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Abstract: In this paper, we propose a method to estimate the position, orientation, and gain of a
magnetic field sensor using a set of (large) electromagnetic coils. We apply the method for calibrating
an array of optically pumped magnetometers (OPMs) for magnetoencephalography (MEG). We first
measure the magnetic fields of the coils at multiple known positions using a well-calibrated triaxial
magnetometer, and model these discreetly sampled fields using vector spherical harmonics (VSH)
functions. We then localize and calibrate an OPM by minimizing the sum of squared errors between
the model signals and the OPM responses to the coil fields. We show that by using homogeneous
and first-order gradient fields, the OPM sensor parameters (gain, position, and orientation) can be
obtained from a set of linear equations with pseudo-inverses of two matrices. The currents that should
be applied to the coils for approximating these low-order field components can be determined based
on the VSH models. Computationally simple initial estimates of the OPM sensor parameters follow.
As a first test of the method, we placed a fluxgate magnetometer at multiple positions and estimated
the RMS position, orientation, and gain errors of the method to be 1.0 mm, 0.2◦, and 0.8%, respectively.
Lastly, we calibrated a 48-channel OPM array. The accuracy of the OPM calibration was tested by
using the OPM array to localize magnetic dipoles in a phantom, which resulted in an average dipole
position error of 3.3 mm. The results demonstrate the feasibility of using electromagnetic coils to
calibrate and localize OPMs for MEG.

Keywords: calibration; sensor localization; co-registration; optically pumped magnetometer;
magnetoencephalography; on-scalp MEG; fluxgate magnetometer; electromagnetic coil

1. Introduction

Magnetoencephalography (MEG) is a functional neuroimaging technique in which the
magnetic fields of electrically active neuron populations in the human brain are detected
outside of the head [1]. To estimate the active neural sources in the brain from the measured
field patterns, an inverse problem must be solved, which involves modeling of the electric
neural sources and their magnetic fields as detected by the MEG sensor array. To make the
modeling and the source estimation precise, the sensor geometry must be accurately co-
registered with the magnetic resonance images of the subject’s head, i.e., precise knowledge
of the sensor positions and orientations with respect to the subject’s brain is needed. In
addition, the sensor gains (conversion factors from volts to tesla) must be known.

Traditional MEG systems utilize superconducting quantum interference devices (SQUIDs)
that are housed inside a Dewar in a rigid, helmet-shaped configuration. To calibrate the
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SQUID sensors, two types of methods have been used. In the first group of methods, large
Helmholtz coils producing uniform magnetic fields are employed to find the SQUID gains
(e.g., [2,3]), while in the second group, small individual calibration coils are used to estimate
the SQUID positions, orientations, and gains [4–6]. The rigid transformation between the
SQUID sensor positions and the subject’s head is usually obtained by localizing small coils
attached to the subject’s scalp by digitizing the coil positions relative to known fiducial
points before the measurement (e.g., [7,8]).

Recently, a new type of magnetometer with sensitivity suitable for MEG has become
available. In contrast to SQUIDs, which detect the field at least ~2 cm from the scalp,
these optically pumped magnetometers (OPMs) can measure the magnetic field within
millimeters from the scalp, increasing the signal magnitude and the spatial resolution of the
measurement [9,10]. The introduction of this new sensor type has led to the development
of various co-registration methods (e.g., [11]), with new requirements that must be taken
into account. The possibility of obtaining higher spatial resolution due to the shorter
measurement distance motivates the development of accurate methods to capture the finer
spatial details of the magnetic fields that the OPMs may provide in comparison to the
SQUID-based MEG systems [12]. Moreover, as OPM positions can be optimized for each
subject in a flexible manner, the co-registration method should be capable of resolving the
individual sensor locations and orientations on a per-subject basis.

Most of the co-registration methods developed for OPM–MEG systems have used
optical scanners to measure the sensor positions with respect to the head [11,13–15]. These
methods either co-register the sensor helmet with the brain and use the helmet geometry
to obtain the individual sensor positions, or they directly identify the individual sensor
positions from the optical scan. The optical methods have some drawbacks, as they can
suffer from line-of-sight issues, and cannot necessarily obtain precise OPM positions and
orientations, as these are difficult to obtain from geometric models (they depend not only
on the external geometry of the OPM, but also on the OPM laser beam shape, the vapor cell
optical depth and on-sensor coil configuration, etc.). Additionally, a magnetic method has
been proposed that uses a set of pre-measurement digitized small dipolar coils attached to
the subject’s head for finding the positions, orientations, and gains of the on-scalp MEG
sensors with respect to the subject’s head/brain [16,17].

Here, we propose a method that uses large external electromagnetic coils to estimate
the position, orientation, and gain of an OPM. The use of large electromagnetic coils
for OPM calibration is attractive, as most of the OPM–MEG systems already employ
large coils for magnetic field control (e.g., [18–20]); the proposed method does not then
necessarily need any extra hardware. The method is based on modeling the coil fields using
coefficients of vector spherical harmonic (VSH) expansions, which are obtained from a priori
measurements of the coil fields. We used this method to find the positions, orientations,
and gains of OPMs in a 48-channel sensor array. Subsequently, we localized magnetic
dipoles of a phantom using the calibrated OPM array, and compared the localization results
to the known locations of the dipoles.

