of τ , when
compared to the corresponding posterior samples, show a strong under-

representation of large PIT values in both the histogram and the ECDF
difference plot. This indicates that theMCMC is not sampling correctly
from the target distribution

4.1.4 Power analysis

As our primary focus is on providing a graphical uniformity
test, which gives the user useful information regarding the
possible deviations from uniformity, we want to also ensure
that the overall performance of our test is, if not the best,
competitive with tests aimed at accurately detecting specific
deviations from uniformity. To this end, we compare the sen-
sitivity of our method with existing tests for uniformity, by
considering the rejection rate of samples drawn fromuniform
distribution and then transformed according to the following
three transformation families Marhuenda et al. (2005) use in
their article comparing various tests for uniformity:

f A,k(x) = 1 − (1 − x)k, 0 ≤ x ≤ 1, (45)

fB,k(x) =
{
2k−1xk if 0 ≤ x ≤ 0.5

1 − 2k−1(1 − x)k if 0.5 < x ≤ 1
(46)

fC,k(x) =
{
0.5 − 2k−1(0.5 − x)k if 0 ≤ x ≤ 0.5

0.5 + 2k−1(x − 0.5)k if 0.5 < x ≤ 1.
(47)

As Marhuenda et al. (2005) offer an extensive comparison
of tests, we limit our comparison to the test specifically rec-
ommended to target each of the transformation families in
addition to thewidely knownKolmogorov–Smirnov test. For
each of the test statistics, a critical value is calculated and
samples exceeding that value are rejected.

For transformation family A, the recommended test is the
mean distance of the i th value of the ordered sample u(i)

from the expected value i/(N + 1):

T1 =
N∑
i=1

|u(i) − i/(N + 1)|
N

. (48)

For family B, the smooth goodness-of-fit test, Nh , introduced
by Neyman (1937) is recommended with the dimension h

chosen according to the method recommended by Ledwina
(1994) resulting in the test statistic NS , which also has the
best overall performance across the transformation families.
The test recommended for transformation family C is the
statistic recommended by Watson (1961),

U 2 = W 2 − i (ū − 0.5)2 , (49)

where ū is the mean of the ui and W 2 is the Cramér–von
Mises statistic,

W 2 =
N∑
i=1

{
u(i) − 2i − 1

2N

}2

+ 1

12N
. (50)

The rejection rates of these tests and our test through
simultaneous confidence bands are shown in Fig. 9 for fam-
ilies A, B, and C with sample size N = 100 and k varying
between 0.20 and 3.00. For each value of k, the rejection
rate among 100, 000 samples was computed. As seen from
these results, the proposed ECDF simultaneous confidence
band method performs in a manner similar to the recom-
mended tests with the exception of family C, where our
method exhibits a lower rejection rate compared to some
of the other tests.

4.2 Comparingmultiple samples

When testing if two or more samples are produced from the
same underlying distribution, we can compare the ranks of
each sample relative to the sample obtained by combining all
the samples in the comparison. As mentioned in Sect. 3, we
need to adjust the confidence bands to take into account the
dependency of the ranks of the values of one sample on the
values in other samples in the comparison.

When using the multiple sample test for MCMC con-
vergence diagnostics, we recommend first using existing
numerical convergence statistics, such as the R̂ by Vehtari
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Fig. 9 When compared to existing tests for uniformity, the rejection
rate of the graphical test with simultaneous confidence bands performs
well in all the three families of deviations introduced in (45). A slightly

lower rejection rate can be observed in family C for k ∈ (1, 3), which
corresponds to samples biased towards the centre of the unit interval

et al. (2021) or the R∗ by Lambert and Vehtari (2021) which
can assess the convergence of all model parameters jointly
and can indicate which parameters have possible conver-
gence issues. In the case that these statistics indicate possible
issues, further insight into the nature of these deviations can
be obtained with the ECDF plots of fractional ranks.

4.2.1 Effect of difference in means and variances

We first compare two cases of MCMC sampling with four
chains containing 250 independent draws,which is enough to
reliably estimate the variances and autocorrelations required
for R̂ and effective sample size (ESS) as long as the rank-
normalized ESS of the sample exceeds 400 (Vehtari et al.
2021), which is the case as the draws are independent. In each
case, chains 2 to 4were sampled fromanormal(0, 1)distribu-
tion. In the first case, chain 1 is sampled with a larger mean
than the other chains, normal(0.5, 1). In the second case,
chain 1 is sampled with a larger variance, normal(0, 1.5).

Rank plots for the first case with one chain having a larger
mean are shown in Fig. 10a–d. Even though the difference
in the sampling distribution of chain 1 can be seen in the
histograms with 50 bins, this effect is more clearly repre-
sented in the ECDF difference plot in Fig. 10f where chain 1
shows the shape familiar from 4.1.1 and chains 2 to 4 show
a reverse shape, indicating similar behaviour between these
three chains.

