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Abstract

Analysis of first-person (egocentric) videos involving human actions could
help in the solutions of many problems. These videos include a large number
of fine-grained action categories with hand-object interactions. In this pa-
per, a compositional verb-noun model including two complementary tempo-
ral streams is proposed with various fusion strategies to recognize egocentric
actions. The first step is based on construction of verb and object video
models as decomposition of actions with a special attention on hands. Par-
ticularly, the verb video model that is the spatial-temporal encoding of hand
actions and the object video model that is the object scores with hand-object
layout are represented as two separate pathways. The second step is the fu-
sion stage to identify action category, where distinct verb and object models
are combined to give their action judgments. We propose fusion strategies
with recurrent steps collecting verb and object label judgments along a tem-
poral video sequence. We evaluate recognition performances for individual
verb and object models; and we present extensive experimental evaluations
for action recognition over recurrent-based fusion approaches on the EGTEA
Gaze+ dataset.

Keywords: first-person vision, egocentric vision, action recognition,
temporal models, RNN

1. Introduction1

With the increasing availability and popularity of the wearable cameras,2

first-person (egocentric) vision offers an interesting scenario to study action3

recognition problem. Recordings with these cameras have become a part4
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of daily life and evaluation of actions on these recordings gains decisive im-5

portance for applications, in particular, for health monitoring, autonomous6

driving, robotics and entertainment. For instance, these videos can be ana-7

lyzed for monitoring the patient activities to detect early signs of dementia8

[1, 2], or for monitoring the driver’s behavioral status to provide necessary9

assistance for safe and comfortable driving [3]. In robotic, these kinds of10

videos are useful to make the robot learn the human motion structure from11

the first-person view [4]. Besides, tracking and understanding human actions12

in first-person videos are important for developing feasible virtual reality ap-13

plications [5].14

Unlike third-person setting with fixed camera view, the first-person videos15

are recorded from the perspective of camera wearer, and usually hands and16

objects bear the most significant clues to determine action in various scenar-17

ios [6]. Due to similar hand-movements and hand-object interactions, these18

videos include large number of action categories with high inter-class simi-19

larities (e.g., take tomato, put tomato, mix salad). In addition to these char-20

acteristics, these videos have new challenges such as uneven camera transi-21

tions, frequent illumination changes, and limited camera vision. Thus, action22

recognition task on these videos will be better succeeded with fine-grained23

evaluation.24

Many previous studies focus on modeling egocentric actions as compo-25

sition of appearance and motion-based features. In this paper, we first de-26

compose the egocentric actions into semantically meaningful and comple-27

mentary components, verbs and objects [7]. Then, we target the appearance28

and motion-based features of each component for the purpose of fine-grained29

analysis and we model their temporal dynamics. Our model aims to pro-30

cess large number of distinct action categories through decomposition and31

fine-grained analysis while guaranteeing the recognition performance.32

Our proposed model is demonstrated in Figure 1 and composes of three33

main parts, Verb, Object and Fusion models. Particularly, the verb model34

corresponding to the hand action representation and the object model corre-35

sponding to the interactions are represented as two separate pathways which36

are decomposition of actions. Finally, fusion is the action model employing37

various fusion strategies based on recurrent neural networks (RNN) on in-38

dividual verb and object model judgments. Verb model is a verb classifier39

that takes successive C clips, each consisting of N successive frames (N=1640

for C3D), and returns the verb scores per clip as an output. Object model41

is an object detection network taking C video frames, and returns object42
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Figure 1: Overview of the proposed first-person action recognition model. Our model
proposes a compositional model with two pathways, verb and object streams, respectively,
and fusion strategies with recurrent structures. (a) Verb stream possesses the hand-centric
action information and (b) the object stream possesses the appearance information of
nearby objects with hand-interactions. Then (c) streams are fused using proposed fusion
strategies to recognize actions.

proposals.43

One of our motivation in the proposed model is to define a hand-centric44

action decomposition model as hands perform the main action and they are45

the target of attention in egocentric videos. First, we believe that verbs46

are strongly related to hand appearance and motion. Thus, our verb model47

prioritizes the fine-grained analysis of hand actions with spatial-temporal and48

multiscale modeling in a fully-supervised setting. Model encodes not only49

hand appearance using RGB-based 3D convolutional neural network (3D50

ConvNet), but also implicitly hand motion along tubes due to 3D ConvNet51

(a second stream can be added to encode Flow-based 3D ConvNet). Second,52

we similarly follow previous studies in mapping nouns to objects, but we53

believe hand-object interactions is also important to reveal target object.54

Thus, our noun component encodes two information: object proposals and55

the spatial layout of hands and object categories in frames.56

Other motivation of our work is to contribute to action decomposition57

with support of recurrent models. Following this, we focus more deeply on58

modelling the temporal dynamics of hand-actions (verbs) and hand-object59

interactions (objects) individually and jointly using various fusion strategies.60

In our verb component, temporal model encodes the hand-centric information61

across clips. This means that it performs a smoothing over spatial-temporal62
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multiscale features. In noun component, recurrent model encodes not only63

the temporal dynamics of object detection scores but also that of spatial64

layout across frames. This is also a kind of motion-based feature where the65

model tracks the layout of hands and objects.66

Although video-based action decomposition is achieved priory in [7], our67

design of components is different and specialized over hands. [7] associates68

verbs with motion-based low-level features without any notion of hands, and69

represents frames with global dense trajectories [8]. Besides, nouns are as-70

sociated with appearance-based features and encoded similarly over object71

proposals. Unlike using all objects, they encode only the objects found near72

hands. In short, our design is different in how we define the verb and noun73

components of the decomposition modelling and RNN-based fusion strate-74

gies that are proposed to combine complementary components while jointly75

modelling their temporal dynamics.76

We are not the first using hand-centric approach for egocentric models.77

Hand is the main object and its manipulation is a strong clue for many studies78

[9, 10, 11, 12, 6]. Although these models are not based on decomposition,79

compared to these studies our architectural components are designed in a80

different way, where our model strongly relies on 3D ConvNet architecture81

for fine-grained evaluation of hand motion, appearance, and its interaction.82

Unlike attention based models using gaze estimation [13, 14], we examine83

regions around hand proposals as the target of attention.84

The main contribution of our study is that (i) we propose a new first-85

person action decomposition model with hand-centric verb and noun compo-86

nents. Because hands serve as the target of attention, hand-centric spatial-87

temporal verb model and interaction feature are proposed. It has been shown88

that the combination of detectors in multiple scales and interaction feature89

increase the performance. As another contribution, (ii) we propose various90

fusion strategies with extension to recurrent structures. We observe that re-91

current late fusion strategies outperform early fusion with many architectural92

advantages. We also show that our decomposition model performs compara-93

ble in recognition to conventional action recognition models, but with many94

architectural advantages. Then, (iii) we populate the recognition model with95

full supervision, since the action space is significantly large and contains ex-96

tremely similar action categories. For that purpose, we train the background97

models of our system on a recent dataset, called EGTEA Gaze+ [13] with98

additional annotations. In addition to the available version, we gather on99

videos (1) the actual frames with the action label, and on these frames (2)100
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the bounding boxes of hands with verb labels (annotations consist of addi-101

tional verb labels such as hold), and (3) the bounding boxes of target ob-102

jects. Finally, (iv) we present extensive experimental evaluation over fusion103

approaches on the EGTEA Gaze+ dataset with comparable results.104

2. Related Work105

Within the development of wearable cameras, a wide range of studies are106

proposed for action recognition in first-person videos [15, 16, 17, 18, 19, 20,107

21, 13]. We explore traditional and deep learning based models including108

appearance-based, motion-based and hybrid models.109

2.1. Appearance Based Models110

Appearance cues related to objects, hands and gaze are informative for111

first-person videos and they are used in many studies.112

Objects have crucial knowledge to describe first-person actions by reveal-113

ing human-object interactions. In many studies [16, 9], hand-object interac-114

tions are modelled over region of interests (ROIs) to understand egocentric115

activities. According to Fathi et al.[9], the target object is generally visible in116

the center of video frames and a new model with two steps is proposed over117

the GTEA dataset. The first step is segmenting videos into foreground and118

background regions using optical flow, SIFT, color histograms. Foreground119

segments are further decomposed into hands and active objects. The sec-120

ond step performs recognition using Multiple Instance Learning (MIL) over121

object segments. According to Fathi et al. [16], fine-grained actions are cate-122

gorized using hand interaction features (such as optical flow of both hand and123

object, hand pose, hand location, hand size, and left/right-hand relative loca-124

tion). As their previous work [9], hands, foreground objects and background125

are segmented and Adaboost [22] classifier is used for recognition. The pro-126

posed model results in an accuracy of 45% on the GTEA dataset. Another127

object-based model by Pirsiavash and Ramanan [17] is a temporal pyramid128

based model provided to define the usage of the objects in videos for action129

recognition. HOG [23] features are used for object modelling. With linear130

SVM classifier, performance is achieved up to 77% using object information131

over the ADL dataset. Recently, Cartas et al. [24] present another object-132

based model with two steps over the GTEA dataset. First, the hand region133

is segmented to get object region in frames using Multiscale Combinational134

Grouping method [25]. Then, a star-structured region model, R*CNN [26],135
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is used for more than one region classification. Last, the output of R*CNN136

as contextual cue is given to LSTM to predict action category.137

Gaze information is another cue for first-person action recognition, since138

camera wearer generally focuses on the point where the action is performed.139

Visual features extracted around the gaze regions are more informative com-140

pared to features extracted on other regions. Fathi et al. [27] extend object-141

based model of their previous work [16] with addition of gaze appearance.142

The SVM classifier is used for action categorization using object-based, gaze-143

based appearance features. Object-based features are extracted from object144

classifiers including object context around the gaze point. Using gaze infor-145

mation that is given with the GTEA Gaze+ dataset, the unrelated back-146

ground objects are eliminated and 47% performance is achieved compared to147

27% of [16] on the same dataset without using gaze information. Similarly,148

Li et al. [28] develop a model for gaze prediction in first-person videos using149

