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DISTRIBUTED SOLUTION OF LAPLACIAN EIGENVALUE
PROBLEMS\ast 

ANTTI HANNUKAINEN\dagger , JARMO MALINEN\dagger , AND ANTTI OJALAMMI\dagger 

Abstract. The purpose of this article is to approximately compute the eigenvalues of the sym-
metric Dirichlet Laplacian within an interval (0,\Lambda ). A novel domain decomposition Ritz method,
partition of unity condensed pole interpolation, is proposed. This method can be used in distrib-
uted computing environments where communication is expensive, e.g., in clusters running on cloud
computing services or networked workstations. The Ritz space is obtained from local subspaces con-
sistent with a decomposition of the domain into subdomains. These local subspaces are constructed
independently of each other, using data only related to the corresponding subdomain. Relative eigen-
value error is analyzed. Numerical examples on a cluster of workstations validate the error analysis
and the performance of the method.
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1. Introduction. Assume that \Omega \subset \BbbR d, d = 2, 3, is a bounded domain with
Lipschitz boundary, and that \scrV \subset H1

0 (\Omega ) is a closed subspace. Consider the following
eigenproblem, find (\lambda j , uj) \in \BbbR + \times \scrV \setminus \{ 0\} such that

(1.1)

\int 
\Omega 

\nabla uj \cdot \nabla w dx = \lambda j

\int 
\Omega 

ujw dx and \| uj\| L2(\Omega ) = 1

for each w \in \scrV . Here \BbbR + := (0,\infty ), and the eigenvalues \lambda j are numbered in non-
decreasing order and repeated by their multiplicities. The purpose of this article is to
compute all eigenvalues within the spectral interval of interest (0,\Lambda ) for \Lambda \in \BbbR + to a
given accuracy in a distributed computing environment. In the following, the relevant
eigenfunctions are those that are associated with eigenvalues in (0,\Lambda ).

Laplacian eigenproblems discretized using the finite element method (FEM) lead
to (1.1) with \scrV being the finite element space of choice. If the dimension of the fi-
nite element space is large, e.g., due to the complicated shape of \Omega , it may happen
that (1.1) cannot be solved using a single workstation. Then two types of distributed
solution methods can be applied. First, a parallel eigenvalue iteration (such as shift-
and-invert Lanczos) can be used together with a parallel solver for the shifted linear
system; see, e.g., [2]. Second, one can use a domain decomposition (DD) method such
as AMLS [7], RS-DDS [20], or the CMS variant proposed in [15]; see also [5, 6, 7, 19].

All aforementioned eigensolvers are Ritz methods. That is, instead of (1.1) one

solves the problem, find (\~\lambda j , \~uj) \in \BbbR + \times \widetilde \scrV \setminus \{ 0\} such that for each w \in \widetilde \scrV 
(1.2)

\int 
\Omega 

\nabla \~uj \cdot \nabla w dx = \~\lambda j

\int 
\Omega 

\~ujw dx and \| \~uj\| L2(\Omega ) = 1,
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DISTRIBUTED SOLUTION OF LAPLACIAN EVPs 77

where the method subspace \widetilde \scrV \subset \scrV is finite dimensional. The eigenvalues \~\lambda j are in a
nondecreasing order and repeated according to their multiplicities. In this work, we
propose a method subspace \widetilde \scrV of DD type and analyze the relative error between the
corresponding eigenvalues of (1.1) and (1.2). We point out that there are also other
error sources. For example, there is an error due to applying FEM for discretizing
Laplacian eigenproblems and due to solving (1.2) using an algebraic eigensolver, but
these error sources are not treated here. For FEM eigenproblem error analysis, see,
e.g., [8]. For error analysis of algebraic eigensolvers, see, e.g., [25].

In the context of (1.1), the method subspaces used in CMS, AMLS, and RD-
DDS are associated with a decomposition of \Omega into nonoverlapping subdomains \{ \Omega j\} .
They are constructed by solving two kinds of eigenproblems: small, inexpensive local
problems on each \Omega j and interface problems related to adjacent subdomains. It is
noteworthy that the interface problems are never local, and their solution accrues a
significant computational cost in existing DD methods. Nevertheless, the existing DD
methods are useful for a wide class of problems especially if a large number of smallest
eigenvalues is to be computed [16].

We propose a novel DD eigensolver, partition of unity condensed pole interpolation
(PU-CPI) for the distributed solution of (1.1). PU-CPI is a Ritz method using a
method subspace associated with a relatively open, finite cover of \Omega , denoted by
\{ U (p)\} , instead of a nonoverlapping decomposition. Since there are no geometric
interfaces between the subdomains, solution of nonlocal interface problems is avoided.
Consequently, the PU-CPI method subspace is constructed from local subspaces on
U (p), whose basis is obtained by solving local eigenproblems. A partition of unity on
\{ U (p)\} is used to bind these local subspaces to a conforming method subspace as in
[23]. Similar strategy for solution of direct problems has been presented and analyzed
in [3, 11].

Because there are only local problems, PU-CPI does not require any communi-
cation between its distributed tasks associated with \{ U (p)\} . The master and workers
communicate to distribute local data at the beginning, and to transfer the finished
local results at the end of each task. Thus, PU-CPI can be used even if communica-
tion is expensive or nodes are not simultaneously available, e.g., on a cluster running
in a cloud computing service or on networked workstations.

We show that the eigenvalue error resulting from PU-CPI depends on how ac-
curately the relevant eigenfunctions (1.1) are approximated by the local subspaces.
Thus, the design of the local subspace for U (p) \subset \Omega requires some understanding on
the behavior of the these eigenfunctions restricted to U (p). It is well known that (ex-
cluding exceptional cases) the restriction of relevant eigenfunctions to any U (p) can
be recovered from its trace on \partial U (p). We exploit this property on extended subdo-
mains \widehat U (p), U (p) \subset \widehat U (p) \subset \Omega , and show, intuitively speaking, that the eigenfunction
restricted to U (p) only loosely depends on its trace on \partial \widehat U (p). Due to this loose depen-
dency, sufficiently good local subspaces, with small dimension, can be defined without
referring to boundary values of relevant eigenfunctions on \partial \widehat U (p) at all. We expect that
such loose dependency is a generic property of elliptic differential operators, making
our approach applicable to other problems besides (1.1), e.g., in linear elasticity.

We proceed to review the major steps taken to design \widetilde \scrV . In Lemma 3.1 we
give a representation formula that relates the restriction of a relevant eigenfunction
to U and its trace on \partial \widehat U . As stated above, this restriction depends on the trace
via a boundary-to-interior mapping ZU (\cdot ), which is a nonlinear function from (0,\Lambda )
to a space of bounded linear operators. We construct the local subspace for U to
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78 A. HANNUKAINEN, J. MALINEN, AND A. OJALAMMI

approximate the range of this function. Lemma 3.2 shows that the range of ZU

consists of compact operators. We then introduce an approximate-linearize-compress
strategy in the first main results of this article, Theorems 3.8 and 3.10, to study ZU .
Ultimately, an estimate for the relative eigenvalue error is given in Theorem 4.2.

Constructing the PU-CPI method subspace requires the solution of several local
eigenproblems. The practical solution of these problems is always inexact, which is an
error source not accounted for in the analysis given. However, numerical experiments
given section 6 indicate that the total error is in good agreement with the bound given
in Theorem 4.2, and the error associated with inexactly solving eigenproblems seems
not to be significant here.

We give a unified analysis valid both for \scrV = H1
0 (\Omega ) or some finite element

space as \scrV . Treating the infinite-dimensional setting is necessary for proving the
loose dependency of an eigenfunction restricted to U (p) from its trace on \partial \widehat U (p) in
terms of elliptic regularity theory. In addition, it helps in choosing convenient inner
products for the subspaces needed. We envision finite element simulation as a typical
application of PU-CPI. Hence, we give a detailed explanation of its application to
first-order finite elements in three dimensions.

To demonstrate the potential of PU-CPI, we compute the lowest 200 eigenvalues
of (1.1), where \scrV is a tetrahedral first-order finite element space in \BbbR 3. The resulting
algebraic eigenvalue problem has approximately 107 unknowns. The PU-CPI com-
putation took less than two hours on a cluster of 26 networked workstations; further
details are given in section 6.

The article is organized as follows. We begin by reviewing the preliminaries and
error analysis of Ritz methods. In section 3, we construct the local subspace for a single
subdomain and derive the local error estimate for it. In section 4, we combine the
local subspaces to the method subspace \widetilde \scrV and introduce the global error estimates.
Section 5 is devoted to standard first-order finite element space. We conclude the
article with numerical examples in section 6, followed by a discussion.

2. Background. Let \Omega \prime ,\Omega \subset \BbbR d for d = 2, 3 be open bounded sets with Lip-
schitz boundaries such that \Omega \prime \subset \Omega . The inner products for H1(\Omega \prime ) and H1

0 (\Omega 
\prime )

are

(f, g)H1(\Omega \prime ) := (\nabla f,\nabla g)L2(\Omega \prime ;\BbbR d) + (f, g)L2(\Omega \prime ),

(f, g)H1
0 (\Omega 

\prime ) := (\nabla f,\nabla g)L2(\Omega \prime ;\BbbR d).

The corresponding norms are denoted by \| \cdot \| H1(\Omega \prime ) and \| \cdot \| H1
0 (\Omega 

\prime ), respectively.
In the following, we discuss a subspace method for the eigenproblem related to the

Laplace operator and its finite element discretization, treated using the formulation
in (1.1) with different choices of the space \scrV . The Laplace operator is treated by
setting \scrV = H1

0 (\Omega ), and the solution (\lambda , u) \in \BbbR + \times H1
0 (\Omega ) \setminus \{ 0\} of (1.1) is required to

satisfy

(2.1)  - \Delta u = \lambda u in L2(\Omega ) and \| u\| L2(\Omega ) = 1.

The finite element discretization of (2.1) is obtained when \scrV is chosen as the corre-
sponding finite element space; see section 5.

We work with restrictions of functions from the space \scrV \subset H1
0 (\Omega ) to a subdomain

\Omega \prime \subset \Omega . Denote

\scrV (\Omega \prime ) := \{ w| \Omega \prime | w \in \scrV \} and tr\scrV (\Omega \prime ) := \{ \gamma \partial \Omega \prime w | w \in \scrV (\Omega \prime ) \} ,
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DISTRIBUTED SOLUTION OF LAPLACIAN EVPs 79

where \gamma \partial \Omega \prime \in \scrB (H1(\Omega \prime ), H1/2(\partial \Omega \prime )) is the trace operator on H1(\Omega \prime ).1 The space of
functions with homogeneous boundary values is denoted by

\scrV 0(\Omega 
\prime ) := \{ w \in \scrV (\Omega \prime ) | \gamma \partial \Omega \prime w = 0 \} .

The spaces \scrV (\Omega \prime ), \scrV 0(\Omega 
\prime ) inherit their inner products and norms from spaces H1(\Omega \prime ),

H1
0 (\Omega 

\prime ), respectively. For tr\scrV (\Omega \prime ), we use the norm

(2.2) \| f\| tr\scrV (\Omega \prime ) :=
1\surd 
2

min
w\in \scrV (\Omega \prime )
\gamma \partial \Omega \prime w=f

\| w\| H1(\Omega \prime ).

We make a standing assumption that all these spaces are complete. This holds, e.g.,
if \scrV = H1

0 (\Omega ), or it is finite dimensional.

