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ABSTRACT

Very high resolution remote sensing data of forests, where in-
dividual tree crowns are separable, contains structural infor-
mation on tree size and density. Such information is comple-
mentary to the spectral signatures currently used in forestry
applications. Advanced machine learning methods, e.g. con-
volutional neural networks (CNNs), offer an automated and
standardized way of retrieving both spectral and structural
information from imagery. A key characteristic in CNNs is
patch size, which should be large enough to include dominant
structural scale, yet as small as possible to avoid unnecessary
averaging. Our results show that the patch should be larger
than one tree, but increasing it excessively reduces retrieval
accuracy. Furthermore, large patch sizes can cause loss of in-
dependence between training and validation data, leading to
overestimating model performance.

Index Terms— Very high-resolution imagery, Hyper-
spectral data, Deep learning, Convolutional Neural Networks,
Patch size, forest variable prediction, TAIGA dataset

1. INTRODUCTION

Machine learning based methods have the potential to make
use of the complex indirect and nonlinear relationships in
modern Earth Observation (EO) data and reveal their full
information content [1]. Deep learning methods have their
background in speech recognition and computer vision fields,
and are hence recognized for their ability to process im-
age data. These methods, increasing their popularity in EO
applications, have been adapted to the spectral and spatial
characteristics of remote sensing imagery [2]. Various deep
learning architectures have been successfully applied: Con-
volutional Neural Networks (CNNs), Recurrent Neural Net-
works (RNN), hybrid ConvRNN, attention modules, capsule
networks, etc. CNNs were used in earlier works [3] and are
still widely used [4].

EO involves data of varying resolutions. EO data from air-
craft or satellites with spatial resolution of one meter or less
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(known as Very High Resolution, VHR, imagery) is becoming
increasingly available for extensive geographic areas. Hyper-
spectral Imaging (HSI, also known as imaging spectroscopy)
captures reflectance over hundreds of bands forming a con-
tinuous spectrum. When acquired from aircraft, HSI is often
VHR data, and can be expected to contain more information
compared to most other optical EO data due to their high spa-
tial and spectral resolutions. Current hyperspectral EO algo-
rithms, however, characterize targets based on their spectral
properties. Ignoring the rich spatial detail present in VHR
images inevitably leads to underutilization of their informa-
tion content. CNNs have been found to be powerful tools [4]
for such high-dimensional data and several review articles are
available on the topic [5, 4]. CNNs can extract discrimina-
tory features from the data cube and exploit the spectral and
spatial information of the data which, in HSI classifications,
improves retrieval accuracy [6, 7, 8].

Many specific CNN architectures can be devised for an-
alyzing (hyper)spectral RS imagery. A fundamental physical
question which needs to be answered for any model is the
choice of the size of the window, known as patch size, given
as an input to the neural network. The patch size should be se-
lected to correspond to the characteristic features of the object
while still keeping the patch homogeneous: i.e., the studied
characteristic could be considered constant across the patch.
Patch size, typically specified in pixels, in imagery of forested
areas therefore depends on the dimensions of the typical ob-
jects, tree crowns, and on landscape structure, i.e., the size of
a homogeneous forest stand. Patch size also limits the maxi-
mum number of independent samples which can be collected
from an image. Unfortunately, many datasets used as bench-
marks in deep learning are not large enough to avoid overlap
between training and testing data at large patch sizes.

The aim of this paper is to study the effects of the image
patch size, used as an input to a CNN, on the ability of the
CNN to retrieve forest characteristics from VHR hyperspec-
tral imagery of a boreal forest. To achieve this, we present a
new HSI dataset that allows using patches up to 45×45 pixels
without spatial overlap between training and test sets.



(a) Location of the test site in Finland (b) Zoom-in on stand boundaries

Fig. 1. Geographic context of the study: (a) Location of the test site in the European boreal forest zone (dark green color) and
(b) RGB image of a subset of the mosaicked hyperspectral data, overlaid by the stand boundaries of the region (orange).

