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a b s t r a c t 

The spatial resolution of EEG/MEG source estimates, often described in terms of source leakage in the context 
of the inverse problem, poses constraints on the inferences that can be drawn from EEG/MEG source estimation 
results. Software packages for EEG/MEG data analysis offer a large choice of source estimation methods but few 

tools to experimental researchers for methods evaluation and comparison. Here, we describe a framework and 
tools for objective and intuitive resolution analysis of EEG/MEG source estimation based on linear systems anal- 
ysis, and apply those to the most widely used distributed source estimation methods such as L2-minimum-norm 

estimation (L2-MNE) and linearly constrained minimum variance (LCMV) beamformers. Within this framework 
it is possible to define resolution metrics that define meaningful aspects of source estimation results (such as 
localization accuracy in terms of peak localization error, PLE, and spatial extent in terms of spatial deviation, 
SD) that are relevant to the task at hand and can easily be visualized. At the core of this framework is the res- 
olution matrix, which describes the potential leakage from and into point sources (point-spread and cross-talk 
functions, or PSFs and CTFs, respectively). Importantly, for linear methods these functions allow generalizations 
to multiple sources or complex source distributions. This paper provides a tutorial-style introduction into linear 
EEG/MEG source estimation and resolution analysis aimed at experimental (rather than methods-oriented) re- 
searchers. We used this framework to demonstrate how L2-MNE-type as well as LCMV beamforming methods 
can be evaluated in practice using software tools that have only recently become available for routine use. Our 
novel methods comparison includes PLE and SD for a larger number of methods than in similar previous studies, 
such as unweighted, depth-weighted and normalized L2-MNE methods (including dSPM, sLORETA, eLORETA) 
and two LCMV beamformers. The results demonstrate that some methods can achieve low and even zero PLE for 
PSFs. However, their SD as well as both PLE and SD for CTFs are far less optimal for all methods, in particular 
for deep cortical areas. We hope that our paper will encourage EEG/MEG researchers to apply this approach to 
their own tasks at hand. 

1. Introduction 

Electro- and magnetoencephalography (EEG and MEG) record elec- 
trical brain activity with high temporal resolution (in the millisecond 
range), i.e., at a time scale required to track fast perceptual and cogni- 
tive processes in real-time. However, it is well known that this strength 
of EEG and MEG is accompanied by limitations with respect to their spa- 
tial resolution ( Baillet et al., 2001 ; Hämäläinen et al., 1993 ; Hauk et al., 
2011 ). Unfortunately, exactly what these limitations are and especially 
what they mean for experimental researchers is still unclear. The ques- 
tion “What is the spatial resolution of EEG/MEG? ” can only be answered 
with many ifs and buts, because the answer depends on a large num- 
ber of parameters such as the measurement configuration (e.g., com- 
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bined EEG and MEG versus MEG-only), source estimation method (e.g., 
minimum-norm estimation versus beamforming), the validity of its un- 
derlying assumptions (e.g., isolated dipoles versus distributed sources), 
head model (e.g., spherical versus realistic), source positions and orien- 
tations (e.g., deep versus superficial, tangential versus radial), signal-to- 
noise ratio (SNR, e.g., resting state versus averaged evoked signals), etc. 
It is therefore not surprising that there is no one-fits-all answer to this 
question, since studies can vary considerably on all of these dimensions. 

A large number of previous methodological studies have compared 
source estimation methods, using simulations and/or real data (e.g. 
Baillet et al., 2001 ; Friston et al., 2008 ; Fuchs et al., 1999 ; Hauk et al., 
2011 ; Hedrich et al., 2017 ). However, they have not yet led to es- 
tablished recommendations or guidelines, and it is still difficult for 
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researchers without a methodological background to establish which 
methods are most suitable and which parameter settings most optimal 
for their task at hand. Commercial and freeware software packages for 
EEG/MEG analysis offer a large selection of source estimation meth- 
ods, but rarely tools to objectively evaluate them ( Baillet et al., 2011 ; 
Dalal et al., 2011 ; Delorme and Makeig, 2004 ; Gramfort et al., 2013 ; 
Litvak et al., 2011 ; Oostenveld et al., 2011 ; Tadel et al., 2011 ). Im- 
portantly, it can be hard for researchers to decide which aspects of a 
methodological study are relevant to their particular research question, 
e.g., whether assumptions about the source scenarios (such as single, 
multiple and distributed sources) are valid for their particular dataset. 
A method that works well for a few focal sources and early evoked po- 
tentials may fail for resting state activity or complex distributed sources 
underlying cognitive processes. Ideally, researchers should have at least 
an intuitive understanding of the EEG/MEG inverse problem and the 
distinguishing characteristics of different source estimation approaches, 
as well as the software tools to evaluate their performance on their own 
datasets. Here, in the tutorial part of this paper aimed at experimental 
researchers, we will describe a conceptual framework that intuitively 
describes the assumptions behind the most common distributed source 
estimation methods, namely L2-minimum-norm estimation (L2-MNE) 
and linearly-constrained minimum variance (LCMV) beamforming. We 
will use core elements of this framework, namely the resolution ma- 
trix and the associated point-spread and cross-talk functions (PSFs and 
CTFs) ( Hauk et al., 2011 ; Liu et al., 2002 ; Menke, 1989 ), to derive reso- 
lution metrics that objectively describe aspects of source estimates that 
researchers need to interpret their results (e.g., localization error and 
spatial extent of source leakage). We will illustrate this approach using 
openly available datasets, confirm results from previous methods com- 
parisons ( Hauk et al., 2011 , 2019 ) and extend them to a larger range of 
source estimation methods including weighted and normalized L2-MNE 
and two LCMV beamformers 1 . 

The reason why spatial resolution is of particular concern for EEG 

and MEG is the “ill-posed ” inverse problem: Even if it were possible 
to perfectly record full three-dimensional electric and magnetic field 
distributions around the head, it would still be impossible to unam- 
biguously determine the three-dimensional source current distribution 
inside the brain that gave rise to those measurements ( Sarvas, 1987 ; 
von Helmholtz, 1853 ). Several methods have been developed to find 
possible solutions to this inverse problem, using different constraints 
( Baillet et al., 2001 ; Friston et al., 2008 ; Fuchs et al., 1999 ; Michel et al., 
2004 ; Wipf and Nagarajan, 2009 ). In cases where it is certain that the 
signal is generated by one dominant focal source the location, orienta- 
tion and amplitude of the source current can be estimated with reason- 
able accuracy using a single equivalent dipole fit ( Lütkenhöner, 1998b ; 
Scherg and Berg, 1991 ). Unfortunately, in many EEG/MEG experiments, 
especially those with low SNR or involving complex brain processes, it 
is impossible to specify prior assumptions on source activity in a pre- 
cise mathematical manner. In those cases, it is common to employ dis- 
tributed source models, which attempt to explain the measured signal as 
source-current distributions within the whole brain volume or across the 
cortical surface. It is generally accepted that linear distributed-source 
solutions do not accurately reconstruct the true source distribution, but 
rather produce a “blurred ” estimate of it. The degree of this blurring, 
i.e., the spatial resolution of these methods, and how it is affected by 
parameters such as sensor configuration and source depth, is still largely 
unknown. The evaluation of spatial resolution is more complicated for 
EEG/MEG than it is for functional magnetic resonance imaging (fMRI), 
as it depends on more parameters such as those described in the first 
paragraph above. Researchers therefore need tools for a comprehensive 
evaluation of the spatial resolution of their experimental setup at hand. 

1 This paper is a substantially revised and altered version of pre-print 
https://www.biorxiv.org/content/10.1101/672956v1 . 

The most popular methods for EEG/MEG distributed source estima- 
tion are arguably L2-minimum-norm type methods (e.g., classical, op- 
tionally weighted, L2-minimum-norm estimation, L2-MNE; dynamic sta- 
tistical parametric mapping, dSPM; standardized and exact low resolu- 
tion electromagnetic tomography, s/eLORETA) and linearly constrained 
minimum variance (LCMV) beamformers. These methods all have in 
common that they are based on linear transformations of the data and 
can therefore be described and evaluated in the framework presented in 
this paper (with some caveats discussed later). 

Linear transformations have some convenient properties that can 
be exploited for the evaluation of their spatial resolution ( Backus and 
Gilbert, 1968 ; Dale and Sereno, 1993 ; Hauk et al., 2019 ; Menke, 1989 ). 
Most importantly, the superposition principle holds, i.e., the source es- 
timate of a signal produced by multiple sources is the sum of the source 
estimates produced by each individual source. Thus, knowing the source 
estimates for all possible point sources (i.e., their point-spread func- 
tions, PSFs) enables us, in principle, to construct the source estimate 
for any arbitrary configuration of sources. This framework is therefore 
well-suited to provide an objective and generalizable evaluation of spa- 
tial resolution for linear methods. Some important caveats with respect 
to the applicability of the superposition principle to (non-linear) inten- 
sity distributions and beamformers will be discussed below (see also 
Hauk, Stenroos et al., 2019 ). 

In addition to point spread, another key concept for the evaluation of 
source estimation methods is that of cross-talk: How much is an estimate 
of activity for one source at a particular location affected by activity 
from other locations? This is described by cross-talk functions (CTFs), 
which for a particular source describe how all other possible sources 
with unit strength would affect the source estimate for this source of 
interest. This concept is especially relevant for the application of spa- 
tial filters (or “software lenses ”) that are supposed to filter out activity 
from a particular brain location while suppressing activity from other 
locations ( Grave de Peralta Menendez et al., 1997 ; Hauk et al., 2019 ; 
Van Veen et al., 1997 ). While the concepts of PSFs and CTFs are related, 
there are important differences that will be discussed in a separate sec- 
tion below. 

For practical purposes, linear methods can be described by means 
of linear algebra, i.e., using vector and matrix operations. This is a rel- 
atively intuitive approach to data analysis because it offers geometri- 
cal interpretations of mathematical concepts and is straightforward to 
use with programming languages such as Matlab and Python. However, 
we cannot assume that researchers from a non-methods background are 
proficient in linear algebra ( Hauk, 2020 ). While a tutorial in the rele- 
vant linear algebra is beyond the scope of this paper, we attempted to 
describe the basics of linear EEG/MEG source estimation in plain En- 
glish as well as at the simplest adequate level using linear algebra. We 
also provide a brief primer on the relevant linear algebra in Appendix 
C. More information can of course be found in online resources or books 
(e.g., Cohen, 2021 ). 

As we intend to keep matters as simple as possible, we open our- 
selves up to criticism that we simplify too much. Reality is always 
more complex than our models or approximations, but the question is 
whether those are still useful. Obvious concerns in the case of EEG/MEG 

source estimation are our approximations for head modeling (e.g. 
Stenroos et al., 2014 ), the way we deal with noise (e.g. Samuelsson et al., 
2021 ), and the different theoretical frameworks that can be used to 
approach the EEG/MEG inverse problem (e.g. Henson et al., 2011 ; 
Sekihara and Nagarajan, 2015 ; Tarantola, 1994 ). In our view, the linear 
framework described in our paper provides a basis to understand and 
deal with more complex or more specialized issues of source estimation, 
also in different theoretical frameworks. 

For an objective methods comparison, it is necessary to define reso- 
lution metrics that summarize important features of these distributions, 
which can then be visualized as whole-brain distributions, and com- 
pared across methods and across the parameter space. Researchers com- 
monly interpret specific features of their source estimates, such as their 

2 

https://www.biorxiv.org/content/10.1101/672956v1


O. Hauk, M. Stenroos and M.S. Treder NeuroImage 255 (2022) 119177 

peaks or their distribution within and across different brain regions. 
Thus, we need metrics that are location-specific and reflect meaning- 
ful features of the distributions that are relevant for their interpreta- 
tion. Two aspects of spatial resolution are particularly important for the 
most common applications of EEG/MEG source estimation. First, the 
peaks of PSFs and CTFs should be close to the true source location. This 
has often been evaluated by means of the peak localization error, i.e., 
the Euclidean distance between the estimated peak and the true source 
location. Second, to be able to evaluate to which degree two distribu- 
tions overlap with each other, we need a measure of spatial extent. This 
has for example been quantified using the standard deviation around 
the peak of the distribution, also called spatial deviation. Some of these 
metrics have been used previously to evaluate the benefit of combining 
EEG and MEG measurements ( Molins et al., 2008 ), to compare noise- 
normalized MNE methods ( Hauk et al., 2011 ), to compare different head 
models ( Stenroos and Hauk, 2013 ), and to compare different MEG sen- 
sor types ( Iivanainen et al., 2017 ). 