hand/head movement, hand location and hand pose.150

2.2. Motion Based Models151

First-person videos capture motion information from camera wearer’s152

head, hand and eye movements. Besides object-based models, which is known153

as appearance-based models, motion-based models are also proposed to rec-154

ognize the first-person actions in the literature. Kitani et al. [29] model155

motion in first-person sport activities using motion histograms. The motion156

histograms are based on optical flow of the scene. Due to the unsupervised157

scenario, Drichlet process mixture models are proposed to get action cate-158

gories using the motion histograms. Li et al. [30] model motion information159

using Dense Trajectories [31] as a baseline descriptor.160

2.3. Hybrid Models161

Appearance and motion domains are composed (i.e., stream-based models162

[32]), since fusing them is more informative for first-person action recogni-163

tion [6, 33, 34, 35].164

Ma et al. [6] model object appearance and motion information as a two-165

stream network. The first stream analyzes appearance in three steps; seg-166

mentation, localization and object recognition successively, and the second167

stream analyzes motion using optical flow features. Yansong Tang et al. [33]168

propose a tri-stream network that integrates depth knowledge besides ap-169

pearance and motion information and test over RGB-D egocentric dataset170

(THU-READ). Action prediction is calculated by taking the average score171
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of three streams. Hahn et al. [34] propose a model using visual information172

from videos and textual information from recipe of these videos as well. The173

proposed model has three steps which are action proposal, object recogni-174

tion, and recipe alignment steps. In action proposal step, video frames are175

localized with Bidirectional LSTM with two classes, action or not-action. In176

object recognition step, ResNet101 network [36] is trained for object clas-177

sification along frames having actions according to the action proposal step.178

Finally, in the recipe alignment step, the action category is predicted using179

NLP model.180

Recently, G. Kapidis et al. [35] introduce a multi-modal approach based181

on sequential learning to recognize egocentric actions on EPIC-Kitchens182

dataset [37]. LSTM is trained over feature sequence which consists of frame-183

based hand coordinates as motion knowledge and presence of object as ap-184

pearance knowledge. Hand and objects are detected by YOLOv3 [38]. In185

contrast, our action model is trained over clip-based verb scores based on186

hand regions as motion information and detected object scores as appear-187

ance information using recurrent models.188

3. Proposed Approach189

Many studies emphasize the importance of appearance and motion-based190

lower-level modelling in action video understanding either with simple con-191

catenation [34, 35] or with stream-based structures [32, 6, 33]. In this study,192

we aim at stream-based structures, but in semantic-level as decomposing ac-193

tions into two complementary pathways that are the verb and the object194

components. Our model targets temporal modelling on each pathway with195

a strong attention to hands that perform actions to manipulate surrounding196

objects. The verb component is defined as a hand-centric temporal model.197

The model consists of short-term temporal modelling of hand regions within198

each video clip in multiple-scales using spatial-temporal 3D ConvNet mod-199

els [39, 40]; and long-term temporal modelling of hands over clips of videos200

using RNN model. Complementary to this, the object component is de-201

fined as based on a temporal modelling of objects and hand interactions.202

The model consists of objects extracted by YOLOv2 object detector [41]203

and interaction-based spatial layout features, and further relies on long-term204

modelling of temporal dynamics of hand-object interactions over frames of205

videos using RNN model. Our aim is to perform action recognition by com-206

bining pretrained verb and object models using various fusion strategies.207
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3.1. Temporal Modelling of Verbs208

Assuming the camera wearer’s attention is on the hands in first-person209

videos, the verb model is hand-centric that it models short term temporal dy-210

namics of hands performing action (hands perform take during take tomato)211

in multiple scale. Our verb model is fully-supervised and trained using clips212

including verb-labelled mid-frames and hands on these frames. It composes213

of two sub-models in different scales, namely full-scale and hand-scale verb214

models. With clips including hands, while the full-scale verb model repre-215

sents coarse-grained verb description of the clips by utilizing whole frame216

region (covering hands, objects and scene); the hand-scale verb model repre-217

sents fine-grained verb description by utilizing zoomed regions around hands.218

Given a video, each sub-model extracts stream of clip features per video. Par-219

ticularly, these streams correspond to V×C-dimensional verb matrices with220

V -dimensional features and C clips (When softmax outputs are used as clip221

representation, V corresponds to verb categories. Otherwise, V corresponds222

to the dimension of intermediate layer). These matrices are further combined223

over scales into a single verb matrix as the video verb representation. Figure224

1 (a) shows an overview of the verb stream.225

3.1.1. Full-Scale Verb Representation226

The purpose of the full-scale verb model is to encode coarse-level verb227

category details of video clips. Model is based on 3D ConvNet architecture228

C3D [39] which takes the video clips as inputs and produces the category229

score vectors as outputs. Given a video with C successive clips extracted230

using temporal stride of two (i.e., dropping every other clip), each clip is231

embedded into a V -dimensional feature by the full-scale verb model. As the232

video full-scale hand representation, the model returns V×C-dimensional233

verb matrix.234

Following the original setting of [39], the 16-frame video clips are ex-235

tracted and each is resized to 112×112×3×16 before fed into C3D 1. Unlike236

the original C3D model [39] trained over randomly selected video clips, our237

model is trained over ground truth video clips that include verb-labelled mid-238

frame with hand performing verb (see Section 4.1 for the dataset details).239

1https://github.com/hx173149/C3D-tensorflow
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3.1.2. Hand-Scale Verb Representation240

As part of a hand-centric approach, the purpose of the hand-scale verb241

model is to encode fine-level verb category details of video clips. Focusing on242

hand actions, this model utilizes hand regions instead of looking at a video243

in full-scale mode. It consists of two parts: hand detector and verb classifier.244

Given a video with clips, first a hand detector localizes hand regions in mid-245

frames of these clips, and then a spatial-temporal verb classifier takes the246

hand-volumes around these regions to identify verb categories.247

To localize hands in video frames, we train a hand detector using the state-248

of-the art object detector YOLOv2 [41]. The original YOLO architecture is249

fine-tuned for binary classification of hands (hand/not-hand) on our hand250

dataset gathered from the EGTEA Gaze+ dataset (see Section 4.1 for the251

dataset details). During training of the hand-scale verb model, the YOLO252

hand detector is used to obtain hand-volumes, where volumes are particularly253

tubes cropped around hand proposals containing the hand-region in its mid-254

frame and lasts 16 frames. Hand proposals having 0.5 overlap with verb-255

labelled hands on the ground truth frames are used to train our hand-scale256

verb model.257

Following the full-scale model, the hand-scale one is also based on 3D258

ConvNet architecture C3D [39] which takes hand-volumes as inputs and pro-259

duces category scores as outputs. Given a video with the same set of C clips,260

hand-volumes are computed from hand proposals on mid-frames of these clips261

and fed into 3D ConvNet model to get volume features. As the video hand-262

scale verb representation, the model returns V×C-dimensional verb matrix.263

Here, the cropped hand-volume is also resized into 112× 112× 3× 16 before264

fed into the 3D ConvNet. Detection of multiple hand-volumes on the same265

video frame is possible, since some action categories are performed by both266

hands (e.g., while open and take are performed by one hand, cut and mix are267

performed by two hands). In that case, the second hand acts as an auxiliary268

hand to help the main hand performing action. For example, in verb cut,269

one hand cuts the object while the other holds the object. Following this,270

hand-scaled verb model is trained with one extra verb category, verb hold,271

that is also a ground truth label of hand regions in our dataset. In case of272

having multiple hands on a frame, such as cut, we apply max-pooling over273

features of hands to reduce into a single feature vector.274
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3.1.3. Video Verb Recognition275

Given a video, our model extracts multiple verb matrices in multiple276

scales, full-scale and hand-scale, as verb representations of the video. These277

matrices are combined into a single verb matrix MV using max-pooling. Verb278

matrix is particularly a sequence of clip features. Having training videos with279

various number of clips, we introduce a count-based verb model (see Section280

4.3.1) using histograms and RNN-based verb model (see Section 4.4.1) to281

recognize the verb category of videos.282

3.1.4. Discussion on 3D ConvNet Architectures283

In this study we use two variants of 3D ConvNet architectures, C3D284

network [39] and I3D RGB network [40] to encode verbs in spatial-temporal285

domain.286

C3D network has 5 convolutional and 5 pooling layers, where each con-287

volution layer is immediately followed by a pooling layer. Then, network288

includes 2 fully connected layers and a linear classifier to predict action cate-289

gories [39]. Compared to C3D, I3D is a denser network of inception-v1 with290

3 convolution layers, 9 inception modules and 7×7 average-pooling layer pre-291

ceding the last linear classifier [40]. Two-stream 3D ConvNet extension is292

available with I3D RGB and I3D Flow pathways, but we use RGB modality293

to encode our verbs.294

C3D network is shallower than I3D network. But the fact that it is shal-295

lower makes the network appealing to train for each scale. Following this, we296

first concentrate on C3D network and train two models for hand-scale and297

full-scale keeping the original setting. These models are used to extract low298

level clip and hand features (see Section 3.1.1 and Section 3.1.2). Later, I3D299

RGB network is used in final experiments to evaluate the performance im-300

provement. Instead of training two I3D models for each scale, we fine-tune the301

model with a simple network over our dataset. Selected intermediate layers302

of pre-trained I3D RGB network are used to extract coarse-level features for303

full-scale model and fine-level features for hand-scale model. Later, a simple304

shallow network is trained for classification over concatenated full-scale and305

hand-scale verb representations (please see Section 4.4.4 for network details).306

