
This is an electronic reprint of the original article.
This reprint may differ from the original in pagination and typographic detail.

Powered by TCPDF (www.tcpdf.org)

This material is protected by copyright and other intellectual property rights, and duplication or sale of all or 
part of any of the repository collections is not permitted, except that material may be duplicated by you for 
your research use or educational purposes in electronic or print form. You must obtain permission for any 
other use. Electronic or print copies may not be offered, whether for sale or otherwise to anyone who is not 
an authorised user.

Molla, Jeta; de León Chávez, Alejandro Ponce; Hiraoka, Takayuki; Ala-Nissila, Tapio; Kivelä,
Mikko; Leskelä, Lasse
Adaptive and optimized COVID-19 vaccination strategies across geographical regions and
age groups

Published in:
PLoS computational biology

DOI:
10.1371/journal.pcbi.1009974

Published: 01/04/2022

Document Version
Publisher's PDF, also known as Version of record

Published under the following license:
CC BY

Please cite the original version:
Molla, J., de León Chávez, A. P., Hiraoka, T., Ala-Nissila, T., Kivelä, M., & Leskelä, L. (2022). Adaptive and
optimized COVID-19 vaccination strategies across geographical regions and age groups. PLoS computational
biology, 18(4), 1-19. Article e1009974. https://doi.org/10.1371/journal.pcbi.1009974

https://doi.org/10.1371/journal.pcbi.1009974
https://doi.org/10.1371/journal.pcbi.1009974


RESEARCH ARTICLE

Adaptive and optimized COVID-19 vaccination

strategies across geographical regions and

age groups

Jeta MollaID
1*, Alejandro Ponce de León ChávezID
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Abstract

We evaluate the efficiency of various heuristic strategies for allocating vaccines against

COVID-19 and compare them to strategies found using optimal control theory. Our

approach is based on a mathematical model which tracks the spread of disease among dif-

ferent age groups and across different geographical regions, and we introduce a method to

combine age-specific contact data to geographical movement data. As a case study, we

model the epidemic in the population of mainland Finland utilizing mobility data from a major

telecom operator. Our approach allows to determine which geographical regions and age

groups should be targeted first in order to minimize the number of deaths. In the scenarios

that we test, we find that distributing vaccines demographically and in an age-descending

order is not optimal for minimizing deaths and the burden of disease. Instead, more lives

could be saved by using strategies which emphasize high-incidence regions and distribute

vaccines in parallel to multiple age groups. The level of emphasis that high-incidence

regions should be given depends on the overall transmission rate in the population. This

observation highlights the importance of updating the vaccination strategy when the effec-

tive reproduction number changes due to the general contact patterns changing and new

virus variants entering.

Author summary

The COVID-19 vaccines are now available worldwide and many countries follow the

practice of distributing them heuristically e.g. in age-descending order and demographi-

cally. Here we evaluate the effectiveness of such strategies by comparing them with opti-

mized ones from an age and spatially-structured mathematical model of COVID-19

transmission. We find that vaccinating multiple age groups simultaneously and targeting

regions with the the highest incidence can save more lives than heuristic strategies. Our
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work also reveals the importance of assessing the vaccination strategy at different stages of

the epidemic.

This is a PLOS Computational BiologyMethods paper.

Introduction

With reports of around three million deaths and 160 million cases worldwide [1], the COVID-

19 pandemic has caused a global public health crisis with far-reaching consequences to the

economy and lives of people. Vaccines promise a way out of this situation, but due to limited

supply and finite rate of vaccination they are not immediately effective in eradicating the epi-

demic. Health officials and governments around the world are thus faced with decisions on

which order to vaccinate the population. This can be a matter of life and death to a large num-

ber of people and determine the speed at which we steer out of the crisis. The problem at hand

is complicated by different mortality rates and activity levels in different age groups, localised

incidence rates, and mobility patterns between regions, making it difficult to find an optimal

solution on how to vaccinate using heuristic arguments. Given the scope of the crisis, even a

small change in the relative efficiency of a strategy can have a large impact at the absolute scale

in terms of saving lives. Therefore, critical evaluation on different vaccination strategies is

imperative.

Several studies have previously explored the effectiveness of different age-structured vacci-

nation strategies against the COVID-19 [2–8]. Most of them agree that for minimizing cumu-

lative incidence, i.e., the number of individuals who experience infection by the end of the

epidemic, it is optimal to give priority to younger generations, as their higher activity accounts

for a large part of the transmission. However, if the minimization of deaths and hospitaliza-

tions is targeted, it is often preferable to allocate vaccines first to the elderly who have a higher

risk of severe illness and death. The set of strategies considered in the aforementioned studies

is limited to sequential vaccinations of different age groups. They do not take into account par-

allel vaccination across age groups nor other factors such as the mobility and contact patterns

of individuals. Further, suitable geographical distribution of vaccines is important especially

when prevalence is inhomogeneously distributed across different geographical regions. Bertsi-

mas et al. [9] and Grauer et al. [10] have shown that allocating vaccines to regions with high

incidence can reduce the number of deaths compared to the strategy of distributing vaccines

demographically. Further, Lemaitre et al. [11] have studied optimal spatial allocation of

COVID-19 vaccines via an optimal control framework taking into account the mobility net-

work and the spatial heterogeneities. Ideally, all aforementioned factors should be optimized

simultaneously, but once we start to take into account such parallel and region-based prioriti-

zation strategies, the space of possible strategies becomes so large that a brute-force search for

an optimal strategy is no longer feasible; hence we need an efficient algorithm for finding a

strategy that optimizes the given objective function.