In the present study, we will provide a tutorial to linear source esti- 
mation and demonstrate how the corresponding concepts can be used in 
practice to obtain intuitive as well as objective estimates of spatial reso- 
lution for different source estimation methods. We will compute resolu- 
tion metrics for PSFs and CTFs using a combined EEG and MEG measure- 
ment configuration to compare some of the most popular source estima- 
tion methods in a best-case scenario. We extend the results of previous 
studies by including a larger number of methods in our comparison, by 
computing resolution metrics not just for PSFs but also for CTFs, and by 
providing a more detailed analysis of the relationship between spatial 
resolution and source depth. We would like to highlight that this ap- 
proach to resolution analysis can easily be applied to any new data set, 
e.g., with different sensor configurations, head models and noise levels. 
It could therefore become a standard tool to guide the interpretation of 
EEG/MEG source estimation results. 

2. Methods 

In this section, we will describe the basics of the EEG/MEG inverse 
problem, linear systems analysis and common source estimation meth- 
ods in basic matrix notation. A brief primer on some of the relevant 
linear algebra is provided in Appendix C. 

2.1. Linearity and the superposition principle 

Many procedures in signal or image processing can be described as 
linear, at least in reasonable approximation, including Hifi systems, mi- 
croscopes, telescopes or EEG/MEG source estimation. Linear systems, 
by definition, have the property that the output of any sum of inputs 
is just the sum of the outputs for the individual inputs ( “superposi- 
tion principle ”). This means that if we can approximate a complex in- 
put (e.g., multiple sources or a distributed source) as a sum of point 
sources, then we can also approximate the output by a corresponding 
sum of the outputs of the individual point sources, or “point-spread func- 
tions ” (PSFs). This is illustrated for the cases of a hypothetical micro- 
scope ( https://en.wikipedia.org/wiki/Point_spread_function ), as well as 
for EEG/MEG sensor and source space data in Fig. 1 . Fig. 1 A shows ex- 
ample point-spread functions for a microscope, i.e., the degree of blur- 
ring for two circular objects. The ideal lens is supposed to provide an 
accurate image of the underlying objects, magnified by a certain fac- 
tor. In reality, the glass may contain impurities, the grinding of the lens 
may not have been perfect, and there are also fundamental physical lim- 
its with respect to light diffraction depending on the light’s wavelength. 
Thus, a point source and the sharp borders of the discs get blurred. The 
degree of blurring may depend on the location of the object relative to 
the lens, e.g., whether it is at the center or at the border, or whether the 
lens contains impurities in some parts but not others (not shown in this 
Figure). 

The same principle applies to EEG/MEG topographies in signal space 
( Fig. 1 B). These examples illustrate how the “blurring ” of signals from 

point sources can result in partial overlap between PSFs, which can make 
them hard or impossible to separate when the two sources are present 
simultaneously. This is an important aspect of spatial resolution that can 
be described by metrics such as localization accuracy and spatial extent 
(which will be discussed in more detail later). Fig. 1 C demonstrates how 

the superposition principle applies to linear source estimation (here L2- 
minimum-norm estimates; further examples for MNE-type methods and 
beamformers are presented in Figs. 3 and 6 , respectively). 

More formally, a transformation T is linear if for any arbitrary input 
signals A and B and scalar values a and b the following is true: 

T ( 𝑎 A + 𝑏 B ) = 𝑎 T ( A ) + 𝑏 T ( B ) (1) 

In the case of EEG/MEG source estimation, A and B can be signal 
patterns of dipolar current sources with unit strength, a and b source 
strengths, and the transformation T the “inverse operator ” (usually a 
matrix) that turns the measured EEG/MEG data into current distribu- 
tions in the brain. This means that we can characterize the properties 
of the transformation on the basis of the transformations of individual 
point sources with unit strength, i.e., their PSFs. 

2.2. Resolution matrix 

If we imagine our EEG/MEG measurements followed by source es- 
timation as a “lens ” with which we are looking through the skull into 
the brain, then the resolution matrix describes the blurring or distor- 
tion caused by this lens. In the case of EEG/MEG, the resolution matrix 
describes how the estimate for the sources is blurred and distorted by 
the combination of the measurement itself and the inverse operator ap- 
plied to the data. Thus, it depends on the physical characteristics of the 
inverse problem, but also on parameter choices with respect to head 
model and inverse operator. 

Before we can start thinking about estimating neural sources from 

our EEG/MEG data, we have to parametrize these sources such that we 
can include them in an explicit model (e.g., the general linear model in 
Eq. (2 ) below) and describe any additional constraints on them mathe- 
matically. Thus, we have to define a source space. The dominant sources 
of EEG/MEG signals are commonly assumed to be located in grey matter 
along the cortical surface ( Hämäläinen et al., 1993 ). In order to make the 
problem numerically tractable, this surface is usually discretized into a 
larger number ( ∼> 10,000) of vertices. This number is much larger than 
the number of measurement sensors. Each vertex is represented by an 
equivalent current dipole with a particular strength and orientation of 
current flow. The orientation of dipoles at vertices can be fixed a priori 
to be perpendicular to the cortical surface, in which case each vertex is 
associated with one value for the corresponding dipole strength in the 
model. If the orientation of the dipole is unknown, each vertex can be 
represented by 2 (MEG only) or 3 (EEG or EEG + MEG) perpendicular 
dipoles, in which case each vertex is associated with 2 or 3 values in the 
model, respectively. Because these dipoles reflect the activity of a vertex 
condensed into an infinitesimally small point, they can be considered as 
point sources as discussed in the previous section. In the following, the 
values of dipole strengths to be estimated across all vertices will be rep- 
resented in a vector s ( n x1, n : number of vertices, or dipole strengths to 
be estimated). 

The resolution matrix is an established tool for the characterization 
of spatial resolution for linear estimators ( Backus and Gilbert, 1970 ; 
Dale and Sereno, 1993 ; Grave de Peralta Menendez et al., 1997 ; 
Hauk, 2004 ; Krishnaswamy et al., 2017 ; Liu et al., 2002 ; Menke, 1989 ). 
More formally, if s is the true source vector and ̂𝐬 its estimate (in both 
cases each element represents a dipole in source space), then the res- 
olution matrix describes the relationship between 𝐬 and �̂� in the form 

�̂� = 𝐑𝐬 . More details will be provided below, but the important message 
here is that R specifies what stands between our estimate and the truth. 
Thus, while we will not be able to know the true sources 𝐬 , the resolu- 
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Fig. 1. Illustration of the superposition principle for linear data transformations. (A) A hypothetical microscope “blurs ” point-like objects according to the point- 
spread function (PSF, bottom left). For two real objects (top left), the output image (right) is the real image convolved (or “blurred ”) with the PSF. From 

https://en.wikipedia.org/wiki/Point-spread_function . (B) Illustration of the superposition principle for the EEG forward problem.A point source (current “dipole ”) 
produces a characteristic voltage distribution, or topography, on the scalp (top left). This topography is represented by a column vector . The topographies of two 
separate sources add up at the scalp. If they are sufficiently distant from each other, their topographies hardly overlap (top right). As the sources move closer 
together, their topographies begin to overlap (bottom left). For close-by sources with different depths, the topography of the superficial source may overshadow the 
topography of the deep one (bottom right). The Gaussian-shaped EEG topographies for radial dipoles in this example were chosen for simplicity, and are only a very 
coarse approximation of reality. (C) The superposition principle for linear distributed source estimates. The source distributions for two point sources (PSFs) are 
shown in panels 1 and 2, respectively (L2-MNE, MEG only). The locations of the point sources are indicated by two black balls on the inflated cortical surface. The 
source distribution for both sources together is just the sum of their individual PSFs (panel 3). Red and blue colors indicate out- and in-going source currents with 
respect to the cortical surface, respectively. 

tion matrix can help us estimate how far we are away from the truth. 
More specifically, it can tell us for which sources we may at least get 
close, and for which sources we may not stand a chance. 

The logic behind the construction of the resolution matrix is as fol- 
lows: We know that our measured data are the result of the forward 
solution for the source distribution, and our linear source estimate is 
the result of the linear estimator applied to our measured data. If we 
combine the forward solution and the inverse estimator together into 
one transformation, we directly transform the unknown true source dis- 
tribution into its estimate. Ideally, this transformation should be the 
identity, i.e., our estimate should be exactly the true source distribu- 
tion. We know that we cannot achieve this for realistic models due to 
fundamental physical and mathematical limitations of the inverse prob- 
lem, but an inspection of this transformation can tell us how close we 
are. This transformation is given by the resolution matrix, which will 
now be derived more formally. 

The relationship between the source distribution 𝐬 ( n x1, n : number 
of point sources) and the data in n channels 𝐝 ( m x1, m : number of mea- 
surement channels) can be written in matrix form 

𝐝 = 𝐋𝐬 + 𝐞 (2) 

where 𝐋 ( m x n ) (is the so-called leadfield matrix which contains in- 
formation about head geometry (shape and conductivities), measure- 
ment configuration (sensor types and position), and the physics of 
signal generation (quasi-static approximation of Maxwell’s equation 
Sarvas, 1987 ), and 𝐞 ( m x 1 ) is the noise term. This forward problem 

is linear (illustrated in Fig. 1 B). 
Source estimation methods do not have to be linear, but we can try 

to find an optimal linear matrix 𝐊 ( n x m ) (as it is sometimes referred 
to as an inverse k ernel; optimal in a way to be defined), such that we 
obtain an estimate ̂𝐬 for the source distribution 

�̂� = 𝐊𝐝 (3) 
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Fig. 2. Illustration of cross-talk and point- 
spread functions (PSFs, CTFs). CTFs show how 

the linear estimate for a point source would 
be affected by other sources with unit strength 
(left), and PSFs show how activity from one 
point source with unit strength would spread 
to other sources (right). CTFs and PSFs are the 
rows and columns of the resolution matrix, re- 
spectively. The CTF and PSF were computed 
for dipoles with fixed orientations perpendicu- 
lar to the cortical surface at locations indicated 
by a small white circle, and scaled to their indi- 
vidual extrema. Red colors reflect the direction 
out of the cortex and blue colors into the cor- 
tex. 

We can predict the signal produced by this estimate from Eq. (2) , 
i.e., we combine Eqs. (2) and (3) : 

�̂� = 𝐊𝐝 = 𝐊 ( 𝐋𝐬 + 𝐞 ) = 𝐊𝐋𝐬 + 𝐊𝐞 = 𝐑𝐬 + 𝐊𝐞 (4) 

The resolution matrix 𝐑 ( n x n ) provides the desired relationship 
between true and estimated sources, except for the last term that reflects 
how noise is transformed from signal space into source space. This will 
be relevant for regularization procedures later. 

2.3. Point ‐spread and cross ‐talk functions (PSFs and CTFs) 

The resolution matrix is still a rather abstract concept. How can we 
get some meaningful information out of it that can help us in practice? 
As illustrated in Fig. 1 , linear transformations can be meaningfully eval- 
uated for point sources. PSFs and CTFs address two aspects of linear 
source estimation methods ( Fig. 2 shows examples for L2-MNE, Grave de 
Peralta Menendez et al., 1997 ; Hauk et al., 2011 ; Liu et al., 2002 ): (1) 
How does the method spread the activity of a point source with unit 
strength to other locations (PSF), and (2) how is the result of the method 
for one particular source affected by other sources (CTF)? In order to de- 
rive PSFs and CTFs more formally, it is useful to break down Eq. (3) for 
individual elements of 𝐬 and �̂� , i.e., corresponding to individual point 
sources. 

