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Coherently time-varying metasurfaces

M. H. Mostafa,∗ A. Dı́az-Rubio, M. S. Mirmoosa, and S. A. Tretyakov
Department of Electronics and Nanoengineering, Aalto University, P.O. Box 15500, FI-00076 Aalto, Finland

Known coherent metasurfaces control interference of waves of a given frequency with other co-
herent waves at the same frequency, either illuminating from a different direction or created as
intermodulation products. In this paper, we introduce a class of metasurfaces that are modulated in
time coherently with the illuminating radiation. Importantly, such modulation opens a possibility to
control reflection, absorption, and transmission at multiple frequencies, including illuminations by
two or more incoherent waves. In particular, we study dynamic resistive layers and show how to use
them to design thin multi-frequency perfect absorbers that overcome the bandwidth limit for static
linear absorbers. Furthermore, we demonstrate possibilities of remote tuning of the absorption level.
We hope that this work opens up novel avenues in wave engineering using coherent modulation of
metasurface parameters.

I. INTRODUCTION

Wave interference is the basis of numerous devices such
as phased-array antennas [1], interferometers [2], coher-
ent absorbers [3, 4], and Bragg reflectors. A classical
example of the possibilities offered by interference phe-
nomena in the design of practical devices is the Salis-
bury screen [5]. In that device, full absorption of incident
power in a lossy sheet of negligible thickness is realized by
placing a mirror at the quarter-wave distance, creating
destructive interference of reflected waves. Similar con-
cept is applied to one class of coherent perfect absorbers
that are based on coherent illumination of two sides of
a sheet using a splitter or an independent phase-locked
generator [6–8], realizing destructive interference of re-
flected and transmitted waves required to ensure perfect
absorption. Recently, this notion of coherent illumination
of thin sheets was extended to surface-inhomogeneous co-
herent metasurfaces capable of locally controlling the in-
terference of the illuminating waves along the surface [9].
Another more recent example of possibilities offered by
wave interference is perfect absorption in complex scat-
tering and disordered media [10, 11]. It was shown
that by inducing purposeful perturbations in random
medium’s disorder, it is possible to obtain perfect absorp-
tion conditions [12]. In all these works, e.g. [6–12], there
is an important assumption that the systems are tem-
porally stationary (time-invariant), and the interference
phenomena are controlled only by illuminating waves.

An alternative approach to engineer interference phe-
nomena is to exploit the frequency mixing produced
in temporally nonstationary (time-varying) systems [13].
For instance, one can consider classical parametric am-
plifiers where periodical modulation of a reactive ele-
ment makes it possible to amplify signals passing through
it [14]. In this case, to allow interaction between the in-
put signal at a frequency ωs and the modulation prod-
ucts, the dynamic system should be coherently pumped
at ωm = 2ωs. The same operational principle has
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been applied for enhancing wireless transfer of power
and information [15] and for designing time-modulated
metasurfaces with exotic properties such as nonreciproc-
ity [16]. Similar to the static coherent systems that re-
quire precise synchronization of the incident waves, para-
metric systems relying on interference between the input
signal and the modulation products also require synchro-
nization.

Known coherent devices control interference of waves
of a given frequency with other coherent waves at the
same frequency, either illuminating from a different di-
rection or created as intermodulation products. In this
paper, we introduce coherently time-varying metasur-
faces that are modulated at the beating frequency or
frequencies of two or more incident waves. A concep-
tual schematic for such a metasurface illuminated by two
waves at different frequencies is shown in Fig. 1. We
show that coherent interactions of modulated metasur-
face with the frequency harmonics of the incident radi-
ation can be employed to fully tailor the frequency re-
sponse of the metasurface at multiple frequencies simul-
taneously. In particular, we present a controllable thin
metasurface that fully absorbs incident waves at several
frequencies.

We start our analysis with a general study of dy-
namic resistive boundaries under multi-frequency illu-
mination. In contrast to the well-studied time-varying
reactive boundaries or metasurfaces (e.g., Refs. [17–20])
and reactive elements (e.g., Ref. [13] and Refs. [21–23]),
time-varying resistive boundaries and elements have not
been sufficiently studied, and there are only a few works
about them [24–29]. We emphasise that, while temporal
modulation has been intensively used recently as a tech-
nique to realize many applications (such as nonreciproc-
ity [30, 31], one-way beam splitting [32], power combin-
ing [20], frequency conversion and generation of higher-
order frequency harmonics [33–35], parametric amplifi-
cation [36, 37], enhancing wireless power transfer [15],
control of scattering and radiation [38–42], and so forth),
much less attention has been devoted to the temporal
modulation of losses in electromagnetic systems despite
the possibility to offer intriguing features and promising
applications. In this paper, we uncover that coherently
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FIG. 1. Conceptual view for coherently time-varying bound-
ary under multi-frequency illumination.