To this end, we here construct an epidemic model that takes into account the various fac-

tors mentioned above. We use the model to study the effectiveness of different vaccination

strategies by nonlinear optimization methods. The epidemic progression is described by a

deterministic compartmental model adapted to COVID-19. As a case study, we adjust the
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model parameters to the recent epidemic situation on mainland Finland. Based on census

data, age-structured contact patterns, and mobility patterns from a mobile phone operator, we

infer contact patterns between individuals in different regions and age groups. Based on the

available data of reported cases and vaccination counts, the performance of several vaccination

strategies that are implemented or considered by health authorities is evaluated by means of a

nonlinear programming framework. This framework allows us to optimize age-based and

region-based vaccination schedules. As our main result, we find that the heuristic strategy of

vaccinating the high-risk groups serially and distributing vaccines uniformly based on the

local population density may not be optimal in minimizing deaths and mitigating the disease

burden. Instead, better results can be obtained by parallel vaccination of different age groups

and geographically targeted distribution of vaccines in a way that adapts to the ongoing inci-

dence over time and takes into account demographic and behavioral differences across differ-

ent regions. This calls for re-evaluation of the details of any chosen vaccination strategy during

the course of vaccinating the population.

Methods

The level of detail in modelling epidemic spreading dynamics depends both on the questions

that need to be answered and the availability of relevant data. One of the characteristic features

of the COVID-19 epidemic is the large heterogeneity in mortality across different age groups.

For evaluating vaccination strategies, we also need to include the initial state of the epidemic at

a given time, the arrival rate of new vaccine doses and their efficacy, and contact patterns

between individuals of different ages for transmission rates. The final complication comes

from geographic heterogeneity which requires local population densities and accurate mobility

data between different regions.

Region- and age-based epidemiological model

We introduce a deterministic compartmental model of COVID-19 transmission and vaccina-

tion which takes into account both heterogeneities across age groups and mobility across geo-

graphical regions. We assume that new vaccine doses arrive at a constant rate and all types of

vaccines have equal efficacy. We consider an extension of the all-or-nothing model [2, 12] in

order to take into account individual variations in immunity. To this end some vaccinated

individuals develop full immunity while others have only partial protection against transmis-

sion and severe illness after receiving the first dose. The proportion of individuals accepting to

be vaccinated is assumed to be constant across the population.

The population of a country is modelled as a closed system of N individuals, divided into

regions k = 1, . . ., K and age groups g = 1, . . ., G. An individual resident in region k in age

group g is called a kg-individual, and the number of such individuals is denoted by Nkg. In

what follows, g, h always refer to age, and k, ℓ,m to regions. The population size of region k is

denoted by Nk = ∑g Nkg, and the size of age group g by Ng = ∑k Nkg.
The population in each stratum is divided into 16 time-dependent epidemiological com-

partments described in Table 1.

The dynamics of the disease is modelled using a deterministic nonlinear system of 16KG
ordinary differential equations with structure shown in Fig 1. We treat the variables as expecta-

tion values, so they may take non-integer values. This leads to a system where susceptible
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compartments evolve according to

d
dt
Sxkg ¼ � lkgSxkg;

d
dt
Sukg ¼ � lkgSukg � vkgS

u
kg;

d
dt
Svkg ¼ vkgSukg � lkgS

v
kg �

1

TV
Svkg;

d
dt
Spkg ¼ ð1 � eÞ

1

TV
Svkg � ð1 � oÞlkgS

p
kg;

ð1Þ

Table 1. Epidemiological compartments. There are KG copies of each compartment, denoted Sukg ; Svkg ; . . . ;Vkg for

regions k = 1, . . ., K and age groups g = 1, . . ., G.

Symbol Description

Su Susceptible, unvaccinated

Sv Susceptible, invited for vaccination

Sx Susceptible, unable or unwilling to be vaccinated

Sp Susceptible, developed weak immunity after vaccination

E Infected but not yet infectious

Ev Vaccinated infected but not yet infectious

I Infected and infectious

Iv Vaccinated infected and infectious

Q0 Quarantined at home, mild disease

Q1 Quarantined at home, severe disease

Hw Hospitalized, in general ward

Hc Hospitalized, in critical care

Hr Hospitalized, in recovery ward

D Deceased

R Recovered with full immunity

V Vaccinated with full immunity

https://doi.org/10.1371/journal.pcbi.1009974.t001

Fig 1. Disease transmission dynamics. Each node in the diagram corresponds to one differential equation with the time derivative of

the associated variable on the left side, the values of the source nodes of incident arrows on the right side, each incoming arrow

equipped with a plus sign, and each outgoing arrow equipped with a minus sign.

https://doi.org/10.1371/journal.pcbi.1009974.g001
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infected but noninfectious compartments according to

d
dt
Ekg ¼ lkgðSxkg þ S

u
kg þ S

v
kgÞ �

1

TE
Ekg;

d
dt
Evkg ¼ ð1 � oÞlkgS

p
kg �

1

TE
Evkg;