PSFs are more widely used than CTFs in methodological comparisons 
of source estimation methods, but as we will argue below both are im- 
portant to fully characterize resolution for a particular source. As the 
name suggests, PSFs represent how activity of a point source (such as 
one dipole at a particular location with a fixed orientation and unit acti- 
vation) is spread across other sources in the source space by the source 
estimation procedure. More specifically, in order to obtain the PSF for 
point source i , 𝐏𝐒 𝐅 𝑖 , we first compute the topography in sensor space 
produced by source i with unit strength, and then subject this topogra- 
phy to our inverse operator. This topography is the i- th column of the 
leadfield matrix, i.e., 𝐋 . i . Therefore: 

𝐏𝐒 𝐅 𝑖 = 𝐊𝐋 .𝑖 = 𝐑 .𝑖 (5) 

In other words, the PSF for source i is the i th column of the resolution 
matrix R . This also shows that 𝐏𝐒 𝐅 𝑖 is a weighted sum of the columns 
of the inverse matrix 𝐊 , with the weights given by 𝐋 . i . 

While PSFs show how point sources can potentially affect the esti- 
mates for other sources, we usually also face another (though related) 
question: If we are interested in activity in one particular location i , then 
how does activity from other locations affect the estimate at the loca- 
tion of interest? In other words, we are interested in the resolution of 
the specific estimator for location i , which is 𝐊 𝑖. (i.e., the i- th row of the 
inversion matrix 𝐊 ). The CTF for source i , 𝐂𝐓 𝐅 𝑖 , is then obtained by ap- 
plying the linear estimator for source i to the topographies of all possible 
point sources in source space with unit strength. These topographies are 

the columns of the leadfield matrix 𝐋 . Thus 

𝐂𝐓 𝐅 𝑖 = 𝐊 𝑖. 𝐋 = 𝐑 𝑖. (6) 

In other words, the CTF for source i is the i- th row of the resolution 
matrix. It also shows that 𝐂𝐓 𝐅 𝑖 is the weighted sum of the rows of the 
leadfield matrix, with the weights given by 𝐊 i . . 

In summary, here are the formulae for PSFs and CTFs next to each 
other: 

𝐏𝐒 𝐅 𝑖 = 𝐊 𝐋 .𝑖 = 𝐑 .𝑖 
𝐂𝐓 𝐅 𝑖 = 𝐊 𝑖. 𝐋 = 𝐑 𝑖. 

(7) 

As stated above, PSFs are the columns of the resolution matrix R and 
linear combination of columns of the inverse matrix 𝐊 , and CTFs are the 
rows of the resolution matrix R and linear combinations of the rows of 
the leadfield matrix L . In general, the PSF and CTF for a source i will 
have different shapes, which is important for the comparison of differ- 
ent source estimation methods. However, the resolution matrix for the 
unweighted L2-minimum-norm estimate is symmetric (see below) and 
for this method PSFs and CTFs can be represented by the same distribu- 
tions. 

While the leadfield matrix L is determined by our forward model, 
the inversion matrix K can in principle be chosen arbitrarily to opti- 
mize our PSFs and CTFs. But whatever we do, linear algebra poses some 
fundamental limits ( Menke, 1989 ): 

(1) A distribution that cannot be approximated by any weighted combi- 
nation of the rows of the leadfield matrix cannot be a CTF. 

(2) The number of columns of the inverse estimator is the number of 
recording channels m , and a PSF is a linear combination of these 
columns. We can therefore get at most m well-shaped PSFs, but this 
does not guarantee that the remaining n - m PSFs are well-shaped (or 
even close) as well. 

(3) Because 𝐊 appears in both formulae, we cannot optimize PSFs and 
CTFs independently of each other. 

This implies that every optimization of PSFs and CTFs will require a 
trade-off between different resolution criteria. We will address this issue 
using quantitative resolution metrics below. 

2.4. Noise and regularization 

Source estimation attempts to determine the brain sources that gen- 
erated the measured signals. It is highly desirable to suppress the in- 
fluence of noise as much as possible, i.e., to minimize the term 𝐊𝐞 in 
Eq. (3) . This is addressed by regularization of the source estimates. In 
short, we accept some loss of spatial resolution and/or goodness-of-fit in 
return for a solution that is less affected by noise, which usually results in 
smoother source distributions ( Backus and Gilbert, 1968 ; Bertero et al., 
1988 ; Menke, 1989 ). The degree of regularization is controlled by the 
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regularization parameter, often denoted as λ (lambda). The larger this 
parameter, the lower the spatial resolution and/or goodness-of-fit, and 
the higher the smoothness of the source distribution. 

The details of regularization procedures are not within the scope of 
this paper. However, for a fair methods comparison it is important to 
choose the regularization parameter in similar ways for all methods. 
This can for example be accomplished via the (assumed) SNR of the 
data. Furthermore, the regularization parameter determines the effect of 
the noise covariance matrix on the inversion matrix. If λ = 0 , the noise 
covariance matrix does not contribute at all. The larger λ, the more it 
matters. Thus, in order to compare methods and to generalize results 
to other data sets, the structure and possible regularization of the noise 
covariance matrix has to be comparable. 

2.5. Linear source estimation methods 

In this section we will describe some of the most common source 
estimation methods in the linear framework introduced above, namely 
L2-Minimum-Norm-type methods and beamformers. To keep the nota- 
tion simple, we will describe these methods for the case of fixed source 
orientations (i.e., one scalar value per source grid point modeling the 
amplitude of the current dipole at this location). The use of the res- 
olution matrix and resolution metrics to evaluate spatial resolution is 
applicable to any other linear distributed source estimation method as 
well. 

2.6. L2 ‐minimum ‐norm ‐type methods 

The name of L2-MNE reflects the fact that its solution has the mini- 
mal L2-norm among all possible solutions to Eq. (2) . This property does 
not seem to fit any specific physiological or physical constraints about 
brain activity. However, L2-MNE also produces the resolution matrix 
which is closest to the ideal case, i.e., the identity matrix, in the least- 
squares sense ( Menke, 1989 ) (We provide a derivation in the Appendix). 
This property suggests that L2-MNE provides an optimal trade-off of dif- 
ferent spatial resolution criteria. It has often been pointed out that L2- 
MNE shows a strong tendency to localize sources too close to the sensors. 
Two strategies have been proposed to alleviate this: depth-weighting 
( Lin et al., 2006 ) and (noise-)normalization ( Dale et al., 2000 ; Pascual- 
Marqui, 2002 ). 

A common expression for the unweighted L2-MNE is 

𝐊 MNE = 𝐋 𝑇 
(
𝐋 𝐋 𝑇 + λ𝐂 

)−1 
(8) 

where 𝜆is the regularization parameter and 𝐂 ( m x m ) the noise covari- 
ance matrix. The resolution matrix in this case is 

𝐑 MNE = 𝐋 𝑇 
(
𝐋 𝐋 𝑇 + λ𝐶 

)−1 𝐋 (9) 

which is a symmetric matrix, and therefore PSFs and CTFs for elements 
i are the same. 

Depth-weighting can be implemented by introducing a diagonal 
weighting matrix D into Eq. (8) : 

𝐊 wMNE = 𝐃 𝐋 𝑇 
(
𝐋𝐃𝐋 T + λ𝐂 

)−1 
(10) 

The values in D can be chosen to “boost ” the impact of deep sources, 
e.g., based on the vector norms of the leadfield columns (topographies of 
deeper sources tend to have smaller norms). Note that the same weight- 
ing strategy can be chosen to include a priori information about source 
locations, e.g., from fMRI data: the more we boost activation of certain 
sources via D , the more we bias our source distribution towards these 
sources, possibly even when these sources are not active ( Ahlfors and 
Simpson, 2004 ). Thus, depth-weighting can also be interpreted as using 
a priori information to bias the source estimate towards deeper sources. 
For eLORETA, a diagonal weighting matrix D is computed in an itera- 
tive process to optimize the localization error of PSFs for the estimator 
( Pascual-Marqui et al., 2011 ). 

Another way to change the localization properties of the L2- 
MNE estimator is (noise-)normalization ( Dale et al., 2000 ; Pascual- 
Marqui, 2002 ). In this case, the L2-MNE matrix is multiplied by a di- 
agonal weighting matrix 𝐖 : 

𝐊 W 

= 𝐖 𝐊 MNE (11) 

The resolution matrix then changes accordingly: 

𝐑 nMNE = 𝐖 𝐑 MNE (12) 

Thus, we may find a W that improves some desirable properties of 
the resolution matrix. Because the 𝐖 matrices for the methods consid- 
ered here are diagonal, each row i of the MNE resolution matrix is scaled 
by the factor 𝑊 𝑖𝑖 . As a consequence, the shapes of the CTFs (rows of R ) 
do not change ( Hauk et al., 2011 ). Only the shape of PSFs (columns of 
R ), and therefore potentially locations of peaks and their spatial extent, 
is affected by this normalization procedure. 

The two most popular methods of this type are dynamic statistical 
parametric mapping (dSPM) and standardized low-resolution electro- 
magnetic tomography (sLORETA): 

𝐆 dSPM 

= 𝐖 dSPM 

𝐊 MNE (13) 

𝑮 sLOR = 𝐖 sLOR 𝐊 MNE (14) 

For dSPM, the normalization matrix contains the minimum norm 

estimates of the noise at each source ( Dale et al., 2000 ), derived from 

the noise covariance matrix, i.e., 

𝑾 dSPM 

= 

√ 

Diag 
(
𝐊 MNE 𝐂𝐊 

𝑇 
MNE 

)−1 
(15) 

For sLORETA ( Pascual-Marqui, 2002 ), the normalization uses the di- 
agonal of the MNE resolution matrix 

𝑾 sLOR = 

√ 

Diag 
(
𝐑 MNE 

)−1 
= 

√ 

Diag 
(
𝐋 𝑇 

(
𝐋𝐋 𝑇 + 𝜆𝐂 

)−1 𝐋 )−1 

(16) 

It has been shown that dSPM and sLORETA have better peak lo- 
calization performance for PSFs than L2-MNE ( Hauk et al., 2011 ), and 
even that sLORETA has zero dipole localization error ( Hauk et al., 2011 ; 
Pascual-Marqui, 2002 ) under ideal circumstances. However, as we will 
see localization performance alone does not allow similar conclusions 
about other aspects of PSFs (e.g., spatial extent, local extrema etc.), or 
about the shape of CTFs ( Hauk et al., 2011 ). 

2.7. Beamforming and Spatial Filtering 

Linear inverse methods can be interpreted as “spatial filters ” or “soft- 
ware lenses ” that attempt to estimate activity from sources of interest, 
while suppressing interference from all other possible sources. These 
spatial filters can be arranged as rows of an inverse matrix to provide 
the whole source distribution. In this logic, the ideal inverse matrix 
should yield a resolution matrix as close as possible to the identity ma- 
trix. Thus, an individual spatial filter’s CTF should be as close as possible 
to the corresponding row of the identity matrix. If closeness to the iden- 
tity matrix is required in the least-squares sense, this yields the L2-MNE 
solution ( Backus and Gilbert, 1968 ; Hauk, 2004 , see also Appendix A; 
Menke, 1989 ). 

Beamformers approach this problem differently. They start from the 
requirement that a spatial filter for source i should be sensitive to ac- 
tivity from this source, i.e., it should yield the value 1 if this source is 
active with unit strength (unit gain beamformer) ( Sekihara and Nagara- 
jan, 2008 ; Van Veen et al., 1997 ): 

𝐊 𝑖. 𝐋 .𝑖 = 1 (17) 

At the same time, the beamformer attempts to suppress noise and ac- 
tivity from other sources. In contrast to minimum-norm type methods, 
it does not do this by modeling other sources via the leadfield matrix, 
but by assuming that they are captured by the data covariance matrix 
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𝐂 D . Note that this matrix contains the noise covariance as well as pos- 
sible signal covariance from other sources of interest. The requirement 
to suppress the effect of other activity on the estimate for source i can 
thus be written as 

𝐊 𝑖. 𝐂 D 𝐊 

𝑇 
𝑖. → 𝑚𝑖𝑛𝑖𝑚𝑎𝑙 (18) 

This results in the unit-gain linearly constrained minimum variance 
(LCMV) beamformer: 

𝐊 

LCMV 
𝑖. = 𝐋 T .𝑖 𝐂 

−1 
D ∕ 

(
𝐋 T .𝑖 𝐂 

−1 
D 𝐋 .𝑖 

)
(19) 

Variations exist that optimize beamformers for pairs of dipolar 
sources ( Brookes et al., 2007 ) and for time- and frequency-dependent 
beamforming ( Dalal et al., 2008 ; Woolrich et al., 2013 ). 