2. Background

In this section, we lay out the methodology for obtaining the gain as well as the 3D
position and orientation of a magnetic field sensor (hereafter referred to as sensor parameters)
using magnetic fields generated by a set of N electromagnetic coils. In this section we
present the method for a general magnetic field sensor; however, in the later sections, we
apply the method for calibrating OPMs in a particular MEG system.

The basic idea behind the method is straightforward: We measure the sensor response
when each coil is excited. We model the magnetic fields of the coils, and find the sensor
parameters that minimize the sum of squared errors between the measurements and the
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models. More formally, we denote the measured sensor response of the ith coil as yi. We
model the sensor output (in volts) as follows:

bi = g
→
B i

(→
r
)
·→n , (1)

where g is the sensor gain (V/T),
→
r is the sensor position,

→
n is a unit vector representing

the sensor orientation, and
→
B i

(→
r
)

is the modeled magnetic field of the ith coil at
→
r . We

seek the sensor parameters by minimizing the sum of squared errors between the models
and the measurements:

argmin
g,
→
r ,
→
n

N

∑
i=1

(
yi − g

→
B i

(→
r
)
·→n
)2

. (2)

2.1. Obtaining Magnetic Field Models

Accurate determination of the sensor parameters with Equation (2) relies on accurate
models of the magnetic fields. In principle, the magnetic fields could be calculated by
using computational models of the coils. However, such an approach is likely to be
inaccurate, as it is difficult to correctly model factors such as coil non-idealities and magnetic
field interaction with the surroundings (especially prominent when the coils are inside a
magnetic shield, causing polarization effects). Therefore, it is preferable to base the models
on measurements of the coil magnetic fields. To obtain the models, the coil magnetic fields
must be measured at multiple positions with a vector magnetometer whose parameters are
known accurately.

As the parameter space of the optimization problem (Equation (2)) is continuous,
the representation of the coil magnetic field must be continuous as well; the discrete
measurements of the magnetic field should allow for an accurate interpolation of the field.
For example, the field model could be obtained by a linear interpolation if the field is
mapped using sufficiently dense three-axis measurements. Another option is to model the
field as a linear combination of basis functions. When the basis function coefficients are
known, the field can be interpolated. Here, we opt for the latter approach, and model the
magnetic field using a linear combination of vector spherical harmonics (VSHs). Compared
to other interpolation methods or basis function expressions, the VSH model has some
advantages: First, when the coils are sufficiently far away from the sensor, their field energy
will be in the lowest VSH orders; thus, only a relatively low number of VSH components is
sufficient for modeling, as compared to models where such a clear hierarchical structure is
not achievable. Second, because the expansion is based on the physical characteristics of
magnetic fields (given by Maxwell’s equations), such an expansion offers some robustness
against noise.

In a source-free space, the magnetic fields of far-away sources (the magnetic field coils)
can be represented with VSHs (e.g., [21,22]) as follows:

→
B i

(→
r
)
= −µ0

∞

∑
l=1

l

∑
m=−l

βlm
i rl−1

√
l(2l + 1)

→
W lm(θ, ϕ) =

∞

∑
l=1

l

∑
m=−l

βlm
i
→
wlm(r, θ, ϕ), (3)

where µ0 is the permeability of free space, l is the degree and m ∈ {−l,−l + 1, . . . , l − 1, l}
is the order of the VSH

→
W lm (or

→
wlm), (r, θ, ϕ) are the spherical coordinates, and βlm

i are
the VSH coefficients. Equation (3) is valid inside a spherical volume that does not include
the coils. The VSHs and their coefficients can be scaled arbitrarily; we opt for the latter
expression in Equation (3) due to its simplicity. The VSHs corresponding to l = 1 are the
three homogeneous components of the field along the Cartesian coordinate axes, while
those corresponding to l = 2 are the five first-order gradients. Higher degrees correspond
to higher-order gradients. The squared coefficients

{
βlm2

i

}
comprise the VSH spectrum of

the magnetic field.
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The continuous field
→
B i

(→
r
)

can then be represented with a set of VSH coefficients
that can be computed from the measurements of the coil field at known positions as follows
(e.g., [23]):

βi = S†mi, (4)

where βi is a C× 1 vector containing C VSH coefficients, S is an M× C matrix containing
the

→
wlm patterns as detected by the M× 1 measurements mi, and S† denotes the pseudo-

inverse of S.

2.2. Simplifying the Optimization Problem

Even if the obtained coil models were perfectly accurate, it is not guaranteed that a
magnetic field sensor can be calibrated with this method, as the optimization of Equation
(2) using the field models may not converge to the correct sensor parameters (~global
optimum). Generally, the convergence will depend on the number of coils used and their
VSH spectra. Next, we briefly describe how the optimization problem can be simplified.

If the coils generate low-order VSH components, the sensor parameters can be solved
using linear equations. Specifically, we assume that NH coils generate homogeneous field
components (linear combinations of VSHs corresponding to l = 1, m = −1, 0, 1), and
that NG coils generate first-order gradients (l = 2, m = −2,−1, 0, 1, 2) and homogeneous
components. As shown in the Appendix A, the sensor parameters can then be obtained as
follows:

g = H†bH (5)

r = G†(bG −HGg), (6)

where g = gn (the sensor orientation unit vector n multiplied by the sensor gain g), r
is the sensor position vector, H is an NH × 3 matrix describing the uniform fields of the
homogeneous coils, G is an NG × 3 matrix whose elements depend on g and the first-order
gradients of the coils, HG is an NG × 3 matrix that contains the homogeneous components
of the gradient fields, and bH and bG are NH × 1 and NG × 1 vectors comprising the sensor
responses to the homogeneous and gradient fields, respectively.