ð2Þ

infectious compartments according to

d
dt
Ikg ¼

1

TE
Ekg �

1

TI
Ikg;

d
dt
Ivkg ¼

1

TE
Evkg �

1

TI
Ivkg

ð3Þ

and removed compartments according to

d
dt
Q0

kg ¼ ð1 � p
h
gÞ

1

TI
Ikg þ ð1 � ð1 � pÞp

h
gÞ

1

TI
Ivkg �

1

TQ0

Q0

kg;

d
dt
Q1

kg ¼ phg
1

TI
ðIkg þ ð1 � pÞI

v
kgÞ �

1

TQ1

Q1

kg;

d
dt
Hw
kg ¼

1

TQ1

Q1

kg �
1

THw
Hw
kg;

d
dt
Hc
kg ¼ pcg

1

THw
Hw
kg �

1

THc
Hc
kg;

d
dt
Hr
kg ¼ ð1 � m

c
gÞ

1

THc
Hc
kg �

1

THr
Hr
kg;

d
dt
Rkg ¼ ð1 � mqgÞ

1

TQ0

Q0

kg þ ð1 � m
w
g Þð1 � p

c
gÞ

1

THw
Hw
kg þ

1

THr
Hr
kg;

d
dt
Dkg ¼ mqg

1

TQ0

Q0

kg þ m
w
g ð1 � p

c
gÞ

1

THw
Hw
kg þ m

c
g

1

THc
Hc
kg;

d
dt
Vkg ¼ e

1

TV
Svkg:

ð4Þ

In formulae (1)–(4), the force of infection inflicted on kg susceptibles λkg = λkg(t) varies over

time as a function of infectious states in all strata and additional parameters. The force of infec-

tion (per capita rate of infections) inflicted on susceptible kg individuals equals

lkgðIÞ ¼ b
X

m;‘;h

bgh

N̂m

ykmðI‘h þ xI
v
‘hÞy‘m; ð5Þ

where β is a constant used for adjusting the overall rate of infectious contacts, (βgh) is a 9-by-9

mobility-adjusted age contact matrix, (θkℓ) is a 5-by-5 baseline mobility, and N̂m is the effective

population size of regionm. This corresponds to a model where b� bgh=N̂m is the contact rate
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between any unordered pair of individuals present in regionm, with one individual belonging

to age group g and the other to age group h.

The per-capita rate of vaccines offered to residents of region k in age group g is a time-

dependent function vkg = vkg(t) obtained as a solution of a minimization problem, or defined

manually. The other model parameters are constant and are listed in Table 2.

In our numerical investigations, the population is stratified into 9 age groups and 5 geo-

graphical regions (Table 3), giving us total of 45 age-region strata. Per each stratum, there are

16 epidemiological compartments, including three susceptible compartments (unvaccinated,

vaccinated with developing immunity, and vaccinated without developing immunity) and two

tracks (mild and severe) of infected individuals. This leads to a full model with 720 age-region-

compartment combinations.

Mobility

Mobility of individuals is modelled using a Lagrangian approach [17] using a K-by-K probabil-

ity matrix where entry θkℓ equals the fraction of time that a typical resident of region k spends

Table 2. Parameters for the epidemic model. The parameters here have been taken from Ref. [12] except for the vaccine efficacy e which depends on several factors

including the vaccination type, disease variant, number of doses and time from the vaccination [13–15]. Here we set e following Ref. [16].

Description 0–9 10–19 20–29 30–39 40–49 50–59 60–69 70–79 80+

TE Latent period(days) 3 3 3 3 3 3 3 3 3

TI Transmission period (days) 4 4 4 4 4 4 4 4 4

TQ0 Quarantine period with mild symptoms (days) 5 5 5 5 5 5 5 5 5

TQ1 Quarantine period with severe symptoms (days) 3 3 3 3 3 3 3 3 3

THw Hospital ward period (days) 5 5 5 5 5 5 5 5 5

THc Critical care period (days) 9 9 9 9 9 9 9 9 9

THr Post-critical care period (days) 1 1 1 1 1 1 1 1 1

TV Vaccination immunity delay (days) 10 10 10 10 10 10 10 10 10

phg Fraction of severe cases 0 0 0.02 0.03 0.04 0.08 0.16 0.43 0.52

pcg Fraction of critical cases among severe 0 0 0 0 0 0.01 0.03 0.05 0.01

mqg Fraction of non-hospitalized that die 0 0 0 0 0 0 0 0.08 0.2

mhg Fraction of hospitalized that die 0 0 0 0 0 0 0 0.2 0.4

mcg Fraction of inds. in critical care that die 0.35 0.1 0.1 0.15 0.15 0.22 0.46 0.49 0.52

e Vaccine efficacy to confer full immunity 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7

ω Vaccine efficacy to reduce susceptibility 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

π Protection against severe illness 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

ξ Reduction in transmissibility 1 1 1 1 1 1 1 1 1

τ Fraction of daily activity spent in a region 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

https://doi.org/10.1371/journal.pcbi.1009974.t002

Table 3. Population, incidence (7-day case notification rate per 100 000 individuals), and vaccine uptake (propor-

tion of vaccinated with first dose per 100 individuals) in five regions (university hospital specific catchment areas)

of mainland Finland on 18 April 2021.