Because the estimator is a vector that is multiplied to the data matrix 
( 𝐊 

𝐿𝐶𝑀𝑉 
𝑖. 

𝐝 ) , we can use the concept of CTFs to describe its spatial res- 
olution. In principle, the superposition principle holds, since the con- 
tributions of different sources add up. However, the situation is more 
complicated in this case: Because we are using the data (rather than 
noise) covariance matrix, the estimator depends on the sources of in- 
terest. Whenever the data change, so does the estimator. This is why 
beamformers are often called “adaptive spatial filters ” ( Sekihara and Na- 
garajan, 2008 ) - they adapt to the data. In contrast, minimum-norm-type 
estimators are “static ”, since they are based only on the leadfield and 
noise covariance matrices. This affects the generalizability of any reso- 
lution analysis: While the result for linear minimum-norm type methods 
apply to other data sets with similar measurement configurations, head 
models and noise statistics, the results for beamformers are only valid 
under those conditions that are represented in the data covariance ma- 
trix. Thus, while beamformers yield a linear transformation of the data, 
their adaptivity to data makes their PSFs and CTFs hard to generalize to 
different data sets, or even different analyses of the same dataset. 

We evaluated two types of beamformers in this study: One using a 
covariance matrix based on pre-stimulus baseline activity, and one using 
a covariance matrix from a post-stimulus interval (referred to as “pre ”
and “post ” in the following sections, e.g., in Fig. 7 )). For the former, we 
used the noise covariance matrix instead of the data covariance matrix 
in Eq. (18) : 

𝐊 

Base 
𝑖. = 𝐋 T .𝑖 𝐂 

−1 
N ∕ 

(
𝐋 T .𝑖 𝐂 

−1 
N 𝐋 .𝑖 

)
(20) 

As we show in the Appendix, this resembles the maximum likelihood 
estimator (MLE) for a single dipole strength ( Lütkenhöner, 1998a ). This 
can still be interpreted as a special case of an LCMV beamformer. The 
data covariance matrix in any given experiment is the noise covariance 
matrix plus the signal covariance (assuming additivity of noise and sig- 
nal, which is a common assumption). If we were going to estimate the 
sources in our baseline interval, then this filter could be interpreted as 
a beamformer, since in this case 𝐂 N would represent the activity due to 
the sources of interest. Baseline activity can also be considered as a type 
of resting state activity. We provide a more detailed description of this 
issue in Appendix B. 

2.8. Resolution metrics 

A meaningful resolution analysis of EEG/MEG source estimation 
methods should include metrics for the resolution categories localiza- 
tion accuracy and spatial extent. Table 1 lists several possible metrics, 
most of which have already been used in previous studies (but not nec- 
essarily together). We will use a subset of those in our Results section, 
as highlighted in the table. 

2.9. Simulation set ‐up 

In order to illustrate the use of PSFs and CTFs we computed individ- 
ual PSFs and CTFs in Fig. 3 for the EEG/MEG sample dataset 2 provided 

2 https://mne.tools/dev/overview/datasets_index.html 

by the MNE-Python software package. This data set contains MEG and 
EEG data (Elekta Vectorview) for simple auditory and visual stimuli as 
well as structural MRI data for one participant. 

For a more extensive and quantitative methods comparison, we com- 
puted resolution metrics, histograms and correlations in the following 
figures using the open EEG/MEG data provided by Wakeman and Hen- 
son (2015) . This dataset consists of data for 16 participants from which 
simultaneous EEG and MEG were recorded in an Elekta Neuromag Vec- 
torview scanner (70 electrodes, 102 magnetometers, 204 planar gra- 
diometers), in addition to MRI, fMRI and DTI data (the MRI data were 
used to create head models for source estimation; the fMRI and DTI data 
were not used for the present study). Details of the data acquisition pa- 
rameters are available in the previous publication ( Wakeman and Hen- 
son, 2015 ). The study reports that 0 to 14 MEG and 0–4 EEG channels 
per dataset were interpolated. Stimuli in this experiment were pictures 
of faces and scrambled faces, and participants were young and healthy 
adults. In the following, we will only summarize the most important 
parameters for our purposes. 

For our simulations, we only required the sensor configurations, 
structural MRI images, as well as noise covariance matrices (details be- 
low). Pre-processing of EEG/MEG and MRI data, including source es- 
timation, was carried out in MNE-Python software. Resolution anal- 
ysis was performed in MNE-Python (version 0.23) ( Gramfort et al., 
2013 ). The software used for our resolution analysis is available online 
( https://github.com/olafhauk/EEGMEG_ResolutionAtlas ). The scripts 
are based on the corresponding example scripts on the MNE-Python 
web-site 3 . 

The noise covariance matrices for each data set were computed 
concatenating pre-stimulus baseline intervals of 200 ms duration be- 
fore stimulus onset. For the data covariance, this was done for a la- 
tency interval 50 to 250 ms post-stimulus presentation. The covari- 
ance matrix was estimated using the ‘shrunk’ regularization method 
( Engemann and Gramfort, 2015 ). For regularization of the inverse esti- 
mators, the default signal-to-noise ratio in the MNE software was used 
(SNR = 3). This value is representative for many event-related EEG/MEG 

studies ( Farahibozorg et al., 2018 ; Lin et al., 2006 ; Molins et al., 2008 ; 
Rahimi et al., 2022 ). 

High-resolution structural T1-weighted MRI images from the open 
dataset were acquired in a 3T Siemens Tim Trio (Siemens, Erlangen, 
Germany) scanner at the MRC Cognition and Brain Sciences Unit, Uni- 
versity of Cambridge, UK, using a MPRAGE sequence, and processed 
using MNE-Python software. This included the segmentation of the cor- 
tical surface as source space, and the creation of a three-compartment 
boundary element model (BEM) for the forward solution. MEG sensor 
configurations and MRI images were co-registered based on the match- 
ing of about 50-100 digitized locations on the scalp surface with the 
reconstructed scalp surface from the structural MRI. 

The source space consisted of the cortical surface with 4098 vertices 
per hemisphere (octahedron spacing 6). BEMs were created using linear 
collocation with 5120 triangles per surface. The surfaces represented the 
inner skull, outer skull and outer skin, respectively. Source orientations 
for the forward solution were constrained to be perpendicular to the cor- 
tical surface ( “fixed orientation constraint ”). Inverse operators and for- 
ward solutions were used to compute the resolution matrix and the reso- 
lution metrics for each individual subject. Those results were then mor- 
phed based on a spherical representation of the cortex computed using 
the spherical registration of Freesurfer software ( Greve et al., 2013 ) and 

3 PSFs and CTFs for MNE-type methods: https://mne.tools/stable/auto_ 
examples/inverse/psf_ctf_vertices.html PSFs for LCMV beamformer: https:// 
mne.tools/stable/auto_examples/inverse/psf_ctf_vertices_lcmv.html Compute 
resolution metrics: https://mne.tools/stable/auto_examples/inverse/resolution_ 
metrics.html Compute resolution metrics to compare EEG/MEG with MEG: 
https://mne.tools/stable/auto_examples/inverse/resolution_metrics_eegmeg. 
html Compute correlations with source depth: https://mne.tools/stable/auto_ 
examples/forward/forward_sensitivity_maps.html 
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Table 1 

Spatial resolution metrics. 

Category Name Formula 

Localization 

Accuracy 

Peak/Dipole Localization Error 

(PLE/DLE) 

√ 

( 𝐫 s 
𝑖 
− 𝐫 p 

𝑖 
) 2 

𝐫 p 
𝑖 
: location of PSF/CTF peak for source i 

𝐫 s 
𝑖 
: true location of source i 

Centre-of-gravity localization 
error (COFLE) 

√ √ √ √ √ ( 𝐫 𝑠 
𝑖 
− 

∑𝑁 s 
𝑗=1 𝑎 𝑗 𝐫 𝑗 ∑𝑁 𝑠 
𝑗=1 𝑎 𝑗 

) 

2 

𝑁 s : Number of sources 
𝑎 𝑗 / 𝐫 𝑗 : intensity/location of source j 

Peak-centre-of-gravity (PCOF) 

√ √ √ √ √ ( 𝐫 𝑠 
𝑖 
− 

∑𝑁 𝑒 
𝑗=1 a 

e 
𝑗 
𝐫 𝑒 
𝑗 ∑𝑁 e 

𝑗=1 a 
e 
𝑗 

) 

2 

𝑁 e : number of local extrema 
a e 
𝑗 
: intensity of local extrema j 

Spatial extent Spatial Deviation 

√ √ √ √ √ 

∑𝑁 s 
𝑗=1 ( 𝑎 𝑗 ( 𝐫 

p 
𝑖 
− 𝐫 

𝑗 
) ) 2 ∑𝑁 s 

𝑗=1 ( 𝑎 𝑗 ) 
2 

Maximum radius 𝑎𝑟𝑔𝑚𝑎𝑥 ( 
√ 

( 𝐫 s 
𝑖 
− 𝐫 ) 2 𝑓𝑜𝑟 𝑎𝑙𝑙 𝐫 with 𝐹 ( 𝐫) ≥ 𝑥 ∗ max ( 𝐹 ( 𝐫) ) 

𝐹 ( 𝐫) : PSF or CTF depending on location r 
0 < x < 1: fraction of maximum 

Relative area/volume 

∑
𝑖 
𝐴 
𝑖 

𝐴 
𝑓𝑜𝑟 𝑎𝑙𝑙 i with 𝐹 ( 𝐫 s 

𝑖 
) ≥ 𝑥 ∗ max ( 𝐹 ( 𝐫) ) 

𝐴 
𝑖 
: surface area/volume represented by source i 

A: overall surface area/volume 
0 < x < 1: fraction of maximum 

Fig. 3. PSFs and CTFs for two MNE-type source estimation methods in three brain areas. First Row: CTF and PSF for MNE in anterior temporal lobe (ATL), pars 
triangularis (PT) and pars opercularis (PO), respectively. Because MNE’s resolution matrix is symmetric, its PSFs and CTFs can be visualized in the same image. Second 
and Third Row: As in the first row, but for eLORETA’s PSFs and CTFs in separate rows. The displayed distributions are the first principal vectors for all PSFs/CTFs 
within the corresponding regions-of-interest (ROIs). The ROI borders are shown on the inflated cortical surface. PSFs/CTFs are displayed as signed distributions, 
i.e. red and blue colors indicate current flow in opposite directions with respect to the cortical surface (out- and in-flowing, respectively). MNE: minimum-norm 

estimator; eLOR: exact low resolution electromagnetic tomography. PSF: point-spread function; CTF: cross-talk function. 
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averaged across subjects. Results will be shown on the average brain. We 
do not expect large qualitative differences between left and right brain 
hemispheres, and therefore only the left hemispheres will be shown for 
simplicity. 

2.10. Results 

Fig. 3 . 

3. Illustration of PSFs and CTFs for three ROIs 

Fig. 3 illustrates how individual PSFs and CTFs can be displayed for 
MNE and eLORETA in different regions-of-interest (ROIs) in order to 
address questions with respect to spatial resolution. We assume a sce- 
nario where we are mainly interested in activity in three ROIs, namely 
anterior temporal lobe (ATL), pars triangularis (PT) and pars opercu- 
laris (PO) (ROIs displayed as borders and indicated by black arrows). 
These ROIs could be of interest, for example, in a language experiment 
that attempts to disentangle semantic representation (involving ATL) 
and semantic control (involving IFG) processes (e.g. Jackson, 2021 ). Our 
specific ROIs were taken from the Desikan-Killiany Atlas ( Desikan et al., 
2006 ) (with ATL as the anterior quarter of the middle temporal parcel). 