2.1. Subspace methods. If (1.1) is posed on \Omega \prime \subset \Omega and in any closed subspace
\scrW \subset H1

0 (\Omega 
\prime ) instead of \scrV \subset H1

0 (\Omega ), we denote the set of eigenvalues as \sigma (\scrW ).
The relative error between corresponding eigenvalues of (1.1) and (1.2) has been

extensively studied (see, e.g., [4, 12, 22], the review article [8], and the references
therein). These results are not straightforward, and there exist multiple variants
with different assumptions. All such bounds (that the authors are aware of) estimate
the error by a product of two terms as in (2.5). The latter one is related to the
eigenfunction approximation error, i.e., the accuracy of approximation of one, or
several, eigenfunctions of (1.1) in the method subspace \widetilde \scrV . The first term, denoted

by C(\lambda j) in (2.5), is an expression that may depend on \scrV and \widetilde \scrV via \sigma (\scrV ) and \sigma (\widetilde \scrV ).
Fortunately, this expression can be regarded as a generically unknown constant if the
eigenfunction approximation error is sufficiently small.

In this work, we use an estimate adapted from [22, Thm. 3.2] due to its simplicity:
the relative eigenvalue error is bounded in terms of the approximability of the corre-
sponding eigenfunction in \widetilde \scrV . However, the bound contains a constant that is difficult
to estimate a priori. Because the core of our analysis of PU-CPI is to bound the
eigenfunction approximation error, our results can be combined with other relative
eigenvalue error estimates as well.

The spectral gap of \scrV on (0,\Lambda ) is defined as

(2.3) \rho \Lambda := min
\lambda ,\mu \in \sigma (\scrV )\cap (0,\Lambda )

\lambda \not =\mu 

| \mu  - \lambda | .

Proposition 2.1. Let \rho \Lambda be as defined in (2.3), \widetilde \scrV \subset \scrV a finite-dimensional
method subspace, 1 \leq j \leq \#\{ \sigma (\scrV )\cap (0,\Lambda )\} , and (\lambda j , uj) \in \sigma (\scrV )\times \scrV \setminus \{ 0\} an eigenpair
of (1.1) corresponding to a simple eigenvalue \lambda j. Assume that the Hausdorff distance

(2.4) dist
\Bigl( 
\sigma (\widetilde \scrV ) \cap (0,\Lambda ), \sigma (\scrV ) \cap (0,\Lambda )

\Bigr) 
\leq 1

2
\rho \Lambda .

Then there exists \~\lambda \in \sigma (\widetilde \scrV ) and C(\lambda j) \equiv C(\lambda j ;\scrV ) such that

(2.5)
| \lambda j  - \~\lambda | 
\lambda j

\leq C(\lambda j)min
v\in \widetilde \scrV \| uj  - v\| 2H1

0 (\Omega ).

1Here \scrB (\scrX ,\scrY ) is the space of bounded linear operators from \scrX to \scrY .
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80 A. HANNUKAINEN, J. MALINEN, AND A. OJALAMMI

Proposition 2.1 is a streamlined version of [22, Thm. 3.2]. The original statement
gives an explicit formula for C(\lambda j) that unfortunately depends on the (a priori un-

known) spectra \sigma (\widetilde \scrV ) and \sigma (\scrV ). To guarantee that C(\lambda j) remains uniformly bounded

independently of \widetilde \scrV , we have introduced (2.4). If the relevant eigenfunctions are suffi-

ciently well approximated in \widetilde \scrV , the Hausdorff distance dist(\sigma (\widetilde \scrV )\cap (0,\Lambda ), \sigma (\scrV )\cap (0,\Lambda ))
satisfies (2.4) by [22, Thm. 3.1]. Exactly when this happens in terms of \widetilde \scrV , depends
on the spectral gap \rho \Lambda which is unknown unless the exact spectrum \sigma (\scrV ) \cap (0,\Lambda ) is
known. Hence, there is no a priori quantitative statement on (2.4). Observe that [22]
uses a different normalization of eigenfunctions which affects C(\lambda j) but is later taken
into account in Theorem 4.2.

2.2. The PU-CPI method subspace. Let \{ U (p)\} Mp=1 forM \geq 2 and U (p) \subset \Omega 

be an open cover of the domain \Omega \subset \BbbR d. In addition, assume that each U (p) has Lip-
schitz boundary and that there does not exist p, q \in \{ 1, . . . ,M\} , p \not = q, satisfying

U (p) \subset U (q). We proceed to describe how the PU-CPI method subspace \widetilde \scrV is con-
structed from the local method subspaces \widetilde \scrV (U (p)) \subset \scrV (U (p)).

For p = 1, . . . ,M , let the stitching operators R(p) \in \scrB (\scrV (U (p)),\scrV ) satisfy

(R(p)w(p))| \Omega \setminus U(p) = 0 and

M\sum 
p=1

R(p)(w| U(p)) = w

for each w(p) \in \scrV (U (p)) and w \in \scrV . Suitable operators \{ R(p)\} Mp=1 for \scrV = H1
0 (\Omega )

can be obtained by multiplication with a partition of unity associated with \{ U (p)\} as

in [23]. The PU-CPI method subspace \widetilde \scrV , depending on the local method subspaces

\{ \widetilde \scrV (U (p))\} Mp=1, is defined as

(2.6) \widetilde \scrV :=

\Biggl\{ 
w \in \scrV | w =

M\sum 
p=1

R(p)w(p) for w(p) \in \widetilde \scrV (U (p))

\Biggr\} 
,

where each \widetilde \scrV (U (p)) \subset \scrV (U (p)) has a low dimension. If \widetilde \scrV satisfies (2.6) and the assump-
tions of Proposition 2.1, the eigenvalue error depends on approximation properties of
the local subspaces. Using a similar technique to [23] gives

(2.7) min
v\in \widetilde \scrV \| uj  - v\| H1

0 (\Omega ) \leq \| G\| L\infty (\Omega )

\Biggl( 
M\sum 
p=1

\scrE (uj , U (p))

\Biggr) 1/2

,

where function \scrE is the local approximation error,

(2.8) \scrE (u, U (p)) := min
w\in \widetilde \scrV (U(p))

\int 
U(p)

\bigm| \bigm| \bigm| \nabla \Bigl[ R(p)(u| U(p)  - w)
\Bigr] \bigm| \bigm| \bigm| 2 dx

and G : \Omega \rightarrow \{ 1, . . . ,M\} is defined as G(x) := \#\{ p | x \in U (p)\} . The aim is to design

the local method subspaces \widetilde \scrV (U (p)) so that both dim(\widetilde \scrV (U (p))) and \scrE j,p \equiv \scrE (uj , U (p))
are small.

3. Local method subspace. A local method subspace \widetilde \scrV (U (p)) \subset \scrV (U (p)) for a
single subdomain U (p) is designed next. For notational convenience, denote U = U (p),
R = R(p), and let (\lambda , u) be some solution to (1.1) satisfying \lambda < \Lambda .
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DISTRIBUTED SOLUTION OF LAPLACIAN EVPs 81

3.1. Extended subdomain. Given r > 0 and U \subset \Omega , let \widehat U \subset \Omega be a domain
satisfying

(3.1) \{ x \in \Omega | dist(x, U) < r\} \subset \widehat U.
Any such \widehat U is called an r-extension of U , and we make it a standing assumption
that both U and \widehat U have Lipschitz boundaries. By our assumptions, U \not = \Omega , and
hence U \not = \widehat U . In the following, \widehat U is fixed unless otherwise stated. The effect of
the parameter r is numerically studied in section 6. As shown in the next section,
the essential component of the PU-CPI method is the operator-valued function ZU :
(0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U),\scrV (U)). It will be shown that ZU is, in fact, analytic and, due to
the use of the r-extension and elliptic regularity, also compact operator valued.

3.2. Eigenfunction representation formula. We represent u| \widehat U in terms of
its boundary trace \gamma \partial \widehat U (u| \widehat U ). By (1.1), u| \widehat U satisfies

(3.2)

\int 
\widehat U
\bigl( 
\nabla u| \widehat U \cdot \nabla w  - \lambda u| \widehat Uw\bigr) dx = 0

for each w \in \scrV 0(\widehat U). We assume that there exists a right inverse E \in \scrB (tr\scrV (\widehat U),\scrV (\widehat U))
of \gamma \partial \widehat U satisfying

(3.3) E : tr\scrV (\widehat U) \rightarrow \{ v \in \scrV (\widehat U) | v| U = 0 \} .

Such an E always exists if \scrV = H1
0 (\Omega ). If the FEM is used for defining \scrV , \{ U (p)\} and

\{ \widehat U (p)\} are constructed so that E exists; see section 5.
Equation (3.2) is solved by decomposing

(3.4) u| \widehat U = u0 + EuB , where u0 \in \scrV 0(\widehat U) and uB := \gamma \partial \widehat U \bigl( u| \widehat U\bigr) .
It follows from (3.3) that u| U = u0| U . Using the decomposition in (3.4), (3.2) gives

(3.5)

\int 
\widehat U (\nabla u0 \cdot \nabla w  - \lambda u0w) dx =  - 

\int 
\widehat U (\nabla w \cdot \nabla EuB  - \lambda wEuB) dx

for each w \in \scrV 0(\widehat U), which defines u0 as a function of \lambda and uB . We proceed as in [18]

and use an L2(\widehat U)-orthonormal eigenbasis expansion to solve (3.5). Let (\mu k, vk) \in 
\BbbR + \times \scrV 0(\widehat U) \setminus \{ 0\} be such that

(3.6)

\int 
\widehat U \nabla vk \cdot \nabla w dx = \mu k

\int 
\widehat U vkw dx and \| vk\| L2(\widehat U) = 1

for each w \in \scrV 0(\widehat U). Assume that \{ \mu k\} k \subset \BbbR + are indexed in nondecreasing order

and repeated according to their multiplicities. The set \{ vk\} k is L2(\widehat U)-orthonormal in

\scrV 0(\widehat U), hence \{ vk/
\surd 
\mu k\} k is an H1

0 (
\widehat U)-orthonormal basis of \scrV 0(\widehat U). To solve u0 from

(3.5), expand in H1
0 (
\widehat U)

(3.7) u0 =

dim(\scrV 0(\widehat U))\sum 
j=1

\alpha jvj , where each \alpha j \in \BbbR .
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Using this expansion with (3.5) and setting w = vk in (3.6), the orthogonality of the
eigenfunctions gives

(3.8) \alpha k(\mu k  - \lambda ) =  - 
\int 
\widehat U (\nabla vk \cdot \nabla EuB  - \lambda vkEuB) dx.

If \lambda \not \in \sigma (\scrV 0(\widehat U)), u0 is determined by solving \alpha k for k = 1, . . . ,dim\scrV 0(\widehat U). To treat
any \lambda \in (0,\Lambda ), we split the coefficients \alpha j in (3.7) into two groups. For this purpose,

we use the parameter \~\Lambda defined as

\~\Lambda = \eta \Lambda for \eta > 1,

and the counting function K : \BbbR + \rightarrow \BbbN , given by

K(t) := \#\{ \mu k \in \sigma (\scrV 0(\widehat U)) | \mu k \leq t \} .

In [18], the parameter \eta is called the oversampling parameter. Since \lambda \in (0,\Lambda ) the
coefficients \alpha k in (3.7) for k > K(\~\Lambda ) are obtained from (3.8). We have now proved
the following lemma.

Lemma 3.1. Let \~\Lambda > \Lambda > 0. Assume that (\lambda , u) \in (0,\Lambda ) \times \scrV and U \subset \widehat U \subset \Omega ,\widehat U \not = \Omega , satisfy (1.1) and (3.1), respectively. Then we have the following orthogonal

splitting in L2(\widehat U) and in H1
0 (
\widehat U),

(3.9) u| U =

K(\~\Lambda )\sum 
k=1

\alpha k vk| U + (Z(\lambda )uB)| U ,

where uB = \gamma \partial \widehat Uu, \{ \alpha k\} K(\~\Lambda )
k=1 \subset \BbbR , and Z : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U),\scrV 0(\widehat U)) is defined as

(3.10) Z(t)wB :=

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

vk
\mu k  - t

\int 
\widehat U ( - \nabla vk \cdot \nabla EwB + tvkEwB) dx.