Region Population Incidence Vaccine uptake

HYKS 2 198 182 53.6 23.4

TYKS 869 004 39.9 26.9

TAYS 902 681 24.9 25.2

KYS 797 234 10.0 25.4

OYS 736 563 10.3 22.7

Total 5 503 664 34.7 24.4

https://doi.org/10.1371/journal.pcbi.1009974.t003
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in region ℓ. Then

N̂ ‘g ¼
X

k

Nkgyk‘ ð6Þ

equals the mean number of individuals of age group g present in region ℓ, and

N̂ ‘ ¼
X

g

N̂ ‘g

represents the mean number of individuals present in region ℓ.
The baseline mobility matrix representing typical mobility in Finland during normal times

without pandemic is a 5-by-5 matrix with entries estimated from available data on cross-region

travels as

ykm ¼ ð1 � tÞ þ t 1 �
ckþ
Nk

� �� �

dkm þ t
ckm
Nk
ð1 � dkmÞ; ð7Þ

where ψk+ = ∑m6¼k ψkm, (ψkm) is an estimated trip matrix with ψkm telling the daily number of

trips that residents of region kmake to regionm in Table C in S1 Appendix, Nk is the number

of residents in region k obtained from in Table B in S1 Appendix, and δkm is the Kronecker

delta. The parameter τ represents the fraction of daily activity time that a typical commuter

spends in a remote region. In our numerical simulations we set τ = {0, 0.5, 1} due to lack of

reliable data for estimating this factor. Eq (7) can be interpreted as the expected fraction of

active day time that a resident of region k spends in regionm, with ψk+/Nk being the probabil-

ity that a randomly selected resident of region k commutes outside the home region on a given

day.

Calibration of the overall infectious contact rate

The overall infectious contact rate parameter β is parameterised in terms of an effective repro-

duction number Reff as follows. Denote by K(β) a KG-by-KGmatrix with entries

KðbÞkg;‘h ¼ bTISkgð0ÞMkg;‘h;

where

Mkg;‘h ¼ bgh

X

m

ykmy‘m

N̂m

;

and Skgð0Þ ¼ Sukgð0Þ þ S
v
kgð0Þ þ S

x
kgð0Þ is the number of kg susceptibles at time zero. The vari-

able KðbÞkg;‘h indicates the expected number of new infections among kg individuals caused by an

infectious ℓh individual who got infected at time zero. Then we set

b ¼
Reff

rðKð1ÞÞ
;

where ρ(K(1)) is the spectral radius of the matrix K(1) = TI Skg(0)Mkg,ℓh, and Reff is set to values

0.75, 1.0, 1.25, 1.50 in different scenarios. With this choice, the spectral radius of K(β) equals

ρ(K(β)) = Reff, and Reff < 1 (resp. Reff > 1) indicates the convergence to zero (resp. divergence)
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of a subsystem of differential equations

d
dt
Ekg ¼ bSkgð0Þ

X

‘h

Mkg;‘hI‘h �
1

TE
Ekg;

d
dt
Ikg ¼

1

TE
Ekg �

1

TI
Ikg;

only containing the infectious compartments, linearised in a neighbourhood of a stable initial

state where Sukgð0Þ; S
v
kgð0Þ; S

x
kgð0Þ are fixed to their current states, and Ekg = Ikg = 0 for all kg, see

[18, 19]. Hence Reff < 1 indicates that all infectious compartments would decrease locally in

time even without future vaccinations. In the special case where Skg(0) = Nkg for all kg, Reff

reduces to the basic reproduction number. In general this is not the case because Reff also

takes into account the accumulated immunity at time zero due to prior vaccinations and

recovery.

Pair contact rates

Contacts between individuals are modelled so that bgh=N̂m denotes the mean contact rate

(unnormalized, corresponding to no pandemic) in regionm between any unordered pair of

individuals present in regionm, such that one individuals is in age group g and the other in

age group h. For g 6¼ h we find that ÊðmÞgh ¼ N̂mgN̂mh with the terms on the right given by (6).

For g = h, we note that ÊðmÞgg ¼ EY ðmÞgg is the expectation of a random integer

YðmÞgg ¼
XK

k¼1

X

1�i<j�Nkg

BkiBkj þ
X

1�k<‘�K

XNkg

i¼1

XN‘g

j¼1

BkiB‘j;

where the random variables Bki 2 {0, 1} on the right are mutually independent and such that

EBki ¼ ykm for all k, i. Then a direct computation shows that

EY ðmÞgg ¼
X

k

Nkg
2

� �

y
2

km þ
1

2

X

k

X

‘6¼k

NkgykmN‘gy‘m

¼
X

k

Nkg
2

� �

y
2

km þ
1

2

 
X

k

X

‘

Nkgykm

!2

�
X

k

N2

kgy
2

km

¼
1

2
N̂ 2

mg �
X

k

Nkgy
2

km:

Then the expected number of such pairs equals

ÊðmÞgh ¼

N̂mgN̂mh; g 6¼ h;