Similar remarks regarding the behaviour of the chains
can be made from the ECDF plot in Fig. 10e, but the more
dynamic range of the ECDF difference plot in Fig. 10f makes
the difference in the behaviour of the chains clearer.

In the second case, where chain 1 is sampled with a higher
variance, we can see a ∪-shape in the rank plot of chain 1
in Fig. 11a, but the behaviour stands out more clearly in the
ECDF difference plot in Fig. 11f.

When compared to commonly used convergence diag-
nostics not offering graphical insight into the nature of the
possible underlying problems, both the classical R̂ diagnostic
by Gelman and Rubin (1992) and the improved R̂ diagnostic
proposed byVehtari et al. (2021) indicate convergence issues
as they give and estimated R̂ values of 1.05 and 1.04, respec-
tively, to both themean and variance related examples above.
Vehtari et al. (2021) suggest that R̂ > 1.01 is an indication
of potential convergence issues or too short chains.

4.2.2 Test performance under common deviations

To evaluate the performance of the multiple sample compari-
son test under a set of common deviations, one of the samples
was transformed according to the three transformation fami-
lies defined in equation (45). In the analysis 2, 4, and 8 chains
of length 100 were simulated from U (0, 1) after which one
of the chains was transformed according to the transforma-
tions f A,k , fB,k , and fC,k . The rejection rates of the multiple
sample comparison test when varying the power, k, of the
transformation were estimated from 10, 000 simulations and
are recorded in Fig. 12. The observed test performance is
independent of the number of chains used in the sample com-
parison. When compared to the rejection rates observed in
the single sample power analysis in 4.1.4, the rejection rates
show that the test sensitivity depends in a similar way on the
transformation.
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Fig. 10 Effect of differences in sample mean. While chains 2 to 4 are
drawn from the standard normal distribution, chain 1 is drawn from
normal(0.5, 1), which can be seen as a bias towards large fractional
ranks in the rank plot of chain 1 and as a slightly lowered frequency of

large fractional ranks in chains 2-4. In the ECDF plot and the ECDF
difference plot, the ECDF of chain 1 obtains values considerably lower
than expected resulting in a clear ∪-shape in the ECDF difference plot

4.2.3 Chains with autocorrelation

As samples generated by MCMC processes are typically
autocorrelated, it is essential to analyse the performance of
the sample comparison test under autocorrelated samples. In
Fig. 13, rejection rates of simulated multiple sample test 2,
4, and 8 chains produced by autoregressive models of order
1 (i.e. AR(1) models) with varying AR-parameter values are
presented. Each rejection rate is computed as the mean of
100, 000 simulations. As seen in the figure, the higher the
autocorrelation in the samples is and the more chains are
sampled, the more likely the test is to reject the hypothesis
that the samples are drawn from the same underlying distri-
bution. Thus, before using the graphical illustration or the
corresponding test, the chains should be thinned to have neg-
ligible autocorrelation. The same holds for other common
uniformity tests as well, as they rely on the assumption of
pairwise independence of draws.

4.2.4 Detecting model sampling issues: eight schools

We return to the eight schools model used to demonstrate
SBC in Sect. 4.1.3. The issues detected with SBC earlier are

apparent whenmultiple sample comparison is used to inspect
the rank distribution between the four individual chains, each
containing 1000 posterior draws after a warm-up period of
1000 steps. Even when sampled with more conservative set-
tings of the sampler, we see from Fig. 14 that the chains
are not properly exploring the posterior and thus the realized
rank transformed chains have clearly different ECDFs.

While the classical R̂ is estimated at 1, the improved R̂
diagnostic gives a value of 1.02 indicating possible con-
vergence issues. One should also note that the sampling
efficiency for τ in themodel is very low, as both the bulk-ESS
and the tail-ESS by Vehtari et al. (2021) are under 150 for
the combined sample.

As recommended in Sect. 22.7 of the Stan User’s Guide
(Stan Development Team. xxx), these observed sampling
issues of a hierarchical model with weak likelihood con-
tribution can often be avoided by using the non-centred
parameterization (θ̃ , μ, τ, σ ) of the model:

θ̃ j ∼ normal(0, 1) (51)

θ j = μ + τ θ̃ j (52)

y j ∼ normal(θ j , σ j ) (53)
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Fig. 11 Effect of differences in sample variances. While chains 2–4
are drawn from the standard normal distribution, chain 1 is drawn from
normal(0, 1.5), which can be seen as a∪-shape in the rank plot of chain
1 and as a low frequency of small and large fractional ranks in the rank
plots of chains 2–4. In the ECDF plot and the ECDF difference plot, the