The sum converges uniformly for t \in (0,\Lambda ) in H1
0 (
\widehat U) and L2(\widehat U). Moreover, Z(t) is

an analytic function for t \in (0,\Lambda ).

There are many ways of showing that Z(t) \in \scrB (tr\scrV (\widehat U),\scrV 0(\widehat U)) for t \in (0,\Lambda ); e.g.,

by using Lemma 3.6. The function Z depends implicitly on \~\Lambda , \widehat U , and U in addition
to t.

3.3. Evaluation of \bfitZ . Following the approach used in [18], we discuss how Z
can be evaluated given K(\~\Lambda ) the lowest eigenmodes2 of (3.6). Denote

E\~\Lambda := span\{ v1, . . . , vK(\~\Lambda )\} for (vk, \mu k) satisfying (3.6).

Fix t \in (0,\Lambda ), wB \in tr\scrV (\widehat U), and solve the auxiliary problem: Find \^z0(t) \in \scrV 0(\widehat U)
such that

(3.11)

\int 
\widehat U (\nabla \^z0(t) \cdot \nabla w  - t\^z0(t)w) dx =  - 

\int 
\widehat U (\nabla w \cdot \nabla EwB  - twEwB) dx

2If \scrV is a finite element space, the value of K(\~\Lambda ) can be computed using LDLT -decomposition
and Sylvester's law of inertia. These kinds of decompositions are computed internally in eigensolvers,
and we consider evaluating K(\~\Lambda ) as an implementation issue.
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for each w \in \scrV 0(\widehat U). As in section 3.2, each solution admits the orthogonal splitting

\^z0(t) =

K(\~\Lambda )\sum 
k=1

\alpha kvk + Z(t)wB \in E\~\Lambda \oplus E\bot 
\~\Lambda 

even though some \alpha k's cannot be uniquely solved from (3.11) for the exceptional

t \in \sigma (\scrV 0(\widehat U)). After \^z0(t) has been solved from (3.11), Z(t)wB can be evaluated as

Z(t)wB = P \^z0(t), where P \in \scrB (\scrV 0(\widehat U)) is the L2(\widehat U) orthogonal projection onto E\bot 
\~\Lambda 
.

3.4. The complementing subspace. Our aim is to design the finite-dimensio-
nal subspace \widetilde \scrV (U) such that the local approximation error in (2.8), namely,

min
v\in \widetilde \scrV (U)

\int 
U

| \nabla [R(u| U  - v)]| 2 dx,

can be made arbitrarily small for any (\lambda , u) \in (0,\Lambda ) \times \scrV satisfying (1.1). For wB \in 
tr\scrV (\widehat U) and t \in (0,\Lambda ), denote

(3.12) ZU (t)wB = (Z(t)wB)| U .

Obviously by Lemma 3.1 and boundedness of the restriction operator, we have ZU :
(0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U),\scrV (U)). By Lemma 3.1,

(3.13) u| U =

K(\~\Lambda )\sum 
k=1

\alpha k vk| U + ZU (\lambda )uB

for some real-valued \alpha k's. We construct \widetilde \scrV (U) according to the splitting in (3.13) as

(3.14) \widetilde \scrV (U) = E\~\Lambda (U)\oplus \scrW (U), where E\~\Lambda (U) := span\{ v1| U , . . . , vK(\~\Lambda )| U\} ,

and \oplus denotes the orthogonal direct sum in \scrV . The space \scrW (U) is called the local
complementing subspace. Let

(3.15) eU (\scrW (U)) := sup
t\in (0,\Lambda )

w\in \scrV (\widehat U)

inf
v\in \scrW (U)

\int 
U
| \nabla [R(ZU (t)wB  - v)]| 2 dx

\| w\| 2
H1(\widehat U)

,

where wB = \gamma \partial \widehat Uw. As the first term on the right-hand side of (3.13) is included in\widetilde \scrV (U), the local approximation error of u on U has the estimate

(3.16) \scrE (u, U) \equiv min
v\in \widetilde \scrV (U)

\int 
U

| \nabla [R(u| U  - v)]| 2 dx \leq eU (\scrW (U))\| u| \widehat U\| 2H1(\widehat U)

for each (\lambda , u) \in (0,\Lambda )\times \scrV satisfying (1.1).
Next, we design the local complementing subspace \scrW (U) so that the local ap-

proximation error in (2.8) can be made arbitrarily small. We begin with the inter-
polation step. Denote the set of N \geq 1 Chebyshev nodes on the interval (0,\Lambda ) as

\{ \xi i\} Ni=1 \subset (0,\Lambda ). Define the interpolant \^Z : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U),\scrV 0(\widehat U)) as

(3.17) \^Z(t) =

N\sum 
i=1

\ell i(t)Z(\xi i), where \ell i(t) =
\prod 

1\leq j\leq N
j \not =i

t - \xi j
\xi i  - \xi j

for i = 1, . . . , ND
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84 A. HANNUKAINEN, J. MALINEN, AND A. OJALAMMI

are the Lagrange interpolation polynomials. The interpolation error \widehat Z  - Z is studied
in section 3.5. We proceed with a linearization step. Define a linear operator3

(3.18) B \in \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U)) as B\bfitv B :=
\bigl[ 
ZU (\xi 1) \cdot \cdot \cdot ZU (\xi N )

\bigr] 
\bfitv B .

Here \^ZU (t)wB = ( \^Z(t)wB)| U for all wB \in tr\scrV (\widehat U) and t \in (0,\Lambda ). Furthermore,

B\ell (t)wB = B
\bigl[ 
\ell 1(t)wB \cdot \cdot \cdot \ell N (t)wB

\bigr] T
= \^ZU (t)wB

and, hence, range( \^ZU (t)) \subset range(B) for any t \in (0,\Lambda ).
We continue with the finite-rank approximation step. Given the finite-rank op-

erator \widehat B \in \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U)), the complementing subspace is fixed as \scrW (U) :=

range( \widehat B). We will show that eU (\scrW (U)) in (3.15) is bounded from above by

\| R(ZU (t) - \^ZU (t))\| \scrB (tr(\scrV (\widehat U),\scrV ) and \| B  - \widehat B\| \ast ,

resulting in Theorem 4.2.
If \scrV = H1

0 (\Omega ) each of the operators ZU (\xi i), i = 1, . . . , N , is compact, which makes

finding \widehat B feasible.

Lemma 3.2. Let U \subset \widehat U \subset \Omega \subset \BbbR d, \widehat U \not = \Omega , be as in (3.1), \scrV = H1
0 (\Omega ), and

ZU : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U)) be as defined in (3.12). In addition, assume that\widehat U is a convex polygonal (d = 2) or convex polyhedral domain (d = 3). Then ZU (t) is

a compact operator from tr\scrV (\widehat U) to \scrV (U) for all t \in (0,\Lambda ) \setminus \sigma (\scrV 0(\widehat U)).

This lemma is proved below.
Representing u| U in terms of \gamma \partial \widehat Uu is motivated by Lemma 3.2, keeping in mind

that compact operators can be approximated by finite-rank operators in the operator
norm. Further, the same holds for B in (3.18) since the number N of Chebyshev
nodes is finite. We need the following proposition.

Proposition 3.3. Let \scrU ,\scrX ,\scrY be Banach spaces, T \in \scrB (\scrU ,\scrY ), range(T ) \subset \scrX ,
and \scrX continuously embedded in \scrY . Then T \in \scrB (\scrU ,\scrX ). In addition, if the embedding
\scrX \subset \scrY is compact, then T is a compact operator from \scrU to \scrY .

Proof. Let uj \rightarrow u in \scrU and Tuj \rightarrow x in \scrX . Since T : \scrU \rightarrow \scrY is bounded,
Tuj \rightarrow Tu in \scrY . As \scrX is continuously embedded in \scrY , x = Tu holds as an equality
in \scrX . We have now shown that T : \scrU \rightarrow \scrX is a closed linear operator. The first
claim follows from the closed graph theorem. The second claim follows since the
composition of a compact operator and a bounded operator is compact.

Hence, if \scrV = H1
0 (\Omega ) and t \in (0,\Lambda ), the compactness of ZU (t) \in \scrB (tr\scrV (\widehat U ;\BbbR N ),

\scrV (U)) follows by showing that ZU (t)wB \in H2(U) for all t \in (0,\Lambda ) and wB \in tr\scrV (\widehat U).
Due to standing assumptions made on U , H2(U) is compactly embedded in H1(U);
see, e.g., [1, Thm. 6.3].

Proposition 3.4. Let the domains U \subset \^U \subset \Omega \subset \BbbR d be as in (3.1). Let \scrV =

H1
0 (\Omega ), and u \in \scrV (\widehat U) such that \Delta u \in L2(\widehat U). Assume that one of the following holds:

(i) \partial \Omega \cap \partial U = \emptyset ;
(ii) d = 2, \widehat U is a convex polygonal domain, and \partial \Omega \cap \partial U \not = \emptyset ; or
(iii) d = 3, \widehat U is a convex polyhedral domain, and \partial \Omega \cap \partial U \not = \emptyset .

Then u| U \in H2(U).

3Here tr\scrV ( \^U ;\BbbR N ) is defined as [tr\scrV ( \^U)]N and equipped with the natural Hilbert space norm.
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Fig. 1. Illustration of cases (i) and (ii) in Proposition 3.4 for \Omega \subset \BbbR 2. The solid black line

depicts \partial \Omega , and the subdomains U , \widehat U are shown by the blue and the grey dotted areas, respectively.
There are two exclusive cases, namely, (i) \partial \Omega \cap \partial U = \emptyset (left) and (ii) \partial \Omega \cap \partial U \not = \emptyset (right).

Cases (i) and (ii) are illustrated in Figure 1.

Proof. If (i) holds, the claim follows from the interior regularity estimate; see,

e.g., [14, Chap. 6.3]. Assume that (ii) or (iii) holds. Let \varphi \in C\infty (\widehat U) be a cutoff

function satisfying \varphi = 1 in U and \varphi = 0 on \partial \widehat U \setminus \partial \Omega . The function \varphi u \in H1
0 (
\widehat U)

satisfies \Delta (\varphi u) \in L2(\widehat U) by a straightforward computation. By [17, Chaps. 2.4 and

2.6] and assumptions (ii), (iii), we have \varphi u \in H2(\widehat U). The claim follows from (\varphi u)| U =
u| U .

We complete this section by giving a proof of Lemma 3.2.

Proof of Lemma 3.2. Fix t \in (0,\Lambda ) \setminus \sigma (\scrV 0(\widehat U)) and wB \in tr\scrV (\widehat U). Let \^z \in \scrV (\widehat U)
be the variational solution of\Biggl\{ 

(\Delta + t)\^z = 0 in \widehat U,
\^z = wB on \partial \widehat U,

obviously satisfying \^z \in H1(\widehat U) and \Delta \^z \in L2(\widehat U). Similarly to section 3.2, decompose

\^z = \^z0 + EwB , where E satisfies (3.3). As t \not \in \sigma (\scrV 0(\widehat U)),

\^z0 = Z(t)wB +

K(\~\Lambda )\sum 
k=1

vk
\mu k  - t

\int 
\widehat U ( - \nabla vk \cdot \nabla EwB + tvkEwB) dx.

Further, using \^z = \^z0 + EwB gives

Z(t)wB + EwB = \^z  - 
K(\~\Lambda )\sum 
k=1

vk
\mu k  - t

\int 
\widehat U ( - \nabla vk \cdot \nabla EwB + tvkEwB) dx.