2. DATA

For the study, we used the The Artificial Intelligence dataset
for forest Geographical Applications (TAIGA) dataset openly
available via the Fairdata IDA service (https://ida.fairdata.fi).
Data were collected in the southern boreal zone of Finland,
in the vicinity of Hyytiälä forestry field station (61◦50’44”N,
24◦17’10”E, Fig. 1a). The undulating landscape (mean ele-
vation approx. 150 m above sea level) is covered by man-
aged boreal forests, agricultural fields and wetlands. Scots
pine (Pinus sylvestris), Norway spruce (Picea abies) and Sil-
ver birch (Betula pendula), either as mixed or pure stands, are
the main overstory species. Forest floor is covered by differ-
ent shrubs, lichens and mosses with no visible bare soil.

Airborne HSI was collected with the AISA Eagle II scan-
ner in 128 bands between 400 and 950 nm from a height
of approximately 1 km above ground. The spatial resolu-
tion and pixel size of the data were 0.7 m. Seven flight
lines were flown before noon (mean solar zenith angle 41.3◦)
along the direction of sunrays under a clear sky on June 15,
2017 and mosaicked to obtain a hyperspectral image of an
area of approximately 9 km by 3 km. Software packages
by Rese Applications (Switzerland), Parge and Atcor, were
used for georectification and atmospheric correction of the
data, respectively, using a digital elevation model based on
nationwide laser scanning data and sun photometer-measured
aerosol optical properties provided by the AErosol RObotic
NETwork (AERONET, https://aeronet.gsfc.nasa.gov). A
comprehensive description of data acquisition and prepro-
cessing is reported by Markiet et al. [9].

In Finland, forest resource data and forests are managed
on the level of a stand (Fig. 1b), an aggregation of trees that
are sufficiently uniform in species composition, size, arrange-
ment and age. In the inventory process, forestry data are col-
lected using airborne laser scanning and imaging supported
by nationwide field measurements. The forestry parameters

are computed for inventory units, 16×16 m2 cells. Finally,
stand level data are aggregated from the grid cells using vec-
tor files with stand geometries.

In line with the forestry practices, we assumed stands to
represent homogeneous forest units. To avoid the influence of
geolocation errors and neighborhood effects, we downsized
the stands by 10 meters before extracting pixels from the HSI.
Thus, all data outside forest stands or within 10 m of a stand
border were excluded from analysis.

We selected two forest parameters for further analysis.
Basal area, expressed in units of m2/ha, is the cross-sectional
area of tree trunks at breast height, 1.3 m, per unit ground
area. This key forestry variable correlates with the growing
stock of forests and their biomass. Second, we computed the
leaf area index, (LAI, half of the two-sided leaf area per unit
ground area), a key biophysical variable, using the forestry
data and biometric regressions [9]. We calculated the effec-
tive LAI, which is corrected for the effect of the clumping
of conifer needles into shoots on the transmission of incident
sunlight and is thus a predictor of the reflective properties of
forests. For birch, no clumping correction was applied.

We normalized the two continuous forest variables be-
tween 0 and 1 before feeding them to a CNN. To remove out-
liers (unphysically large values due to errors in the data), we
clipped the upper limit to the 98th percentile.

3. CNN FOR PREDICTING FORESTRY VARIABLES

We used a CNN pipeline based on a multi-task learning model
consisting of four 3D convolutional layers, introduced by Phu
Pham [10] and inspired by Chen et al. [6]. The 3D input ker-
nel’s size was 3× 3× 48 and it could adapt in both the spatial
and hyperspectral dimensions of the input data. The first layer
had 128-dimensional output and was followed by 2 × 2 × 2
pooling. The second convolutional layer consisted of parallel
1×1×1, 1×1×3, 1×1×5 and 1×1×11 networks; its output
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(a) Zoom-in of estimated basal area map. (b) Basal area prediction accuracy

Fig. 2. Prediction results for basal area [m2 ha−1] using a window of 45 pixels.

Table 1. The numbers of stands and sizes of training, valida-
tion and test sets.

set stands samples
training 〉

560
〈 37749

validation 4195
test 111 20263

was also 128-dimensional. The last two CNN layers both had
3×3×32 kernels, whereas their output dimensionalities were
64 and 32, respectively. Between these two layers, 2× 2× 2
pooling was performed. Batch normalization and ReLU non-
linearity were used after the convolution layers, followed by
the optional pooling. Dropout regularization with a probabil-
ity of 0.5 was used for all layers.