time-varying lossy boundaries under multi-frequency il-
luminations are able to exhibit tunable virtual reactive
response. Subsequently, we show how to efficiently use
this characteristic to fully control the frequency response
of the metasurface. In addition, we propose a realistic
topology for the design of a multifrequency perfect ab-
sorber that overcomes the bandwidth limit of linear static
absorbers. For any time-invariant and passive metasur-
face absorber there is a trade-off between the absorber
thickness and the bandwidth. In particular, the Rozanov
limit [43] defines the upper bound for the bandwidth
to thickness ratio for linear static Dällenbach screen ab-
sorbers. The limit elucidates that perfect absorption can
be realized only for monochromatic input, at a single
frequency, and the same conclusion applies to any single-
resonance metasurface absorber. Here, we show that by
introducing proper coherent time modulation of a resis-
tive sheet, it is possible to create a linear thin absorber
that perfectly absorbs multiple frequencies simultane-
ously, overcoming this bandwidth limitation [44]. Com-
pared to other means for enhancing absorption (reducing
reflections) of metasurfaces which are based on spread-
ing reflections over wide frequency band and maintain-
ing reflections under certain level [45–47], the proposed
approach ensures increasing the power dissipated in the
metasurface, which makes reflection negligible over the
whole frequency spectrum. Finally, we show that it is
also possible to remotely tune the level of absorption.

It is important to note that throughout our analysis,
we consider modulation functions such that the effective
resistance of the resistive sheet or boundary remains pos-
itive at all times. Thus, the system under study does
not exhibit gain, and it remains lossy and uncondition-
ally stable, unlike the case of time-varying reactive ele-
ments. Furthermore, we consider slow temporal modu-
lation where the modulation frequency is much smaller
than the input frequencies. This approach is much more
practical than the fast modulation conventionally used in
most parametric devices.

The paper is organized as follows. In Section II, we

theoretically study dynamic resistive boundaries under
multi-frequency illumination. In Section III, we describe
our proposed structure for a multifrequency perfect ab-
sorber. Finally, in Section IV, we conclude the paper.

II. DYNAMIC RESISTIVE BOUNDARY
UNDER MULTI-FREQUENCY ILLUMINATION

We start the analysis by considering a dispersion-
less flat resistive boundary that extends over the xy-
plane and whose properties change in time, as it is il-
lustrated in Fig. 2(a). The electromagnetic properties of
the boundary can be modeled by the effective conduc-
tance g(t) = 1/r(t) in which r(t) denotes the effective
resistance. To simplify the mathematical derivations, we
analyze the metasurface using a transmission-line model
that is shown in Fig. 2(b). Based on this model, the
tangential components of the total electric and magnetic
fields on the surface of the boundary are analogous to the
total voltage vtot and electric current itot in the circuit
(Etot −→ vtot and Htot −→ itot). Note that we assume that
the electromagnetic fields do not penetrate behind the
boundary, and, therefore, the resistive boundary modeled
by a time-modulated resistor is terminating the transmis-
sion line.

At the boundary, the total voltage and current are
written as combinations of the incident and reflected
voltages vtot(t) = v+(t) + v−(t) and itot(t) = [v+(t) −
v−(t)]/η0, where v+ and v− represent the incident and
reflected voltages, respectively, and η0 is the intrinsic
impedance of the background medium (assumed to be
free space). Also, the boundary condition at the termina-
tion reads itot = g(t)vtot. By applying these relations, we
find the waves reflected by the dynamic resistive bound-
ary as

v−(t) =

[
1− 2g(t)η0

1 + g(t)η0

]
v+(t) = γ(t)v+(t). (1)

In this expression, we define the parameter γ(t) as the
instantaneous reflection coefficient at the boundary. It is
clear that by properly time modulating the conductance
(or resistance) of the boundary, we can engineer the in-
stantaneous reflection coefficient, and, consequently, the
scattering properties at different frequencies.

In what follows, we will study how temporal variation
of conductance can be used to control the interference
phenomena when the boundary is simultaneously illumi-
nated by two plane waves at different frequencies. In this
scenario, the input voltages can be written as

v+(t) = a1 cos (ω1t+ φ1) + a2 cos (ω2t+ φ2), (2)

where a1,2, ω1,2, and φ1,2 are the amplitudes, frequencies,
and phases of the input harmonics, respectively. Let us
write the instantaneous reflection coefficient as γ(t) =
1− χ(t) and consider the temporal variation of the form
χ(t) = χ0 + χm cos (ωmt+ φm) in order to simplify the
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FIG. 2. Multi-frequency illumination of a dynamic resistive boundary. (a) Schematic representation of the temporally modulated
resistive boundary. (b) Equivalent circuit model of the proposed structure at normal incidence. (c) Effective response of the
boundary at the input frequencies. (d)–(f) Study of the scattering properties when f1 = 1 GHz, f2 = 1.5 GHz, a1 = a2 = 1 V,
φ1 = φ2 = 0, χm = 0.5, and φm = π/2 for different values of χ0.

analysis. Now, by using these definitions, the reflected
voltages are expressed as

v−(t) = (1− χ0)v+(t)− χm cos (ωmt+ φm)v+(t). (3)