3.2. Temporal Modelling of Objects307

Objects manipulated by hands is used to model noun component of our308

decomposition model. First, we aim to find which objects appear in the309

video, and then we encode object information to reveal their interactions310
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with hands. Figure 1 (b) indicates an overview of the object stream. Our311

object model is trained over object bounding boxes that are annotated on312

verb-labelled frames with hand annotations (see Section 4.1 for the dataset313

details). Given a video, object model extracts stream of frame features per314

video. Particularly, these streams correspond to O′×C-dimensional verb ma-315

trices with O′-dimensional features and C clips.316

3.2.1. Object Representation317

To localize objects in video frames, the object detector YOLOv2 [41] is318

fine-tuned with object categories gathered from the EGTEA Gaze+ dataset319

(see Section 4.1 for details). During training, the YOLO object detector is320

used to obtain object proposals on video frames extracted using temporal321

stride of two frames. Later, each frame is encoded with a O′-dimensional322

[so,do] feature vector, where so is an O-dimensional object score vector,323

and do is a 8×O-dimensional object distance vector computed to represent324

hand-object interactions.325

Proposals having 0.4 overlap with objects on the ground truth verb-326

labelled frames are extracted and used for training our object model. Having327

detected proposals, max-pooling is applied to pool over the confidence scores328

of the detected objects of the same category, and this results in a score vec-329

tor so = [so1, ..., s
o
i , ..., s

o
O], where soi is the maximum score over all detected330

proposals belonging to category i and O is the number of object categories.331

In addition to score vector, interactions of detected objects with detected332

hands (see Section 3.1.2 for detected hands) are encoded using a distance-333

based representation do = [do
1, ...,d

o
i , ...,d

o
O] to encode spatial layout, where334

O is the number of object categories and do
i is the distance vector belonging335

to category i as follows,336

do
i = [lxi, lyi, rxi, ryi, fxi, fyi, wi, hi]

lxi = (cxi − cxlhand)/wf , lyi = (cyi − cylhand)/hf
rxi = (cxi − cxrhand)/wf , ryi = (cyi − cyrhand)/hf
fxi = (cxi − cxf )/wf , fyi = (cyi − cyf )/hf

wi = w/wf , hi = h/hf

(1)

where lxi and lyi show the scaled x-distance and y-distance between the337

center of the left-hand and the center of the object i, respectively. rxi and338

ryi represent the scaled distances between the center of the right-hand and339

the center of the object i. fxi and fyi show x-distance and y-distance of340
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object center i to frame center. Variables wf , hf , w and h are for the frame-341

width, frame-height, width and height of detected object i, respectively.342

Detected hands are categorized as a left-hand or a right-hand based on343

their relative distances. The detected hand whose center is closer to the344

top left corner of the frame is classified as the left-hand and the right-hand345

otherwise. If there is only one hand detected, we duplicate the values for346

both hands. If multiple proposals of the same object category are detected,347

the proposal having a minimum Euclidean distance with any hand is selected348

(If there is no proposal for an object category, we insert zero values.).349

As the video representation, the model returns a (O+8×O)×C-dimensional350

object matrix MO as stacked [so,do] features over video frames.351

3.2.2. Video Object Recognition352

Given a video, our model extracts a matrixMO as object representation of353

the video. Object matrix is particularly a sequence of frame features. Having354

training videos with various number of frames, we introduce a count-based355

object model (see Section 4.3.3) using histograms and RNN-based object356

model (see Section 4.4.2) to recognize the object category of videos.357

3.3. Temporal Modelling of Actions as Fusion of Verb-Object Pairs358

Fusion is the last step of our proposed model to combine verb and object359

streams for recognizing actions. Since action videos consist of sequence of360

short-term clips, modeling of temporal relations between consecutive clips are361

important for action recognition. Such temporal modelling is also critical to362

smooth information over clips. Given the decomposition of actions into verb363

and object streams per video, we introduce multiple strategies with early364

and late fusion techniques using recurrent neural network (RNN) models for365

encoding temporal dynamics of actions. In this section, we first introduce a366

new count-based baseline model, and then we describe five different fusion367

strategies over verb-object streams for recognizing actions. Figure 2 shows368

the proposed fusion strategies. The architectural details of the best per-369

formed neural network for the proposed fusion strategies are given in Table370

4 and experimental evaluations are reported in Table 7 and Table 8 .371

372

Count-based verb-object multiplication. This model has no recurrent373

step and no training for action recognition (see Figure 2 (a)). Verb and object374

category scores for videos are obtained using the convolutional neural network375
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Figure 2: Fusion strategies for action recognition. (a) Count-Based Verb-Object Multi-
plication Baseline model, (b) Recurrent Verb-Object Multiplication model, (c) Recurrent
Verb-Object Early Fusion model, (d) Recurrent Verb-Object Late Fusion model, (e) Re-
current Verb-Object Attention Late Fusion model, (f) Recurrent Action Baseline model
(verb vector is either “scores” or “features”, since softmax scores and intermediate level
features are used interchangeably in the experiments).

softmax predictions per clip, and the model performs a simple multiplication376

for recognition.377

To compute verb stream, count-based multiplication model uses 3D Con-378

vNet softmax prediction scores over clips of video samples. Given a video,379

two V×C-dimensional verb matrices with V verb categories and C clips are380

extracted using full-scale and hand-scale 3D ConvNet verb models, and these381

matrices are combined into a single score matrix by max-pooling (see Sec-382

tion 3.1). Computing verb stream, each clip is assigned to a verb category383

with the maximum score over V categories. Later, a histogram showing the384

distribution of verb categories over C video clips is computed and L1 normal-385

ization is applied to eliminate the effect of video length. To sum up, the video386

is represented as a V -dimensional verb category score vector v. Similarly,387

to compute object stream, objects are detected in frames using the object388
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detection model (this fusion strategy does not use spatial layout feature, do,389

see Section 3.2.1). Then, each frame is assigned to an object category with390

the maximum detection score. Later, a histogram showing the distribution391

of object categories over C video frames is extracted and L1 normalization392

is applied to eliminate the effect of video length. To sum up, the video is393

represented as a O-dimensional object category score vector o.394

Inspiring from a recent study on human-object interactions in still im-395

ages [42], we combine verb vector v and object vector o using a simple396

multiplication as follows,397

A = v · oT

A′ = A�B
(2)

where A is a V×O-dimensional estimation map with scores for all action398

categories corresponding to combinations of all verb-object category pairs. B399

is a V×O-dimensional ground truth binary mask where 1 shows the existence400

of a verb-object category pair, 0 shows the nonexistence of the pair in the401

dataset (e.g., cut-fridge pair is 0 since it is not an action in our dataset).402

In order to evaluate the scores of the subset of verb-object pairs existing in403

the dataset, the estimation map A is masked by binary mask B and the final404

result is matrix A′.405

Finally, the verb-object pair with the maximum value over matrix A′ is406

assigned as the predicted category of the given test sample. Particularly, this407

fusion strategy returns the prediction of action categories without training.408

409

Recurrent verb-object multiplication. This model uses the score vec-410

tors of RNN-based verb and object models as inputs (see Section 3.1.3 and411

Section 3.2.2 ), and action recognition stage is performed with a simple mul-412

tiplication over these score vectors without training (see Figure 2 (b)). First,413

two individual RNN models are trained over verb matrix MV and object414

matrix MO of training videos, namely verb-RNN and object-RNN models.415

During testing, the verb-RNN returns the V -dimensional verb category score416

vector v (V is the number of verb categories) and the object-RNN returns417

O-dimensional object category score vector o per video sample (O is the num-418

ber of verb categories). Then, we similarly apply multiplication and masking419

using Eq. 2. Please note that this fusion strategy does not use spatial layout420

feature, do, and object-RNN is trained over stream of score vectors so (see421

Section 3.2)422
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423

Recurrent verb-object early fusion. This model includes a single recur-424

rent model to recognize the action category of the video (see Figure 2 (c)).425

Extracting verb (see Section 3.1) and object (see Section 3.2.1) matrices,426

MV and MO, we concatenate them as a video representation. Then, a single427

RNN model, action-RNN, is trained to predict action categories.428

429

Recurrent verb-object late fusion. Similar to second fusion strategy, Re-430

current Verb-Object Multiplication, two individual recurrent neural network431

models, verb-RNN and object-RNN, are trained over verb and object streams432

on training video samples (see Figure 2 (d)). Then, the score vectors from the433

RNN models, v and o, are concatenated as a video representation. As an ad-434

ditional training stage, a shallow network with a set of fully connected layers435

is trained to predict action categories over concatenated representation.436

We also extend this model with forward and backward feature vectors437

when BiLSTM recurrent models are available. Let [−→v,←−v] be the concatena-438

tion of forward and backward-direction BiLSTM recurrent function outputs439

of the verb network, and [−→o,←−o] be forward and backward-direction BiLSTM440

recurrent function outputs of the object network. Then, these vectors from441

the verb and object recurrent models are concatenated and [−→v,←−v,−→o,←−o] is442

used as a video representation. Later, a shallow network with a set of fully443

connected layers is trained to predict action categories.444

445

Recurrent verb-object attention late fusion. This model includes an446

additional attention module to encode temporal information over RNN mod-447

els (see Figure 2 (e)). On each component of our two-stream model, a re-448

current neural network layer is trained with a self-attention module [43] as449

follows,450

αV = softmax(w2tanh(W1M
V)),W1 ∈ R256×V ,w2 ∈ R1×256 (3)

where MV is the verb stream matrix. The attention block takes MV and451

BiLSTM outputs as input. The MV is fed into a fully connected layer with a452

256×V -dimensional weight matrix W1, followed by tanh() function. Then, a453

score vector is produced by applying a vector of parameters w2 that is 1×256.454

Later, we sum up the RNN model hidden states according to the weight455

provided by αV to get a vector representation aV . Here, vector αV represents456

15



512

Object Attention Block

FCFC
softmax()

BiLSTM 
Hidden States

tanh()

sc
or

e 
ve

ct
or

 ( 
   

 )

at
te

nt
io

n 
ve

ct
or

 ( 
   

 )
FC FC

ob
j s

co
re

s

BiLSTM

Verb
Attention 

Block

ac
tio

n

Verb
RNN

Object
RNN

Object
Model

ve
rb

 v
ec

to
r

ob
j v

ec
to

r

verb 
 clip stream

.  .  .  .  . Verb
Model

obj 
clip stream

.  .  .  .  . 