In theory, the sensor parameters should be obtainable by three homogeneous fields
that are not collinear (preferably they are orthogonal) and three gradient fields that span
three VSH gradient coefficients. Intuitive explanation for the case where each of the coils
generates a distinct VSH component is as follows: Three perfectly homogeneous fields
along x, y, and z encode the sensor gain and orientation, as these fields do not depend on
the position in space. When the sensor orientation and gain are known, the first-order linear
gradients encode the sensor position. As a point of practical interest, six coils in a three-
axis Helmholtz configuration would not typically give a robust localization performance.
Such a setup can produce the three homogeneous fields, but it can only produce two
linear gradients, as just two of dBx/dx, dBy/dy, and dBz/dz are independent. Thus, a coil
producing a transverse gradient (e.g., dBy/dx) would be needed.

Even though realistic coils do not produce perfect homogeneous or first-order gradi-
ent fields, Equations (5) and (6) provide a good first-order approximation for the sensor
parameters in two settings often used in MEG. We now discuss these cases.

Compensation coil set: Coil sets that counter external magnetic interference are com-
monly used in bioelectromagnetic measurements with OPMs (e.g., [19,20]). Typically, the
coils in such systems are designed to produce homogeneous and gradient fields; the VSH
spectrum of the coil field peaks at a specific low-order component. A good initial estimate
for the sensor parameters (g0, r0) can be obtained by using Equations (5) and (6) with the
homogeneous and first-order gradient field coils and their VSH coefficients up to l = 2.
The full optimization problem (Equation (2)) can be then solved using the “full” field mod-
els (i.e., all VSH coefficients up to the bandlimit lmax given by the limitations of the a priori
coil field measurement) and g0 as well as r0 as initial estimates for the sensor parameters.
As the low-order VSH coefficients should capture most of the energy of such coil fields, g0
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and r0 should be close to the true sensor parameters. The full optimization then “fine-tunes”
the sensor parameters.

Semi-arbitrary coil arrangement: The first-order approximation is also useful in the case
of a semi-arbitrary coil arrangement (e.g., an arrangement of large square coils). When
the VSH coefficients of the N coils are known, B = [ β1, . . . , βN ], the coil currents i that
produce a field with approximately the desired distribution of the VSH coefficients β̃ can
be obtained with the pseudo-inverse as follows [24]:

i = B† β̃. (7)

When the coil currents are set so that approximately homogeneous fields and first-
order gradients are generated, g0 and r0 can be computed using Equations (5) and (6).
Using g0 and r0 for the initial estimate, the optimization problem (Equation (2)) can be
solved using the full VSH models up to lmax and the sensor responses to all individual N
coils.

We note that not all coil arrangements will allow the generation of the desired low-
order VSH components. Thus, it might be beneficial to calculate the condition number of
matrix B and add coils to the arrangement if the rank is low, and to check the field patterns
and the VSH coefficients produced by the currents. As a general guideline for the method
to work, we suggest that many coils should be used to cover a large portion of the full solid
angle surrounding the sensors, so as to ensure that the coil fields are sufficiently different
from one another.

2.3. Summary of the Method

In summary, the proposed method for estimating the sensor parameters consists of
the following steps:

1. Measure the magnetic fields of the N coils with a well-calibrated vector sensor (e.g.,
fluxgate magnetometer) over the region of the sensor array (the OPMs). Fit VSH
models to the measurements.

2. Using the VSH models, compute the currents for exciting homogeneous fields and
first-order gradients.

3. Measure the response of the sensor (which is to be calibrated) to the homogeneous
fields and gradients.

a. Compute g0 and r0 using the lowest-order VSH coefficients with Equations (5)
and (6).

b. (Optional): Fine-tune the estimates g0 and r0 by optimizing Equation (2) with
full VSH models of the homogeneous and gradient fields.

4. Excite coils individually.

c. Find the sensor parameters by optimizing Equation (2) using the full VSH
models. Use g0 and r0 (from step 3a or 3b) as initial estimates for the sensor
parameters.

3. Methods

In this section, we outline the methods for calibrating an array of OPM sensors residing
inside a magnetic shield. The OPM system is described in detail in Refs. [18,25]; Figure 1
gives an overview of the system. Briefly, the system consists of 6 OPM sensors [26,27],
each with 4 channels, within a sensor array holder that can accommodate 9 sensors. Each
OPM can measure a magnetic field component on the plane perpendicular to the optical
axis of the sensor. With respect to the head, the field components tangential to the scalp
are measured. Typically, the two orthogonal tangential components are measured sepa-
rately. In total, the system has 48 channels (6 sensors with 4 channels measuring 2 field
components). The OPMs reside inside a person-sized magnetic shield with 18 embedded
electromagnetic coils.
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whose dimensions match those of the OPM sensor, so as to ensure a tight fit into the sensor 
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VSH coefficients up to the order 𝑙 = 5 (35 components) were estimated from the 
measurements using Equation (4). The VSH functions were generated using the Python 
software package bfieldtools [28,29]. We normalized the VSHs so that each component 
corresponded to one unit of magnetic energy (“energy” normalization option in 
bfieldtools). We then set the average coordinates of the measurement positions as the 
origin of the VSH expansion. This choice of origin was selected to get the zero crossings 
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Figure 1. An overview of the OPM–MEG system: (A) 3D rendering illustrating the positions of the
OPMs (green) inside the shield. Form for the electromagnetic coils is highlighted [18]. (B) Schematic
illustration of the 16 rectangular and 2 circular coils embedded in the coil form within the shield.