Since the sum on the right-hand side has a finite number of terms, where \Delta vk \in L2(\widehat U),

it follows that \Delta (Z(t)wB + EwB) \in L2(\widehat U). Using Proposition 3.4 and the property
(EwB)| U = 0 gives (Z(t)wB + EwB) | U = ZU (t)wB \in H2(U). Since it is already

known that ZU (t) \in \scrB (tr\scrV (\widehat U),\scrV (U)), Proposition 3.3 completes the proof.

Remark 3.5. The assumption of convexity for the compactness of ZU (t) can be
relaxed using a more technical variant of Proposition 3.4 stated in weighted Sobolev
spaces; see, e.g., [24]. In addition, Lemma 3.2 can be extended to cover all values
t \in (0,\Lambda ).

D
ow

nl
oa

de
d 

04
/2

6/
22

 to
 1

30
.2

33
.2

16
.1

22
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

86 A. HANNUKAINEN, J. MALINEN, AND A. OJALAMMI

3.5. Interpolation error. Next, we study how the error terms,

(3.19) e0 :=
\bigm\| \bigm\| \bigm\| \Bigl( \^Z(t) - Z(t)

\Bigr) 
wB

\bigm\| \bigm\| \bigm\| 
L2(\widehat U)

and e1 :=
\bigm\| \bigm\| \bigm\| \Bigl( \^Z(t) - Z(t)

\Bigr) 
wB

\bigm\| \bigm\| \bigm\| 
H1

0 (
\widehat U)
,

depend on N and \~\Lambda . By Lemma 3.1, the function Z(t)wB \in \scrV 0(\widehat U) admits the
expansion

Z(t)wB =

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

c1,k(wB) + tc0,k(wB)

\mu k  - t
vk,

where the coefficients c0,k : tr\scrV (\widehat U) \rightarrow \BbbR and c1,k : tr\scrV (\widehat U) \rightarrow \BbbR are defined as

(3.20) c0,k(wB) := (vk, EwB)L2(\widehat U) and c1,k(wB) :=  - (\nabla vk,\nabla EwB)L2(\widehat U ;\BbbR d)

for k = 1, . . . ,dim(\scrV 0(\widehat U)). A technical estimate related to these coefficients is given
in the following lemma.

Lemma 3.6. Let c0,k(wB) and c1,k(wB) be as in (3.20). Then

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

c20,k(wB) \leq \| EwB\| 2L2(\widehat U)
and

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

c21,k(wB)

\mu k
\leq \| \nabla (EwB)\| 2L2(\widehat U ;\BbbR d)

.

Proof. Both inequalities follow from almost identical arguments, and we only
prove the latter inequality. For any u \in \scrV (\widehat U) define P1u \in \scrV 0(\widehat U) uniquely by the

Riesz representation theorem on the Hilbert space \scrV 0(\widehat U), requiring

(\nabla P1u,\nabla v)L2(\widehat U ;\BbbR d) = (\nabla u,\nabla v)L2(\widehat U ;\BbbR d) for each v \in \scrV 0(\widehat U).

Then the mapping u \mapsto \rightarrow P1u is linear, it satisfies P 2
1 = P1, and \| \nabla (P1EwB)\| L2(\widehat U ;\BbbR d) \leq 

\| \nabla EwB\| L2(\widehat U ;\BbbR d). Since P1u is uniquely defined, it also follows that P1u = u for all

u \in \scrV 0(\widehat U). Hence, P1 is a projection on \scrV (\widehat U) with range(P1) = \scrV 0(\widehat U). Since

\{ vk/
\surd 
\mu k\} k is an orthonormal basis of \scrV 0(\widehat U), we have

P1EwB =  - 
dim(\scrV 0(\widehat U))\sum 

k=1

vk\surd 
\mu k

\cdot c1,k(wB)\surd 
\mu k

.

The claim follows using Parseval's identity.

Denote

fm,k(t) = t1 - m(\mu k  - t) - 1

for m = 0, 1 and k = K(\~\Lambda ) + 1, . . . ,dim(\scrV 0(\widehat U)). Recalling (3.17), we have

(3.21)

\Bigl( 
Z(t) - \^Z(t)

\Bigr) 
wB =

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

\Biggl( 
f1,k(t) - 

N\sum 
i=1

\ell i(t)f1,k(\xi i)

\Biggr) 
c1,k(wB)vk

+

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

\Biggl( 
f0,k(t) - 

N\sum 
i=1

\ell i(t)f0,k(\xi i)

\Biggr) 
c0,k(wB)vk.
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Observe that the expressions in parentheses in (3.21) are Lagrange interpolation errors
with Chebyshev nodes \{ \xi i\} Ni=1 \subset (0,\Lambda ). The derivatives of fm,k satisfy

(3.22)
1

N !

dNfm,k

dtN
(t) =

\mu 1 - m
k

(\mu k  - t)(N+1)
.

Hence, we have the estimate for k = K(\~\Lambda ) + 1, . . . ,dim(\scrV 0(\widehat U)),

(3.23) \mu 1+m
k \| fm,k(\cdot ) - 

N\sum 
i=1

\ell i(\cdot )fm,k(\xi i)\| 2L\infty (0,\Lambda ) \leq 
\mu 3 - m
k \Lambda 2N

42N - 1(\mu k  - \Lambda )2(N+1)

for m = 0, 1; see, e.g., [13, Chap. 3.3]. We are now in position to give an estimate for
the error terms e0 and e1.

Lemma 3.7. Let t \in (0,\Lambda ), wB \in tr\scrV (\widehat U), and \^Z(t) be as in (3.17). Then the
error terms in (3.19) satisfy

el \leq 12 [4(\eta  - 1)]
 - N - 1 \bigl( 

\eta l+1\Lambda l - 1 + \eta l+2\Lambda l
\bigr) 1/2 \| EwB\| \scrV (\widehat U)

for l = 0, 1 and \eta := \~\Lambda /\Lambda .

Observe that for \eta > 5/4, e1 and e0 converge to zero as N \rightarrow \infty .

Proof. As the estimates for l = 0, 1 follow from similar arguments, we only con-
sider l = 1. By the triangle inequality, Parseval's identity, and (3.21), we have

(3.24)

1

2
e21 \leq 

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

\mu 2
k

\Biggl( 
f1,k(t) - 

N\sum 
i=1

\ell i(t)f1,k(\xi i)

\Biggr) 2

\cdot 
c21,k(wB)

\mu k

+

dim(\scrV 0(\widehat U))\sum 
k=K(\~\Lambda )+1

\mu k

\Biggl( 
f0,k(t) - 

N\sum 
i=1

\ell i(t)f0,k(\xi i)

\Biggr) 2

\cdot c20,k(wB).

We proceed to estimate the right-hand side of (3.23). Since \mu k \geq \eta \Lambda = \~\Lambda > \Lambda , we
have

\mu 3 - m
k \Lambda 2N

42N - 1(\mu k  - \Lambda )2(N+1)
\leq \Lambda 1 - m

42N - 1\eta 2N+m - 1
\cdot 
\biggl( 

\mu k

\mu k  - \Lambda 

\biggr) 2(N+1)

and \mu k(\mu k  - \Lambda ) - 1 = (1 - \Lambda /\mu k)
 - 1 \leq \eta (\eta  - 1) - 1, recalling \eta > 1. Hence,

(3.25) \mu 1+m
k \| fm,k(\cdot ) - 

N\sum 
i=1

\ell i(\cdot )fm,k(\xi i)\| 2L\infty (0,\Lambda ) \leq 
\Lambda 1 - m\eta 3 - m

42N - 1
\cdot 
\biggl( 

1

\eta  - 1

\biggr) 2(N+1)

.

Using Lemma 3.6 and (3.25) together with (3.24) gives

e2l \leq 2\eta l+1

42N - 1(\eta  - 1)2N+2

\Bigl( 
\Lambda l - 1\| \nabla (EwB)\| 2L2(\widehat U)

+ \eta \Lambda l\| EwB\| 2L2(\widehat U)

\Bigr) 
for l = 1.

Carrying out similar argumentation leads to the same formula for l = 0. Estimating
the coefficient completes the proof.
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We conclude this subsection by using Lemma 3.7 to obtain an upper bound for
the local interpolation error.

Theorem 3.8. Let Z, \^Z : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (\widehat U)) be as defined in (3.10)

and (3.17), respectively. In addition, define ZU , \^ZU : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U))
as ZU (t)w = (Z(t)w)| U and \^ZU (t)w = (Z(t)w)| U , respectively. Then for t \in (0,\Lambda )

\| \^ZU (t) - ZU (t)\| \scrB (tr\scrV (\widehat U),\scrV ) \leq CE e(\eta ,N),

where CE = CE(\scrV , U, \widehat U) := \| E\| \scrB (tr\scrV (\widehat U),\scrV (\widehat U)) and

e(\eta ,N) = 12\eta [4(\eta  - 1)]
 - N - 1

\biggl( 
2 + \eta \Lambda +

1

\eta \Lambda 

\biggr) 1/2

.

Recall that ZU , \^ZU depend implicitly on \~\Lambda , N . We expect the constant CE to be
inversely proportional to the extension radius r. Note that for \eta > 5/4, increasing
the number of interpolation points N decreases the error exponentially.

3.6. Low-rank approximation error. Recall the definitions of the operator
B \in \scrB (tr\scrV ( \^U ;\BbbR N ),\scrV (U)) in (3.18) and \scrW (U),

B\bfitv B :=
\bigl[ 
ZU (\xi 1) \cdot \cdot \cdot ZU (\xi N )

\bigr] 
\bfitv B and \scrW (U) := range( \widehat B),

where \widehat B \in \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U)) is a finite-rank operator. Next, we relate the error

term in (3.15) to the operator norm of B  - \widehat B. We define

(3.26) \| \bfitw B\| tr\scrV (\widehat U ;\BbbR N ) :=

\Biggl( 
N\sum 
i=1

\| wB,i\| 2tr\scrV (\widehat U)

\Biggr) 1/2

and

(3.27) \| w\| \scrV R(U) :=

\biggl( \int 
U

| \nabla (Rw)| 2 dx+

\int 
U

w2 dx

\biggr) 1/2

.

We proceed with a technical lemma.

Lemma 3.9. For any t \in (0,\Lambda ) and w \in \scrV (\widehat U)

\| \ell (t)wB\| tr\scrV (\widehat U ;\BbbR N ) \leq 
\Lambda N\surd 
2
\| w\| H1(\widehat U),

where wB = \gamma \partial \widehat Uw and \Lambda N := maxt\in [0,\Lambda ]

\sum N
i=1 | \ell i(t)| is the Lebesgue constant related

to the Chebyshev nodes \{ \xi i\} Ni=1 \subset (0,\Lambda ).

For the estimate of the Lebesgue constant see, e.g., [10].

Proof. Using definitions (3.26) and (2.2),

\| \ell (t)wB\| 2tr\scrV (\widehat U ;\BbbR N )
= \| wB\| 2tr\scrV (\widehat U)

N\sum 
i=1

| \ell i(\lambda )| 2 \leq 1

2
\| w\| 2

H1(\widehat U)

N\sum 
i=1

| \ell i(\lambda )| 2.

The proof is completed by observing that
\sum N

i=1 | \ell i(t)| 2 \leq 
\Bigl( \sum N

i=1 | \ell i(t)| 
\Bigr) 2

\leq \Lambda 2
N .
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We are now in position to give an upper bound for the error term eU (\scrW (U))
in (3.15).

Theorem 3.10. Let \{ \xi i\} Ni=1 be the Chebyshev nodes on (0,\Lambda ), ZU (t) be as in
(3.12), and eU as defined in (3.15). Further, let R \in \scrB (\scrV (U),\scrV ) be a stitching

operator as defined in section 2.2, and B \in \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U)) be as defined in

(3.18). For any \widehat B \in \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV (U)),

eU (\scrW (U))1/2 \leq 1\surd 
2

\Bigl[ 
CE e(\eta ,N)\| R\| \scrB (\scrV (U),\scrV ) + \Lambda N\| B  - \widehat B\| \ast 

\Bigr] 
,

where \scrW (U) = range( \widehat B), and CE , e(\eta ,N) are as defined in Theorem 3.8. Here we
denote \| \cdot \| \ast := \| \cdot \| \scrB (tr\scrV (\widehat U ;\BbbR N ),\scrV R(U)).