 
Hidden States

Object 
Attention 

Block

Hidden States

 

Sh
al

lo
w

 N
et

w
or

k

2048 2048

FC FC FC

106

256 1 256 53

Figure 3: Recurrent Verb-Object Attention Late Fusion strategy. This model extends
late fusion strategy with an additional attention block that can be applied both to verb
and object streams. Attention block helps to encode temporal context within an attention
vector.

the temporal attention of the video. The softmax() function ensures all the457

computed weights sum up to 1.458

The object stream is similarly trained over MO using RNN with attention459

module. Assuming BiLSTM as our RNN structure, forward and backward460

function outputs of verb-BiLSTM trained with attention block, [−→va,←−va], and461

forward and backward function outputs of object-BiLSTM, [−→oa,←−oa], are con-462

catenated as a video representation. Later, a shallow network with a set of463

fully connected layers is trained to predict action categories. For the verb464

and object streams, we have added attention block as seen in Figure 3.465

466

Recurrent action baseline. This model is a baseline model using 3D467

ConvNet architecture trained over action categories (see Figure 2 (f)). Given468
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Figure 4: Our sample annotations on the EGTEA Gaze+ dataset. We annotate video
frames, hands and the objects having consistent motion with the action in training videos.

a video with C clips, 3D ConvNet architecture C3D takes clips as inputs and469

returns category scores as outputs. Video is represented as a matrix of clip470

features, MA. Then, an RNN model, action-RNN, is trained over MA to471

predict action categories.472

4. Experimental Evaluation473

4.1. EGTEA Gaze+ Dataset with Frame Level Annotations474

We perform our experiments on the EGTEA Gaze+ dataset [13, 44]475

which includes first-person meal preparation activity videos. The dataset476

is extended from the GTEA Gaze+ and it consists of 86 cooking videos per-477

formed by 32 different subjects. It includes 106 fine-grained action categories478

with 19 verb and 53 object categories. While some action categories (e.g.,479

cut tomato) refer one object category, others (e.g., pour water-faucet-pot)480

refer multiple objects. The dataset contains 3 train-test splits, each of which481

has 8229 training and 2022 test video samples. Since the study [13] pub-482

lished the EGTEA Gaze+ dataset reports results on split1, we perform the483

experimental evaluation of models on the same split.484

Current version of the EGTEA Gaze+ dataset does not include frame485

level annotations. In our study, video frames, the hands and the objects486

having consistent motion with the action category are annotated in training487

videos (see Figure 4). The annotated frames with hands correspond to the488
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middle frames of clips used in training of 3D ConvNet verb models (see Sec-489

tion 3.1). hand is not included among object categories, therefore wash hand490

action category in wash verb and hand object is just recognized using addi-491

tional wash-hand verb category (no object). Moreover, some video samples492

cannot be assigned to a verb category due to the absence of hands, therefore493

inspect-read recipe action is identified using only recipe object. As a result,494

annotations for 20 verb categories are provided for training of verb models495

(19 verbs + hold).496

Moreover, objects interacting with hands are used in our object model.497

Therefore, the frames with hand annotations are labelled with object loca-498

tions and same object categories are populated with additional annotations499

from other frames of the videos. Annotations of water, and seasoning are500

skipped since they are quite ambiguous to label. Moreover, the hand is not501

included among object categories, since the hand annotations are used to502

train auxiliary hand model in the hand-scale verb model (see Section 3.1.2).503

As a result, annotations for 50 out of 53 object categories are provided for504

the object models.505

4.2. Experimental Setting506

The details of the best performed neural network action recognition ar-507

chitectures with their verb and object submodels are summarized in Table 4.508

For each component of the decomposition model, we have a base model and509

an RNN model. Base models for verb component are build based on C3D510

and I3D networks, and base model of object component is based on YOLO.511

While we keep the original architectures of C3D and YOLO, we fine-tune the512

I3D architecture with a simple shallow network over our dataset. Later, our513

Verb and Object-RNNs are trained and their outputs are used as inputs of514

action models. We train the networks for minimizing the cross-entropy loss515

and we use ADAM as the optimization algorithm.516

Late fusion strategy is proposed as our main action recognition architec-517

ture with higher recognition performance. The best late fusion model using518

C3D-do (Verb-Object Late Fusion-fc7(with do)-BiLSTM Bw+Fw in Table 7)519

with 50.29% mAcc consists of a shallow network of 3 fully connected layers520

with 4096, 1024, 512 neurons and a 106-dimensional softmax output (see row521

4 in Table 4). It is trained using batch size 10 and learning rate 1e-5. The522

Verb-RNN model of C3D-do (C3D full+hand (concatenation)-fc7-BiLSTM,523

see Table 5) is constructed using 1 layer BiLSTM with 768 cell size and524
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trained using batch size 10, learning rate 1e-5. On the other hand Object-525

RNN model of C3D-do (YOLO-so + do-BiLSTM, see Table 6) is constructed526

with 1 layer BiLSTM with 1024 cell size, and it is trained using batch size527

10 and learning rate 1e-4.528

Later, our model is improved with I3D feature (Our I3D-full+hand-529

BiLSTM Bw+Fw in Table 8). The I3D action model (see row 5 in Table530

4) consists of 2 fully connected layers with 1024 neurons. It is trained with531

batch size 20 and learning rate 1e-4. The Verb-RNN of I3D model is basically532

constructed using 1 layer BiLSTM with 512 cell size and trained using batch533

size 10 and learning rate 1e-6. The Object-RNN of I3D is same with C3D-do.534

Finally, we extend our late fusion strategy with an attention module, I3D-535

Att as our best performing model (Our I3D-full+hand-BiLSTM+Attention).536

The verb and object-RNNs of the model are constructed using 1 layer with537

512 and 256 cell sizes, respectively (see row 6 in Table 4). Training is per-538

formed with batch size 10 and learning rate 1e-4 for verb-RNN and 1e-5 for539

object-RNN, respectively. The action model using Recurrent Verb-Object540

Attention Late Fusion setting contains two 2048-dimensional fully connected541

layers with dropout rate of 0.5. It is trained using batch size 20, learning542

rate of 1e-5.543

One main problem we face is the imbalanced samples of the dataset.544

Using all ground truth verb data, we observe that the model tends to clas-545

sify categories with more samples, but misclassify the categories with fewer546

samples (e.g., take verb category contains 1886 samples, but squeeze verb cat-547

egory has 29 samples). Thus, as the accuracy gets increased, the mean class548

accuracy drops significantly. To solve this problem, we train verb models549

using balanced subsets. If a category has more than 250 samples, we ran-550

domly select 250 samples. If a category has less than 200 samples, we apply551

some aggregation strategies and we generate new clips by sampling around552

the ground truth clips. For all other categories, we keep their original num-553

ber of samples. Thus, we train all reported verb recognition experiments554

with balanced data having maximum 250 and minimum 200 samples for all555

categories.556

4.3. Experiments on Count-Based Baseline Models557

In this section, recognition performances of verb, object and action models558

are evaluated, respectively, when a simple count-based strategy is followed559

to compute video category score over clip categories for the related task.560

For individual verb and object recognition tasks, verb and object streams561
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Verb Base Model mAcc (%)
C3D full 39.99
C3D hand20 37.13
C3D hand10 35.91

Table 1: Experiments to show the effect of hand-volume ROI scales on video verb recog-
nition results with mean class accuracies (mAcc).

are the stacked softmax prediction scores over clips and the final video verb562

category or object category is identified using a simple distribution. For563

action recognition task, we first obtain the distribution of verb and object564

categories over clips and we apply a fusion model called Count-Based Verb-565

Object Multiplication strategy (see Figure 2 (a)).566

4.3.1. Count-Based Verb Models in Multiple Scale567

Region of interests (ROIs) in different scales encode different amount of568

information from the hand and the background. In order to examine the569

effect of scale in hand-centric verb model performance, we evaluate verb570

recognition in various scales. Verb recognition is analyzed by computing the571

main verb category appearing in the video. The category with the maxi-572

mum value on the V-dimensional verb category score vector v (histogram)573

returns the predicted verb class of the video (see Count-Based Verb-Object574

Multiplication model in Section 3.3).575

The performance of each scale is shown in Table 1. The first verb model is576

trained in full-scale mode (see Section 3.1.1). Other models, hand-scale verb577

models, are trained using different enlargement scales around hand bounding578

boxes (hand10 and hand20 verb models mean that 10% and 20% of enlarge-579

ments with respect to the width and the height of the detected hand regions580

are applied, respectively). We observe that the full-scale verb model out-581

performs the hand-scale verb models, since the full region encodes the scene582

information including hand motion, object and background. The context583

provided by each element enhances the ability to recognize action in videos584

[16].585

4.3.2. Combination of Count-Based Verb Models586

When the verb recognition accuracies are investigated in the category587

level, it has been observed that the hand-scale verb model outperforms the588

full-scale one in some verb categories such as open, put, crack verbs. There-589

fore, we also analyze the performance of verb models when multiple scales590
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Combination Verb Base Model mAcc (%)

weighted average
C3D full+hand10 46.99
C3D full+hand20 45.63
C3D full+hand10+hand20 46.38

max-pooling
C3D full+hand10 46.91
C3D full+hand20 44.91
C3D full+hand10+hand20 43.19

Table 2: Experiments to show the effect of combined verb models on video verb recog-
nition results with mean class accuracies (mAcc). The set of weight parameters for C3D
full+hand10 combination is {βfull = 0.5, βhand10 = 0.5}, for C3D full+hand20 combina-
tion is {βfull = 0.5, βhand20 = 0.5}, and for C3D full+hand10+hand20 combination is
{βfull = 0.4, βhand10 = 0.3, βhand20 = 0.3}.

are combined. We use two methods to combine, weighted average and max-591

pooling. In the first method, softmax values of the clip sequences from full-592

scale and hand-scale models are weighted averaged at the clip level. The593

weight parameters {βfull, βhand10, βhand20} are empirically searched in the594

range of [0-1]. In the second method, the max-pooling is applied over the595

softmax values of the clip sequences.596

Combining verb video representations, we compute the verb category597

score vector v. The category with the maximum value on vector v returns598

the predicted verb class of the video (see Count-Based Verb-Object Multipli-599

cation model in Section 3.3). The combination performances are reported in600

Table 2. The result shows that the combination of softmax values enhances601

the mean class accuracy (mAcc) of the verb model up to 46.99% (since the602

full-scale verb model achieves the best accuracy, we keep the full-scale verb603

model and combine it with the hand-scale models). We observe that the604

combination of verb models enables the model to capture low-level appear-605

ance features both in coarse scale and fine scale. Particularly, hand-scale606

and full-scale models vote for the clip score together where hand-scale model607

returns scores over local hand ROI and this helps to recognize harder video608

instances that are misclassified without local details. The weights of the best609

combination in weighted averaging method are 0.5 and this shows the best610

score is achieved with equal contribution of the scales. Although the accu-611

racy of the weighted average method is slightly higher than the max-pooling612

method, we select the max-pooling method for the count-based action recog-613

nition experiments due to its simplicity.614

615
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Action Model with Simple Counting mAcc (%)
Count-Based Verb-Object Multiplication 33.87
Count-Based Action Baseline 23.89

Table 3: Action recognition results with mean class accuracies (mAcc) using Count-Based
Verb-Object Multiplication model and Count-Based Action Baseline model on split1.