1

2
N̂ 2

mg �
1

2

X

k
Nkgy

2

km; g ¼ h;

8
><

>:
ð8Þ

when we assume that each resident of each region k is present in regionm with probability

θkm, independently of the other individuals. Then the aggregate rate of contacts between age
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groups g and h is given by βghΓgh, where

Ggh ¼
X

m

ÊðmÞgh

N̂m

is a mobility correction factor. The aggregate contact rate between age groups g and h can

alternatively be computed as 1 � 1

2
dgh

� �
NgCgh, where Ng is the size of age group g and Cgh is

the age contact matrix. By solving the balance equation 1 � 1

2
dgh

� �
NgCgh ¼ bghGgh, we find

that

bgh ¼ 1 �
1

2
dgh

� �NgCgh
Ggh

: ð9Þ

For baseline age contact matrix Cgh, we use the one in Table C in S1 Appendix, obtained

from Finland 2006 POLYMOD matrix, then pairwise degree corrected, then extrapolated and

density corrected, then time-corrected to represent an nonnormalised age-based contact struc-

ture in Finland in 2021 (assuming no pandemic), see [20].

Data and initialization

The model is initialized to the epidemic situation in mainland Finland on the day of origin set

to 18 April 2021. The age-structured population sizes were retrieved from national statistics

[21]. The population sizes per region can be found at Table 3, and further details are in the S1

Appendix. We build an age-dependent contact structure by adjusting a questionnaire-based

contact matrix [22] to a setting where the age structure can vary between the geographical

regions. Mobility between regions is estimated using aggregate tracking data from a major

mobile phone operator.

The disease progression, vaccination, and hospitalization status in the age-region com-

partments is based mostly on data from Finnish health authorities [23]. With this data we

initialize 8 out of 16 compartments for each age-region combination. The compartment

related to deaths is set empty, so that the final results only consider new deaths after the ini-

tial date. Taking into account all age-region combinations, the model is initialized with 360

values.

Heuristic vaccination strategies

We construct heuristic vaccination strategies which can depend on three variables for each

region k and given time t: the proportion of population N̂ k, the proportion of new infections

Î Dk ðtÞ during the last D days, and the proportion of hospitalized individuals ĤD
k ðtÞ during the

last D days in region k. Given that there are in total v(t) vaccine doses to distribute on day t,
the region k will receive

vkðtÞ ¼ vðtÞðw1N̂ k þ w2 Î Dk ðtÞ þ w3ĤD
k ðtÞÞ; ð10Þ

vaccine doses. Then we distribute the vaccines in each region in an age-descending order, i.e.,

first vaccinate the entire oldest group, and then the second oldest, etc. The choice of weights

w1, w2, and w3 determines the relative allocation of vaccines across regions, with w1 + w2 + w3

= 1. Within regions, the vk(t) vaccine doses are distributed in an age-prioritized strategy from

PLOS COMPUTATIONAL BIOLOGY Adaptive and optimized COVID-19 vaccination strategies

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1009974 April 7, 2022 9 / 19

https://doi.org/10.1371/journal.pcbi.1009974


older to younger age groups, i.e., first vaccinate the entire oldest group, and then the second

oldest, etc. We set D = 14 and build 8 different vaccination strategies by setting the wi values as

shown in Table 4. See Section 1 of the S1 Appendix for further details. The feasibility of imple-

menting strategy Pop+Inc+Hosp corresponding to equal weights w1 = w2 = w3 has been dis-

cussed by Finnish health authorities [24].

Optimized vaccination strategies

In order to obtain an optimized age-specific and time-dependent vaccination strategy, we for-

mulate the problem in terms of optimal control theory with the aim of minimizing the total

number of deaths while satisfying the constraints of a fixed daily maximum amount of vac-

cines available over the course of a single pandemic wave. More specifically, our objective is to

determine optimal time-varying-per-capita rate of vaccines ν : (k, g, t) 7! νkg(t) that minimizes

the cumulative number of deaths calculated by (1). Thus, the objective functional to be mini-

mized is given by

JðnÞ ¼
R tf

0

XK

k¼1

XG

g¼1

DkgðtÞdt; ð11Þ

where the instantaneous expected death rate Dkg(t) is obtained as a solution of (1)–(4), and tf is

a sufficiently large time instant by which the full population is vaccinated.

The optimal control formulation is: find n� : ðk; g; tÞ 7! n�kgðtÞ such that

Jðn�Þ ¼ min
n
JðnÞ subject to ð1Þ and

XK

k¼1

XG

g¼1

nkgðtÞSkgðtÞ ¼ nmax;

ð12Þ

where νmax is the maximum rate of available vaccines. To solve this control problem numeri-

cally, we use Pontryagin’s Maximum Principle [25, 26]. This principle converts problem (12)

Table 4. Adaptive vaccination strategies and their corresponding weights corresponding to (10). Pop, Inc and

Hosp refer to strategies where vaccines are distributed demographically, based on the regional incidence level only,

and based on the number of hospitalized cases only, respectively.