Proof. Let w \in H1(\widehat U) and wB = \gamma \partial \widehat Uw. Observe that

inf
v\in \scrW (U)

\biggl( \int 
U

| \nabla [R(ZU (t)wB  - v)]| 2 dx
\biggr) 1/2

\leq 1\surd 
2
\| R\| \scrB (\scrV (U),\scrV )\| (ZU (t) - \^ZU (t))\| \scrB (tr\scrV (\widehat U),\scrV )\| w\| H1(\widehat U)

+ inf
v\in \scrW (U)

\biggl( \int 
U

| \nabla [R( \^ZU (t)wB  - v)]| 2 dx
\biggr) 1/2

.

The first term on the right-hand side is bounded by using Theorem 3.8. Choosing
v = \widehat B\ell (t)wB \in \scrW (U) and recalling \^ZU (t)wB = B\ell (t)wB yields

inf
v\in \scrW (U)

\biggl( \int 
U

| \nabla [R( \^ZU (t)wB  - v)]| 2 dx
\biggr) 1/2

\leq \| B  - \widehat B\| \ast \| \ell (t)wB\| tr\scrV (\widehat U ;\BbbR N ).

Lemma 3.9 completes the proof.

We have now constructed the local subspace \widetilde \scrV (U) and estimated the local approx-
imation error \scrE (u, U) for a subdomain U = U (p) \subset \Omega via (3.16). The error estimate
for the global reduced problem follows by using the stitching operators.

4. PU-CPI. We proceed to define the local subspaces \widetilde \scrV (U (p)) used in the PU-
CPI method and to derive a relative eigenvalue error estimate.

We extend the notation of section 3 to the case of several subdomains \{ U (p)\} Mp=1,

and we set U = U (p) for p \in \{ 1, . . . ,M\} . Denote the r-extension of U (p) by \widehat U (p) as

in (3.1). Let (\mu 
(p)
k , v

(p)
k ) \in \BbbR + \times \scrV 0(\widehat U (p)) \setminus \{ 0\} satisfy\int 

\widehat U(p)

\nabla v(p)k \cdot \nabla w dx = \mu 
(p)
k

\int 
\widehat U(p)

v
(p)
k w dx

for each w \in \scrV 0(\widehat U (p)) as in (3.6). We further require \{ v(p)k \} to be an L2(\widehat U (p))-

orthonormal set, that \mu 
(p)
k are enumerated in nondecreasing order, and K(p)(\~\Lambda ) :=

\#\{ k \in \BbbN | \mu (p)
k \leq \~\Lambda \} . Similarly to (3.14), the local subspaces are \widetilde \scrV (U (p)) =

E\~\Lambda (U
(p))\oplus \scrW (U (p)), where

(4.1) E\~\Lambda (U
(p)) = span\{ v(p)1 | U(p) , . . . , v

(p)

K(p) | U(p)\} .

Define Z(p) : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U (p)),\scrV 0(\widehat U (p))) by replacing \mu k, vk, and E in (3.12) by

\mu 
(p)
k , v

(p)
k , and the right inverse of the trace operator E(p) : tr\scrV (\widehat U (p)) \rightarrow 
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90 A. HANNUKAINEN, J. MALINEN, AND A. OJALAMMI

\{ v \in \scrV (\widehat U (p)) | v| U(p) = 0 \} . Recall that the existence of E(p) is a structural as-

sumption made on \scrV , U (p), and \widehat U (p).
Let ZU(p) : (0,\Lambda ) \rightarrow \scrB (tr\scrV (\widehat U (p)),\scrV (U (p))) be defined as in (3.12) and

(4.2)
B(p) \in \scrB (tr\scrV (\widehat U (p);\BbbR N ),\scrV (U (p))) such that

B(p) =
\bigl[ 
ZU(p)(\xi 1) \cdot \cdot \cdot ZU(p)(\xi N )

\bigr] 
.

We choose the complementing subspace as \scrW (U (p)) = range( \widehat B(p)), where \widehat B(p) \in 
\scrB (tr\scrV (\widehat U (p);\BbbR N ),\scrV (U (p))) will later be a low-rank approximation of B(p).

Assumption 4.1. Let \widetilde \scrV \subset \scrV be a finite-dimensional method subspace, \Lambda > 0,
(\lambda j , uj) \in (0,\Lambda ) \times \scrV be an eigenpair of (1.1) corresponding to a simple eigenvalue

\lambda j , and \widetilde \scrV satisfy the spectral convergence assumption (2.4). Let \widetilde \Lambda = \eta \Lambda for the
oversampling parameter \eta > 1, and let \{ \xi i\} Ni=1 be the Chebyshev interpolation points
of (0,\Lambda ).

Theorem 4.2. Make Assumption 4.1. For p = 1, . . . ,M , let E\~\Lambda (U
(p)) be as

defined in (4.1), R(p) \in \scrB (\scrV (U (p)),\scrV ) satisfy the assumptions of section 2.2, B(p) be

as defined in (4.2), and \widehat B(p) \in \scrB (tr\scrV (\widehat U (p);\BbbR N ),\scrV (U (p))). Define the PU-CPI method

subspace \widetilde \scrV as in (2.6) using the local subspaces \widetilde \scrV (U (p)) = E\~\Lambda (U
(p)) \oplus \scrW (U (p)) and

the local complementing subspaces \scrW (U (p)) = range( \widehat B(p)).

Then there exists \~\lambda \in \sigma (\widetilde \scrV ) such that

| \lambda j  - \~\lambda | 
\lambda j

\leq CM (\lambda j) max
p=1,...,M

\Bigl[ 
\Lambda 2
N\| B(p)  - \widehat B(p)\| 2\ast + C2

E(p)e(\eta ,N)2\| R(p)\| 2\scrB (\scrV (U(p)),\scrV )

\Bigr] 
,

where e(\eta ,N) and \| \cdot \| \ast are as defined in Theorems 3.8 and 3.10, respectively. The
constants CM (\lambda j) and CE(p) are defined as

CM (\lambda j) := C(\lambda j)(\lambda j + 1)\| \widehat G\| 4L\infty (\Omega ) and CE(p) := \| E(p)\| \scrB (tr\scrV (\widehat U(p)),\scrV (\widehat U(p))),

where C(\lambda j) is as defined in Proposition 2.1. The counting function \^G : \Omega \rightarrow 
\{ 1, . . . ,M\} is defined as \widehat G(x) := \#\{ p | x \in \widehat U (p)\} .

Proof. Proposition 2.1 together with (2.7) and (3.16) give

(4.3)

| \lambda j  - \~\lambda | 
\lambda j

\leq C(\lambda j)\| G\| 2L\infty (\Omega )

M\sum 
p=1

\scrE (uj , U (p))

\leq C(\lambda j)\| G\| 2L\infty (\Omega )

M\sum 
p=1

eU

\Bigl( 
\scrW (U (p))

\Bigr) 
\| uj | \widehat U(p)\| 2H1(\widehat U(p))

for the local complementing subspaces\scrW (U (p)) = range( \^B(p)) constructed in section 3
for U = U (p). Estimating the sum similarly with (2.7) and observing that \| uj\| 2H1(\Omega ) =

(\lambda j + 1)\| uj\| 2L2(\Omega ) = (\lambda j + 1), give

(4.4)
| \lambda j  - \~\lambda | 
\lambda j

\leq C(\lambda j)(\lambda j + 1)\| G\| 2L\infty (\Omega )\| \widehat G\| 2L\infty (\Omega ) max
p=1,...,M

eU

\Bigl( 
\scrW (U (p))

\Bigr) 
.

Since U (p) \subset \widehat U (p) we have \| G\| L\infty (\Omega ) \leq \| \widehat G\| L\infty (\Omega ). Theorem 3.10 completes the
proof.
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In a practical application of the PU-CPI method, the foremost challenge is to
define the low-rank approximating operators \widehat B(p) and to efficiently construct a basis
for the local complementing subspaces \scrW (U (p)) = range( \widehat B(p)). In section 5, we use
the FEM, i.e., \scrV = \scrV h, and singular value decomposition (SVD) for this purpose.

5. Finite element realization of PU-CPI. Define the set function (i.e., open
interior of closure) intc : A \mapsto \rightarrow B as A = int(B) for B \subset \BbbR d. A finite family of sets
\{ Ki\} i \subset \Omega is called a triangular or a tetrahedral partition of \Omega if Ki \subset \Omega are open
simplicial sets satisfying \Omega = intc(\cup iKi) and Ki \cap Kj = \emptyset for i \not = j. We make a
standing assumption that partitions do not contain hanging nodes.

We consider the finite element (FE) discretization of (2.1) under the following
assumptions.

Assumption 5.1.
(i) Let \{ \scrT h\} h be a family of quasi-uniform triangular or tetrahedral partitions of

\Omega with mesh size h = maxK\in \scrT h
diam(K) in the sense of [9].

(ii) Let

(5.1) \scrV = \scrV h = \{ w \in H1
0 (\Omega ) | w| K \in P 1(K) for all K \in \scrT h \} ,

and \{ \psi l\} l be the nodal basis functions of \scrV h.

We call \bfitx the coordinate vector of w \in \scrV h and define the one-to-one correspon-
dence \bfitx \sim w, where w =

\sum 
l xl\psi l. The same convention is used in all subspaces of

\scrV h.
An open cover \{ U (p)\} Mp=1 is constructed by dividing the vertices of the partition

\scrT h into nonempty disjoint sets \{ \scrN p\} Mp=1 using, e.g., METIS [21]. The set U (p) is
obtained as4

(5.2) U (p) = intc\{ K \in \scrT h | K has at least one vertex index in \scrN p\} .

The r-extension of a subdomain U (p) is chosen as

(5.3) \widehat U (p) = intc
\Bigl\{ 
K \in \scrT h

\bigm| \bigm| \bigm| dist(K,U (p)) \leq r
\Bigr\} 
.

An example of an open cover and the related r-extensions is given in Figure 2. Note
that our definition allows very exotic open covers, not all of which are computationally
meaningful.

Let \{ \psi \widehat U
1 , . . . , \psi 

\widehat U
\^n \} and \{ \psi U

1 , . . . , \psi 
U
n \} be bases of \scrV h(\widehat U) and \scrV h(U) on \widehat U \equiv \widehat U (p)

and U \equiv U (p), respectively:

(5.4) \scrV h(\widehat U) = span\{ \psi \widehat U
1 , . . . , \psi 

\widehat U
\^n \} , \scrV h(U) = span\{ \psi U

1 , . . . , \psi 
U
n \} .

We further assume that the basis functions are ordered so that

(5.5)
tr\scrV h(\widehat U) = span\{ \psi \widehat U

1 | \partial \widehat U , . . . , \psi \widehat U
\^nB

| \partial \widehat U\} , tr\scrV h(U) = span\{ \psi U
1 | \partial U , . . . , \psi U

nB
| \partial U\} ,

\scrV h0(\widehat U) = span\{ \psi \widehat U
\^nB+1, . . . , \psi 

\widehat U
\^n \} , \scrV h0(U) = span\{ \psi U

nB+1, . . . , \psi 
U
n \} .

Denote nI = n  - nB and \^nI = \^n  - \^nB and assume that nI , \^nB , \^nI , and nB are all
nonzero. Because of the ordering in (5.5), it is natural to split the coordinate vectors
\bfitx \in \BbbR \^n to the boundary and interior coordinates as

(5.6) \bfitx :=

\biggl[ 
\bfitx B

\bfitx I

\biggr] 
, where \bfitx B \in \BbbR \^nB and \bfitx I \in \BbbR \^nI .