According to Eq. (1), we simply conclude that the func-
tion χ(t) has maximum and minimum values of 2 and
0, respectively, for positive values of g(t). Thus, since
we consider a lossy resistive boundary at every moment
in time [g(t) > 0], the modulation parameters are con-
strained to

χ0 + |χm| < 2, χ0 − |χm| > 0. (4)

From the expression of the reflected voltage in Eq. (3),
we see that in order to enhance the interaction be-
tween harmonics, the modulation frequency should sat-
isfy ωm = ω2−ω1. In this case, the signal is decomposed
to four reflected harmonics: v−(t) = v−1 (t) + v−2 (t) +

v−3 (t) + v−4 (t) that are given by

v−1 (t) =

(1− χ0)a1 cos (ω1t+ φ1)− a2

2
χm cos (ω1t+ φ2 − φm),

v−2 (t) =

(1− χ0)a2 cos (ω2t+ φ2)− a1

2
χm cos (ω2t+ φm + φ1),

v−3 (t) = −a1

2
χm cos

[
(ω2 − 2ω1)t+ φm − φ1

]
,

v−4 (t) = −a2

2
χm cos

[
(2ω2 − ω1)t+ φm + φ2

]
.

(5)

Here, it is worth noting the difference with the conven-
tional parametric systems where by modulating at the
double frequency of the input signal, we control the inter-
ference produced at the input frequency. In the above ex-
pressions, the response at each input frequency depends
on the amplitudes and phases of both input harmonics
and on the modulation parameters, opening more degrees
of freedom in engineering the desired response. In addi-
tion, we use slow modulation in which the modulation
frequency is much smaller than the input frequencies.
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Hence, employing this approach is more practical than
the double-frequency modulation.

To evaluate the effect produced by multi-frequency il-
luminations of dynamic boundaries, one can analyze the
scattered fields at different frequencies. The complex am-
plitudes of the scattered waves are written as

V −ω1
= (1− χ0)a1e

jφ1 − a2

2
χme

j(φ2−φm),

V −ω2
= (1− χ0)a2e

jφ2 − a1

2
χme

j(φm+φ1),

V −ω2−2ω1
= −a1

2
χme

j(φm−φ1),

V −2ω2−ω1
= −a2

2
χme

j(φm+φ2).

(6)

Figure 2 presents the results of a study of the scatter-
ing properties of a metasurface when f1 = 1 GHz, f2 =
1.5 GHz, a1 = a2 = 1 V, φ1 = φ2 = 0, fm = 0.5 GHz,
χm = 0.5, and φm = π/2 for different values of χ0. The
temporal variation of the conductance for different val-
ues of χ0 is shown in Fig. 2(d), and the amplitudes and
phases of the reflected waves are plotted in Fig. 2(e) and
Fig. 2(f), respectively. While the boundary is purely re-
sistive, the reflected waves are not in phase with the inci-
dent waves due to the non-zero modulation phase. Thus,
the phase of the reflected waves can be tuned by prop-
erly designing the modulation phase. In addition, we see
that the parameter χ0 controls the difference between
the amplitudes of the harmonics at the input frequencies
and the parasitic harmonics. Based on Eq. (6), we ob-
serve that the amplitudes of the parasitic harmonics are
controlled by varying the amplitude of the modulation
function χm. This feature will play an important role
in the design of practical devices where the presence of
parasitic harmonics is undesired.

It is also important to notice that in this example, the
amplitudes of the reflected waves at the input frequen-
cies are equal because we have assumed that a1 = a2.
However, the amplitudes can be engineered to produce
asymmetric reflection or even cancel reflection at one
of the frequencies while allowing reflection at the other.
The response of the boundary at the input frequencies
can be analysed by using a complex reflection coefficient,
defined as the ratio between the complex amplitude of
the reflected and incident waves at each input frequency:
V −ωi

= ΓωiV
+
ωi

. The expressions for these reflection coef-
ficients read

Γω1
= (1− χ0)− a2

2a1
χme

j(φ2−φm−φ1),

Γω2 = (1− χ0)− a1

2a2
χme

−j(φ2−φm−φ1).
(7)

As it is clear, the ratio between the amplitude of the
input harmonics, the modulation properties, and the re-
lation between the phases allow us to control not only the
magnitude of the reflection coefficients but also the corre-
sponding phases. Figure 3 demonstrates how by varying
the ratio between the amplitudes of the input harmonics,
the reflection coefficients can be controlled. If the ratio

(a)

Ref
lect

ion
 coe

ffic
ient

(b)

FIG. 3. Control of the reflection coefficient by a dynamic
resistive boundary. (a) Time variation of the normalized con-
ductance, where fm = 0.5 GHz. (b) Scattering properties of
the metasurface at the input frequencies.

is not unity, the reflection becomes asymmetric. We see
that the effect of increasing a2 is negligible on reflection
at frequency ω2, but it is quite strong on reflection at
frequency ω1. This asymmetric response is used later
to reduce the parasitic harmonics generated due to the
modulation, while inducing a strong effect at the input
frequencies.