Strategy w1 w2 w3

Pop 1 0 0

Inc 0 1 0

Hosp 0 0 1

Pop+Hosp 1/2 0 1/2

Pop+Inc 1/2 1/2 0

Inc+Hosp 0 1/2 1/2

Pop+Inc+Hosp 1/3 1/3 1/3

https://doi.org/10.1371/journal.pcbi.1009974.t004
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into the problem of minimizing the Hamiltonian H ¼
PK

k¼1

PG
g¼1

Hkg given by

Hkg ¼ Dkg
þLSukg

ð� lkgSukg � vkgS
u
kgÞ � LSxkg

lkgSxkg

þLSvkg
vkgSukg � lkgS

v
kg �

1

TV
SvkgÞ

� �

þLSpkg
ð1 � eÞ

1

TV
Svkg � lkgS

p
kg

� �

þLEkg
lkgðSukg þ S

v
kg þ S

x
kgÞ �

1

TE
Ekg

� �

þLEvkg
ð1 � oÞlkgS

p
kg �

1

TE
Evkg

� �

þLIkg

1

TE
Ekg �

1

TI
Ikg

� �

þ LIvkg

1

TE
Evkg �

1

TI
Ivkg

� �

þLQ0
kg
ð1 � phgÞ

1

TI
Ikg þ ð1 � ð1 � pÞp

h
gÞ

1

TI
Ivkg �

1

TQ0

Q0

kg

� �

þLQ1
kg
phg

1

TI
ðIkg þ ð1 � pÞI

v
kgÞ �

1

TQ1

Q1

kg

� �

þLHwkg

1

TQ1

Q1

kgðtÞ �
1

THw
Hw
kgðtÞ

� �

þLHckg
pcg

1

THw
Hw
kg �

1

THc
Hc
kg

� �

þLHrkg
ð1 � mcgÞ

1

THc
Hc
kg �

1

THr
Hr
kg

� �

þLRkg
ð1 � mqgÞ

1

TQ0

Q0

kg þ ð1 � m
w
g Þð1 � p

c
gÞ

1

THw
Hw
kg þ

1

THr
Hr
kg

� �

þLDkg
mg

1

TQ0

Q0

kg þ m
w
g ð1 � p

c
gÞ

1

THw
Hw
kg þ m

c
g

1

THc
Hc
kg

� �

þLVkg
e

1

TV
Svkg

� �

;

ð13Þ

where LSukg
; . . . ;LVkg

appearing above are time-dependent Lagrange multipliers [27]. Then, we

differentiate H with respect to νkg to obtain

@H
@nkg
ðtÞ ¼ � LSukg

ðtÞ � LSvkg
ðtÞ

� �
SukgðtÞ:

Further, we differentiate H with respect to the state variables Sukg , S
v
kg , S

p
kg , Sxkg , Ekg, E

v
kg Ikg, I

v
kg ,

Q0
kg , Q

1
kg ,H

w
kg H

c
kg ,H

r
kg , Rkg, Dkg, Vkg to derive a so-called adjoint system of equations. By collect-

ing the state variables into a vector Y ¼ ½Sukg; . . . ;Vkg�, and the Lagrange multipliers into a vec-

tor LY ¼ ½LSukg
; . . . ;LVkg

�, we have

_LY ¼ �
@H
@Y

;

with transversality conditions ΛY(Tf) = 0. We solve the adjoint system of equations backwards

in time because we only have the final conditions. For more details see Section 2 of the S1

Appendix.
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Results

We summarize our results by focusing on the medium-level mobility scenario, i.e., for τ = 0.5.

The relative performance of different vaccination strategies and their qualitative behavior is

robust across different mobility levels (see S1 File).

Comparison of adaptive heuristic strategies

We first compare different vaccination strategies at the level of the whole country (Fig 2) to a

baseline strategy, in which vaccine doses are first allocated to regions weighted by population

counts and then serially to age groups in descending order within each region. This static base-

line strategy Pop differs from all other strategies which we call adaptive heuristic strategies in a

way that it does not try to adapt to the evolution of the epidemic in any way. The adaptive heu-

ristic strategies allocate more vaccine doses to regions with more infections and/or hospitaliza-

tions, but are similarly age-prioritized within regions.

Fig 2 describes the performance of different strategies over time. All adaptive strategies suc-

ceed in lowering incidence compared to the baseline. For mortality and hospitalizations, the

heuristic strategies outperform the baseline initially, but tend to lose most of their advantage in

the long run. This is because the adaptive heuristics delay the epidemic and its peak as com-

pared to the baseline, and eventually the less-vaccinated regions in the adaptive heuristics will

do worse than in the baseline strategy. This can be further seen in Fig 3 which shows the evolu-

tion of mortality in each region. In contrast, the optimized strategy succeeds in keeping mor-

tality and hospitalizations below baseline also after the peak. Furthermore, it can be seen in Fig

3 that the optimized strategy leads to a more even distribution of deaths across the regions.

This could be potentially beneficial in relieving the pressure on the healthcare system so that

not to exceed capacity on hospitals.

Whether or not it pays off to delay the epidemic with adaptive strategies at the cost of allo-

cating less vaccines to less affected regions depends on how fast the disease is progressing.