4Observe that the sets \{ U(p)\} p consist of simplices in a partition \scrT h. Thus the diameter of each
U(p) is always larger than h, linking the scale h and scales of U(p)'s.
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Fig. 2. A partitioning of a cuboid with four subdomains and a visualization of an extended
subdomain on one part. Surface triangles belonging to several U(p) and to set \Gamma defined in (5.4) are
visualized in white.

This splitting is applied to \^n\times \^n-matrices as follows,

(5.7) \sansA =

\biggl[ 
\sansA BB \sansA BI

\sansA IB \sansA II

\biggr] 
,

where \sansA BB \in \BbbR \^nB\times \^nB , \sansA BI \in \BbbR \^nB\times \^nI , \sansA IB \in \BbbR \^nI\times \^nB , and \sansA II \in \BbbR \^nI\times \^nI . Let
Eh : tr\scrV h(\widehat U) \rightarrow \scrV h(\widehat U) be defined as

EhwB =

\^nB\sum 
l=1

xBl\psi 
\widehat U
l , where \bfitx B =

\left[   xB1

...
xB\^nB

\right]   \sim wB .

That is, Eh is a right inverse of the trace operator that satisfies (EhwB)| U = 0.

5.1. Evaluation of the trace norm. We discuss evaluation of the norm of
tr\scrV h(\widehat U) required to construct \widehat B in practice.

Lemma 5.2. Let \scrV h(\widehat U), tr\scrV h(\widehat U) be as defined in (5.4) and assume that (5.5)
holds. Define \sansK \in \BbbR \^n\times \^n as

\sansK ij =

\int 
\widehat U
\Bigl( 
\nabla \psi \widehat U

i \cdot \nabla \psi \widehat U
j + \psi 

\widehat U
i \psi 

\widehat U
j

\Bigr) 
dx for i, j = 1, . . . , \^n

and then split K into \sansK BB ,\sansK BI , and \sansK II according to (5.7). Then for any f \in 
tr\scrV h(\widehat U),

(5.8) \| f\| tr\scrV h(\widehat U) =
\bigl( 
\bfitx T
B\sansS \bfitx B

\bigr) 1/2
, where \bfitx B \sim f and \sansS = \sansK BB  - \sansK BI\sansK 

 - 1
II \sansK 

T
BI .

Proof. Observe that for v1, v2 \in \scrV h(\widehat U) it holds that

(5.9) (v1, v2)H1(\widehat U) = \bfitv T
2K\bfitv 1, where \bfitv 1 \sim v1, \bfitv 2 \sim v2.

Using the splitting (5.6) and unitary equivalence (5.9) gives

\| f\| 2trVh
=

1

2
min

\bfity I\in \BbbR \^nI

\bigl[ 
\bfitx B \bfity I

\bigr] \biggl[ \sansK BB \sansK BI

\sansK T
BI \sansK II

\biggr] \biggl[ 
\bfitx B

\bfity I

\biggr] 
, where \bfitx B \sim f.
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Direct calculation gives \bfity I =  - \sansK  - 1
II \sansK 

T
BI\bfitx B . Hence,

\| f\| 2tr\scrV h
= \bfitx T

B

\bigl[ 
\sansI  - \sansK BI\sansK 

 - 1
II

\bigr] \biggl[ \sansK BB \sansK BI

\sansK T
BI \sansK II

\biggr] \biggl[ 
\sansI 

 - \sansK  - 1
II \sansK 

T
BI

\biggr] 
\bfitx B = \bfitx T

B\sansS \bfitx B ,

which completes the proof.

Remark 5.3. The matrix \sansS defined in (5.8) is dense and expensive to construct.
To circumvent this, consider the linear system\biggl[ 

\sansK BB \sansK BI

\sansK T
BI \sansK II

\biggr] \biggl[ 
\bfity B

\bfity I

\biggr] 
=

\biggl[ 
\bfitx B

0

\biggr] 
.

By direct calculation \sansS \bfity B = \bfitx B . Since \sansK is invertible, so is S. Hence,

(5.10) \sansS  - 1\bfitx B = \sansF T
B\sansK 

 - 1\sansF B\bfitx B , where \sansF B \in \BbbR nB\times n, (\sansF B)ij = \delta ij .

Using the equation above, the action of \sansS  - 1 can be efficiently computed by solving a
linear system with coefficient matrix \sansK , e.g., using the Cholesky factorization. Due
to this, our implementation of the PU-CPI method subspace uses \sansS  - 1 instead of \sansS .

5.2. Stitching operators. In section 2.2, the open cover \{ U (p)\} p is related to
a family of stitching operators \{ R(p)\} p , R(p) : \scrV (U (p)) \rightarrow \scrV . For \scrV = \scrV h we define
the stitching operator Rh : \scrV h(U) \rightarrow \scrV h corresponding the subdomain U = U (p) by

(5.11) (Rh)| \Omega \setminus U = 0 and (Rhw)| U =

n\sum 
l=nB+1

\psi U
l xl.

Even though5 \{ \psi U
l \} nl=nB+1 is a basis of \scrV h0(U), the embedding \scrV h0(U) into \scrV h by

zero extension makes it possible to regard Rhw as an element of \scrV h. The PU-CPI
error estimate in Theorem 4.2 depends on \| Rh\| \scrB (\scrV h(U),\scrV h), which we estimate next.

Lemma 5.4. Let U \subset \Omega be defined similarly to (5.2) and Rh \in \scrB (\scrV h(U),\scrV h) as
in (5.11). Under Assumption 5.1 there exists a constant CR = CR(\{ \scrT h\} h) such that

\| Rh\| \scrB (\scrV h(U),\scrV h) \leq CRh
 - 1.

Proof. Recall that \scrV h and \scrV h(U) inherit their norms from H1
0 (\Omega ) and H1(U),

respectively. Let w \in \scrV h(U) and \bfitx \sim w. By the inverse inequality in, e.g., [9, sect.
4.5] there exists a constant Cinv := Cinv(\{ \scrT h\} h), independent of h, such that

\| Rhw\| H1
0 (\Omega ) = \| \nabla Rhw\| L2(\Omega ;\BbbR d) \leq Cinvh

 - 1\| Rhw\| L2(\Omega ).

Observe that supp(Rhw) \subset U for each w \in \scrV h(U). The following norm equivalence
is given, e.g., in [9, Lem. 6.2.7]:

(5.12) c1h
d/2| \bfitx | \leq \| w\| L2(U) \leq C1h

d/2| \bfitx | , where | \bfitx | = (\bfitx T\bfitx )1/2

for any w \in \scrV h(U), \bfitx \sim w, and constants c1 = c1(\{ \scrT h\} h), C1 = C1(\{ \scrT h\} h). Using
(5.12) and definition (5.11) gives

\| Rhw\| L2(\Omega ) \leq C1h
d/2

\Biggl( 
n\sum 

l=nB+1

x2l

\Biggr) 1/2

\leq C1h
d/2| \bfitx | \leq C1c

 - 1
1 \| w\| L2(\Omega ).

5In our implementation of the stitching operator, we select the basis functions \{ \psi U
l \} l from the set

\{ \psi l\} l to avoid changing bases. Keeping track of the related indexing is challenging and not discussed
here nor in the following.
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5.3. The local complementing subspace. Recall that the local complement-
ing subspace satisfies \scrW h(U) = range( \widehat Bh), where \widehat Bh is a low-rank approximation
of Bh defined in (3.18) for \scrV = \scrV h. In this section, we use SVD to construct this
approximation, state the corresponding error estimate, and explain how this can be
realized using matrix algebra.

As usual, the finite-dimensional operator Bh \in \scrB (tr\scrV h(\widehat U ;\BbbR N ),\scrV hR(U)) has the
singular values \sigma 1 \geq \sigma 2 \geq \cdot \cdot \cdot \geq \sigma n \geq 0, and there exist rank k, k < n, operators Bhk

satisfying

(5.13) min
rank(T )\leq k

\| Bh  - T\| \ast = \| Bh  - Bhk\| \ast = \sigma k+1,

where \| \cdot \| \ast = \| \cdot \| \scrB (tr\scrV h(\widehat U ;\BbbR N ),\scrV hR(U)). Now \scrW h(U) = range(Bhk) for Bhk satisfying

(5.13) for fixed cutoff index k. Ultimately, a basis for \scrW h(U) is provided by the
left-singular vectors \{ u1, . . . , uk\} corresponding to an SVD of Bh.

Theorem 5.5. Make Assumption 4.1 defining \lambda j and let \scrV = \scrV h satisfy Assump-

tion 5.1. Let the stitching operators R
(p)
h be defined as in (5.11) for U = U (p) and

p \in \{ 1, . . . ,M\} . Let the singular values \sigma (p)
1 \geq \sigma 

(p)
2 \geq \cdot \cdot \cdot \geq \sigma 

(p)

n(p) and left--singular vec-

tors \{ u(p)l \} n(p)

l=1 be defined as above for U = U (p). The local complementing subspaces
are defined as

\scrW h(U
(p)) := span\{ u(p)1 , . . . , u

(p)

k(p)\} ,

where \{ k(p)\} Mp=1 are local cutoff indices. Define the local subspaces as \widetilde \scrV h(U
(p)) :=

E\~\Lambda (U
(p))\oplus \scrW h(U

(p)), where E\~\Lambda (U
(p)) is as in (4.1), and the associated (global) PU-

CPI method subspace \widetilde \scrV h as in (2.6). Then there exists \~\lambda \in \sigma (\widetilde \scrV h) such that

| \lambda j  - \~\lambda | 
\lambda j

\leq CM (\lambda j) max
p=1,...,M

\Bigl[ 
\Lambda N (\sigma 

(p)

k(p)+1
)2 + C2

RC
2
E(p)h

 - 2e2(\eta ,N)
\Bigr] 
,

where \Lambda N , CM (\lambda j), and C
2
E(p) are as defined in Theorem 4.2, CR as in Lemma 5.4,

and e(\eta ,N) as in Theorem 3.8.

Theorem 5.5 follows from the above discussion and Theorem 4.2.
We proceed to deal with the details in the practical construction of a basis for

\scrW h(U). To this end, we represent the linear operators Zh(t) and Bh as matrices

using the bases of tr\scrV h(\widehat U),\scrV h0(\widehat U), and \scrV h(U) defined in (5.4)--(5.5). Denote by
\sansA ,\sansM \in \BbbR \^n\times \^n the stiffness and mass matrices of the FE-discretized version of (3.2),
respectively. Both of these matrices are split as in (5.7). Following section 3.3, the
matrix representation of Zh(t) is \sansZ h : (0,\Lambda ) \rightarrow \BbbR \^nI\times \^nB given by

(5.14) \sansZ h(t) := \sansP h(\sansA II  - t\sansM II)
\dagger ( - \sansA T

BI + t\sansM T
BI),

where \sansZ h(t) is real analytic for all t \in (0,\Lambda ). Here \dagger is the Moore--Penrose pseudo-

inverse and \sansP h := \sansI  - 
\sum K(\~\Lambda )

k=1 \bfitv k\bfitv 
T
k\sansM II , where \bfitv k \sim vk for eigenfunctions vk \in \scrV h(\widehat U)

of (3.6).6 The matrix representation of the operator Bh, defined in (3.18), in the

natural basis of the Cartesian product space tr\scrV h(\widehat U ;\BbbR N ) is

(5.15) \sansB h = \sansF U

\bigl[ 
\sansZ h(\xi 1) \cdot \cdot \cdot \sansZ h(\xi N )

\bigr] 
\in \BbbR n\times N \^nB ,

6This is another way to define Zh for all t \in (0,\Lambda ) compared to section 3.2; also used in [18].
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where n = dim(\widetilde \scrV h(U)) and \sansF U \in \BbbR \^nI\times n is the matrix representation of the restriction

operator FU : \scrV h(\widehat U) \rightarrow \scrV h(U) given by FUv = v| U in bases (5.4)--(5.5). The norm of

the Cartesian product space tr\scrV h(\widehat U ;\BbbR N ) in terms of coordinate vectors is given by

\| \bfitv \bfitB \| tr\scrV h(\widehat U ;\BbbR N ) = \| (\sansI N \otimes \sansS 1/2)\bfitx B\| 2 for \bfitx B \sim vB

by Lemma 5.2. Here \sansI N \in \BbbR N\times N is the identity matrix and \otimes denotes the Kronecker

product. Finally, observe that \| w\| \scrV hR(U) = \| \sansK 1/2
R \bfitx \| 2 with \bfitx \sim w and the symmetric,

positive definite matrix \sansK R \in \BbbR n\times n defined as

(5.16) (\sansK R)lm =

\int 
U

\bigl( 
\nabla (Rh\psi 

U
l ) \cdot \nabla (Rh\psi 

U
m) + \psi U

l \psi 
U
m

\bigr) 
dx.