Using MNE we do not assume that activity occurs only in these ROIs 
(or that there is a certain (maximum) number of sources), and therefore 
we would like to control leakage from or into all other brain regions. The 
results in Fig. 3 are not meant to be quantitative or generalizable results, 
but shall illustrate how PSFs and CTFs can help with the interpretation 
of source estimation results for individual datasets. More generalizable 
results will be presented in the following figures. 

Because ROIs typically comprise many point sources, we here used 
principal component analysis (PCA) to find the most representative PSFs 
and CTFs across all vertices for each ROI. For this purpose, we computed 
a PCA across all PSFs and CTFs in each ROI and chose the first princi- 
pal vector, i.e., the distribution that explained most variance across all 
PSFs or CTFs that entered the PCA. These results were computed for one 
individual measurement configuration provided as a sample dataset in 
MNE-Python software package. PSFs/CTFs are displayed as signed dis- 
tributions, i.e., red and blue colors indicate current flow in opposite 
directions with respect to the cortical surface (out- and in-flowing, re- 
spectively). 

The first row of Fig. 3 shows the PSFs and CTFs for unweighted and 
unnormalized MNE. Because MNE’s resolution matrix is symmetric, each 
distribution represents a PSF as well as CTF for the corresponding ROI. 
The aim is to find an estimator whose PSF and CTF are mostly confined 
to the target ROI, in the left-most column this is the ATL. This is mostly 
the case for ATL, although some leakage occurs in areas posterior to 
the ROI (in middle temporal regions) but also in inferior frontal regions 
(e.g., around the border between pars triangularis and opercularis). In 
the PSF interpretation this means that true activity in ATL may also af- 
fect source estimates posterior to ATL and to a lesser degree in inferior 
frontal areas. Conversely, in the CTF interpretation this means that ac- 
tivity posterior to ATL may leak into source estimates for ATL, and that 
weaker leakage can also occur from inferior frontal regions. In general, 
we can be fairly confident that we can separate activity from ATL and 
PT and PO, but we should be aware that there could be leakage from 

around ATL. 
Turning our eye to PT, we also note that the major peaks of its PSF 

and CTF lie within its border. Most leakage occurs just around its bor- 
ders, which also includes PO and to a lower degree ATL. As for ATL, this 
gives us some confidence that PT activity can be separated from PT and 
ATL, but that some leakage from around its borders is possible. 

The situation is different for region PO. While the peaks of its PSF and 
CTF are within its borders, major peaks also occur outside, especially in 
PT but also in ATL and superior temporal lobe. We can conclude that 
activity from PO and ATL can be separated fairly well, but for PO and 
PT leakage is a serious concern. 

We can now ask whether the picture changes significantly if we use 
eLORETA instead of MNE. PSFs and CTFs are different for eLORETA, 
and therefore presented in separate rows. eLORETA has the property of 
zero localization error for point sources (( Pascual-Marqui et al., 2011 ), 
but note that this is only the case for PSFs but not CTFs as shown 
above). As for MNE, the main peaks of PSFs and CTFs occur in the 
corresponding target ROIs, and the general pattern looks similar for 
eLORETA and MNE. However, eLORETA’s PSFs are more spread out 
than MNE’s, resulting in more leakage from the target ROIs to neigh- 
boring areas, including deeper areas in the Sylvian fissure. The CTFs 
for ATL and PT are very similar to MNE’s. The CTF for PO receives 
less leakage from PT, albeit at the expense of more leakage from ar- 
eas dorsal to PO and also from more distant locations in inferior pari- 
etal cortex. This suggests that the zero localization error of PSFs comes 
at the expense of more widespread distributions and therefore more 
leakage, and that the shape of CTFs can be changed but not arbitrarily 
optimized. 

The choice of a best method in this scenario ultimately depends on 
the researcher’s goals. If the goal is to minimize leakage only taking the 
three target ROIs into account, then eLORETA could be the better choice 
because of its CTF for PO. However, if we also want to minimize leakage 
into or from areas outside the three target ROIs, then MNE could be the 
safer choice. 

4. Whole ‐cortex distributions of resolution metrics 

The previous figure illustrated how plotting individual PSFs and 
CTFs for specific regions is a practical way to evaluate spatial resolu- 
tion for specific research questions. However, it is impractical to plot 
these functions for all vertices, voxels or ROIs across the brain. Ide- 
ally, we would like to define some meaningful metrics that turn the 
most relevant features of PSFs and CTFs into a single number which we 
can then plot across the whole brain (see Table 1 for examples). These 
metric distributions can then also be analyzed and compared across dif- 
ferent methods, measurement configurations, etc., as demonstrated in 
several previous studies (e.g. Hauk et al., 2011 ; Iivanainen et al., 2017 ; 
Molins et al., 2008 ). 

Fig. 4 presents the distributions of the resolution metrics peak local- 
ization error (PLE, left half) and spatial deviation (SD, right half) for 
PSFs and CTFs for five MNE-type methods (different rows). The corre- 
sponding histograms are presented in Fig. 5 . The PLE for MNE’s PSF (top 
left) shows the expected pattern: It is close to zero in locations close to 
the sensors (e.g., around the gyri) and increases with increasing source 
depth into the sulci. It is largest in deep areas of the Sylvian fissure, with 
errors exceeding 5 cm. The corresponding histogram in Fig. 5 shows a 
peak at low PLE values below 2 cm, but also a long tail exceeding 5 cm. 
Mean and median values of the distribution are 1.7 cm (S.D. 1.3 cm) 
and 1.3 cm, respectively. Thus, on the basis of the well-known bias of 
unweighted MNE toward brain locations close to the sensors, we can 
conclude that peaks of PSFs occur in approximately correct locations 
for superficial sources, but will systematically be shifted towards the 
sensors for deep sources. 

The other four methods have all been proposed to reduce the over- 
all localization error. Indeed, depth-weighted MNE has generally lower 
PLE, but still some high values in deep brain areas. The correspond- 
ing histogram confirms that the range of PLE values is lower than 
for unweighted MNE, and especially the distribution’s tail is shorter 
(Mean(SD)|Median: 0.8(0.6)|0.6 cm). dSPM has low PLEs in deep brain 
areas, but at the expense of moderate values in more superficial regions 
where MNE’s PLE is lower. The corresponding histogram shows an ap- 
proximately symmetrical bell-shaped distribution (Mean(SD)|Median: 
1.2(0.5)|1.2 cm). Both sLORETA and eLORETA show the promised zero 
peak localization error for PSFs. 

The comparison of PLE distributions for CTFs across methods in 
Fig. 4 is straightforward: They are all highly similar or in fact the 
same, and also highly similar to MNE’s PSF just described. They all 
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Fig. 4. Comparison of MNE-type methods with respect to spatial resolution metrics peak localization error and spatial deviation. The two left-most columns show 

peak localization error and the two right-most columns spatial deviation (see Table 1 ) in a lateral view of the left hemisphere. PSFs and CTFs are presented in different 
columns. The rows represent results for different source estimation methods. MNE: minimum-norm estimator; dSPM: dynamic statistical parametric mapping; e/sLOR: 
exact/standardized low resolution electromagnetic tomography. PSF: point-spread function; CTF: cross-talk function. 

show low values in superficial brain areas and high peak localization 
errors in deeper brain areas. Their histograms are also highly similar 
with the same central tendencies (Mean(SD)|Median: 1.7(1.3)|1.3 cm). 
Thus, irrespective of the method used, source estimates at deep brain 
locations will always receive significantly more leakage from sources 

that are closer to the sensors ( Grave de Peralta Menendez et al., 1997 ; 
Hauk et al., 2011 ; Krishnaswamy et al., 2017 ; Liu et al., 1998 ). 

The differences among methods with respect to spatial deviation 
(SD) of PSFs in Fig. 4 are more subtle than for PLE, but still clearly 
visible. MNE shows the lowest values in superficial areas across the cor- 
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Fig. 5. Comparison of MNE-type methods with respect to histograms of spatial resolution metrics peak localization error and spatial deviation. Spatial arrangement 
of panels and abbreviations as in Fig. 4 . The vertical lines indicate the mean of the distribution. The numbers next to the vertical line are the mean (standard 
deviation) and median of the distribution. Histogram counts ( y -axis) were divided by 1000 for display. 

tical surface, but large value in deeper areas such as the Sylvian Fissure. 
This is confirmed by the corresponding histogram in Fig. 5: MNE has 
the lowest median (2.6 cm) and one of the lowest mean SDs (2.9 cm), 
but the distribution also has the longest tail, reflected in a high standard 
deviation (0.8 cm). The differences among the other methods are more 
subtle. All of them show highest values in deeper areas of the Sylvian 
Fissure and along the inferior temporal lobe, and this is particularly pro- 
nounced for dSPM and sLORETA. This is confirmed by the histograms, 
which show comparatively high values for dSPM (Mean(SD)|Median: 
3.2(0.5)|3.1 cm) and sLORETA (Mean(SD)|Median: 3.0(0.4)|3.0 cm), 
lower values for dwMNE (Mean(SD)|Median: 2.9(0.3)|2.9 cm) and still 
lower for eLORETA (Mean(SD)|Median: 2.8(0.4)|2.8 cm). 

As for PLE, the SD distribution for CTFs is highly similar across 
methods and also to those of MNE’s PSF. The distribution has a long 

tail with largest values in deep brain areas such as the Sylvian Fis- 
sure. Means and medians are 2.9 cm and 2.6 cm, while standard de- 
viations vary slightly across methods (MNE|dSPM|sLORETA: 0.8 cm; 
dwMNE|eLORETA: 0.7 cm). 

Beamformers seemingly take a very different approach to solving the 
EEG/MEG inverse problem and can therefore be expected to show differ- 
ent PSFs and CTFs. Fig. 6 shows example PSFs and CTFs for two LCMV 

beamformers computed for the MNE-Python sample data set (similar to 
Fig. 3 ). The beamformers were computed with data covariance matrices 
from epochs corresponding to auditory and visual events, respectively. 
PSFs and CTFs are shown for a left occipital (Occ) and posterior superior 
temporal (PST) ROI. At the bottom of the figure we also show PSFs for 
a beamformer based on a data covariance matrix from the pre-stimulus 
baseline period as well as for unweighted L2-MNE. 
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Fig. 6. PSFs and CTFs for two LCMV beamformers and MNE in two 
brain areas. PSFs and CTFs were computed with data covariance 
matrices for auditory (Aud) and visual (Vis) events, as well as for a 
pre-stimulus baseline interval (Base). MNE is shown at the bottom 

for comparison. The displayed distributions are the first princi- 
pal vectors for all PSFs/CTFs within the corresponding regions-of- 
interest (ROIs). The ROI borders are shown on the inflated cortical 
surface. PSFs/CTFs are displayed as signed distributions, i.e. red 
and blue colors indicate current flow in opposite directions with 
respect to the cortical surface (out- and in-flowing, respectively). 

In general, PSFs and CTFs for all beamformers within the same ROI 
look similar, suggesting that the latency range for data covariance com- 
putation only has a subtle effect on the estimator. The result for the 
beamformer obtained from baseline data indicate that this beamformer 
is a good approximation of beamformers obtained for event-related data. 

PSFs and CTFs for Occ are mostly confined within the ROI, with some 
leakage around its border. PSFs and CTFs for PST are more widespread, 
also covering areas outside the ROI such as in inferior parietal and mid- 
dle temporal regions. However, there is hardly any overlap between 
PSFs and CTFs for the two regions, which mean that their activities can 
be well-separated from each other. The PSFs for PST also spread into 
deeper areas of the Sylvian Fissure, while this is not the case for the cor- 

responding CTFs. This demonstrates again that CTFs are fundamentally 
constrained by the leadfields. 

For comparison we present PSFs/CTFs for MNE at the bottom of 
Fig. 6 . They resemble the corresponding results for the beamformers, 
but are less spread out. 