We first measured the magnetic fields of the coils within the sensor array holder using
a triaxial fluxgate magnetometer. We then fitted VSH models to these measurements. We
validated the calibration method by localizing the fluxgate at different positions within
the sensor array holder, as explained in Section 3.3 below. Lastly, we calibrated the OPM
array using this method, and utilized the OPM array to localize magnetic dipoles within a
phantom.

3.1. Measurement of the Coil Fields

We measured the magnetic fields of the 18 coils in the vicinity of the sensor array
holder using a three-axis fluxgate magnetometer (FGM3D, SENSYS GmbH, Bad Saarow,
Germany). The fluxgate has three channels measuring the orthogonal field components
at different locations along the fluxgate axis, with a spacing of 2 cm. The channels are
orthogonal within ±0.5◦, while their gain is 0.1 V/µT ± 0.1%.

The fluxgate is positioned in the sensor array holder using a custom 3D-printed jig
whose dimensions match those of the OPM sensor, so as to ensure a tight fit into the
sensor slots in the holder. The jig has four transverse slots for the fluxgate, while the
fluxgate position along the longitudinal axis of the jig can be adjusted. For a given fluxgate
position, sinusoidal currents of 13.3 mA are sequentially applied to the coils. Altogether
we measured 108 locations, giving a total of 324 measurements of the magnetic field of
each coil.

VSH coefficients up to the order l = 5 (35 components) were estimated from the
measurements using Equation (4). The VSH functions were generated using the Python
software package bfieldtools [28,29]. We normalized the VSHs so that each component
corresponded to one unit of magnetic energy (“energy” normalization option in bfieldtools).
We then set the average coordinates of the measurement positions as the origin of the VSH
expansion. This choice of origin was selected to get the zero crossings of the gradient fields
into the sensor array volume. We used the root-mean-square (RMS) error normalized by
the RMS value of the data to assess the goodness of the VSH fits.

3.2. Calibration Methodology

We used the methodology summarized in Section 2.3 to estimate the parameters of
the fluxgate magnetometer channels and the OPM sensors. We measured the responses of
the sensors (that were to be calibrated) to the coil fields. The coils were excited sequentially
using sinusoidal currents with a frequency of 20 Hz. The sensor response amplitudes were
estimated from the data using lock-in detection.
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Of the 18 shield coils, 17 were used in the measurements, as one of the coils had
a broken connector. The 17 coils were driven either individually or in “superposition”,
configured to generate the eight first-order VSH fields; the coil currents to generate the
first eight VSH components were computed using Equation (7) with the estimated VSH
coefficients.

The initial sensor parameter estimates were obtained with Equations (5) and (6) by
using the data generated with the first-order VSH fields. The model parameters (the
homogeneous field and gradient amplitudes) were estimated from the fitted VSH models.
Subsequently, the sensor parameter estimates were “fine-tuned” by optimizing Equation (2)
with the first-order VSH field data and the full VSH models. We performed the optimization
using the SciPy Python library [30] with the function minimize, with default parameters
and the Nelder–Mead algorithm. Lastly, the final sensor parameters were obtained by
optimizing Equation (2) with the sensor responses to the 17 individual coil fields and full
VSH models of the coil fields.

3.3. Fluxgate Validation

We positioned the fluxgate sensor within three empty sensor slots of the array (during
the time of the measurement six of the nine sensor holders had an OPM inserted). In
total, six different positions (two different positions in one sensor slot) were used for the
fluxgate, amounting to 18 channels at different positions to calibrate. The currents of the
coils were set so that the maximum field amplitude was roughly 12.5 nT over the sensor
array holder. We used the proposed method to calibrate the fluxgate channels. The known
gains and relative positions/orientations of the fluxgate channels were used to estimate the
calibration error of the method.

3.4. Calibration of the OPM Array

The OPMs were configured to measure one of the tangential components (denoted
as Bx or By), and the coils were excited individually or in superposition, with a maximum
amplitude of 0.5 nT. Altogether, four measurements corresponding to the different sen-
sor/coil configurations (e.g., Bx and first-order VSH fields) were performed. The OPM data
were recorded using the DAQ system described by Borna et al. in Refs. [18,25]. The data
sampling rate of the lock-in amplifier output that served as the OPM magnetometer signal
was set to 1 kHz.

The fact that the OPMs we used can measure two components of the magnetic field
at the same position motivated us to use two different approaches for the optimization.
In the first approach, we optimized the two measurements (Bx and By) separately, while
in the second approach we performed the optimization jointly for the two measurements,
by constraining the optimization procedure so that the “two sensors” shared the same
position.

We compared the estimated positions of the OPMs to a CAD model of the sensor array
by aligning the obtained positions to those of the CAD model using a unit-scale rigid-body
transformation obtained with the Umeyama algorithm [31].