4.3.3. Count-Based Object Model616

We also perform the evaluation of object stream at the video level. For617

the object recognition, the category with the maximum value on the O-618

dimensional object category score vector o (histogram) returns the predicted619

object class of the video (see Count-Based Verb-Object Multiplication model620

in Section 3.3). Particularly, this is to compute how often the main object621

category appears in the video and the main object is the assigned category622

for a video frame with the maximum YOLO confidence. 63.41% mean class623

accuracy (mAcc) is achieved for video object classification on split1 (see row624

2 of Table 6). For trash, mixture, condiment object categories, low accuracies625

are achieved since these objects are hard to detect. Moreover, we observe that626

for some categories labelling is ambiguous and ground truth labeling causes627

low accuracies for these object categories. For instance, tomato container628

instances are visually similar to grocery bag instances and they are getting629

mixes up with each other. In another example, fridge, fridge drawer and630

drawer instances are getting confused and used interchangeably in labelling.631

We also perform a simpler evaluation of object recognition over video632

samples as a baseline, where we do not use the histograms to identify the633

predicted object category but instead we find the category with the maximum634

score over all YOLO detections of all frames. This results in 50.70% mAcc635

value as reported in the first row of Table 6. It shows that histogram based636

model better evaluates the object recognition over videos.637

4.3.4. Count-Based Action Model638

Our first fusion strategy for action recognition is based on a simple mul-639

tiplication of the verb category score vector v and the object category score640

vector o (see Count-Based Verb-Object Multiplication model in Section 3.3).641

The verb scores are computed using C3D network. The results are reported642

in Table 3 with a mean class accuracy (mAcc) of 33.87% on split1.643

For comparison, we also construct a Count-Based Action Baseline model644

having the same implementation with the verb model, but architecture learns645
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action categories rather than verb categories. The Action Baseline model is646

trained over video clips in a supervised setting using annotated action frames647

(clips). For each clip of the test video, a softmax output over action labels648

is retrieved from the C3D model, then the frequently observed action label649

on the clip sequence of the video is evaluated using a histogram proposed650

in Section 3.3 (instead of applying count based model on verb and object651

streams separately, we apply the same model only on action scores). We ob-652

serve that the Count-Based Verb-Object Multiplication model outperforms653

the Count-Based Action Baseline model with almost 10% accuracy. Although654

multiplication of stream scores is a simple technique for action recognition,655

its performance is higher than the baseline model without any learning (see656

Table 3). Here, we have the same training instances for all models, but verb-657

object multiplication trains over a smaller number of categories with more658

samples for verb and object streams compared to action baseline model. This659

might help neural network models to better train. Moreover, our model con-660

tains fine-grained representations of the video instances compared to action661

baseline model using detection models used in the background for objects662

and hands.663

4.4. Experiments on Recurrent-Based Models664

In this section, recognition performances of verb, object and action mod-665

els are evaluated, respectively, when recurrent structures are used for the666

related task. Particularly, we evaluate the recurrent-based fusion strategies667

we propose for action recognition (see Figure 2 (b-e)). Recurrent models get668

the verb and the object representations of video as a set of clip features,669

and then they use RNN models (LSTM or BiLSTM) to encode the temporal670

dynamics within streams.671

4.4.1. Recurrent-Based Verb Models672

We examine the individual performances of recurrent-based verb models.673

From the verb experiments of count-based verb model (see Section 4.3.2), we674

know that the combination of features in multiple scales improves the perfor-675

mance of verb recognition. Therefore, we combine verb models in different676

scales: the full-scale and hand-scale verb models. We use hand20 verb model677

for split1 due to its performance reported in Table 1. Here, verb matrices678

of multiple verb models are combined by concatenation or max-pooling, and679

then the combined feature matrix is fed into either BiLSTM or LSTM re-680

current model to analyze the verb recognition performance. Two different681
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Fusion Model Verb Base Verb-RNN Object Base Object-RNN Action Model

Multiplication
C3D soft-
max/fc7

C3D Full&Hand BiLSTM YOLO BiLSTM
soft original 100 cell, 1 layer original 100 cell, 1 layer

fc7 X 768 cell, 1 layer X X

input Clip(112×112×3×16) full softmax/fc7 Img(416×416×3) Obj so

hand softmax/fc7

output Verb-full softmax Verb-RNN softmax Obj softmax Obj-RNN softmax
Verb-hand softmax

Early
C3D(concat)
softmax

C3D Full&Hand YOLO BiLSTM
soft original original 100 cell, 1 layer

input Clip(112×112×3×16) Img(416×416×3) Verb-concat softmax
Obj softmax

output Verb-full softmax Obj softmax softmax (106)
Verb-hand softmax

Late C3D
softmax/fc7

C3D Full&Hand BiLSTM YOLO BiLSTM Shallow Network
soft original 100 cell, 1 layer original 100 cell, 1 layer fc(512)-drop(0.5)-

fc(256)-drop(0.5)
fc7 X 768 cell, 1 layer X X X

input Clip(112×112×3×16) full softmax/fc7 Img(416×416×3) Obj so Verb-RNN softmax
hand softmax/fc7 Obj-RNN softmax

output Verb-full softmax Verb-RNN softmax Obj softmax Obj-RNN softmax softmax (106)
Verb-hand softmax

Late C3D
bw+fw
softmax/fc7/
fc7 with do

C3D Full&Hand BiLSTM YOLO BiLSTM Shallow Network
soft original 100 cell, 1 layer original 100 cell, 1 layer fc(1024)–drop(0.5)–

fc(1024)–drop(0.5)-
fc(512)–drop(0.5)–
fc(256)–drop(0.2)

fc7 X 768 cell, 1 layer X X fc(1024)-drop(0.5)-
fc(512)-drop(0.5)

w/ do X X X 1024 cell, 1 layer fc(4096)-drop(0.5)-
fc(1024)-drop(0.5)
fc(512)-drop(0.5)

input Clip(112×112×3×16) full softmax/fc7 Img(416×416×3) Obj so/so + d0 Verb-RNN Bw+Fw
hand softmax/fc7 Obj-RNN Bw+Fw

output Verb-full softmax Verb-RNN softmax Obj softmax Obj-RNN softmax softmax (106)
Verb-hand softmax

Late I3D
bw+fw
with do

Our I3D(fine-tuned) BiLSTM YOLO BiLSTM Shallow Network
model fc1(1024)-drop(0.5)- 512 cell, 1 layer original 1024 cell, 1 layer fc(1024)-drop(0.5)-

fc2(1024)-drop(0.5) fc(1024)-drop(0.5)

input Mixed-5c Our I3D fc2 Img(416×416×3) Obj so + d0 Verb-RNN Bw+Fw
MaxPool3d-5a-2x2 Obj-RNN Bw+Fw

output Verb softmax Verb-RNN softmax Obj softmax Obj-RNN softmax softmax (106)

Late I3D-Att
bw+fw
with do

Our I3D(fine-tuned) BiLSTM-Att YOLO BiLSTM-Att Shallow Network
model fc1(1024)-drop(0.5)- 512 cell, 1 layer original 256 cell, 1 layer fc(2048)-drop(0.5)-

fc2(1024)-drop(0.5) Att Module Att Module fc(2048)-drop(0.5)

input Mixed-5c Our I3D fc2 Img(416×416×3) Obj so + d0 Verb-RNN Bw+Fw
MaxPool3d-5a-2x2 Obj-RNN Bw+Fw

output Verb softmax Verb-RNN softmax Obj softmax Obj-RNN softmax softmax (106)

Table 4: Architectures details of action models from Table 7 and Table 8 with their verb
and object base models and RNN structures. X marks indicate the repetition of the above
model structure.
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Verb Base Model Feature Verb-RNN mAcc (%)
C3D full softmax BiLSTM 46.49
C3D full+hand (concatenation) softmax BiLSTM 53.95
C3D full+hand (max-pooling) softmax BiLSTM 50.43
C3D full+hand (max-pooling) softmax LSTM 48.13

C3D full fc7 BiLSTM 53.23
C3D full+hand (concatenation) fc7 BiLSTM 59.50

Table 5: Video verb recognition results with mean class accuracies (mAcc) on split1 with
recurrent-based methodologies.