The distributions of resolution metrics for LCMV beamformers are 
shown in Fig. 7 , as well as their histograms (similar to Figs. 4 and 5 for 
MNE-type methods). The results for the pre- and post-stimulus beam- 
formers are similar, indicating that the exact choice of the latency inter- 
val for the data covariance does not significantly affect a beamformer’s 
spatial resolution properties. The PLE of these beamformers is low, be- 
low 1 cm (for pre-stimulus beamformer PSF exactly zero; post-stimulus 
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Fig. 7. Resolution metrics for two LCMV beamformers. Top two rows: Peak Localization Error (left) and Spatial Deviation (right) for point-spread (top) and cross- 
talk (bottom) functions in a lateral view of the left hemisphere (similar to Fig. 4 , but note different scaling). “Pre ” and “Post ” refer to beamformers computed for 
pre-(baseline) and post-stimulus intervals, respectively. Bottom two rows: Histograms corresponding to the distributions above (similar to Fig. 5 ). The vertical lines 
indicate the mean of the distribution. The numbers next to the vertical line are the mean (standard deviation) and median of the distribution. Histogram counts 
( y -axis) were divided by 1000 for display. 

beamformer 0.6(0.2), 0.6; CTF pre and post: 4.3(1.1) cm, 4.1 cm). How- 
ever, this is accompanied by high PLEs for CTFs as well as high spa- 
tial deviation values for both PSFs and CTFs across the whole cortex, 
with mean and median values higher than for any MNE-type methods 
in Figs. 4 and 5 (PSF pre: 5.0(0.4) cm, 4.9 cm; post: 5.0(0.4) cm, 5.0 cm; 
CTF pre: 5.3(0.7) cm, 5.2 cm; post: 5.3(0.7) cm, 5.3 cm). This reflects 
the fact that the derivation of LCMV beamformers does not explicitly 
include constraints on the spatial extent of either PSFs or CTFs. 

We already noted several times that source depth strongly affects 
our resolution metrics. We report the correlations between resolution 
metrics and source depth for all six methods in Fig. 8 . For PSFs, MNE 
shows the highest correlations both for PLE (mean 0.92(standard devi- 
ation 0.01)) and for SD (0.84 (0.02)). dwMNE shows a moderate cor- 
relation for PLE (0.32(0.03)) but low and even slightly negative corre- 
lation for SD (-0.1(0.08)). dSPM has a low and negative correlation for 
PLE (-0.09(0.05)) but positive correlation for SD (0.19(0.07)). sLORETA, 
eLORETA and the pre-stimulus beamformer have zero localization er- 
ror and therefore no meaningful correlation with source depth. How- 
ever, sLORETA and eLORETA show moderately high correlations with 
SD (0.45(0.04), 0.29(0.05), respectively), and the beamformers show 

low negative correlations with high standard deviations (-0.23(0.26), - 
0.24(0.21), respectively). The correlations for the two beamformers are 
very similar, as expected from the previous results with respect to their 
resolution metrics. 

For CTFs, the correlations with source depth are similarly high for 
all MNE-type methods both for PLE (all above or equal 0.92) and SD 

(all above or equal 0.8). Interestingly, correlations for beamformers are 
moderate for PLE (for both around 0.49) and SD ( ∼0.29), with high stan- 
dard deviations compared to MNE-type methods (around 0.4 for both). 

This high standard deviation may reflect the adaptive nature of LCMV 

beamformers, as they crucially depend on the data covariance matrices 
of the individual datasets. It is noteworthy that among MNE-type meth- 
ods dwMNE and dSPM also show low negative correlations for PSFs 
(dSPM for PLE and dwMNE for SD, respectively). Depth-weighting for 
dwMNE and noise-normalization for dSPM have both been suggested to 
compensate for MNE’s localization bias towards superficial sources. It is 
possible that such a compensation leads to an improvement of resolu- 
tion metrics for deep relative to superficial sources in the case of PSFs. 
However, for CTFs all correlations were clearly positive. Note that the 
smaller depth-correlations for beamformers in the case of CTFs must be 
interpreted in the light of their generally larger SD values with respect 
to MNE-type methods. 

5. Discussion 

We presented a tutorial-style introduction to linear EEG/MEG source 
estimation and resolution analysis, and described several widely used 
distributed source estimation methods in this framework. We high- 
lighted the importance of the resolution matrix, the need to evaluate 
spatial resolution on the basis of both point-spread and cross-talk func- 
tions (PSFs/CTFs) as well as multiple resolution metrics. We evaluated 
spatial resolution for several MNE-type methods and LCMV beamform- 
ers on the metrics peak localization error (PLE) and spatial deviation 
(SD), and particularly focused on their relationship with source depth. 

Our results confirmed our assertion from the tutorial that source es- 
timation methods should be evaluated based on CTFs as well as PSFs. 
PSFs tell us how one source would leak into others, and CTFs show how 

other sources would leak into the estimate for the source of interest 
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Fig. 8. Correlations between spatial resolu- 
tion metrics and source depth for seven 
source estimation methods. The bar graphs 
depict the correlations between peak local- 
ization error (top row) and spatial devia- 
tion (bottom row) for PSFs (left column) and 
CTFs (right column). Different bars represent 
means across datasets for different MNE-type 
methods. Error bars are standard deviations 
across participants. dMNE: depth-weighted 
MNE; sLOR/eLOR: s/eLORETA; Lpre/Lpost: 
LCMV beamformers computed with covariance 
matrices for pre-/post-stimulus interval. 

( Fig. 2 ). Thus, we may be able to construct an estimator that produces 
a peak around a source of interest given that this source is truly active, 
i.e., it may produce a good PSF. However, it may receive a lot of leakage 
from other sources that may or may not be active at the same time, i.e., 
it may have a bad CTF. This leakage from other sources may even be 
larger than the desired “leakage ” from the source into itself, reflected 
in large peaks of the CTF at locations distant from the source of inter- 
est. This is what we observed for all methods in deeper brain locations, 
based on the PLEs for CTFs ( Figs. 4 and 7 ). Based on the fact that the 
sensitivity of EEG/MEG recordings falls off rapidly with distance from 

the sensors ( Goldenholz et al., 2009 ; Hauk et al., 2011 ; Hillebrand and 
Barnes, 2002 ), and confirmed by our individual examples of PSFs and 
CTFs ( Figs. 3 and 7 ), this likely reflects strong leakage from sources in 
superficial brain regions into estimates for sources in deep brain regions 
(such as the Sylvian Fissure). Thus, a good localization error for PSFs 
is not enough to conclude that a source estimation method has good 
spatial resolution. Spatial resolution has to be evaluated based on the 
shapes of both PSFs and CTFs. 

This still leaves us with the question whether our methods compari- 
son yielded a method with best spatial resolution. Localization accuracy 
measured by PLE for PSFs can clearly be improved using weighted and 
normalized MNE-type methods ( Figs. 4 and 5 ) as well as beamform- 
ers ( Fig. 7 ), and the pre-stimulus baseline beamformer, sLORETA and 
eLORETA even have zero PLE. However, this is not reflected in a com- 
parable improvement of spatial extent for PSFs, or generally for CTFs. 
In our comparison, eLORETA shows the lowest mean SD for CTFs, but 
MNE has the lowest median SD. Together with its zero PLE eLORETA 

may therefore be considered the optimal method in this comparison. 
We would like to highlight again that researchers can apply these meth- 
ods to their own datasets in order to find the best method for their task 
at hand. For example, we computed our metrics across the whole corti- 
cal surface using fixed source orientations. Some researchers may prefer 
loose orientations or a volumetric source space, others may only be in- 
terested in a subset of regions (e.g., only visual brain areas). 

Researchers may also choose different resolution metrics. We pro- 
vided some examples in Table 1 . Previous studies have for example 
used the center-of-gravity rather than the peak to compute localiza- 
tion error, or spatial extent has been evaluated using measures of area 
( Iivanainen et al., 2017 ). In previous studies we also used a measure of 
relative amplitude for PSFs/CTFs ( Hauk et al., 2019 ; Hauk et al., 2011 ), 
which we omitted from the present study for simplicity. However, as 
our Fig. 1 B illustrates, a large difference in amplitudes between PSFs 
and CTFs can also have significant impact on their distinguishability. 

We highlighted some special properties of LCMV beamformers in the 
framework of linear resolution analysis. While these estimators result 
in linear transformations of the data, they are adaptive and therefore 
data-dependent, and it is not straightforward to generalize their results 
across different data sets and applications. However, in our PSF/CTF 
examples ( Fig. 6 ) and for the resolution metrics ( Fig. 7 ) the differences 
between beamformers based on different data covariance matrices were 
subtle. This indicates that the data covariance matrices are dominated 
by background brain activity rather than relatively subtle evoked re- 
sponses. Thus, it is possible that the beamformer based on pre-stimulus 
baseline activity is a good approximation for beamformers in general, 
and therefore suitable for standardized methods comparisons including 
beamformers. This should be tested in more detail in future studies. 

The leakage problem has received particular attention in the domain 
of brain connectivity, as it may give rise to spurious connectivity or 
“ghost interactions ” between spatially distinct sources ( Colclough et al., 
2015 ; Farahibozorg et al., 2018 ; Hipp et al., 2012 ; Palva et al., 2018 ). 
LCMV beamformers are especially popular for the analysis of oscilla- 
tory brain activity and functional connectivity such as for resting state 
data ( Brookes et al., 2011 ; Colclough et al., 2016 ). The sensitivity of an 
estimator to source activity in a certain region to activity from other re- 
gions, as well as its ability to leak activity into other regions, depends on 
the spatial extent of its CTF and PSF, respectively. We assessed spatial 
extent using the metric spatial deviation (SD). Our two beamformers 
produced larger SD values than the MNE-type methods for both PSFs 
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and CTFs. PLE for PSFs was low, but larger for CTFs. This is likely due 
to the fact that beamformer estimators are not constrained by the whole 
leadfield to optimally suppress all sources of no interest in the source 
space, but only those represented in the data covariance matrix. It has 
been argued previously that “this is the reason why adaptive spatial fil- 
ters have a strange-looking beam response ” (another term for cross-talk 
function ( Sekihara and Nagarajan, 2008 , p. 42). This raises the question 
whether LCMV beamformers are optimal for brain connectivity analysis 
with respect to their spatial resolution. Again, the concepts described in 
this paper will allow researchers to evaluate this in their own datasets. 

We argued above that it is hard to determine a “best ” method from 

our comparison, and that this depends on the specific goals and mea- 
surement set-ups of the researcher. However, we were able to determine 
limits that none of these methods can surpass, especially with respect 
to deep sources. While some methods achieve better localization accu- 
racy in PSFs for deep sources, none of them achieved this for CTFs. All 
methods showed larger spatial extent for deep sources. The correlations 
between resolution metrics and source depth was positive for CTFs for 
all methods. We showed that CTFs are weighted sums of the rows of the 
leadfield matrix. Thus, if there is no linear combination of those rows 
that can achieve peaks in depth, then no method can achieve low PLE 
in depth. As a consequence, all estimates for deep sources may be con- 
taminated by leakage from more superficial sources. This is supported by 
previous findings that topographies of deeper and superficial sources can 
be highly correlated, and therefore given realistic noise levels and their 
unknown spatial extent their sources are impossible to separate unless 
one uses a hierarchical and sparse modeling approach based on specific 
prior knowledge and modeling assumptions ( Krishnaswamy et al., 2017 ; 
Liu et al., 1998 ). We conclude that deep sources are hard to distinguish 
from superficial sources without additional well-justified constraints. 

We performed our resolution analysis using combined EEG and MEG, 
which with the currently available technology represents the best-case 
scenario. We regularized our estimators in a comparable manner using 
standard methods and assuming a typical signal-to-noise ratio. However, 
as already pointed out by Fuchs et al. (1999) , the resolution matrix ap- 
proach does not explicitly include noise in the computations of point- 
spread and cross-talk functions. Thus, our results are only perfectly accu- 
rate if our regularization procedure has completely suppressed the effect 
of noise on the source estimate, which is unlikely in realistic scenarios. 
Nevertheless, we hold the view that at low to moderate noise levels as 
in our study, these results are still meaningful for methods comparison 
and to determine an upper bound for the resolution of EEG/MEG source 
estimates. Recent studies have proposed ways to incorporate noise ex- 
plicitly into the resolution matrix, e.g., by using an “empirical resolution 
matrix ” ( Krishnaswamy et al., 2017 ; Samuelsson et al., 2021 ), which is 
computationally more expensive. We are planning to use this approach 
in the future, especially to investigate the effect of different types of 
noise on source estimation. 