ECDF of chain 1 grows fast near the ends of the unit interval, where a
higher-than-expected density of fractional ranks is covered. In the mid-
dle of the interval, the ECDF difference plot of chain 1 is decreasing,
whereas chains 2-4 are increasing
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Fig. 12 An inspection of the rejection rates of the sample comparison
test when one of the chains is transformed according to one of the three
transformation families in (45), the test performance shows indepen-

dence of the number of chains and demonstrates similar dependency on
the extremity of the transformation
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Fig. 13 Test rejection rate when comparing chains with autocorrela-
tion. On the left as a function of the AR-parameter value and on the
right as a function of the ratio between the bulk effective sample size,
as defined by Vehtari et al. (2021), and the total sample size. The nomi-

nal rejection rate 0.05 is shown with a vertical line in both plots. As the
test expresses sensitivity to autocorrelation, we recommend thinning
the samples, in order to reduce autocorrelation, before using the sample
comparison test
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Fig. 14 Detecting model sampling issues: centred parameter eight
schools model. When inspecting the sampling of parameter τ , both
the rank plot of chain 3 and the ECDF difference plot in the centred

parameter model indicate a convergence issue with chain 3 including
small values of the parameter at a rate considerably higher than the rest
of the sampled chains

In the above parameterization, the treatment effect θ j is
derived deterministically from the other parameter values
and instead θ̃ j is sampled. To keep the models compara-
ble, we use the same conservative sampling options for the
non-centred model although this is not required to obtain
well mixing chains. In Fig. 15, we see an improvement in
the sampling compared to the centred parameterization, as
the sample ranks are distributed approximately uniformly

among the four chains implying that the chains are mixing
well.

Now, both of the R̂ diagnostics agree on convergence with
the graphical test, yielding values close to 1.00,while also the
sampling efficiency issues detected in the centred parameteri-
zationmodel havedisappearedgiving sampleswith bulk-ESS
and tail-ESS reaching 2200 and 1600, respectively.
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Fig. 15 Detecting model sampling issues: non-centred parameter eight
schools model. When inspecting the sampling of parameter τ , even
when the 95% confidence bands of the rank plots of chains 2 and 3
are exceeded by one bin each, the ECDF plot and the ECDF difference

plot of the non-centred parameterization eight schools model indicate
no mixing issues as the ECDF of the fractional ranks of each chain stay
between the 95% simultaneous confidence bands

5 Discussion

By providing a graphical test for uniformity and comparison
of samples, we offer an accessible tool to be used in many
parts of practical statistical workflow.

For assessing the uniformity of a single sample, we rec-
ommend the optimization-based adjustment method, as it is
efficient even for large sample sizes. For comparing mul-
tiple samples, the simulation-based method is likely to be
computationally more efficient than the optimization-based
method. To speed up the computations, we recommend pre-
computing adjusted γ values for a set of sample size and
number of samples (chains) and then interpolate (in log-log
space) the adjustment as needed.

In the examples, we used empirical PIT with SBC, where
the uniformity is expected by construction if the infer-
ence algorithm works correctly. PIT has also been used to
compare predictive distributions. Specifically, in the LOO-
PIT approach, PIT has been used to compare leave-one-out
(LOO) cross-validation predictive distributions to the obser-
vations (e.g. Gneiting et al. 2007; Czado et al. 2009).
Although the graphical LOO-PIT test is useful for visu-
alization of model–data discrepancy, exact uniformity of
LOO-PIT values can be expected only asymptotically given
the true model. For example, if the data comes from a normal
distribution and is modelled with a normal distribution with
unknown mean and scale, the posterior predictive distribu-

tion is a Student’s t distribution that approaches normal only
asymptotically. Thus use of graphical LOO-PIT tests needs
further research.

We have assumed that distributions g and p are continu-
ous and only the fractional rank statistics ui from Eq. (2) are
discrete. Our proposed methods do not work directly if g and
p are discrete, as values obtained through PIT are no longer
uniform. Also, in the multiple sample comparison case, the
rank statistics are no longer mutually distinct as ties are pos-
sible. The potential approach to handling discrete g and p is
to use randomized or non-randomized modifications of PIT
values for discrete distributions, as discussed by Czado et al.
(2009). However, developing proven and efficient algorithms
for this purpose requires further work, which is left for future
research.
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Fig. 16 The difference between
the expectation of the first 100
ordered statistics of a sample of
size 1000. The expectations are
computed from 1000
simulations. One can see that
both the AR process with strong
positive autocorrelation,
φ = 0.95, and the process with
negative autocorrelation,
φ = −0.95, produce samples
with expected ordered statistics
that are biased towards the
centre of the distribution. When
thinned according to the
tail-ESS, resulting in thinning
by 18 and 7, respectively, the
samples align well with the
expected ordered statistics of the
target distribution

−3.0

−2.5

−2.0

−1.5

−1.0

−3.0 −2.5 −2.0 −1.5
Normal(0, 1)

A
R

(ϕ
=

−0
.9

5)