intermediate features of C3D verb models are experimented on to construct682

verb feature matrices, softmax prediction scores and fc7 layer features.683

We first test using softmax prediction scores. The verb matrices are the684

stacked softmax outputs per clip. According to the experimental results given685

in Table 5, it is observed that the combination of full-scale and hand-scale686

verb models helps in verb recognition with 7.46% improvement over full-687

scale verb model on split1. The feature concatenation method outperforms688

the max-pooling in verb models. Moreover, the verb model with BiLSTM689

structure (50.43%) gives higher accuracy than LSTM structure (48.13%),690

and we therefore continue with BiLSTM for the rest of the experiments.691

When compared to Table 2, it is clearly seen that recurrent verb models692

outperform the simple count-based models in recognition. This shows that693

recurrent models are better to model verb streams. The best BiLSTM verb694

model is constructed using 1 layer with 100 cell size (see Table 4).695

In order to improve verb recognition performance in recurrent-based mod-696

els, we also test our experiments with fc7 layers instead of softmax scores. Ex-697

tracted fc7 layers from the full-scale and the hand-scale verb models (please698

note that hand features are combined into a single feature vector using max-699

pooling, if there are multiple hands) are concatenated per video clip. Then,700

the video representation as stacked clip features is fed into the BiLSTM701

model. The experiments are conducted over split1, and we obtain 53.23%702

accuracy using full-scale verb model and 59.50% accuracy using concatenated703

features. Results show that fc7 that is an earlier feature layer improves recog-704

nition rates significantly. The best BiLSTM verb model with fc7 features is705

constructed using 1 layer with 768 cell size (see Table 4).706
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Object Base Model Feature Object Recognition mAcc (%)
YOLO so Max-pooling 50.70
YOLO so Count-based 63.41

Object Base Model Feature Object-RNN mAcc (%)
YOLO so BiLSTM 70.59
YOLO so+do BiLSTM 70.83
YOLO so LSTM 68.73

Table 6: Video object recognition results with mean class accuracies (mAcc) using count-
based and recurrent-based strategies. For the recurrent models, do indicates that distance-
based spatial layout features are also integrated while modelling object features. Other-
wise, so features are used. (Please see Section 3.2.1)

4.4.2. Recurrent-Based Object Models707

We evaluate individual performances of recurrent-based object models708

using BiLSTM and LSTM structures (see Section 3.2.1). Object features,709

[so, do], are extracted over video frames by the object model in a matrix710

form, and then they are fed into RNN object model. BiLSTM object model711

using stand-alone so achieves 70.59% accuracy on split1. The BiLSTM model712

has 1 layer with 100 cell size (see Table 4). Extending model with spatial713

layout feature using [so,do], BiLSTM object model achieves 70.83% accuracy714

over split1. The model has 1 layer with 1024 cell size (see Table 4).715

According to Table 6, it is observed that the recurrent-based object mod-716

els outperform the count-based object model with more than 7% improve-717

ment. This means that modeling temporal dynamics for video object recog-718

nition significantly improves performance. It has been seen that BiLSTM719

object model also improves the accuracy compared to LSTM. However, the720

effect of do is very low, but we will later show its effect on action results.721

4.4.3. Recurrent-Based Action Models722

We make use of the outputs of the recurrent-based verb and object models723

and we train action models based on different fusion strategies (see Table 7).724

Comparing various fusion strategies, we show simple multiplication re-725

sults in comparable performance with more complicated fusion strategies726

without any training. Moreover, we show late fusion strategies can achieve727

better recognition compared to early fusion with many training advantages.728

Moreover, the results of the late fusion strategies outperform other strategies729

with addition of bw+fw features and spatial layout feature do. Finally, com-730

paring softmax and fc7 results, we observe that RNN achieved comparable731

performance on simple softmax features.732
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Fusion Model Verb Base Model Feature Verb/Object/Action-RNN mAcc (%)
Verb-Object Multiplication C3D full+hand softmax BiLSTM 45.29
Verb-Object Early Fusion C3D full+hand softmax LSTM 44.36
Verb-Object Early Fusion C3D full+hand softmax (max-pooling) LSTM 44.10
Verb-Object Early Fusion C3D full+hand softmax BiLSTM 45.18
Verb-Object Early Fusion C3D full+hand softmax (max-pooling) BiLSTM 46.47
Verb-Object Late Fusion C3D full+hand softmax BiLSTM 45.45
Verb-Object Late Fusion C3D full+hand softmax BiLSTM Bw+Fw 49.01
Verb-Object Action Baseline C3D full softmax BiLSTM 25.36

Verb-Object Multiplication C3D full+hand fc7 BiLSTM 45.54
Verb-Object Late Fusion C3D full+hand fc7 BiLSTM 46.62
Verb-Object Late Fusion C3D full+hand fc7 BiLSTM Bw+Fw 48.46
Verb-Object Late Fusion C3D full+hand fc7 (with do) BiLSTM Bw+Fw 50.29

Table 7: Action recognition results with mean class accuracies (mAcc) on videos using
recurrent-based fusion strategies. Bw means Backward function output and Fw means
Forward function output. Concatenation is applied to merge full and hand scale verb
features unless specified as ax-pooling. do indicates that distance-based features are also
integrated while modelling object features. Otherwise, so features are used.

Recurrent verb-object multiplication. In this fusion setting, action733

category of a video is simply identified with multiplication of verb-RNN and734

object-RNN score vectors (see Figure 2 (b)). The verb category score vector735

v is extracted using the verb model C3D full+hand(concatenation)-softmax-736

BiLSTM (see row 2 in Table 5 and row 1 in Table 4) and object vector737

o is extracted using the object model YOLO-so-BiLSTM (see Table 6 and738

row 1 in Table 4), respectively. Given a test video, we simply multiply the739

verb and the object vectors. The verb-object pair with the maximum value740

of the matrix obtained by multiplication is selected as the predicted action741

category of the video. This experiment is applied over split1 with a 45.29%742

mAcc. We observe that temporal action model significantly outperforms743

simple Count-Based Verb-Object Multiplication model with 11.42% gain in744

accuracy (see Section 4.3.4 and Table 7). This means that modelling the745

temporal dynamics helps in action recognition as well.746

Similar experiment is conducted using fc7 features for the verb model747

C3D full+hand(concatenation)-fc7-BiLSTM (see row 6 in Table 5 and row 1748

in Table 4) with the same object model. We obtain 45.54% accuracy with a749

slight improvement over softmax score features.750

751

Recurrent verb-object early fusion. In this fusion setting, action recog-752

nition is performed utilizing RNN structures over combined low-level verb-753

object representations (see Figure 2 (c)). In this experiment, either max-754

pooling or concatenation is applied to the verb softmax values from full-scale755
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and hand-scale verb models. Combined verb scores are concatenated with ob-756

ject softmax values, and final values are employed by the RNN action model.757

According to BiLSTM results, 46.47% and 45.18% accuracies are achieved758

for action recognition over split1 using max-pooling and concatenation, re-759

spectively. According to LSTM results, 44.10% and 44.36% accuracies are760

achieved for action recognition over split1 for max-pooling and concatena-761

tion, respectively. For both combination types, experimental results show762

that BiLSTM structure improves the accuracy compared to LSTM in Ta-763

ble 7. The best BiLSTM early fusion model with 46.47% mAcc is simply764

constructed using 1 layer with 100 cell size (see row 2 in Table 4). Please765

note that we do not conduct fc7 experiments for early fusion, since the di-766

mensions of fc7 verb features and object score vector so are imbalanced for767

concatenation.768

769

Recurrent verb-object late fusion. In this fusion setting, action recog-770

nition is performed with a shallow neural network that takes the RNN en-771

codings of individual verb and object streams as the concatenated verb cat-772

egory score vector v and object category score vector o as inputs (see Fig-773

ure 2 (d)). Here, the verb vector v is the output of the verb model C3D774

full+hand(concatenation)-softmax-BiLSTM (see Table 5) and the object vec-775

tor o is the output of the object model YOLO-so-BiLSTM (see Table 6). As776

given in Table 7, 45.45% accuracy is obtained over split1 with ([−→v,−→o]) (see777

row 3 in Table 4). This result is slightly lower than the early fusion strat-778

egy. Using the concatenated outputs of forward and backward functions,779

[−→v,←−v,−→o,←−o], the model performance later improves up to 49.01% mAcc.780

Conducting experiments using fc7 layer as verb features, we obtain 46.62%781

accuracy using forward feature as input of the shallow network and 48.46%782

accuracy using forward and backward feature combination as input of the783

shallow network. While fc7 provides improvement over softmax feature with784

BiLSTM, it shows slightly worse performance for BiLSTM Bw+Fw. If we785

further extend the inputs with an object model using [so,do] representation786

(the other object models use so), the performance is 50.29%. Figure 5 shows787

a comparison chart reporting category based accuracies and results indicate788

that hand-object interaction through do improves action recognition in 48789

categories with 1.83% again in accuracy. By analyzing the improved samples,790

we found that do helps to correct the verb and action predictions for many791

video instances. do models the layout of hands and objects with respect792

to each other within a frame and our RNN structure models the temporal793

28



Figure 5: Comparison of Action Models Verb-Object Late Fusion-fc7-BiLSTM Bw+Fw
with 48.46% accuracy and Verb-Object Late Fusion-fc7 (with do)-BiLSTM Bw+Fw with
50.29% accuracy (see Table 7). Maximum value per category over two models are shown
(best viewed in color).

dynamics of the layout within frame and across frames. This helps to correct794

verb and action predictions as shown in Figure 6.795

These experiments show that (i) fc7 features, (ii) forward and backward796

extension, and (iii) object model with spatial layout do improve the perfor-797

mance significantly. Figure 7 shows same recognition results using the best798

performed C3D model and how it predicts in challenging video cases. The799

best shallow network with 50.29% mAcc consists of 3 fully connected layers800

with 4096, 1024, 512 neurons and a 106-dimensional softmax output (see row801

4 in Table 4).802

803

Recurrent action baseline. Recurrent action baseline is also experimented804

over C3D action model (see Figure 2 (f)). In this experiment, accuracy805

reaches to 25.36% in Table 7. Result shows that the Recurrent Action Base-806

line model is better than the Count-Based Action Baseline model due to807

modelling of temporal dynamics in action videos (see Table 3), and the two-808

stream recurrent fusion strategies that rely on either early or late fusion are809

better than the baseline models.810
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frame t frame t + n.   .   .   .   .   .   .   .   .   .  