The convolutional layers were followed by one fully-
connected layer shared between all learning tasks, each learn-
ing task corresponding to one output variable. For each output
variable, a separate stack of two fully-connected layers was
included in the model. For the continuous variables, mean
square error loss was used at the model output. The final
stand-wise predictions for the forest variables of the test set
were obtained by averaging the predictions for the image
samples located in each stand of the test set.

Different stands were used for training and testing: 17%
of the stands were selected randomly for testing and the re-
maining 83% were split between training and validation (Ta-
ble 1). The HSI samples of the sets were then extracted from
inside each stand with the stride of 13 × 13 pixels. The size
of these image samples was varied as 27 × 27, 33 × 33, . . . ,
91×91 pixels in order to progressively increase image area for
the training of the CNN model. While yielding more training
data, increasing the patch size leads to the danger of including
the same pixels in both the training and testing sets.

Table 2. Forest variable prediction results with varying input
patch size to the CNN model.

patch over- Basal area [m2/ha] LAI [–]
size lap RMSE rRMSE RMSE rRMSE

27×27 0.00% 3.69 16.35% 0.74 22.68%
33×33 0.00% 3.48 15.39% 0.72 22.08%
39×39 0.00% 3.54 15.67% 0.73 22.45%
45×45 0.59% 3.60 15.95% 0.69 21.29%
75×75 17.64% 3.87 17.12% 0.75 23.02%
91×91 28.58% 3.85 17.05% 0.74 22.91%

4. SPATIAL OVERLAP ANALYSIS

Spatial overlap between test and training pixels leads to overly
optimistic accuracy assessment of patch-based deep models.
This issue was known earlier for spatial-spectral methods ap-
plied to popular small-scale HSI datasets, and is especially
severe when using random sampling and larger patches [4].
As a mitigation measure, the IEEE Geoscience and Remote
Sensing Society (GRSS) designed fixed training and testing
sets for these datasets, available on the data and algorithm
evaluation website (DASE) - http://dase.grss-ieee.org.

In order to demonstrate the utility of the TAIGA dataset
for safely applying deep models with large patches, we ran
a simple spatial overlap analysis. First, training and testing
‘ground truths’ were binarized into masks. Then, training
and testing masks were iteratively grown by applying a patch
of increasing size over all original pixels, simulating the re-
ceptive field of a patch-based network in training and testing
phases. Finally, the number of pixels overlapping between
the training and test masks was counted and normalized by
the total number of test pixels covered by the receptive field.
In addition to TAIGA, we analyzed Indian Pines, Pavia Uni-
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Fig. 3. Overlap between test patches and training patches as
a function of patch size, for different hyperspectral datasets.
Dashed lines show typical patch sizes used in HSI studies [4].

versity and University of Houston 2013 datasets, using the
DASE disjoint training and testing samples.

5. RESULTS AND DISCUSSION

We calculated root-mean-square error (RMSE) and relative
root-mean-square error (rRMSE) as the prediction accuracy.
The prediction accuracy for basal area (rRMSE = 15–21%) is
better than for LAI (rRMSE = 21–28%, Table 2). The pre-
diction accuracy generally increased with patch size for both
variables up to 45 × 45 pixels, then decreased with higher
patch sizes as significant spatial overlap occurred (75 × 75
pixels and 91 × 91 pixels). As an example, the predicted
basal area map and prediciton accuracy for the optimal patch
size (45×45 pixels) is shown in Fig. 2.

The spatial overlap analysis shows that the selected DASE
datasets have some spatial overlap already at the lowest patch
size used here, 3×3 pixels, whereas overlap for TAIGA starts
above 43×43 pixels (Fig. 3). The DASE datasets have more
than 10% spatial overlap for patches larger than 11×11 pix-
els with the Indian Pines dataset saturating at 15×15 pixels.
In contrast, TAIGA has only 10% overlap at 65×65 pixels,
allowing robust prediction accuracy estimates for patch sizes
corresponding to mid-resolution EO satellite pixels and quan-
tifying the improved information content of VHR imagery.

As we increased patch size beyond the optimal value, the
accuracy of forest variable predictions decreased, which is
usually not observed in studies on small-scale HSI datasets
[4]. This phenomenon, probably caused by landscape hetero-
geneity, calls for further research. We hope TAIGA, a ref-
erence dataset with continuous spatial coverage, will help to
understand and solve the remaining issues in the use of VHR
HSI data for vegetation analysis, especially those caused by
the small size imagery currently available for testing.
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