3.5. Localizing Magnetic Dipoles in a Phantom

We used the OPM array and the obtained sensor parameters to localize small circular
coils in a phantom. The 3D-printed phantom had nine hand-wound circular coils with a
diameter of 5 mm. The phantom coils were sequentially driven with sinusoidal currents
at 20 Hz with an estimated coil dipole moment of about 140 nAm2. The amplitudes were
extracted from the OPM data using lock-in detection. The measurement was performed
independently for Bx and By; for the dipole localization, the measured amplitudes were
combined to give a total of 48 channels.

The coils were localized using the dipole fitting routine in the FieldTrip toolbox
(function ft_dipolefitting; [32]), with a grid search followed by nonlinear optimization. The
coils were modeled as ideal point-like magnetic dipoles. The OPM channels with latency-



Sensors 2022, 22, 3059 8 of 17

adjusted time-domain correlation lower than 0.9 with the reference signal fed to the dipole
were discarded from the dipole fitting procedure. These channels were deemed unreliable
because of the phase offset, likely caused by the OPM cross-axis projection error [33].

Lastly, we compared the estimated positions of the magnetic dipoles to a CAD model
of the phantom. To compare their relative positions, the estimated positions were aligned
with the CAD model using the Umeyama algorithm [31].

4. Results
4.1. Modeling the Magnetic Field Measurements with VSHs

Figure 2 shows the results of fitting the VSH models to the fluxgate measurements.
When driving the coils using a current of 13.3 mA, the maximum resulting field amplitudes
in the fluxgate measurement points range from 13 to 89 nT, with an average of 24 nT over
the 18 coils. Figure 2A shows the measured magnetic field of one of the shield coils, as
well as its interpolation using the VSH model. The magnetic field points approximately
to the same direction in the measurement volume, with a gradient along the z-axis. The
normalized RMS error of the VSH reconstruction is 1.0%. The VSH spectrum shown in
Figure 2B reveals that the dominant field components are at low orders; the homogeneous
components corresponding to l = 1 have the highest energy, followed by the first-order
gradients (l = 2). The VSH spectrum averaged over the coils (Figure 2C) confirms that
the coils, on average, produce mostly homogeneous and first-order gradient fields. The
normalized RMS error is less than 2% for all coils, indicating good fits of the VSH models
to the measurements.
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Figure 2. Fitting vector spherical harmonics (VSHs) to the measured magnetic field data: (A) Example
of a coil magnetic field measured with a three-axis fluxgate at 108 points, together with its VSH fit,
extrapolated to a volume surrounding the measurement points. The magnetic field values were
normalized by the applied current. (B) Magnetic field spectrum of the coil field in panel A given by the
squared VSH coefficients. The squared coefficients are shown for each degree l and its corresponding
2l + 1 orders. (C) Average magnetic field spectrum of the 18 shield coils. (D) Normalized RMS errors
between the VSH fits and the measurements.
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Figure 3 shows examples of calculated coil currents that approximately generate
specific low-order VSH components at the measurement volume. The VSH spectra of
the fields peak at specific components, confirming that the currents mainly produce the
desired components.
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Figure 3. Examples of calculated coil currents of the 17 shield coils that generate specific vector
spherical harmonic (VSH) field components: (A) Example of a homogeneous magnetic field in the
vicinity of the measurement points, shown as red dots. (B) The coil currents that generate the field
shown in (A). (C) The VSH spectra of the generated field; the black arrow indicates the energy of the
desired VSH component. (D–F) Same as (A–C), but for a first-order gradient field.

4.2. Fluxgate Validation

Figure 4 shows the estimated fluxgate position, orientation, and gain errors across
the six measurement positions (18 channels). Clearly, the errors become smaller as more
iterations are performed and as more VSH coefficients are taken into account in the opti-
mization. For the final estimates, the average gain, orientation, and position errors are 0.8%
(0.1–1.1%), 0.1◦ (0.01◦–0.4◦), and 0.8 mm (0.1–2.0 mm), respectively, while the RMS errors
are 0.8%, 0.2◦, and 1.0 mm. We estimate that the maximum SNR of this measurement due
to the 12.5-nT field at 20 Hz is about 1900, as the average fluxgate noise floor around 20 Hz
is 4.6 pT/rt-Hz.

4.3. Calibration of the OPM Array and Phantom Localization

The optimized OPM sensor parameters when the OPM channels sensing different field
components are treated either jointly or separately are shown in Figure 5A,B, respectively.
The sensor positions visually resemble those we expected based on the CAD model of the
sensor array, while the obtained orientations are not orthogonal, as also suggested by the
characteristics of the magnetic fields of the on-sensor coils (see, e.g., [18]). Interestingly,
when the channels sensing Bx and By are treated separately, they do not localize to the
exact same positions. The maximum differences between the parameters obtained jointly
or separately are 0.7%, 0.3◦, and 4.2 mm for gain, orientation, and position, respectively.
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The OPMs have an average noise floor of 26 (Bx) and 32 fT/rt-Hz (By) around 20 Hz; the
maximum SNR due to the oscillating 0.5-nT field at 20 Hz is thus approximately 10,000.
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Figure 4. Estimated gain (top row), orientation (middle), and position (bottom) errors for the three
channels of the fluxgate magnetometer at six different placements of the fluxgate. Each column of
the figure shows the error histograms after different iterations. The initial estimate is given by the
matrix pseudo-inversions using the first-order VSH measurements and models. The first-iteration
estimate is obtained after fine-tuning the initial estimate to account for the full VSH spectra of the
approximate first-order VSH fields. The final estimate is obtained after optimizing the first-iteration
estimate with all individual coil fields and their full VSH spectra. The vertical dashed lines indicate
the average errors.