Matrix representation of operators \{ Bhk\} k is obtained by computing the SVD of the
\BbbR n\times N \^n-matrix

\sansC := \sansK 
1/2
R \sansB h(\sansI N \otimes \sansS  - 1/2) =

n\sum 
l=1

\sigma l\bfitu l\bfitv 
T
l ,

where \{ \bfitu l\} nl=1 \subset \BbbR n and \{ \bfitv l\} nl=1 \subset \BbbR N \^n are the left-singular and the right-singular
vectors of \sansC , respectively. Then

(5.17) \sansB hk = \sansK 
 - 1/2
R

\Biggl( 
k\sum 

l=1

\sigma l\bfitu l\bfitv 
T
l

\Biggr) 
(\sansI N \otimes \sansS 1/2),

as can be seen from the definition of the operator norm \| \cdot \| \ast by a change of variables.
The basis for \scrW h(U) is obtained from the first k left-singular vectors \{ \bfitu l\} l of the

matrix \sansC as

(5.18) \scrW h(U) =

\Biggl\{ 
n\sum 

l=1

yl\psi 
U
l \in \scrV h(U)

\bigm| \bigm| \bigm| \bfity \in \sansK 
 - 1/2
R span\{ \bfitu 1, . . . ,\bfitu k\} 

\Biggr\} 
.

In numerical realization, the vectors \{ \bfitu l\} l are computed by solving the largest k
eigenpairs of the \BbbR n\times n-matrix7

(5.19) \sansC \sansC T = \sansK 
1/2
R

\Biggl( 
N\sum 
i=1

\sansF U\sansZ h(\xi i)\sansS 
 - 1\sansZ h(\xi i)

T\sansF T
U

\Biggr) 
\sansK 
1/2
R

using the Lanczos iteration with the mapping \bfitx \mapsto \rightarrow \sansC \sansC T\bfitx . There are two reasons for
using the dual approach. First, the dimension of \sansC \sansC T is independent of N . Second,
an explicit construction of \sansS is avoided by utilizing Remark 5.3.

5.4. Assembly of the PU-CPI Ritz eigenproblem. The remaining task
is to solve the global Ritz eigenvalue problem (1.2) posed in the PU-PCI method

subspace \widetilde \scrV h. Let \{ \varphi (p)
l \} l be a basis of the space R

(p)
h
\widetilde \scrV h(U

(p)) \subset \scrV h and denote

n(p) := dim(R
(p)
h
\widetilde \scrV h(U

(p))). Then the ordered set

(5.20) \{ \varphi (p)
l | l = 1, . . . , n(p), p = 1, . . . ,M \} =

\biggl\{ 
\phi k | k = 1, . . . ,

M\sum 
p=1

n(p)
\biggr\} 

7In practice, the square roots K
1/2
R are replaced by the Cholesky factors of KR.
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is a basis for the PU-CPI method subspace \widetilde \scrV h defined in (2.6) with dimension \~n :=\sum M
p=1 n

(p). The ordering in (5.20) defines an integer-valued function \sigma (p, l) satisfying

\varphi 
(p)
l = \phi \sigma (p,l) for l = 1, . . . , n(p), p = 1, . . . ,M.

Next, we assemble the matrices \sansA ,\sansM in the global eigenproblem find (\~\lambda k, \~\bfitv k) \in \BbbR + \times 
\BbbR \~n such that

\sansA \~\bfitv k = \~\lambda k\sansM \~\bfitv k,

where \sansA lm = (\nabla \phi l,\nabla \phi m)L2(\Omega ;\BbbR d)and \sansM lm = (\phi l, \phi m)L2(\Omega ). In our early numerical
experiments, a straightforward assembly of \sansA and \sansM proved to be time consuming.
Next, we outline a more efficient and numerically more stable strategy.

We only study the entries of \sansA since the entries of \sansM are computed similarly. The
entries of \sansA are obtained by computing

(5.21) \sansA \sigma (p,l),\sigma (q,m) =

\int 
\Omega 

\nabla \varphi (p)
l \cdot \nabla \varphi (q)

m dx

for each l = 1, . . . , n(p), m = 1, . . . , n(q), and p, q \in \{ 1, . . . ,M\} . If p \not = q in (5.21),

(5.22) \sansA \sigma (p,l),\sigma (q,m) =

\int 
\Gamma 

\nabla \varphi (p)
l \cdot \nabla \varphi (q)

m dx,

where the overlap set \Gamma \subset \Omega is defined as

\Gamma = intc\{ K \in \scrT h | K has vertex indices in at least two sets \scrN p \} ;

see Figure 2. The off-diagonal entries in (5.22) can be computed if the functions
\{ \varphi l| \Gamma \} \~nl=1 are known.

If p = q in (5.21),

(5.23) \sansA \sigma (p,l),\sigma (p,m) =

\int 
U(p)

\nabla \varphi (p)
l \cdot \nabla \varphi (p)

m dx.

To store the minimal amount of data, the basis functions \{ \varphi (p)
l \} n(p)

l=1 are solutions of
the symmetric eigenvalue problem

(5.24)

\int 
U(p)

\nabla \varphi (p)
l \cdot \nabla \varphi (p)

m dx = d
(p)
l

\int 
U(p)

\varphi 
(p)
l \varphi (p)

m dx and \| \varphi (p)
l \| L2(U(p)) = 1

for eigenvalues d
(p)
l \in \BbbR + and for each l,m = 1, . . . , n(p). Thus, for each p,

\sansA \sigma (p,l),\sigma (p,m) = d
(p)
l \delta lm and \sansM \sigma (p,l),\sigma (p,m) = \delta lm.

To summarize, the matrices \sansA and \sansM can be fully characterized based on the data

\{ \varphi l| \Gamma \} \~nl=1, \{ \nabla \varphi l| \Gamma \} \~nl=1, and \{ d(p)l \} n
(p)

l=1 for p = 1, . . . ,M.

Restrictions of the basis functions can be stored, e.g., on some inner surface to visualize
the eigenfunctions.
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Table 1
Input parameters to the PU-CPI algorithm.

\Lambda Spectral interval of interest (0,\Lambda )
N Number of interpolation points
\eta Oversampling parameter
\scrT h Triangular (d = 2) or tetrahedral (d = 3) partition of \Omega 
M Number of subdomains
r Extension radius
tol Cutoff tolerance for singular values

5.5. Overview of the PU-CPI algorithm. The PU-CPI is intended for a
distributed computing environment with a single master and multiple workers. The
input data for the algorithm are specified in Table 1.

The cutoff tolerance is used to determine the parameters k(p) in Theorem 5.5 so

that \sigma 
(p)

k(p)+1
\leq tol. Theorem 5.5 gives the error estimate, for any \lambda j \in \sigma (\scrV h) \cap (0,\Lambda )

there exists \~\lambda \in \sigma (\widetilde \scrV h) such that

| \lambda j  - \~\lambda | 
\lambda j

\leq C
\bigl[ 
tol2 + e2(\eta ,N)

\bigr] 
for some constant C.

The PU-CPI proceeds in three steps:

1. Step 1 (work division). METIS is used to partition the vertices of \scrT h into

M subsets by the master. The submeshes defining U (p) and \widehat U (p) are created
from these vertex sets as explained in section 5. The submeshes defining U (p)

and \widehat U (p) for p = \{ 1, . . . ,M\} are submitted to workers.

2. Step 2 (distributed computation). Each worker receives a submesh and com-

putes a basis for R
(p)
h
\widetilde \scrV h(U

(p)) in the following steps (i)--(v), where all matrices
refer to the subdomain U (p).
(i) Assemble the stiffness and mass matrices \sansA ,\sansM related8 to \scrV h(\widehat U (p)).

Split \sansA ,\sansM to interior and boundary parts according to (5.7). Compute
the K(\~\Lambda ) lowest eigenpairs (\mu k,\bfitv k) of the pencil (\sansA II ,\sansM II), and form

the projection \sansP h = \sansI  - 
\sum K(\~\Lambda )

k=1 vkv
T
k \sansM II .

(ii) Construct the matrices \sansK R as in (5.16), \sansF U as in (5.15), \sansK as in Lemma 5.2,
and \sansF B as in (5.10).

(iii) Compute the largest eigenpairs (\sigma 2
k, \bfitc k) of

\sansC \sansC T = \sansL T

\Biggl( 
N\sum 
i=1

\sansF U\sansZ h(\xi i)\sansS 
 - 1\sansZ h(\xi i)

T\sansF T
U

\Biggr) 
\sansL 

using the Lanczos iteration. The action \bfitx \mapsto \rightarrow \sansS  - 1\bfitx is evaluated as
explained in Remark 5.3.

(iv) An auxiliary basis for R
(p)
h \scrV h(\widehat U (p)) is obtained from column vectors of

\sansQ ,

\sansQ := \sansR 
\Bigl[ 
\sansF U\bfitv 1, . . . ,\sansF U\bfitv K(\widetilde \Lambda ), \sansL 

 - T \bfitc 1, . . . , \sansL 
 - T \bfitc k

\Bigr] 
,

8The homogeneous Dirichlet boundary condition is imposed on \partial \widehat U(p) \cap \partial \Omega and this has been
communicated to the worker.
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where \sansR is the matrix representation of R
(p)
h restricted to \scrV h0(U

(p)). To
satisfy (5.24), we solve the diagonal matrix \sansD and the invertible matrix
\sansV from the eigenvalue problem

\sansQ T\sansA 0\sansQ \sansV = \sansQ T\sansM 0\sansQ \sansV \sansD and \sansV T\sansQ T\sansM 0\sansQ \sansV = \sansI ,

where \sansA 0 and \sansM 0 are the stiffness and mass matrices in \scrV h0(U
(p)). The

final subspace is obtained from the columns of \~\sansQ = \sansQ \sansV .
(v) Submit diag(\sansD ) and \~\sansQ (:, n\Gamma ) to the master. Here n\Gamma is set of those

vertex indices that lie on \Gamma .

3. Step 3 (solution of the global PU-CPI eigenproblem). The master solves (1.2)

posed in the method subspace \widetilde \scrV h. The required matrices are constructed as
outlined in section 5.4 and the resulting problem solved using the Lanczos
iteration.

6. Numerical examples. We give numerical examples validating the theoreti-
cal results and demonstrating the potential of the PU-CPI variant of section 5. For
this purpose, we use a cluster of 26 desktop computers of which 24 had a Xeon E3-
1230 CPU, and two were equipped with Xeon W-2133. There was 32 GB of RAM in
all but one workstation which had 64 GB. Because solving the smallest eigenvalues
of the global Ritz eigenvalue problem (1.2) posed in the PU-PCI method subspace\widetilde \scrV h using shift-and-invert Lanczos iteration requires lots of memory, the workstation
with 64 GB of RAM acted as the master. All data were transferred over NFS, and
distributed tasks were launched using GNU parallel [26]. All computations were done
using MATLAB R2019a. As the computers were also in other use, the given runtime
estimates are conservative.