Fig 2. Mortality, hospitalizations, and incidence for the vaccination strategies in Table 2. In this scenario, the effective

reproduction number is Reff = 1.5 and the mobility value is τ = 0.5. For other parameter combinations, see S1 File.

https://doi.org/10.1371/journal.pcbi.1009974.g002
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Specifically, the total performance over the full time horizon depends on the transmission

rates of the disease (see Table 5): In low-transmission scenarios the adaptive heuristics perform

well and delaying the epidemic can be beneficial because there is time to develop additional

immunity in the low-incidence regions to hinder future spreading. In high-transmission sce-

narios the adaptive heuristics put too much emphasis on the initially high-incidence regions

and leave the low-incidence regions vulnerable to large future outbreaks.

As expected, none of the strategies can outperform the baseline in every region. The regions

that have initially less incidence will suffer on the expense of the high-incidence regions when

Fig 3. Number of daily deaths per million inhabitants in Finland and the five hospital catchment areas. For this

scenario, the basic reproduction number Reff = 1.5 and the mobility value τ = 0.5. For other values of Reff and τ, see S1

File.

https://doi.org/10.1371/journal.pcbi.1009974.g003

Table 5. Absolute difference in mortality (expected number of deaths) and cumulative incidence (expected number of cases) during a 250-day time horizon resulting

from different vaccination strategies with respect to baseline strategy (Pop) for τ = 0.5. Highest reductions are indicated in boldface. Results for different values of τ
are shown in S1 File, including hospitalizations.

Reff Hosp Inc Inc+Hosp Pop+Hosp Pop+Inc Pop+Inc+Hosp Optimized

Mortality 0.75 -0.35 -0.41 -0.39 -0.24 -0.27 -0.31 -0.41

1.00 -1.91 -2.41 -2.19 -1.57 -1.79 -1.95 -3.29

1.25 8.55 2.26 5.15 -1.02 -3.71 -0.37 -18.15

1.50 83.77 58.71 70.06 23.19 11.32 33.11 -57.31

Incidence 0.75 -405.11 -410.73 -407.56 -214.09 -215.38 -280.55 -735.16

1.00 -1896.11 -2084.31 -1992.86 -1196.29 -1256.36 -1506.76 -3600.67

1.25 257.35 -2649.12 -1269.34 -1906.76 -3052.56 -2138.40 -20880.99

1.50 12984.59 3760.78 8102.05 1065.11 -2905.91 1998.24 -46701.01

https://doi.org/10.1371/journal.pcbi.1009974.t005
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changing from the baseline strategy to adaptive strategies. However, as stated before, if all indi-

viduals in the country are treated equally regardless of their region of residence, the transmis-

sion rate will determine which strategy is best for minimizing the total disease-induced

mortality in the country.

Among the adaptive vaccination strategies, the number of hospitalized individuals is not in

general as good a measure as incidence when determining where to distribute the vaccines.

This might be due to the delay in the hospitalization which means that vaccination continues

in regions where the effective reproduction number is already low, at the expense of regions

where incidence is on the rise but not yet reflected in hospitalizations.

It should be noted that in our model the number of daily new infections is assumed to be

accurately reported, which is not a realistic assumption. While it does not make any difference

for the strategy if the total numbers are systematically lower due to underreporting, fluctua-

tions in the numbers and systematic biases in the measurements across regions could have an

impact.

Performance of optimized vaccination strategies

We will next discuss the performance of an optimized vaccination strategy found by

running the numerical algorithm with the objective of minimizing the total disease-induced

mortality over a 250-day time horizon. Our numerical investigations show that the optimiza-

tion algorithm is robust for different levels of the vaccine efficacy, reduction in susceptibility

and protection against severe symptoms, see Section 3 of the S1 Appendix for further details.

Our numerical results indicate that the optimized strategy shares good features of both

the static baseline strategy and the adaptive heuristic strategies: There is an initial drop in

mortality similar to heuristic strategies, but in the long term the difference to baseline is not

as large as for the heuristic strategies. In other words, at later times of the epidemic the opti-

mized strategy demonstrates the highest reduction in mortality. Overall, the optimized strat-

egy shows reduction in mortality by up to 57 individuals for Reff = 1.5 (see Table 5). The

reason why the differences in mortality are not very large is because the majority of individu-

als in high-risk groups have already been vaccinated in the beginning of the calculations (18

April 2021). However, cumulative incidence can reach differences of up to tens of thousands,

as Table 5 shows.

The percentage of vaccine doses allocated by the optimized strategy to each geographical

region and age group is shown in Fig 4 for three transmission scenarios. Similarly to the heu-

ristic strategies, the optimized strategy depends heavily on the disease parameters. The effec-

tive reproduction number does not just fine-tune the strategy, but there is a transition from

one approach to another: For a low-transmission scenario (Reff = 0.75) in which the epidemic

is in clear decline, the optimized strategy does not preferentially target older age groups but

tries to reduce the number of infections, and the optimized strategy is the one that follows the

number of infected. In scenarios with a high overall transmission rate, the optimized strategy

favours older age groups having higher risk of severe illness and death.