Figure 5C compares the jointly obtained sensor positions to those of the CAD model.
Altogether, the positions look rather similar; however, the calibrated positions are somewhat
more scattered on the plane defined by the sensor-wise channel positions. The calibrated
positions for the four channels corresponding to one sensor sit on a single plane quite well.
The average distance between the calibrated and CAD positions is 2.8 mm, while the range
is 0.9–5.4 mm.
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The jointly obtained OPM parameters were used to localize magnetic dipoles in a 
phantom. Figure 6A shows a drawing of the phantom, illustrating the locations of the nine 
magnetic dipoles. The maximum amplitudes due to the nine dipoles over the OPM chan-
nels range from 370 to 1150 pT, with an average of 540 pT. Given the estimated noise levels 
of the OPM channels, the maximum SNRs across the dipoles range from 10,000 to 30,000. 
Figure 6B shows the estimated positions and moments of the magnetic dipoles. Visually, 
the estimated positions correspond well to those of the CAD model, and the estimated 
orientations of the coil magnetic moments are consistent with the geometry of the phan-
tom. Figure 6C shows the estimated position errors and dipole moments across the di-
poles. The average error between the estimated dipole positions and those of the CAD 
model is 3.3 mm, while the range is 1.1–5.7 mm. On average, the estimated dipole mo-
ments differ from those estimated from the current by which the coils were driven by 18%, 
while the difference can be as large as 54%. The two dipoles with the largest position errors 
have also the largest errors in the dipole moments. 

Figure 5. Obtained OPM sensor parameters: (A) Sensor parameters (top: position, orientation;
bottom: gain) obtained by joint optimization, i.e., assuming that the channels sensing either of the
tangential field components (Bx or By) share the same location. The blue and red arrows correspond
to Bx and By, respectively. (B) Sensor parameters obtained by treating the channels separately, i.e.,
the Bx and By channels have independent locations. The channel positions for Bx and By are shown
as black dots and crosses, respectively. (C) Comparison of the sensor positions in panel A to the CAD
model of the sensor array. Histogram illustrates the distances between the positions; vertical dashed
line shows the average distance.

The jointly obtained OPM parameters were used to localize magnetic dipoles in a
phantom. Figure 6A shows a drawing of the phantom, illustrating the locations of the
nine magnetic dipoles. The maximum amplitudes due to the nine dipoles over the OPM
channels range from 370 to 1150 pT, with an average of 540 pT. Given the estimated noise
levels of the OPM channels, the maximum SNRs across the dipoles range from 10,000 to
30,000. Figure 6B shows the estimated positions and moments of the magnetic dipoles.
Visually, the estimated positions correspond well to those of the CAD model, and the
estimated orientations of the coil magnetic moments are consistent with the geometry of
the phantom. Figure 6C shows the estimated position errors and dipole moments across
the dipoles. The average error between the estimated dipole positions and those of the
CAD model is 3.3 mm, while the range is 1.1–5.7 mm. On average, the estimated dipole
moments differ from those estimated from the current by which the coils were driven by
18%, while the difference can be as large as 54%. The two dipoles with the largest position
errors have also the largest errors in the dipole moments.
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Figure 6. Localization of magnetic dipoles in a phantom using the calibrated 48-channel OPM array:
(A) A drawing of the 3D-printed phantom showing the locations and orientations of the small circular
coils approximating magnetic dipoles (shown black). Both top and side views of the phantom are
shown. (B) The estimated dipole positions (circles) and orientations of the coil dipole moments (black
arrows). Red diamonds show the positions of the coils according to the CAD model of the phantom.
The circles are color-coded according to the distance between the estimated position and that of the
CAD model. Inset gives a side view of the dipoles. (C) The dipole position errors between the CAD
model and the estimates, as well as the estimated dipole moments of the coils. The dashed horizontal
line shows the dipole moment estimated from the current by which the coils were driven.

5. Discussion

We proposed a method that uses magnetic fields to find the gain/calibration, position,
and orientation of a magnetic field sensor. In particular, we proposed a means to estimate
the sensor parameters by using homogeneous and first-order gradient fields (VSHs up
to l = 2), which can be generated with specific electromagnetic coils or by driving an
appropriate arrangement of multiple individual magnetic field generators. Importantly,
if only low-order VSHs are modeled, the sensor parameters can be obtained by simple
matrix pseudo-inversions. The sensor parameter estimates can then be enhanced by a
more involved optimization, taking into account the higher-order spatial structure of the
generated magnetic fields. We especially presented this method in the context of calibrating
OPM sensors for MEG.

We showed that the method was able to resolve relative positions and orientations
of fluxgate magnetometer channels with RMS errors of 1.0 mm and 0.2◦, respectively,
while the gain was estimated with an RMS error of 0.8%. Our method also yielded OPM
parameters that were close to our expectations; the OPM parameters allowed us to localize
magnetic dipoles with an average error of 3.3 mm.