We study the behavior and convergence of the method using the domain

(6.1) \Omega = F ((0, 1)3), where F :

\left[  x1x2
x3

\right]  \mapsto \rightarrow 

\left[  x1 + 0.4x3(2x1  - 1)
x2 + 0.4x3(2x2  - 1)

x3

\right]  ;

see Figure 2. As in section 5, problem (1.1) is posed in the space \scrV \equiv \scrV h, where \scrV h is
the FE space of piecewise linear functions over the tetrahedral partition \scrT h of domain
\Omega . The mesh parameter values h are varied by mapping different uniform tetrahedral
meshes of (0, 1)3 with F . The open cover \{ U (p)\} p of \Omega is constructed by splitting
the vertex indices of the \scrT h into disjoint sets \{ \scrN p\} p using METIS as explained in
section 5. The subdomains produced in this manner can have significantly different
shapes and sizes in a way that cannot be controlled. We observed that choosing the
extension radius r(p) proportional to the diameter of the corresponding subdomain
U (p) is beneficial for keeping the dimension of the subproblems reasonable. This is
done heuristically: define the empirical radius of U (p) by

r(p)c =
1

2

\biggl( 
max
m\in \scrN p

\bfitu T\bfitx m  - min
m\in \scrN p

\bfitu T\bfitx m

\biggr) 
,

where \bfitu is the first principal component of the coordinate vector set \{ \bfitx m\} m\in \scrN p .

Unless otherwise stated, we choose the extension radius for subdomain U (p) as r(p) =

0.2r
(p)
c .
Intuitively speaking, we have observed that PU-CPI works best if the subdomains

U (p) touch each other as little as possible. So as to domain \Omega in (6.1), we observed
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that METIS produces subdomains that have significant intersections compared to
their diameters. This represents the worst-case behavior of PU-CPI.

Throughout this section, we approximate 200 lowest eigenvalues of problem (1.1),
and the parameter \Lambda is chosen accordingly. While experimenting with PU-CPI, it
appears that choosing N = 5 and \eta = 2.5 makes the interpolation error smaller
than 10 - 10 for all mesh sizes h used. Hence, these values were kept fixed, and the
dependency of the relative eigenvalue error on N and \eta was not investigated. We focus
on the effect of cutoff tolerance of singular values, number of subdomains, problem
size, and the extension radius on computational load and accuracy.

6.1. Varying mesh density. The eigenvalue problem (1.1) was solved with
different mesh parameters h. Subdomains with about 5000 vertices were used except
for the three densest meshes. For these meshes, a smaller number of larger subdomains
was required to decrease dim(\widetilde \scrV h), so that the eigenvalue problem (1.2) posed in space\widetilde \scrV h could be solved by the master workstation. Since METIS failed to partition the
densest mesh, it was manually divided into cube-shaped subdomains.

The results are shown in Table 2. The maximum relative eigenvalue error was
estimated by comparing PU-CPI against the shift-and-invert Lanczos solution of (1.1)
using the MATLAB eigs function with a tolerance of 10 - 10. The sparsity of the
matrices produced by PU-CPI is shown in Figure 4. A breakdown of time required by
each step of PU-CPI is shown in Table 3. The comparable values tCPI and tFEM are the
wall clock times (in seconds) spent after the mesh structure was constructed. For fair
comparison, standard FE solution uses the MATLAB eigs function with a tolerance
of 10 - 4. In addition, tCPI includes file I/O times and network delays, whereas tFEM

includes the time required to assemble the full stiffness and mass matrices.

6.2. Effect of subdomain extension. When using a larger extension radius

r(p), the singular values \sigma 
(p)
k of \sansC in (5.19) are expected to decay faster. This effect is

studied using meshes with 54 872 and 195 112 of degrees--of--freedom (DOFs). In both

cases, the singular values \sigma 
(p)
k were computed for a single subdomain with extension

radius r(p) = 0.2r
(p)
c , 0.6r

(p)
c , and r

(p)
c . The results are shown in Figure 5, and the

extended subdomains with different radii are visualized in Figure 3. As expected, the
singular values decay much faster for larger r(p). This comes at higher computational
cost due to an increase in the extended subdomain DOFs. At the same time, the
faster decay of singular values leads to smaller dim(\widetilde \scrV h).

6.3. The effect of the cutoff tolerance of singular values. The computa-
tions were performed using three different mesh densities and several values of tol.
The maximum relative eigenvalue error and dim(\widetilde \scrV h) are shown in Figure 6. Addi-
tionally, relative error for each of the 200 lowest eigenvalues are detailed in Figure 7.
These results verify the linear relationship between tol2 and the relative eigenvalue
error predicted in section 5.5. In this example, choosing tol = 1 already produces a
relative eigenvalue error smaller than 1\%.

7. Conclusions. The PU-CPI method for the approximate solution of eigenval-
ues in (0,\Lambda ) of the Dirichlet Laplacian on domain \Omega is proposed. PU-CPI is a Ritz

method where the method subspace \widetilde \scrV is constructed from the local method subspaces
\{ \widetilde \scrV (U (p))\} p for U (p) \subset \Omega as stated in (2.6). Since the local subspaces are independent
of each other, PU-CPI can be used in distributed computing environments where
communication is costly. Failed distributed tasks can be restarted, making the imple-
mentation of PU-CPI very robust.
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Table 2
Relative fill-in is the ratio of the number of nonzeros in the stiffness matrices from spaces \widetilde \scrV h

and \scrV h. The last column is the average size of the dimension of the local method subspaces. Relative
error is not given if the problem could not be solved using the MATLAB eigs on a single workstation.
The number of subdomains in computations, except for those with the three largest dim(\scrV h), was
chosen so that each subdomain had about 5000 vertices; see section 6.1.

dim(\scrV h) dim(\widetilde \scrV h) M rel. fill-in \% max rel error avgp\{ dim \widetilde \scrV (U(p))\} 
54 872 2713 13 436.0 4.28\times 10 - 5 209
110 592 3777 25 291.9 1.90\times 10 - 4 151
195 112 4920 44 171.9 2.99\times 10 - 4 112
314 432 6048 69 121.1 3.73\times 10 - 4 88
474 552 7686 103 85.6 3.47\times 10 - 4 75
681 472 9791 146 76.9 3.81\times 10 - 4 67
941 192 12 398 200 68.2 - 62
1 259 712 15 587 267 60.8 - 58
1 643 032 19 735 346 59.9 - 57
2 097 152 24 276 440 56.3 - 55
2 628 072 30 124 549 56.4 - 55
3 241 792 12 820 150 26.7 - 85
5 000 211 19 261 250 24.7 - 77
10 360 232 29 124 308 22.8 - 95

Fig. 3. Examples of extended
subdomains \widehat U(p) for extension radii

0.2r
(p)
c , 0.6r

(p)
c , and r

(p)
c . The figure depicts

a cross section where U(p) is colored in dark
blue.

Fig. 4. Sparsity pattern of the PU-CPI
stiffness and mass matrices corresponding to
(1.2) posed on \widetilde \scrV h with dim(\scrV h) = 195 112,

dim(\widetilde \scrV h) = 492, and M = 44.

0 50 100 150 200
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100
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Fig. 5. Effect of the extension radius on the decay of singular values \{ \sigma j\} 200j=1 for the cube

with 54 872 (left panel) and 195 112 (right panel) DOFs. In these experiments, extended subdomain
DOFs range between 10 610--32 423 and 12 644--49 659, respectively.
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Table 3
Second column: Average time over p of computing bases for local method subspaces \widetilde \scrV h(U

(p)) by
workers. Third column: Time required to partition the mesh by the master. Fourth column: Time
required to construct the r-extensions by the master. Remaining columns: Solution time for (1.2)
posed in PU-CPI method subspace with the MATLAB eigs (tred), total PU-CPI computational time
(tCPI), and time required by direct FE-solution of (1.1) (tFEM). Cases where the problem could not
be solved on a single workstation are marked with --. METIS was not used for the densest mesh,
and all times are in seconds.

dim(\scrV h) avg. tsub METIS r-ext. tred tCPI tFEM

54 872 32.3 1.6 6.5 13.3 105.1 53.9
110 592 35.5 3.4 13.6 19.2 130.0 142.2
195 112 48.8 6.2 31.7 25.2 177.2 307.5
314 432 59.1 10.3 48.6 33.8 227.3 661.7
474 552 63.8 16.7 78.3 43.5 303.7 1264.7
681 472 68.0 24.1 123.8 56.1 429.7 1859.7
941 192 71.2 34.7 189.7 79.4 610.8 -
1 259 712 75.5 47.2 263.8 107.0 772.7 -
1 643 032 75.8 65.0 357.6 151.6 1030.5 -
2 097 152 79.9 85.7 511.0 212.5 1397.2 -
2 628 072 79.6 107.3 671.3 302.4 1781.5 -
3 241 792 378.9 114.8 1562.0 165.5 4509.7 -
5 000 211 385.3 327.4 1680.4 306.1 6312.9 -
10 360 232 344.4 - 1365.4 690.3 6525.7 -
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Fig. 6. Maximum relative eigenvalue error using three mesh densities. Left panel: Given as a
function of the cutoff tolerance for singular values tol. Right panel: Given as a function of dim(\widetilde \scrV h)
for the same sample points.
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Fig. 7. Relative eigenvalue errors for the 200 lowest modes for three mesh densities. The cutoff
tolerance for singular values tol2 = 0.1 (left panel) and tol2 = 0.001 (right panel).
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Let (u, \lambda ) be the solution of (1.1) for \lambda \in (0,\Lambda ). According to Proposition 2.1 and
(2.7), the local method subspaces should be designed to approximate u| U(p) . Local
information on u| U(p) is obtained in terms of the operator valued function ZU in
Lemma 3.1. Since ZU is compact operator valued by Lemma 3.2, its values can be
efficiently low-rank approximated.

The local method subspace for the single subdomain U \equiv U (p) is designed to
approximate the range of ZU in the sense of (3.15). This approximation makes use of
interpolation, linearization, and low-rank approximation as explained in section 3.4.
The local approximation error is estimated in Theorems 3.8 and 3.10. Theorem 4.2
combines these estimates to bound the global relative eigenvalue error.

An example of low-rank approximation is given for the first-order FEM in The-
orem 5.5. The key ingredients are Lemma 5.2 and Remark 5.3 that allow numerical
treatment of a required boundary trace norm. A basis for each local method subspace
is obtained from eigenvectors of the corresponding \sansC \sansC T in (5.19). The dimension of
\sansC \sansC T is independent of parameters N and \eta .

Finally, numerical examples validating the theoretical results and demonstrating
the potential of PU-CPI are given in section 6. The authors could use inexpensive
networked workstations to solve an eigenvalue problem ten times as large as straight-
forwardly solvable on a single workstation. In contrast to using a supercomputer,
such networked workstations are widely available.

The dimension of PU-CPI method subspace \widetilde \scrV is related to the number of singular
values of each \sansC \sansC T larger than given tol > 0. Nothing in our theoretical work indicates
how the fast singular values decay or estimate the dimension of \widetilde \scrV . The numerical
results in Figure 5 indicate exponential decay with a rate dependent on the extension
radius r, which we believe to be a generic property of similar elliptic problems. All
this remains a topic of further research.

Acoustic eigenvalues problem, for example, benefit from treatment of more general
boundary conditions. The authors have implemented PU-CPI for mixed homogeneous
Dirichlet and Neumann boundary conditions, and the error analysis extends to this
case.

Acknowledgment. The authors wish to warmly thank the anonymous reviewers
for their valuable contributions.
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