GT: Turn on faucet
Our C3D-do: Turn on faucet
Our C3D: Put eating utensil
Our Verb:  Turn on

GT: Turn on faucet
Our C3D-do: Turn on faucet
Our C3D: Pour water, 
                 faucet, pot
Our Verb:  Wash

GT: Cut carrot
Our C3D-do: Cut carrot
Our C3D: Cut onion
Our Verb: Cut

GT: Open cabinet
Our C3D-do: Open cabinet
Our C3D: Inspect-Read recipe
Our Verb: Open

GT: Pour condiment, 
   condiment_container, salad
Our C3D-do: Pour condiment,
    condiment_containe, salad
Our C3D: Take eating utensil
Our Verb:  Take

GT: Wash bowl
Our C3D-do: Wash bowl
Our C3D: Pour water, 
                 faucet, pot
Our Verb:  Pour

GT: Cut cucumber
Our C3D-do: Cut cucumber
Our C3D: Cut onion
Our Verb:  Cut

onion
cucumber

Turn on

Turn on
Turn on

Turn on
Turn on

Turn on

Turn on
Turn on

Turn on Turn on

Cut
Cut

Cut

Cut

Cut

Cut

Cut

Cut

Open
Open

Open

Open
Open

Take Take Take Take Take

Pour
Pour

Pour
Pour Pour Pour

Cut

Cut

Cut

Cut

Cut

Cut
Cut

Cut

Cut
Cut

Figure 6: Visual comparison of action models for test samples from EGTEA Gaze+ dataset
to evaluate the effect of spatial layout do (best viewed in color). For fair comparison,
the late fusion strategies of Our C3D-do (Verb-Object Late Fusion-fc7(with do)-BiLSTM
Bw+Fw) and Our C3D (Verb-Object Late Fusion-fc7-BiLSTM Bw+Fw) (see Table 7)
action models are considered. Both action models are constructed using same verb model.
It can be easily appeared from the visual samples that action model with object model
with distance scores do improves the action performances and corrects the verb and object
predictions. For instance, for the video clip sample in the last row, although the verb
action is predicted as cut and there is onion object in the background, Our C3D fails
by predicting the video as cut onion action category. Our C3D-do action model predicts
action category of cut cucumber correctly since it takes into consideration the hand and
cucumber object locations and interaction.
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frame t frame t + n.   .   .   .   .   .   .   .   .   .  

GT: Take eating utensil
Our C3D-do: Take eating utensil
Our Verb: Cut

GT: Take condiment container
Our C3D-do: Take condiment 
                      container
Our Verb: Close

GT: Put condiment container
Our C3D-do: Put condiment 
                     container
Our Verb: Take

GT: Put trash, trash container
Our C3D-do: Put trash, trash 
                    container
Our Verb: Move around

GT: Spread condiment, bread, 
       eating utensil
Our C3D-do: Spread condiment, 
        bread, eating utensil
Our Verb: Mix

GT: Put pan
Our C3D-do: Put pan
Our Verb: Pour

GT: Crack egg
Our C3D-do: Crack egg
Our Verb: Divide-pull apart

GT: Squeeze washing 
       liquid, sponge
Our C3D-do: Squeeze 
       washing liquid, sponge
Our Verb: Wash

Cut Cut
Cut Cut Cut Cut Cut Cut Cut

Cut

Close
Close

Close

Close
Close

Take
Take

Take
Take

Take

Move around 

Move around Move around Move around 

Mix

Mix

Mix
Mix

Mix Mix

Pour

Pour Pour Pour

Pour Pour
Pour Pour

Divide-pull apart
Divide-pull apart

Divide-pull apart
Divide-pull apart

Divide-pull apart
Divide-pull apart Divide-pull apart

Divide-pull apart
Divide-pull apart

Divide-pull apart

Wash
Wash Wash Wash Wash Wash Wash Wash Wash

Take

Take

Figure 7: Visualization of same video samples to show the improvements of C3D action
model for the failure cases of the verb model. The predictions of the best action model
using Our C3D-do (Verb-Object Late Fusion-fc7(with do)-BiLSTM Bw+Fw)(see Table 7)
and the predictions of its verb-RNN stream are illustrated. Even if the verb model predicts
incorrectly, action model corrects the prediction of the verb stream. The verb predictions
are confused due to the similar background of the video and the similarity of the hand
movements. For instance, in the first row, the hand action is categorized as cut since the
background and interacted objects are proper for that action although the ground truth
verb action is take. Our C3D action model handles this failure cases of verb model and
predicts the video correctly as cut eating utensil with correction of verb category.
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Verb Base Model Scale Feature (pooled) Verb-RNN mAcc (%)

Pre-trained I3D
full Mixed-5c (1x1x1x1024)

BiLSTM 66.03
– –

Pre-trained I3D
full Mixed-5c (1x1x1x1024)

BiLSTM 71.62
hand MaxPool3d-5a-2x2 (1x1x1x832)

Pre-trained I3D
full Mixed-5c (3x1x1x1024)

BiLSTM 73.15
hand MaxPool3d-5a-2x2 (1x1x1x832)

Our I3D
full Mixed-5c (3x1x1x1024)

BiLSTM 73.43
hand MaxPool3d-5a-2x2 (1x1x1x832)

Our I3D
full Mixed-5c (3x1x1x1024)

BiLSTM+Attention 74.81
hand MaxPool3d-5a-2x2 (1x1x1x832)

Base Model Scale Feature (pooled) Verb/Object-RNN mAcc (%)

Pre-trained I3D
full Mixed-5c (1x1x1x1024)

BiLSTM Bw+Fw 51.15
hand MaxPool3d-5a-2x2 (1x1x1x832)

Pre-trained I3D
full Mixed-5c (3x1x1x1024)

BiLSTM Bw+Fw 53.82
hand MaxPool3d-5a-2x2 (1x1x1x832)

Our I3D
full Mixed-5c (3x1x1x1024)

BiLSTM Bw+Fw 54.56
hand MaxPool3d-5a-2x2 (1x1x1x832)

Our I3D
full Mixed-5c (3x1x1x1024)

BiLSTM (Attention) Bw+Fw 56.07
hand MaxPool3d-5a-2x2 (1x1x1x832)

Table 8: I3D verb and action recognition results on split1 videos with recurrent-based
models. The action models are based on recurrent verb-object late fusion strategy, and
trained using backward and forward function outputs. The object stream used in action
models is based on model YOLO-so + do-BiLSTM. The reported results as the last verb
and action models are trained with attention module. Attention module is applied both
on verb and object models, but we obtain no improvement for object recognition.

4.4.4. Other 3D ConvNet Architectures: I3D811

The base encoding models used for the feature extraction may improve the812

recognition rates significantly. Following this, we extend our experiments by813

using other 3D ConvNet architecture called I3D RGB [40] to categorize clips814

(following the original setting we use 25-frame clips) as the base model for the815

verb stream and we conduct two experiments. First, we use the pre-trained816

I3D model that is trained on the Kinetics dataset with 400 action categories817

2. Later, we train a shallow neural network model that fine-tunes over I3D818

intermediate features using our verb and action annotations. In both cases,819

the base model encodes videos as verb matrices and we train our verb and820

action models using recurrent models on top of these matrices as before. We821

report the verb and the action recognition accuracies, respectively, in Table822

8. Please note that we conduct I3D experiments with the setting that is best823

performed for C3D, therefore we investigate the Recurrent Verb-Object Late824

Fusion strategy that performs best for C3D (given in Table 7) and the object825

2https://github.com/deepmind/kinetics-i3d
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Figure 8: Comparison of multiple scale I3D verb models over 20 verb categories of the
EGTEA Gaze+ dataset. Yellow bars show the recognition results of verb model Pre-trained
I3D-full-BiLSTM and blue shows the results of verb model Pre-trained I3D-full+hand-
BiLSTM (see in Table 8). Multiple scales using full and hand scales improve recognition
with 5.59% gain.

stream is object model YOLO-so+do-BiLSTM. Figure 9 shows predictions826

over a set of test samples using I3D and C3D models. When we analyze827

the samples, we observe I3D resolves some challenging cases and improves828

recognition performance over C3D. I3D is a dense network compared to C3D829

and intermediate layers consists of inception modules. Using a more advance830

base model for verb stream, we improve recognition performance by 4.27%.831

For I3D experiments, two intermediate layers from the I3D model are832

selected for encoding the full-scale and the hand-scale verb information, re-833

spectively. For the full-scale encoding used to fetch coarser details in clips,834

we pick the outputs of 3×7×7×1024-dimensional Mixed-5c layer. On the835

other hand, for the hand-scale encoding corresponding to finer details on836

hands, we pick the outputs of an earlier layer, 3×14×14×832-dimensional837

MaxPool3d-5a-2x2 layer for hand-volumes. We apply 20% enlargement on838

detected hand regions before extracting features of hand-volumes. Finally,839

each clip is represented as the concatenation of these features. If there are840

multiple hands, we apply max-pooling on features of hand-volumes.841

Using pre-trained I3D model, we first examine how the multiple scales842

help in performance and compare full-scale (66.03% mAcc) vs. combination843

of full-scale and hand-scale models (71.62% mAcc). We also show the details844

for all verb categories in Figure 8. There is a significant improvement over845

18 verb categories with the addition of fine-grained details through hand-846

scale model. This is what we expect from the combination of fine and coarse847

scale features. Then, we experiment on two different feature setting. We848

obtain 71.62% mAcc and 73.15% mAcc for verb recognition (the BiLSTM849
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GT: Wash hand
Our I3D-do: Wash hand
Our C3D-do: Turn on faucet

GT: Divide-pull apart lettuce
Our I3D-do: Divide-pull apart 
                    lettuce
Our C3D-do: Take lettuce

GT: Take tomato
Our I3D-do: Take tomato
Our C3D-do: Cut carrot

GT: Take cucumber
Our I3D-do: Take cucumber
Our C3D-do: Cut cucumber

GT: Put tomato container
Our I3D-do: Put tomato 
                    container
Our C3D-do: Open fridge

GT: Crack egg
Our I3D-do: Crack egg
Our C3D-do: Mix egg

frame t frame t + n.   .   .   .   .   .   .   .   .   .  