For a static resistive boundary, the reflected waves are
in phase with the incident waves. However, when the re-
sistive boundary is modulated in time, we find that the
phase of the reflected waves depends on the modulation
phase. As a result, by designing the modulation phase,
we can control the phase difference between the incident
and reflected waves. Such reflection is equivalent to the
reflection from a static boundary modeled by a parallel
connection of resistive and reactive elements. Therefore,
the response described by the complex reflection coeffi-
cient at each input frequency can be interpreted by the
static equivalent circuit shown in Fig. 2(c). Doing some
algebraic manipulations, the effective parameters of this
equivalent circuit at each of the input frequencies ωi can
be written as

Geq
ωi

=
2
(

Γ
(R)
ωi + 1

)
η0

(
Γ

(R)
ωi + 1

)2

+ η0Γ
(I)
ωi

2
− 1

η0
,

Beq
ωi

= − 2Γ
(I)
ωi

η0

(
Γ

(R)
ωi + 1

)2

+ η0Γ
(I)
ωi

2
,

(8)

where Γ
(R)
ωi and Γ

(I)
ωi are the real and imaginary parts of

the reflection coefficient at the corresponding input fre-
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FIG. 4. Current distortion due to modulation. (a) Temporal
variation of the total voltages and currents. (b) Amplitude
and phase of the total currents and voltages in frequency do-
main.

quency. We see that modulation of a resistive bound-
ary creates a virtual reactive component that can be
fully controlled by engineering the modulation param-
eters. Notice that the virtual reactive component should
not be interpreted as a capacitive or inductive load. It is
important to stress that there is no energy storage in the
system, and the existence of a virtual reactive component
in the equivalent circuit has its origin from the phase de-
lay created as a consequence of the interference between
the input harmonics and the modulation products. We
see that the effective parameters depend on the reflec-
tion coefficient at the same frequency, and, interestingly,
they can have different values at different frequencies as
the reflection can be asymmetric. Consequently, design-
ing the modulation parameters gives us an opportunity
to fully control reflection as if there were different circuit
elements for input signals at different frequencies. This
is an extremely powerful functionality, as it can be used
to match a boundary at multiple frequencies simultane-
ously.

For better understanding of these phenomena, we can
analyze the total voltages and currents that are repre-
sented in Fig. 4 when the modulation function is defined
by fm = 0.5 GHz, χ0 = 1, χm = 0.5, and φm = π/2,
and the input signals by f1 = 1 GHz, f2 = 1.5 GHz,
a1 = a2 = 1 V, and φ1 = φ2 = 0. Figure 4(a) shows a
comparison of the temporal variation of the total voltage
and current where we can see the effect produced by the
harmonic distortion. For a deeper study of the harmon-
ics, we represent the total voltages and currents in the
frequency domain, see Fig. 4(b). We observe phase differ-
ences between the voltages and currents of each harmonic
that are responsible for current distortions. To evaluate
the effect of the harmonic distortion on the total power
dissipated in the boundary, we calculate the power car-
ried by the reflected harmonics. The individual average

power transported by each harmonic can be written as

P−ω1
=

a2
1

2η0

[
(1− χ0)2 +

χ2
m

4

a2
2

a2
1

− a2

a1
(1− χ0)χm cos Φ

]
,

P−ω2
=

a2
2

2η0

[
(1− χ0)2 +

χ2
m

4

a2
1

a2
2

− a1

a2
(1− χ0)χm cos Φ

]
,

P−ω2−2ω1
=

a2
1

2η0

χ2
m

4
,

P−2ω2−ω1
=

a2
2

2η0

χ2
m

4
,

(9)

where Φ = φ1 +φm−φ2. From this equation, we see how
the reflected power, and, consequently, the absorption in
the resistive layer are modified by the time modulation.
The final expression for the absorbed power A is found
by subtracting the total average power carried out by the
harmonics of the reflected waves from the total average
incident power. This way we find that

A =

(
2χ0 − χ2

0 −
χ2
m

2

)
(a2

1 + a2
2) + 2a1a2(1− χ0)χm cos Φ

2η0
.

(10)
Absorption phenomena in this system are similar to
what happens in networks with nonlinear loads where
the generation of spurious harmonics (e.g., P−ω2−2ω1

and

P−2ω2−ω1
) reduces the power factor, and, consequently, re-

duces the active power absorbed by the loads. Thus, to
assure the maximum absorption, spurious reflected har-
monics should be minimized, thus, χm has to be relatively
small.

It is also important to note that the modulated resis-
tive boundary is lossy as long as the conditions in Eq. (4)
are met. These conditions assure that the resistance of
the boundary is always positive, meaning that at every
moment of time Ohm’s law reads itot(t) = vtot(t)/r(t)
with the voltage and current having the same sign,
which implies instantaneous power dissipation rather
than power generation. A time-modulated positive re-
sistance supports only forced oscillations, and it is not
possible to sustain free oscillations in a circuit with total
positive resistance. This is confirmed by Eq. (1), where
the instantaneous reflection coefficient can have values
−1 < γ(t) < 1 for positive values of g(t). It can have val-
ues outside this range only when the resistive boundary
has a negative value, in which case the resistive boundary
is introducing gain to the incident signal.