−3.0

−2.5

−2.0

−1.5

−1.0

−3.0 −2.5 −2.0 −1.5
Normal(0, 1)

Th
in

ne
d 

A
R

(ϕ
=

−0
.9

5)

−3.0

−2.5

−2.0

−1.5

−1.0

−3.0 −2.5 −2.0 −1.5
Normal(0, 1)

A
R

(ϕ
=

0.
95

)

−3.0

−2.5

−2.0

−1.5

−1.0

−3.0 −2.5 −2.0 −1.5
Normal(0, 1)

Th
in

ne
d 

A
R

( ϕ
=

0.
95

)
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Appendix A: Autocorrelated samples

In this appendix, we highlight the effect autocorrelated draws
have when they are used to estimate the extreme rank statis-
tics of the target distribution. Accounting for autocorrelation
is important when inspecting the distribution of order statis-
tics, including the PIT values in Sect. 2 or the between chain
fractional ranks in Sect. 3.

Given finite variance, central limit theorem holds also
for correlated samples and many useful expectations can be
estimated with desired accuracy by increasing the sample
size. However, the bias in extreme ordered statistics can be
non-negligible. This manifests in the expected value of the
smallest and largest order statistics of an autocorrelated sam-
ple being less extreme than expected. This phenomenon is
demonstrated with AR(1) processes in Fig. 16, which shows
expected values of the 100 smallest ordered statistics com-
puted from a sample of length 1000. The bias is smaller with
less extreme ordered statistics, and, for example, estimates of
p(x < −1.5) or 10% quantile in this case are likely to have

negligible bias. In the uniformity test, extreme PIT estimates
can have non-negligible bias, increasing the probability that
ECDF steps out of the simultaneous confidence band.

A standard approach to reduce sample autocorrelation is
to thin the sampled chains by keeping only every T values
in the sample. Below, we compare three thinning strate-
gies. First, the traditional approach, where T = S/ESS,
where ESS is computed for the posterior mean (without rank
normalization) (Vehtari et al. 2021). Second, an approach
recommended by Talts et al. (2020), where the above ESS
is computed for estimating the ECDF, P(y < y∗) where y∗
are empirical quantiles of the sample y. The authors recom-
mend using 19 quantiles (0.05, 0.1, . . . , 0.95) and thinning
the sample basedon theESS,whichwould result in the largest
thinning factor. Thismethod is targeted to address differences
in sampling efficiencybetween the distributionquantiles. The
third method, we introduce, is calculating the tail-ESS and
bulk-ESS as defined by Vehtari et al. (2021), and picking the
one resulting into the stricter thinning. This method aims to
address possible differences in sampling efficiency between
the central 90% quantile and the two 5% tail quantiles. R
package ‘posterior’ was used for all ESS computations.

In Fig. 16, we additionally show the first 100 order statis-
tics of the standard normal distribution compared to AR
processes thinned according to the tail-ESS, as our focus
here is on the tails of the distribution. In order to arrive at
a thinned sample of equal length, an expected Tail-ESS was
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Fig. 17 The behaviour of the
three thinning strategies when
applied to a sample consisting of
1, 2, or 4 chains created with an
AR(1) process. With AR(1)
process, the three strategies
agree on the recommended
strategy and are fairly successful
at recovering the desired
confidence level, while the
rejection rate of the unthinned
chains grows as more
autocorrelation is introduced.
For large values of the AR
parameter, φ, the thinning
amounts are quite high, which
would require larger samples to
reliable estimate properties of
the target distribution
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obtained by averaging over 10,000 simulations and the sam-
ple length was chosen accordingly to yield thinned samples
of length 1000. After the thinning, the order statistics closely
match those drawn independently from the standard normal
distribution.

We inspected how the three above-mentioned thinning
strategies manage to reduce the autocorrelation which, as
shown in Sect. 4.2.3, the ECDF-based test is sensitive to. In
this experiment, 1, 2, and 4 chains of length 1000were drawn
from theAR(1) processwith varying values of theARparam-
eter φ. The results of this experiment are displayed in Fig.
17, and as one can see, all three of the methods produce very
similar thinning recommendations, and thus also test results,
managing to reduce the rejection rate near the desired 5%.

If after using some default thinning approach, there are
still many extreme PIT estimates, it is possible that there
is still substantial autocorrelation in the sample and more
careful investigation of the remaining autocorrelation is war-
ranted. There is certainly a trade-off between the computation
time and how accurately the behaviour of extreme tails need
to be examined. Often the major issues can be seen with
less accurate computation, and natural workflow can include
iterative refinement of the diagnostic accuracy.

Although thinning may be needed for uniformity test as
part of SBC or posterior predictive checks (PPC), when esti-
mating quantities of interest that are not related to extreme
tails, better efficiency is obtained by using all the posterior
draws.
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