The empirical resolution matrix mentioned above can also be com- 
puted for non-linear source estimation methods, e.g., those that incor- 
porate constraints on sparsity. Sparsity (i.e., the assumption of a small 
number of focal sources) is sometimes used as a nonlinear constraint to 
improve localization accuracy, e.g., in L1-minimum-norm-type methods 
( Huang et al., 2014 ; Owen et al., 2012 ; Uutela et al., 1999 ), or multiple 
sparse priors ( Friston et al., 2008 ). However, it is important to note that 
for nonlinear methods the superposition principle does not hold, and 
such a resolution matrix would only reflect the specific source scenario 
used for its computation and cannot be generalized to more complex 
source configurations. Nonlinear methods are therefore hard to eval- 
uate in a generalizable way, and their results strongly depend on the 
validity of the underlying assumptions. The simulation set-ups for non- 
linear methods have to be chosen and evaluated carefully in order to 
represent source scenarios that can be realistically assumed to reflect 
brain activity in particular types of experiments. 

Recent EEG/MEG research has increasingly focused on patterns of 
brain activations ( Kietzmann et al., 2019 ; Stokes et al., 2015 ). While 

any pattern can be modelled as the sum of point sources, it is not obvi- 
ous to predict how an activity pattern in one ROI will affect the decoding 
of patterns in other ROIs. This will depend on multiple features of these 
patterns, e.g., their spatial frequency, homogeneity, etc. This requires a 
statistical approach, i.e., the simulation of a large number of represen- 
tative patterns in one ROI and their effects in other ROIs, in order to 
compute a “multivariate pattern resolution matrix ”. Our present study 
lays the ground for future work in this direction. 

Finally, resolution metrics can be used to compare different sen- 
sor configurations with respect to their spatial resolution in different 
brain areas. This has already been exploited in previous studies compar- 
ing MEG-only with MEG + EEG setups ( Hauk et al., 2019 ; Molins et al., 
2008 ), as well as to evaluate novel non-cryogenic on-scalp magnetome- 
ters systems ( Iivanainen et al., 2017 ). The concepts presented in this 
paper can therefore help researchers to decide whether their research 
questions can be addressed using widely available and relatively cheap 
EEG, requires more costly MEG equipment (possibly in combination 
with EEG), or even requires novel on-scalp MEG systems. In the latter 
case, it can inform researchers about the most cost- and time-efficient 
sensor arrangement of on-scalp sensors (MEG as well as EEG) in order 
to target particular brain areas. 

We conclude that we described a comprehensive, objective and com- 
putationally efficient approach to evaluate the spatial resolution of 
EEG/MEG source estimation methods that can easily be applied by ex- 
perimenters to their task at hand. We hope that our tools will become 
widely available in all major EEG/MEG software packages. This will 
help EEG/MEG researchers in the interpretation of source estimation 
results and to determine the optimal measurement configurations and 
analysis strategies for their individual purposes. 
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Appendix 

A) Unweighted L2 ‐MNE has an optimal resolution matrix 

Here we show that the least-squares difference between MNE’s reso- 
lution matrix and the (ideal) identity matrix is minimal in the noiseless 
case. 

The resolution matrix R is defined as 

𝐑 = 𝐊𝐋 

with L as the leadfield matrix and K as the inverse operator matrix. The 
goal is to find a R that is as close as possible to the identity matrix I in 
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the least-squares sense, i.e. 

( 𝐑 − 𝐈 ) 2 = 

𝑁,𝑁 ∑
𝑖,𝑗 

(
𝐑 ij − 𝛿ij 

)2 
→ mini mal (A1) 

where N is the number of sources and 𝛅𝑖𝑗 the delta operator (1 if i = j , 0 
otherwise). 

Since the leadfield L is fixed and only the inversion matrix K is vari- 
able, and every element of the sum is greater than or equal to zero, the 
minimization of A1 can be achieved for every row of R independently: (
𝐑 𝐢 . − 𝐈 𝐢 . 

)2 = 

(
𝐊 𝐢 . 𝐋 − 𝐈 𝐢 . 

)2 
→ mini mal 

The solution can be found by taking the derivative of the minimiza- 
tion function and finding its zero point: 

2 
(
𝐊 

𝑀 𝑁 𝐸 
𝑖. 𝐋 𝐋 𝑇 − 𝐋𝐈 𝑇 𝑖. 

)
= 0 = > 𝐊 

𝑀 𝑁 𝐸 
𝑖. 𝐋 𝐋 𝑇 = 𝐋 .𝑖 

The solution of this equation is 

𝐊 

𝑀 𝑁 𝐸 
𝑖. = 𝐋 .𝑖 

(
𝐋 𝐋 𝑇 

)−1 
Since ( 𝐋 𝐋 𝑇 ) −1 is independent of the source index i , and 𝐋 .𝑖 is the i th 

column of the leadfield matrix, we can write the solution for all sources 
as 

𝐊 

𝑀 𝑁 𝐸 = 𝐋 𝑇 
(
𝐋 𝐋 𝑇 

)−1 
which is the unweighted and unnormalized L2-minimum-norm estima- 
tor. 

B) Maximum likelihood estimator for dipole strength as a special case of 

LCMV beamforming 

Here, we demonstrate a few properties of LCMV beamformers, in 
particular their relationship to maximum-likelihood dipole strength es- 
timation. 

As in Eq. (19) , the spatial filter for an LCMV beamformer at location 
i is 

𝐊 

LCMV 
𝑖. = 𝐋 T .𝑖 𝐂 

−1 
D ∕ 

(
𝐋 T .𝑖 𝐂 

−1 
D 𝐋 .𝑖 

)
When data are pre-whitened, e.g., for source estimation, then the 

leadfield and data (including data covariance matrix) are multiplied by 
the square root of the symmetric noise covariance matrix, i.e., 𝐂 −1∕2 N : 

𝐊 

LCMV 
𝑖. = 𝐋 T .𝑖 𝐂 

−1∕2 
N 𝐂 1∕2 N 𝐂 

−1 
D 𝐂 

1∕2 
N ∕ 

(
𝐋 T .𝑖 𝐂 

−1∕2 
N 𝐂 1∕2 N 𝐂 

−1 
D 𝐂 

1∕2 
N 𝐂 

−1∕2 
N 𝐋 .𝑖 

)
We exploited that 𝐂 −1∕2 N is symmetric and that the inverse of the 

product of invertible matrices is the product of the matrix inverses. 
In the special case where the data covariance matrix is the same as 

the noise covariance matrix, 𝐂 1∕2 N 𝐂 
−1 
D 𝐂 

1∕2 
N becomes the identity, and we 

can write 

𝐊 

LCMV 
𝑖. = 

𝐋 T 
.𝑖 
𝐂 
− 1 2 
N 

𝐋 T 
.𝑖 
𝐂 
− 1 2 
N 𝐂 

− 1 2 
N 𝐋 .𝑖 

= �̃� T 
. i ∕ 

(̃
𝐋 T .𝑖 �̃� .𝑖 

)

where ̃𝐋 is the whitened leadfield . This is the i th column of the whitened 
leadfield matrix normalized by the square of its norm. 

As an inverse matrix applied to all sources, this can be written as 

𝐊 = 𝐖 

2 �̃� 𝑇 

with 𝐖 

2 a diagonal matrix with the inverse squared norms of lead- 
field columns ( 1∕ ̃𝐋 T 

.𝑖 ̃
𝐋 .𝑖 ) as its diagonal elements. Thus, when the pre- 

whitening matrix is the same as the data covariance matrix, the LCMV 

beamformer is the transposed column-normalized whitened leadfield 
matrix. This estimator has zero dipole localization error, and has been 
used to demonstrate that this property alone is not a sufficient crite- 
ria for good spatial resolution ( Grave de Peralta et al., 2009 ). This is 
for example the case when the whitening matrix is estimated from a 
whole resting state dataset and the beamformer then applied to the same 

dataset, or when the whitening matrix is estimated from pre-stimulus in- 
tervals and the beamformer then applied to those pre-stimulus intervals. 

If whitening matrix and data covariance matrix differ, the difference 
of the LCMV beamformer to this expression depends on the difference 
between 𝐂 1∕2 N 𝐂 

−1 
D 𝐂 

1∕2 
N and the identity matrix. Thus, the more similar 

𝐂 N and 𝐂 D , the more similar the LCMV beamformer is to the leadfield 
expression above. 

We usually assume additivity of noise and signal, i.e. 

𝐂 D = 𝐂 N + 𝐂 S 
where 𝐂 S is the covariance matrix reflecting only the sources of interest. 

If we assume that the noise covariance matrix estimated from pre- 
stimulus intervals (comparable to resting state data) captures dominant 
ongoing brain activity, and that evoked responses are relatively small 
with respect to this activity (i.e., 𝐂 S is small compared to 𝐂 N ) , then 
this version of the LCMV beamformer is a good model to characterize 
LCMV beamformers in a generalizable and reproducible manner. This 
was confirmed by the results in this study. 

The formulation of the LCMV beamformer above assumes that data 
are pre-whitened using the noise covariance matrix. If we include this 
pre-whitening of the data into the above expression and rearrange it, 
exploiting that 𝐂 N is symmetric, we obtain 

�̃� 

LCMV 
𝑖. = 

𝐋 T 
.𝑖 
𝐂 
− 1 2 
N 𝐂 

− 1 2 
N 

𝐋 T 
.𝑖 
𝐂 
− 1 2 
N 𝐂 

− 1 2 
N 𝐋 .𝑖 

= 

𝐋 T 
.𝑖 
𝐂 −1 N 

𝐋 T 
.𝑖 
𝐂 −1 N 𝐋 .𝑖 

which is the maximum likelihood estimator for the estimation of the am- 
plitude of a single dipole i . This demonstrates the relationship between 
LCMV beamforming and dipole scanning. 

For the maximum likelihood estimation of a single dipole strength i , 
we want to minimize the function 

𝐹 
(
𝑠 𝑖 
)
= 

(
𝐝 − 𝑠 𝑖 𝐋 . i 

)𝑇 𝐂 −1 
𝑁 

(
𝐝 − 𝑠 𝑖 𝐋 . i 

)
where 𝑠 𝑖 is the source strength of dipole i , d is the data vector, 𝐂 𝑁 

the 
noise covariance matrix and 𝐋 

. i the topography of source i . The solution 
to this problem is (e.g., Lütkenhöner, 1998a ) 

𝑠 𝑖 = 

𝐋 𝑇 
.𝑖 
𝐂 −1 
𝑁 

𝐋 .𝑖 𝑇 𝐂 −1 𝑁 

𝐋 .𝑖 
𝐝 

i.e., this estimator is the same as the LCMV beamformer with a noise 
covariance matrix above. As before the closer a data covariance matrix 
is to the noise covariance matrix, the closer the LCMV beamformer filters 
are to the maximum likelihood dipole strength estimator. 

Finally, we consider the case of a data covariance matrix under the 
assumption that all sources in the model are randomly activated, with 
uncorrelated time courses in the noise source vector 𝐬 N ( 𝑡 ) , following a 
uniform Gaussian distribution. In that case, the data covariance matrix 
would be 

𝐂 𝐷 = < 𝐋𝐬 𝐍 ( 𝐭 ) 𝐬 T N ( 𝐭 ) 𝐋 
T > = 𝐋 < 𝐬 N ( 𝑡 ) 𝐬 T N ( 𝑡 ) > 𝐋 T = 𝐋𝐋 T 

with <> representing the expectation value over time. If we insert this 
into the previous equation for the LCMV beamformer, we obtain the 
L2-MNE estimator except for a different scaling. While the scaling will 
affect the PSFs, it will not affect the shape of the CTFs, and the CTFs 
results for L2-MNE will also apply to this type of beamformer. 

C) A brief primer on linear algebra for EEG/MEG source estimation 

This appendix is intended as a brief primer for the linear algebra used 
to describe EEG/MEG source estimation in this manuscript, especially 
with respect to resolution matrix, point-spread and cross-talk functions. 
An extensive introduction to linear algebra can for example be found in 
Cohen (2021) . 