For time-varying reactive elements, there is one term
added in the voltage-current relation due to the non-zero
capacitance/inductance time derivative, and this term in-
dicates power gain/loss due to the exchange of power be-
tween the main circuit and the modulation circuit. How-
ever, for time-varying positive resistive elements, Ohm’s
law has the same formulation as for static resistors, indi-
cating that it is possible to modulate resistive elements
without exchanging power with the modulation circuit.
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III. MULTI-FREQUENCY PERFECT
ABSORPTION BY ULTRA-THIN

METASURFACES

To understand new possibilities offered by multi-
frequency illumination of coherently time-modulated sur-
faces, let us consider a realistic metasurface structure [44]
shown in Fig. 5(a). This reflective metasurface consists
of a grounded dielectric layer with the relative permit-
tivity εd and thickness d. A periodical array of thin
metal patches (with an electrically small period) is posi-
tioned on top of the substrate, and, over the patches,
a dispersionless time-varying resistive sheet is placed.
A dispersionless thin resistive sheet for microwave ap-
plications can be realized as a thin conductive (metal)
sheet, see e.g. [48]. The sheet resistance of thin lay-
ers of conductors is 1

σdr
, where σ is the material con-

ductivity and dr is the sheet thickness. Since conduc-
tivity of metals is constant in wide frequency ranges,
the sheet resistance does not depend on frequency, and
it can be modulated by tuning the conductivity [44].
Such metasurface can be modeled by the equivalent cir-
cuit in Fig. 5(b). The grounded substrate is repre-
sented by a shorted transmission line with the charac-
teristic impedance ηd =

√
µ0/(ε0εd). Considering nor-

mal incidence, the equivalent shorted transmission line
can be viewed as a reactive load whose impedance equals
Zd = jηd tan(kdd), where kd = ω

√
µ0ε0εd. The patch ar-

ray has a capacitive behaviour, and it can be modeled by

the sheet capacitance Cm = 2εeffε0D ln
(

csc π
2(p+1)

)
/π,

where εeff = (εd + 1)/2 and p = (D − `)/`. Finally,
with the presence of the patch array, the resistive layer
is partially shorted and has an effective sheet resistance
reff(t) = r(t)`/(D − `) [49].

Next, we analyse this metasurface when it is illumi-
nated by a multifrequency periodical input signal de-

fined by v+(t) =
∑N
n=−N an cos(ωnt), where 2N + 1 is

the number of input harmonics. We consider spectra
formed by several harmonics symmetrically located at
the two sides of the resonance frequency of the struc-
ture that satisfies ω0 = (ωn + ω−n)/2. The harmonic
at ω0 we call control signal, because it can be used to
control absorption at other frequencies. In this paper,
we analyze the response of the structure when the effec-
tive conductance of the lossy layer varies according to

geff(t) = 1/reff(t) = g0 +
∑N
k=1 g0mk cos(ωmkt + φmk),

where mk, φmk are the modulation depths and phases,
and ωm|n| = ω|n| − ω0 are the frequencies of the modu-
lation harmonics. We will show that by properly tuning
the modulation parameters and the control signal’s am-
plitude a0, perfect absorption at all input frequencies can
be achieved even for ultrathin metasurfaces.

In the previous section, we analysed how the modula-
tion of the resistive boundary modifies the reflection co-
efficient, which was a powerful formulation that allowed
us to properly analyse the scattering properties of the
structure. However, the structure that we study in this

section, is also reactive, and analytically formulating the
reflection coefficient for a boundary consisting of a time-
varying resistive layer in parallel with reactive layers is
mathematically complicated. To keep the mathematical
formulation as simple as possible, we perform the analysis
differently. Let us assume that the structure is reflection-
less, that is, the voltage at the input port equals to the
incident voltage, as shown in Fig. 5(c). In this case, the
current in the resistive sheet can be written in terms of
the time-varying effective conductance as

iR(t) =

T1︷ ︸︸ ︷
N∑

n=−N
ang0 cos(ωnt)

+

T2︷ ︸︸ ︷
N∑

n=−N
an cos(ωnt)

N∑
k=1

g0mk cos(ωmkt+ φmk) .

(11)

Here, T1 is the current produced in the resistive element
in case of no modulation applied, and T2 is the current
produced due to modulation (modulation products).