5.1. Comparison to Previous Studies

Overall, the requirements for sensor parameter accuracies in (on-scalp) MEG are still
not fully understood. Generally, it can be stated that the required accuracy depends on
the signal-to-noise ratio and the desired spatial bandwidth (or spatial cutoff frequency)
(e.g., [12,34]), as higher spatial frequencies (or “spatial field modes”) are more sensitive
to errors. A recent simulation study suggested that in order to obtain similar or higher
accuracy with on-scalp MEG than with SQUID–MEG, RMS sensor position and orientation
errors should be <4 mm and <10◦, respectively [35]. The RMS errors obtained here with the
fluxgate magnetometer suggest that the proposed method can fulfill these requirements.

From the fluxgate measurement, we estimate that the position, orientation, and gain
errors of the method are roughly below 2.0 mm, 0.4◦, and 1.1%, respectively. These are
in line with the errors obtained with other recent calibration/localization methods for
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on-scalp MEG sensors. For example, Pfeiffer et al. (2020) demonstrated errors of less than
2 mm, 3◦, and 3%, respectively, with their magnetic method [17], while Gu et al. (2021)
estimated that the position and orientation errors of their optical method were less than
1 mm and 0.6◦, respectively [14].

Using the calibrated 48-channel OPM array, we were able to localize 5-mm diameter
hand-wound circular coils (magnetic dipoles) in a custom phantom, with an average error
of 3.3 mm. Using a commercial current dipole phantom (MEGIN Oy, Helsinki, Finland)
and optical co-registration of nine OPM sensors/channels (QuSpin Inc., Louisville, CO,
USA), Zetter et al. (2019) localized current dipoles with an average error of 2.1 mm [11].
More recently, Boto et al. (2022) combined non-synchronous triaxial OPM measurements
(25 sensors; 75 channels; QuSpin Inc.) to localize current dipoles in a custom phantom
with an error of 5.2 mm [36]. Our dipole localization error is thus similar to what has been
achieved in previous OPM studies.

5.2. Study Design and Caveats

For both fluxgate (Section 4.2.) and OPM (Section 4.3.) measurements, we chose the
field amplitudes to maximize the SNR. For the fluxgate, 12.5 nT was roughly the maximum
amplitude such that the currents that excite the homogeneous and gradient fields are
implemented without saturating the coil drivers. For OPMs, 0.5 nT was used to maximize
the SNR within the limits of the OPM linear range (approximately ±1 nT). Moreover, with
the OPMs, we wanted to use as high a field amplitude as possible, so as to reduce the effects
caused by the finite bit resolutions of the coil drivers’ digital-to-analog converters. The
digital-to-analog converters may cause quantization noise when implementing currents for
the homogeneous and gradient field components (Figure 3).

Our method is based on accurate measurement of the coil fields using a well-calibrated
magnetic sensor. For this task, we used a fluxgate magnetometer, whose datasheet specifies
the relative positions, orientations, and gains of the channels, as well as their errors.
Systematic errors and thermal drifts in the fluxgate parameters ultimately limit the accuracy
at which we can calibrate the OPMs using our method. Moreover, the spatial low-pass
filtering by the fluxgate may limit the accuracy at which higher-order VSH coefficients
can be estimated if the sensitive volume of the fluxgate channel becomes comparable to
the spatial frequency of the VSH component. We further note that scaling of the VSH
models may cause additional errors if the models do not scale linearly from the fluxgate
field amplitude range (~10 nT) to the OPM range (below 1 nT).

We lack the ground truth against which to compare the OPM sensor parameters. For
example, we expect that the CAD OPM positions do not perfectly reflect the real channel
positions. The CAD model uses the center of the laser beam profile in the vapor cell as the
channel position. However, the “magnetic center-of-mass” of the channel is defined by the
spin polarization profile in the cell. It is our understanding that the spin polarization is
not homogeneous in the vapor cell, and is larger on the side of the cell where the pump
laser beam enters the cell, shifting the center of mass of the channel towards the cell wall.
Thus, the distances between the CAD model and the obtained positions shown in Figure 5C
probably overestimate the position errors.

Ultimately, the OPM response nonlinearities—such as the cross-axis projection er-
ror [33]—may limit the accuracy at which the OPM sensor parameters can be obtained
with methods based on magnetic fields. However, as shown here, these errors may be
alleviated to some degree by constraining the optimization, by combining multi-axis mea-
surements. The sensor parameters obtained by using combined channel positions had
smaller average dipole localization error than those obtained with separate channel po-
sitions (3.3 vs. 4.0 mm; results not shown here). Additionally, the bit resolution of the
digital-to-analog converters driving the coils may have limited how accurately we could
implement the currents to generate the low-order VSH components (Figure 3) for the OPM
sensors, reducing the localization accuracy compared to the fluxgate magnetometer.
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5.3. Future Directions

The proposed method gives OPM positions and orientations in a common coordinate
frame. Additional steps are needed to co-register the OPMs with the subject’s head and,
ultimately, with MRI images. To accomplish that, digitized head-position indicator coils
could be localized with the OPM array, as is done traditionally with SQUID–MEG systems.
In addition, the coordinate system given by this method contains the field models of the
coils, which can be used to remove interference caused by the coils from the OPM data.