Both the low-transmission and high-transmission scenarios lead to an optimized strategy

that favours the initially high-incidence region, and this effect is stronger for low-transmission

scenarios. Specifically, the optimized strategy initially targets the capital region (HYKS) with

approximately 20 (resp. 8) percentage points higher share of available vaccine doses than the

baseline strategy for Reff = 1.25 (resp. 1.5). Interestingly, the optimization finds that the age pri-

oritization is smaller and geography prioritization more aggressive in the scenario with Reff =

1.25 than in scenarios with Reff = 1.0 and Reff = 1.5.
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Discussion and conclusions

In this work we have constructed an epidemic modelling framework which allows to evaluate

various adaptive strategies for allocating vaccines based on static demographic data and

dynamic evolution of the epidemic situation across different geographical regions. We investi-

gated various heuristic strategies for allocating more vaccines to regions with higher incidence

and hospital load, together with optimized strategies which may flexibly allocate vaccines to

different age groups and regions in parallel. Our numerical results, conducted for scenarios

Fig 4. Percentage of vaccine doses allocated by the optimized strategy to regions (left) and age groups (right) in three scenarios (Reff = 1, 1.25,

1.5). On the left, dots represent the percentage of vaccines which each region would receive with Pop (baseline).

https://doi.org/10.1371/journal.pcbi.1009974.g004
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adjusted to the recent COVID-19 epidemic situation in Finland, show that optimized vaccina-

tion strategies can reduce the death toll and significantly mitigate the disease burden of the epi-

demic. The relative advantage of different adaptive strategies over the static baseline is

influenced by the overall epidemic situation. Also, whatever strategy is chosen, a trade-off

between different regions is inevitable due to limited supply of vaccine doses and daily vacci-

nation capacity. Nevertheless, the results provide valuable insights for designing efficient vacci-

nation strategies: In general, using hospital loads as basis in allocating vaccine doses tends to

lead to worse performance compared to the static baseline. The optimized strategy appears to

achieve a good balance between short-term benefits of adaptive strategies and the long-term

robustness gained by the uniform vaccine allocation. Further, even though we optimize mor-

tality, there is a delicate balance between favoring individuals with higher direct risk of death

as opposite to individuals at risk of getting infected and causing large outbreaks.

As with all modelling, there are several factors and phenomena that are not included, and

the results can change if these factors turn out to be important. Typically this would imply that

the actual numbers in a modelling study might be subject to change, but the overall phenom-

ena that are observed here are relatively robust. Such numbers would be the exact number of

infected, hospitalized, and deceased individuals, and the phenomena the relative order of the

different strategies. The only real way of knowing which factors are important is to include

them in a model, but in practice the choice of relevant factors is informed by the reliability of

the model. This is why we have chosen to start with a model benchmarked in another study

related to Sweden [12], and modify it by making it more accurate by including geographical

information.

There are several factors which we believe that are missing in our model and are important

for both the accuracy of the results and important to consider when optimizing vaccination

strategies. First is the need for more than a single vaccine dose needed by many of the currently

used vaccines, which is not modelled here. Including this in the model would allow one to

optimize the vaccination strategy further by finding an optimal strategy to give the second

dose with relation to vaccinating different age groups and geographical locations, or to identify

the optimal time delay between the two doses [28]. This could have an impact on the benefits

of regional targeting strategies, because the regional differences might even out during the

time it takes to build immunity with multiple vaccines. Second, one should allow the infectious

contact rates to change across geographical regions and time. As the public is informed of the

current pandemic situation their behavior, and therefore the transmission rate, is bound to

change. This induces a feedback loop which makes a large difference especially for long-term

predictions, but also makes modeling more difficult as one needs to model the public response

to various pandemic situations [29, 30]. In addition, the governments will take actions given

that the situation is sufficiently critical [31], and these decisions might depend on several hard-

to-model factors related to politics.

Studying the effects of cross-region mobility were not at the main focus of this study, but

the sensitivity analysis that we performed for the overall mobility factor has interesting impli-

cations. It turned out that cross-region mobility can be an important factor even in this rela-

tively advanced state of the epidemic where all regions have some incidence, but there is still a

geographical imbalance in the relative incidences. These results are especially striking consid-

ering that the mobility factor τ only controls for cross-region mobility but not the overall con-

tact rates of the individuals. That is, decreasing τ decreases the cross-region contacts but

increases the inside-region contacts, and the total rate of contacts in the country remains the

same but the large-scale geographical mixing patterns changed. This is in contrast to conven-

tional models which assume full mixing across the country. Further, these findings could have
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implications on interventions that limit long-range mobility. Further research in this direction

would be needed for concluding about these type of interventions.

Our analysis reveals that designing efficient vaccination strategies at a level of a country is

highly nontrivial. As seen from our results in Fig 4, the details of optimized strategies can be

complicated and their faithful implementation difficult, and could lead in a slower overall vac-

cine delivery. However, it should be possible to simplify the strategies and try to follow the

main principles of parallel vaccination and geographic distribution of vaccines with as much

detail as practically possible. It is important to note that carefully analyzed and executed strate-

gies can potentially save lives even if the strategy is changed after most of the risk groups are

already vaccinated. Much larger effects could potentially be obtained if the planning were

done before vaccinations started, but in this case the problem is that the various parameters

related to vaccination efficiency might not be known. In any case, the relative performance of

different strategies can depend on the effective reproduction number, which means that the

vaccination strategy should be chosen in conjunction with non-pharmaceutical intervention

strategies of the country.
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