To analyse the scattering properties, we need to calcu-
late currents flowing in the reactive layers. If we consider
the grounded substrate to be electrically thin, we can use
the approximation Zd ≈ jωLd where Ld = µ0d. Hence,
the total electric current through this effective inductance
and the capacitive sheet modeling the metallic patches is
written as

iL(t) + iC(t) =

N∑
n=−N

[
1

Ldωn
− Cmωn

]
an sin(ωnt), (12)

where −1
Ldωn

and Cmωn are the corresponding suscep-
tances for the inductance and capacitance, respectively,
and Bn = −1

Ldωn
+ Cmωn is the total susceptance. As for

any parallel resonator, at frequencies ωk, the total sus-
ceptances Bk are positive (capacitive), and at frequen-
cies ω−k, the total susceptances B−k are negative (in-
ductive). For simplicity, we assume that |Bk| = |B−k|,
therefore, they are equal in magnitude but have the op-
posite signs. Finally, according to Fig. 5(c), the total
electric current reads it(t) = T1 + T2 + iL(t) + iC(t). As-
suming that g0 = 1/η0, and spurious harmonics (defined
as the frequency components not present in the incident
signal, but excited due to modulation) are negligible,
the condition for perfect total absorption is met when
iL(t) + iC(t) = −T2. The frequency mixing that takes
place in T2 produces modulation products with frequen-
cies ω±k. To obtain perfect absorption, every modulation
product should compensate the reactive current at the
corresponding frequency. As a result, the condition for
perfect absorption can be reformulated in the frequency
domain as IL(ωn) + IC(ωn) = −T2(ωn), that is satisfied
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FIG. 5. Impenetrable metasurface with a time-modulated resistive layer. (a) Schematic representation of a time-varying
reflective metasurface. (b) Equivalent circuit model of the proposed structure for normal incidence. (c) Simplified version
of the equivalent model and current distribution. (d) Simulation schematic from SIMULINK. (e) Comparison between the
reflected voltage’s amplitude squared as a function of frequency in the static and dynamic cases when m1 = 0.9 and a0 = 1 V.
(f) Comparison between the reflected voltage’s amplitude squared as a function of frequency in the static and dynamic cases
when m1 = 0.1 and a0 = 9 V.

when

φm|n| =
3π

2
,
|a0g0m|n||

2
=

∣∣∣∣[ 1

Ldωn
− Cmωn

]
an

∣∣∣∣ .
(13)

As the reactive currents iL(t) + iC(t) are antisymmetric
around the resonance frequency, having negative values
at frequencies ωk and positive values at frequencies ω−k,
the generated modulation products should be also an-
tisymmetric (with the opposite sign convention). The
required antisymmetry is obtained by choosing the mod-
ulation phase φm|n| = 3π

2 . As a result, modulation prod-
ucts at frequencies ωk are positive, and modulation prod-
ucts at frequencies ω−k are negative. Thus, modulation
products are equal in magnitude with the reactive cur-
rents and have the opposite sign, so they cancel each
other, and perfect absorption at multiple frequencies is
achieved. In addition, due to the antisymmetry, the mod-

ulation products produced at the resonance frequency ω0

are equal and have the opposite signs, so they cancel
out. Thus, the signal at the resonance frequency is not
affected by modulation. Notice that the preceding cal-
culations are accurate only when the amplitudes of the
spurious harmonics are negligibly small. Otherwise, it
will be impossible to satisfy iL(t) + iC(t) = −T2, as T2

has spurious frequency components that have no equiva-
lency in iL(t)+iC(t). To keep spurious harmonics negligi-
bly small, mk should be relatively small. This condition
can be ensured without compromising performance, as
a0 can be increased to obtain the desired performance
while maintaining mk small.

Importantly, these results are obtained using slow
modulation, where the modulation frequency is much
smaller than all the input frequencies, which is more prac-
tical than the double frequency modulation usually used
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in parametric devices. In addition, it does not matter
how large the reactive currents are, we can always ob-
tain perfect absorption. This can be seen from Eq. (13)
where the modulation products’ magnitudes depend on
a0, which has no theoretical limit and can be as large
as desired. As a result, this technique works for ultra-
thin metasurfaces: no matter how large is the difference
ωn − ω0, perfect absorption can be obtained at ωn.

To validate the design conditions obtained above, we
target a metasurface to absorb incident power at three
frequencies: 0.95 GHz, 1 GHz, and 1.05 GHz, where
1 GHz is the control frequency. In this scenario, there
is only one modulation term with the frequency ωm1 =
2π50× 106 rad/sec, modulation depth m1, and modula-
tion phase φm1. Next, we select easily realizable struc-
ture parameters: the permittivity of the grounded dielec-
tric layer is εd = 12, and the thickness d = 9.54 mm ≈
λ/31 (the conditions that are equivalent to an induc-
tive response defined by Ld = 12 nH). An array of
metal patches is designed to produce a resonance at the
control frequency, which corresponds to the period of
D = λ0/10 = 30 mm and d = 2.83 mm (the equivalent
capacitance Cm = 2.1 pF). According to the condition
for having perfect absorption at all three frequencies [see
Eq. (13)], the amplitude of the control signal and the
modulation depth must satisfy a0m1 ≈ 0.9a±1. To ver-
ify the design, we first assume that all the input harmon-
ics have the same amplitude a0 = a±1, and the ampli-
tude and phase of the modulation function are m1 = 0.9
and φm1 = 3π

2 , respectively, which satisfies the condi-
tion in Eq. (13). Next, we simulate the equivalent circuit
presented in Fig. 5(c) using SIMULINK, as presented
in Fig. 5(d). The incident and reflected voltage signals
are extracted from SIMULINK, then the absorption and
the reflected voltage’s amplitude squared as a function
of frequency are calculated, and the results are shown in
Fig. 5(e). We can see that the reflected power at the in-
put frequencies is reduced by the modulation. However,
because the modulation depth m1 is not small, the power
of the spurious harmonics is not negligible, as expected
from the initial analysis.