Figure 9: Visual comparison of predictions of I3D and C3D based action models on test
samples from EGTEA Gaze+ dataset (best viewed in color). For fair comparison, the same
late fusion settings of C3D-do (Verb-Object Late Fusion-fc7(with do)-BiLSTM Bw+Fw)
from Table 7 and I3D-do (Our I3D-full+hand-BiLSTM Bw+Fw ) from Table 8 action
models are considered. Both models are constructed using the same object model. These
challenging videos are predicted true by I3D action model while predicted false by C3D
action model. The illustration of successive frames of videos shows the challenging videos
are truly predicted by I3D while missed by C3D. For the video sample in the first row,
while the turn-on faucet action is performed at the beginning of the video, I3D based
action model predicts the main video action correctly. The same challenge is also valid for
the second and fifth row video samples. In the third row video sample, both object and
verb categories are wrong in C3D. Although the background is proper for cut verb action,
I3D overcomes this challenging situation.
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verb models contain 1 layer with 728 cells). Moreover, we obtain 51.15%850

mAcc and 53.82% mAcc in action recognition (the action models contain 2851

1024-dimensional fully connected layers with dropout rate of 0.5). In the852

first feature setting, the full-scale features and the hand-scale features are853

pooled both in spatial and temporal dimensions, and then concatenated. In854

the second one, the full-scale features are pooled just in the spatial dimen-855

sion and concatenated with the pooled hand-volume features. Results show856

that higher dimensional representations encode the data better. Please note857

that further experiments can be conducted on other network layers with var-858

ious pooling settings to improve the recognition performance. Keeping the859

features as in the original dimension is good to encode spatial and tempo-860

ral information, but here we prefer to apply pooling over spatial domain to861

decrease feature dimensions.862

Our fine-tuned model is trained over extracted I3D features. Unlike two863

separate models introduced on C3D for full-scale verb and hand-scale verb864

features respectively, here we train a single model on concatenated I3D full-865

scale and hand-scale features. Representing each clip with a concatenated866

feature vector, we train a verb model over ground truth action clips. This867

model contains 2 1024-dimensional fully connected layers with dropout rate868

of 0.5. Using this verb model, we represent each verb category score vector v869

using the 1024-dimensional second fully connected layer output. Later, v and870

o are concatenated and fed into the shallow network. This shallow network871

similarly contains 2 1024-dimensional fully connected layers with dropout872

rate of 0.5 (see row 5 in Table 4) . The verb and the action models result in873

recognition accuracies of 73.43% and 54.56%, respectively. Our supervised874

setting slightly performs better than the pre-trained models, since it provides875

fine-tuning over EGTEA Gaze+ dataset.876

4.4.5. Recurrent Models with Attention877

As proposed in Section 3.3, we improve fusion strategies with a self-878

attention module and we propose a model called Recurrent Verb-Object At-879

tention Late Fusion strategy. The attention module can be easily applied880

to early fusion strategy that reduces verb and object streams into a single881

pathway in earlier stages, but we work on late fusion since it is superior in882

recognition performance (see Table 7). Please note that we conduct experi-883

ments for the best performing setting, therefore attention module is applied884

for late fusion strategy and we use our I3D models. The verb and object BiL-885

STM models with attention module are constructed using 1 layer with 512886
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Figure 10: Confusion matrices reporting the performances of verb models Our
I3D-full+hand-BiLSTM (left) and Our I3D-full+hand-BiLSTM+Attention (right) with
73.43% and 74.81% mAcc, respectively, over 20 verb categories of the EGTEA Gaze+
dataset (see Table 8).

and 256 cell sizes, respectively. Finally, the action model using Verb-Object887

Attention Late Fusion setting contains two 2048-dimensional fully connected888

layers with dropout rate of 0.5 (see row 6 in Table 4).889

In Verb-Object Attention Late Fusion setting, the verb, object and action890

model results are 74.81%, 70.83% and 56.07%, respectively. According to the891

results, the recurrent verb and action models with attention block outperform892

the non-attention models as seen in Table 8. The verb model results in893

1.38% gain and action model results in 1.51% gain in recognition accuracies.894

However, we observe no improvement on object model. For comparison, more895

details can be found in Figure 10 and in Figure 11. We also show some failure896

cases in Figure 12. The failures are caused by the similarity of the object897

categories and hand movements.898

5. Comparison and Discussion899

This section presents the comparison of the proposed model on the EGTEA900

Gaze+ dataset for action recognition, as well as a detailed discussion.901

Table 9 reports results of our proposed method with the state-of-the-art902

models and it shows that our performance is comparable with the state-of-903

the-art. Baseline models I3D RGB, I3D Joint, I3D+Gaze returns 47.26%,904

49.79%, and 51.21% accuracies, respectively. Results show that I3D is a905
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Figure 11: Comparison of action models Our I3D-full+hand-BiLSTM Bw+Fw and Our
I3D-full+hand-BiLSTM(Attention) Bw+Fw with 54.56% and 56.07% mAcc over 106 ac-
tion categories of the EGTEA Gaze+ dataset (best viewed in color).

Action Models mAcc (%)
EgoIDT + Gaze [30] 46.50
I3D RGB [13] 47.26
I3D Joint [13] 49.79
I3D+Gaze [13] 51.21
Li et al. [13] 53.30
MCN [14] 55.63
Ours 56.07
LSTA-RGB [45] 57.94
RU [46] 60.20
LSTA [45] 61.86

Table 9: The comparison with state-of-the-art action recognition models on the first split
of EGTEA Gaze+ dataset with accuracy in mAcc.

powerful feature, and I3D Joint with joint modelling of RGB and Flow fea-906

tures improves the recognition significantly. Moreover, I3D+Gaze has the907

highest accuracy among three, since gaze is an important clue for egocentric908

videos. Our models rely only on RGB modality, and they are better than909

the I3D based models and Li et al. [13]. This means the performance gap910

can be increased with integration of other modalities into our pipeline. Inte-911

gration is simple, where each stream of our verb-object decomposition model912

can be further extended with two-stream approaches to add Flow or Gaze913
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GT: Put grocery bag
Our I3D-Att: Put bread 
                    container

frame t frame t + n.   .   .   .   .   .   .   .   .   .  

GT: Put grocery bag
Our I3D-Att: Take grocery 
                     bag

GT: Put eating utensil
Our I3D-Att: Put plate

GT: Put eating utensil
Our I3D-Att: Move around 
                    eating utensil

GT: Take bowl
Our I3D-Att: Put bowl

GT: Take bowl
Our I3D-Att: Take plate

GT: Take sponge
Our I3D-Att: Wash eating
                     utensil

GT: Take sponge
Our I3D-Att: Turn off faucet

Figure 12: Failure cases of I3D-Att (Our I3D-full+hand-BiLSTM(Attention) Bw+Fw, see
Table 8) action model on a set of test samples from split1.
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modalities.914

We report lower results than the recently published studies the RU [46]915

and the LSTA [45]. In [46], the Rolling-Unrolling LSTM (RU) processes916

appearance from RGB frames, motion from optical flow, as well as object917

features. These modalities are fused using an attention mechanism. Simi-918

larly, LSTA [45] is a two-stream model; one stream for encoding appearance919

information from RGB frames and the second stream for encoding motion920

information from optical flow. Both models use flow as a low-level feature.921

Following a similar discussion, we state that our model focuses on a single922

modality with RGB features. The standalone performance of LSTA RGB923

stream, LSTA-RGB, [45] has 57.94% mAcc and this is slightly higher than924

our best model with 56.07%. Please note that we use the term two-stream925

to indicate the verb-object decomposition of action model, but other mod-926

els use the term of two-stream architecture following the work [32] where927

each stream models a different low-level modality, namely RGB and Flow.928

This means that the performance of object and verb streams can be further929

improved with other modalities.930

Investigating fine-grained recognition in first-person view, our aim is on931

how the recognition rates can be improved within the model just using RGB932

modality. We focus on hands, their actions in multiple scales and their933

interactions with other objects. Verb stream is modelled using RGB with a934

single modality and 3D convolutional neural network models are investigated935

for modelling multiple scales of hand regions. Similarly, object-stream is936

modelled using RGB frames and spatial layout features.937

On the other hand, our proposed model is based on action decomposition938

with two semantically meaningful components, verb and object. In this work,939

we show that we achieve comparable results with the state-of-the-art models.940

Even if we have slightly lower performance than some of the approaches, our941

model has many architectural advantages over conventional action recogni-942

tion models. First, decomposition is good for zero-shot learning as proposed943

in [7]. Second, in large scale datasets, the number of video instance can vary944

for each category, and while some categories have a large amount of train-945

ing samples, some other categories have very few training samples. Through946

decomposition based models, we have less number of categories with more947

samples to train each component of neural network architectures, and this948

helps to solve the problem related to dataset imbalance. Moreover, models949

based on action decomposition are architecturally more flexible for extending950

the model later for more categories. For example, fixing the object compo-951
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nent with trained model, an addition of a new verb category will cost to952

fine-tune the verb component and the simple fusion model (observing late953

fusion outperforms early fusion).954

6. Conclusion955

We have developed compositional model including two complementary956

steps, verb and object, to perform action recognition in first-person videos.957

Late and early fusion strategies, based on recurrent neural network struc-958

tures pools verb models and object model to recognize the video at action959

level. Experimental results show that decomposing actions model into verb960

and object using recurrent neural networks significantly improves the per-961

formance compared to the baseline action model for large number of action962

classes. Hand information is an important clue to determine the action in963

the first-person vision. We have shown that spatial-temporal modelling of964

hand regions improves both verb and action recognition performances.965
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