With the low-order field models, the sensor parameters can be obtained by pseudo-
inversion of two low-dimensional matrices. Due to the small number and low computa-
tional cost of the operations needed, this method might be well suited for fast real-time
tracking of the sensor parameters. Such tracking may be accomplished by feeding sinusoids
at different frequencies to the coils, with subsequent lock-in detection of the coil amplitudes.
For this approach, a frequency band must be reserved for the coil signals; the required
bandwidth will depend on the number of coils used and the desired time resolution. For
the tracking approaches, it may be beneficial to first run the full optimization routine
(Section 2.3) using static sensors to determine the sensor parameters as accurately as pos-
sible. For real-time tracking, the sensor parameters could be updated with the first-order
model. The model could also incorporate, for example, some priors based on how fast the
sensor parameters are likely to change.

We used a comprehensive fluxgate measurement of the coil magnetic fields to deter-
mine their VSH field models. We note that the fluxgate measurement of the coil fields was
performed in 2019, while the validation with the fluxgate and calibration of the OPM array
were carried out in 2021. It seems that the coil VSH models stayed quite accurate, even
though the shield was opened and degaussed numerous times between 2019 and 2021.
There are three compelling alternatives to the comprehensive but rather cumbersome flux-
gate measurement: First, the fluxgate measurement positions could be optimized to yield
the desired VSH coefficients with as low a number of measurements as possible. Second,
with optical tracking of the fluxgate position, a large number of measurements of the coil
fields could be collected rather quickly (see Refs. [37,38]). The spatial oversampling of the
coil fields could reduce the effects of random fluxgate positioning errors on the obtained
VSH coefficients. Lastly, instead of treating the sensors (to be calibrated with the method)
independently, the whole array could be treated jointly to leverage the spatial sampling
provided by the array to directly estimate the VSH coefficients and sensor parameters
from the excited coil fields, without a separate a priori measurement of the coil fields. This
approach would probably benefit from a large number of sensors in the array.

6. Conclusions

We proposed a method that uses external magnetic field generators to localize a
magnetic field sensor by minimizing the overall error between the field models of the
generators and the measurements by the sensor. We modelled the magnetic fields of the
generators using vector spherical harmonics based on a priori measurements of the fields.
To simplify the computations in method, we proposed a way to estimate the gain, position,
and orientation of a magnetic sensor by using homogeneous and first-order gradient fields;
we further showed how these estimates can be enhanced with nonlinear optimization. This
method allowed us to estimate the relative positions, orientations, and gains of the channels
of a fluxgate magnetometer with RMS errors of 1.0 mm, 0.2◦, and 0.8%, respectively. We
used this method to calibrate a 48-channel optically pumped magnetometer array; the
calibrated array allowed us to localize magnetic dipoles with an average error of 3.3 mm.
Our results demonstrate the feasibility of using this method to calibrate and localize
optically pumped magnetometers for magnetoencephalography.
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Appendix A

Here, we derive Equations (5) and (6) for obtaining the sensor parameters with the
first-order VSH models. The vector sensor gain is

→
g = gn̂ = gx êx + gy êy + gz êz, where hat

denotes unit vector and êx denotes the unit vector along the x-axis. Supposing that we have

a homogeneous field
→
B i = Hi,x êx + Hi,y êy + Hi,z êz, the sensor response to the field is as

follows:
bi =

→
g ·
→
B i = Hi,xgx + Hi,ygy + Hi,zgz. (A1)

If we have a collection of these equations, they can be written in the matrix form as
follows:

bH = Hg, (A2)

where the elements of the vectors and matrices are defined as bH[i] = bi, H[i, j] = Hi,j,
g[j] = gj, and j ∈ {x, y, z}, where the index-to-coordinate mapping is as {x : 1, y : 2, z : 3}.
The sensor gain can then be solved from Equation (A2) using the pseudo-inverse, as shown
in Equation (5). Please note that we use the pseudo-inverse because the matrix H is not
necessarily square.

Next, we model the field of the ith gradient coil in a matrix form as follows: Bx,i
By,i
Bz,i

 =

 Gxx,i Gyx,i Gzx,i
Gyx,i Gyy,i Gyz,i
Gzx,i Gyz,i −Gxx,i − Gyy,i

 x
y
z

+

 BH
x,i

BH
y,i

BH
z,i

⇔ Bi = Gir + BH
i , (A3)

where the elements of the gradient matrix Gi are defined as Gxy,i = dBx,i/dy, and BH
x,i are the

homogeneous components of the gradient field. The gradient matrix is defined so that its

elements satisfy Maxwell’s equations in a source-free space ∇·
→
B = 0 and ∇ ×

→
B = 0,

i.e., the sum of its diagonal elements must be zero (Gxx,i + Gyy,i − Gxx,i − Gyy,i = 0), and
it has to be symmetrical (Gxy,i = Gyx,i). In other words, two of the three diagonal gradients
are independent, while three off-diagonal gradients are independent. A measurement of
the ith gradient coil can be written as follows:

bi =
→
g ·
→
B i = (Gi[1, :]g)x + (Gi[2, :]g)y + (Gi[3, :]g)z +

(
BH

i

)T
g, (A4)
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where Gi[j, :] denotes the jth row of the gradient matrix of the ith coil. A collection of the
gradient coil measurements can then be written as follows:

bG = Gr + HGg, (A5)

where the matrix elements are defined as bG[i] = bi, G[i, j] = Gi[j, :]g, and HG[i, :] =(
BH

i
)T . Equation (A5) can then be solved to yield Equation (6).
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