To reduce the power of the spurious harmonics in the
reflected spectrum, we can consider an alternative sce-
nario where a0 = 9a±1 and m1 = 0.1. The reflected
voltage amplitude squared as a function of frequency for
this configuration is presented in Fig. 5(f), where we can
see that in this case the power of all spurious harmon-
ics is drastically reduced, and the structure behaves as a
perfect absorber at all input frequencies. If we compare
the absorption of the input harmonics with the equivalent
static absorber, we see a considerable improvement. This
example shows the significance of the multi-frequency il-
lumination, as controlling a0 allows us to boost the per-
formance. Such boost cannot be obtained in conventional
parametric devices, as the performance depends only on
the modulation depth, which is limited in most cases. It
is important to stress that the benefits of this technique
become more significant for thin metasurface absorbers,

where the resonant system created by the grounded di-
electric and the array of patches produces a narrow-band
resonance. As it is described by Eq. (13), for thinner ab-
sorbers with large reactive currents, the amplitude of the
control signal a0 can be increased as much as desired to
obtain perfect absorption.

Next, we explore the possibility to perfectly match a
higher number of frequencies to a narrow-band absorber.
We consider an input signal formed by four harmonics
at 0.95 GHz, 0.97 GHz, 1.03 GHz, and 1.05 GHz, while
the control signal is at 1 GHz. Those harmonics give rise
to modulation frequencies of ωm1 = 2π30 × 106 rad/sec
and ωm2 = 2π50 × 106 rad/sec. An array of patches is
designed to produce a resonance with the shorted trans-
mission line at 1 GHz with Ld = 3 nH, Cm = 8.44 pF,
and g0 = 1/η0. The structure parameters correspond-
ing to these values are εd = 12, D = λ0/8 = 37.5 mm,
` = 51 µm, and d = 2.367 mm ≈ λ/125. For simplic-
ity, we assume a±2 = a±1 = 1 V. Perfect absorption of
all harmonics is realized with φm1,2 = 3π/2, a0 = 10 V,
m1 = 0.245, and m2 = 0.38. Note that we can decrease
mk even more by increasing a0. Numerical results ob-
tained from SIMULINK are shown in Fig. 6. The simula-
tion schematic is shown in Fig. 6(a), where a transmission
line with εd = 12 and d = 2.367 mm is used to model the
dielectric layer. The time-modulated effective resistance
and the absorption are shown in Fig. 6(b) and Fig. 6(c),
respectively. In the absence of modulation, the meta-
surface provides narrow-band absorption, however, when
modulation is present, absorption is boosted nearly to
perfection for all harmonics. For example, at 0.95 GHz,
the absorption increases from approximately 50% to 99%
overcoming the bandwidth limit of thin static linear ab-
sorbers [43, 44]. At the same time, the modulation does
not reduce the absorption at the control frequency, as
the modulation products coupling to this frequency can-
cel out due to the antisymmetry. The reflected voltage
amplitude squared as a function of frequency is shown in
Fig. 6(d), where we can see that it is negligible in case of
modulation. The spurious harmonics are also negligible
due to the large amplitude of the control signal a0. It is
important to stress that the incident power is perfectly
absorbed in the resistive layer, and total reflected power
is negligible over the whole frequency spectrum. In ad-
dition to boosting absorption to the maximum, it is also
possible to tune the absorption to any desired value by
varying a0 and φmk. Figure 6(e) shows the absorption as
a function of a0 and φmk. For φm1,2 = 3π

2 (red dashed
lines) the absorption is enhanced while a0 < 10 V, and
for φm1,2 = π

2 (blue dashed lines) the absorption is de-
creased while a0 < 3.5 V. In addition, different values
can be assigned to φm1 and φm2, providing the ability to
increase the absorption at some frequencies and decrease
it at other frequencies. Figure 6(e) confirms that the ab-
sorption is fully tunablfe to any value between 0 and 1 by
properly engineering the control signal and modulation
parameters. In addition, it also shows that the system
is insensitive to small changes in amplitudes that might
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FIG. 6. Perfect absorption, remote tunability, and robustness in dynamic metasurfaces. (a) SIMULINK simulation schematic.
In this schematic a transmission line with εd = 12 and d = 2.367 mm is used to model the dielectric layer. (b) The effective
resistance required to obtain perfect absorption at 0.95 GHz, 0.97 GHz, 1 GHz, 1.03 GHz, and 1.05 GHz when a0 = 10 V
and a±2 = a±1 = 1 V. (c) Comparison between the absorption of the static and dynamic structures. (d) Comparison between
the reflected voltage amplitude squared as a function of the frequency for static and dynamic structures. (e) Tunability of
absorption by controlling the amplitude of the control signal and the modulation phase. (f) Absorption at frequency 0.95 GHz
as a function of the modulation phase.