Vectors, matrices, matrix multiplication 
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In everyday life, we commonly encounter “real ” or “scalar ” numbers 
(e.g., 1, 2.3, -10.3 etc.) and use them in basic algebraic operations (ad- 
dition, subtraction, multiplication, division, etc.). A vector is an ordered 
list of such numbers 

𝐱 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝑥 1 
…
𝑥 𝑖 
⋯ 

𝑥 𝑛 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
In this case the vector x has n elements, i.e., it is of dimension n. 
Vector addition and subtraction work on an element-by-element ba- 

sis, i.e., 

𝐱 + 𝐲 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

x 1 
…
x i 
⋯ 

x n 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
+ 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

y 1 
…
y i 
⋯ 

y n 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
= 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

x 1 + y 1 
…

x i + y i 
⋯ 

x n + y n 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 
and correspondingly for subtraction. However, vector multiplication 
usually refers to the scalar product of two vectors as follows: 

𝒙 ∗ 𝒚 = 

𝑛 ∑
𝑘 =1 

(
𝑥 𝑘 ∗ 𝑦 𝑘 

)
= 

(
𝑥 1 ∗ 𝑦 1 

)
+ ⋯ + 

(
𝑥 𝑘 ∗ 𝑦 𝑘 

)
+ ⋯ + 

(
𝑥 𝑛 ∗ 𝑦 𝑛 

)
The result is called scalar product because it is just a single number. If 

x and y have zero mean across their elements, their scalar product 𝐱 ∗ 𝐲
is proportional to their covariance. This illustrates that this definition 
is convenient to describe useful relationships between vectors. The L2- 
norm of a vector is defined based on its product with itself, i.e. 

||𝑥 ||2 = 

√
𝐱 ∗ 𝐱 = 

√ √ √ √ 

𝐧 ∑
𝐤 =1 

x 2 
𝑘 

A matrix is a rectangular array of numbers: 

𝐗 = 

⎛ ⎜ ⎜ ⎝ 
X 11 … X 1n 
… X ij …
X m1 … X mn 

⎞ ⎟ ⎟ ⎠ 
In this case, X is a matrix of dimension m x n , i.e., it has m rows 

and n columns. It can be considered as an ordered list of vectors, either 

along columns 𝐗 . j = ( 

X 1j 
…
X ij 
⋯ 

X mj 

) (where j can be between 1 and n ) or rows 

𝐗 𝑖. = ( X 𝑖1 … X ij … X in ) (where i can be between 1 and m ). 
In the context of matrices, different vectors can have the same num- 

ber of elements but still different dimension (i.e., they can be row of 
column vectors, i.e. they can potentially fill a row or a column of a ma- 
trix). For column vectors we indicate their dimensions by ( n × 1), while 
for row vectors it is (1 × n ). Thus, in this way vectors can be considered 
as matrices with one singleton dimension. The transformation of turning 
a row vector into a column vector or vice versa is called transposition. 
For matrices, a transposition "flips over" rows and columns, such that 
the i -th column of a matrix becomes its transpose’s i -th row, and vice 
versa. 

As for vectors, for matrices addition and subtraction are defined 
element-by-element. The definition of matrix multiplication is less in- 
tuitive at first glance. For matrices X ( m x n ) and Y ( n x p ): 

𝐏 = 𝐗 ∗ 𝐘 = 

⎛ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

𝐧 ∑
𝐤 =1 

( 𝐗 1 𝐤 ∗ 𝐘 𝐤 1 ) …
𝐧 ∑
𝐤 =1 

( 𝐗 1 𝐤 ∗ 𝐘 𝐤𝐩 ) 

…
𝐧 ∑
𝐤 =1 

( 𝐗 𝐢𝐤 ∗ 𝐘 𝐤𝐣 ) …
𝐧 ∑
𝐤 =1 

( 𝐗 𝐦𝐤 ∗ 𝐘 𝐤 1 ) …
𝐧 ∑
𝐤 =1 

( 𝐗 𝐦𝐤 ∗ 𝐘 𝐤𝐩 ) 

⎞ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

This only works if the number of columns of X and the number of 
rows of Y are equal (in this case equal to n ). The resulting matrix P of 
this matrix multiplication has m rows (the number of rows of X ) and p 
columns (the number of columns of Y ), i.e. P has dimension ( m x p ). 

This expression becomes more intuitive if we consider every element 
of 𝐗 ∗ 𝐘 as the scalar product (as defined above) between two vectors, 
namely rows of X and columns of Y . More precisely, every element ( i, j ) 
of the matrix product 𝐏 = 𝐗 ∗ 𝐘 is the product of the i th row of X and 
the j th column of Y : 

𝐏 = 𝐗 ∗ 𝐘 = 

⎛ ⎜ ⎜ ⎝ 
𝐗 1 . ∗ 𝐘 . 1 … 𝐗 1 . ∗ 𝐘 . p 

… 𝐗 i . ∗ 𝐘 . j …
𝐗 m . ∗ 𝐘 . 1 … 𝐗 m . ∗ 𝐘 . p 

⎞ ⎟ ⎟ ⎠ 
As in the example above, if the appropriate rows and columns of 

X and Y are zero mean then the elements of this matrix product are 
proportional to the covariances of all combinations of these rows and 
columns. This is a compact way to describe the relationships among 
patterns in different matrices. 

From the previous expression we can also see that elements of a 
particular column of P are the result of the multiplication of the same 
column of Y with successive rows of X . Another interpretation is that 
every column of P is a linear combination (i.e. weighted sum) of columns 
of X , with the weightings from one column of Y . It takes a moment 
to get one’s head around this. Similarly, every row of P is constructed 
with one row of X and successive columns of Y . Thus, the rows of P are 
linear combinations of the rows of Y . In matrix and vector multiplication 
the symbol " ∗ " is often omitted. In the following, we will use the " ∗ " 
for clarity except where we refer to equations in the main part of this 
manuscript. 

For example, the EEG/MEG forward solution is given by 𝐝 = 𝐋𝐬 , and 
since s is a vector (i.e., a matrix with only one dimension), this results 
in ( Eq. (2 ), with m : number of sensors, n : number of sources) 

𝐝 = 𝐋𝐬 = 

⎛ ⎜ ⎜ ⎝ 
𝐋 1 . ∗ 𝐬 
…

𝐋 m . ∗ 𝐬 

⎞ ⎟ ⎟ ⎠ = 

𝑛 ∑
𝑘 

𝐋 . k ∗ s 𝑘 

Thus, the predicted data for a given source distribution s are a linear 
combination of the columns of the leadfield matrix L , weighted by the 
source strengths associated with each column. This is not surprising, as 
the columns of L are the topographies for individual sources with unit 
strength. 

The estimate of the sources ̂𝐬 = 𝐊𝐝 ( Eq. (3 )) with an inverse operator 
K ( n x m ) can be interpreted in a similar manner: ̂𝐬 is a linear combination 
of the columns of K , with the weightings given by the data. 

A central concept of our manuscript is the resolution matrix R , which 
is the product of an inverse operator matrix K ( n x m ) and the leadfield 
L ( m x n ). Thus: 

𝐑 = 𝐊 ∗ 𝐋 = 

⎛ ⎜ ⎜ ⎝ 
𝐊 1 . ∗ 𝐋 . 1 … 𝐊 1 . ∗ 𝐋 . n 

… 𝐊 i . ∗ 𝐋 . j …
𝐊 n . ∗ 𝐋 . 1 … 𝐊 n . ∗ 𝐋 . n 

⎞ ⎟ ⎟ ⎠ 
R has the dimension ( n x n ), i.e., it is a square matrix with both di- 
mensions equal to the number of sources. It provides a fundamental 
relationship between true and estimated sources ( Eq. (4 ), but we ignore 
noise here for simplicity): 

�̂� = 𝐑𝐬 

The point-spread function for a source i is the response of our source 
estimate to a point source with unit strength. This corresponds to a 
source vector 𝐬 that contains only zeros except at the element corre- 

sponding to the source of interest i , i.e. 𝐬 𝑖 = ( 

0 
…
1 
…
0 

) . Thus: 

𝐏𝐒 𝐅 𝑖 = 𝐊 ∗ 𝐋 ∗ 𝐬 𝑖 = 𝐑 ∗ 𝐬 𝑖 
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According to the definition of matrix multiplication and its possible 
interpretations described above, this results in one column vector, which 
is the sum of columns of R weighted with the elements of 𝐬 𝑖 . Because 
only the i- th element of 𝐬 𝑖 is non-zero, the resulting PSF is the i th column 
of R . 

The cross-talk function of a source i describes how all sources in s 
potentially leak into the estimate of source i . This estimate is given by 
the i- th element of ̂𝐬 . According to ̂𝐬 = 𝐑𝐬 , this estimate is calculated by 
multiplying the i- th row of R with s , i.e., �̂� 𝑖 = 𝐑 𝑖. ∗ 𝐬 . The elements of 
this row 𝐑 𝑖. therefore tell us how much the different elements of s can 
potentially affect the estimate of the i- th source. 𝐑 𝑖. is thus the cross-talk 
function for source i . 

In summary, the resolution matrix R contains point-spread and cross- 
talk functions as its columns and rows, respectively. 

Matrix inversion 

For scalar numbers, taking the inverse is straightforward: multiply- 
ing the original number and its inverse with each other yields 1 (e.g., 
3 ∗ 1/3 = 1). The equivalent of the scalar number 1 for matrices is the 
identity matrix, which consists of ones along its diagonal but is zero 
everywhere else, e.g., 

𝐈 = 

( 

1 0 
0 1 

) 

Multiplying this matrix to any other suitable matrix M will produce 
the same matrix M . In analogy to the inverse of scalar numbers, the 
inverse of a matrix M is defined as a matrix which – multiplied to the 
matrix M – yields the identity matrix. For example, for the diagonal 

matrix 
( 

2 0 
0 3 

) 

, the inverse matrix is 
( 

1∕2 0 
0 1∕3 

) 

. 

However, is there an inverse matrix K for the matrix 𝐌 = 

( 

1 2 
1 2 

) 

? 

According to the definition it would have to fulfill ( 

K 11 K 12 
K 21 K 22 

) 

∗ 
( 

1 2 
1 2 

) 

= 

( 

K 11 + K 12 2K 11 + 2K 12 
K 21 + K 22 2K 21 + 2K 22 

) 

∶= 

( 

1 0 
0 1 

) 

Thus, the sums K 11 + K 12 and K 21 + K 22 must be both non-zero and 
zero – which is not possible. In this case, an inverse matrix does not 
exist. The reason is that the rows and columns of M are multiples of each 
other and do not pose independent constraints on the elements of the 
inverse matrix (they are “linearly dependent ”). The maximum number 
of linearly independent rows and columns of a matrix is also called its 
“rank ”. A matrix is only invertible when it is square and has “full rank ”, 
i.e. when the rank is equal to its maximum dimension. 

So far we have only considered square matrices. From the above it 
should be clear that for rectangular matrices (matrices with unequal 
numbers of rows and columns) an inverse as defined above cannot ex- 
ist. For example, if there are fewer rows than columns, then the rows 
may all be linearly independent but the columns cannot be. The num- 
ber of degrees of freedom that we have to create linearly independent 
vectors across rows and columns is the minimum of the two dimensions. 
Thus, if these numbers are not equal, one dimension will always loose 
out. 

This is the case for the EEG/MEG inverse problem, where the lead- 
field commonly has many more columns (sources) than rows (sensors). 
For this reason, we cannot invert Eq. (2 ) in a straightforward manner to 
get our true sources. Thus, we have to look for other principled ways to 
at least get close to our goal. For cases where a unique inverse matrix 
does not exist, one can still compute so called “pseudo-inverses ”, which 
share at least some properties with the inverse as defined above. One 
can include additional constraints based on a priori knowledge about 
the solutions. Or one can reformulate the problem in a way that leads 
to an invertible matrix, e.g., by focusing only on certain features of the 
solution. A more detailed description of these approaches is beyond the 
scope of this appendix. The main manuscript deals with some of the 
most popular approaches to this problem in the context of EEG/MEG 

source estimation. 
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