arise from fabrication/synchronization imperfections. To
further check the sensitivity of the proposed technique,
Fig. 6(f) shows the absorption at frequency 0.95 GHz as
a function of the modulation phase angle, which proves
that the system is insensitive to small imperfections in

phase-angle synchronization, hence, the system is sta-
ble and robust [44]. Finally, to confirm the validity of
the above numerical results, Fig. 7 shows a comparison
between simulation results from SIMULINK and COM-
SOL. There is only one difference between both sim-
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FIG. 7. Comparison between the reflected fields extracted from two different simulation tools. (a) The structure studied using
COMSOL, the dielectric thickness has been adjusted to dc = 2.36 mm from d = 2.367 mm to tune the resonance frequency to
1 GHz. (b) Total reflected electric field (e−) squared as a function of time extracted from COMSOL. (c) Total reflected voltage
(v−) squared as a function of time extracted from SIMULINK.

ulations, which is the thickness of the dielectric layer.
The transmission line simulated in SIMULINK has the
length d = 2.367 mm, however, in COMSOL the thick-
ness dc = 2.36 mm has been used to compensate for a
small shift of the resonance frequency due to parasitic
reactive fields at the boundaries of the computation do-
main. Figure 7 shows the total reflected fields squared
as a function of time from both tools. In both cases,
the static and dynamic, the total reflection matches well.
This comparison confirms the validity of the SIMULINK
circuit simulations shown in Fig. 6.

It is important to stress that the metasurface does not
pump energy to the fields, and the sum of the reflected
and absorbed powers is equal to the incident power car-
ried by all input waves. In addition, we note that al-
though we have given examples of designs for the mi-
crowave range, this technique can be used at any other
frequency band. Indeed, the described effects do not de-
pend on the actual value of the carrier frequency: the
modulation is defined by the frequency difference be-
tween the control signal and the input signals.

The theory presented here applies not only to flat and
thin resonant absorbers, but to any lossy resonant system
(e.g., resonant scatterers or antennas). In the vicinity of
the resonant frequency, any such system can be mod-
eled by a lossy resonant circuit shown in Fig. 5(c). The
equivalent circuit parameters can be found as functions
of the antenna or scatterer geometry and materials, see
e.g. [50]. Importantly, for antennas, the circuit parame-
ters can be tuned and controlled by the antenna load. In
particular, the circuit resistance is the sum of the radia-
tion resistance, the loss resistance, and the resistance of
the antenna load. The load resistance can be modulated
in time using the same techniques as presented in this
paper [44] for applications in thin absorbers. Thus, we
see that using time-varying resistive loads of antennas, it
is possible to reach the maximum level of absorption by
resonant dipole antennas (e.g., [51]) at several frequencies

inside the resonant band, instead of only a single reso-
nance frequency. Similar results can be also obtained for
the fundamental resonance band of plasmonic nanopar-
ticles [51, 52] or Mie resonances in dielectric spheres, as
these objects can be also modeled using the same cir-
cuit model. However, modulating the absorption level in
these cases can be practically challenging.

IV. CONCLUSIONS

In this paper, the theory of temporally modulated pas-
sive lossy objects illuminated by two or more waves hav-
ing different frequencies was presented. In particular, we
considered planar boundaries illuminated by plane waves.
It was shown that waves reflected from lossy boundaries
modulated by signals that are properly synchronized with
the spectral content of the incident radiation are func-
tions of the modulation parameters and the amplitudes
of the incident waves, although the system is governed
by linear differential equations. The results have proven
that by properly designing these factors, full control of
the reflected waves is achieved. This opens many possi-
bilities, such as realizing reflection similar to that from
perfectly black or reactive boundaries. We have shown
that dynamic purely resistive boundaries are equivalent
to a static impedance boundary that has both static resis-
tive and reactive components. An expression was derived
for this virtual reactive component imposed by the mod-
ulation, and, also, the power relations were discussed.

This feature can be used in many applications, how-
ever, here, specifically, we used it to design multifre-
quency perfect absorbers. It was shown that by properly
designing the modulation parameters and the amplitude
of the control signal, it is possible to achieve unity ab-
sorption for multiple frequencies, even for ultranarrow-
band absorbers, overcoming the bandwidth limit of pas-
sive static linear absorbers. In addition, it was shown
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that the absorption can be fully tuned remotely by tun-
ing the control signal’s amplitude. All these results are
associated with a resistive layer that does not provide
gain and is unconditionally stable. Furthermore, slow
modulation was used instead of the practically limited
fast modulation which is typically used in parametric sys-
tems. We stress that the theory provided in this paper is
general and can be used in other electromagnetic/optical
fields such as plasmonics or nanophotonics.

Finally, we note that illuminating waves do not have
to be mutually coherent. For example, if we illuminate
by two input waves and their phase difference arbitrarily
varies in time, similar effects can be achieved using non-
monochromatic low-frequency modulation synchronized

with this time-varying phase difference.
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