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Millimeter- and submillimeter-wave imaging through
dispersive hologram and deep neural networks

Aleksi Tamminen, Member, IEEE, Samu-Ville Palli, Student Member, IEEE,
Juha Ala-Laurinaho, and Zachary D. Taylor, Member, IEEE.

Abstract— We present imaging results with dual-band
millimeter- and submillimeter-wave hologram and deep neural
networks. The imaging method uses a single transceiver, which
interrogates the region of interest through a dispersive
transmission-type hologram. The hologram was designed to cover
two bands 50-75 GHz and 220-330 GHz. Two separate single-
transceiver imaging experiments were carried out with two test
objects translated in the region of interest at 101 x 101 locations.
Neural networks were trained to images of the test objects with
wide-band reflection spectra from the region of interest as the
input. The deep neural networks were based on deconvolutional
layers that mapped the latent information of the test objects in the
spectra to image pixel values. The two ~10-cm test objects were
imaged in 200 x 200 mm? and 300 x 300 mm? field-of-view at
600 mm from the hologram aperture (19° to 28° angular field-of-
view). The experimental resolution was estimated from point-
spread functions extracted from the predicted images. The full
width at half maximum resolution was 21 mm and 16.5 mm, for
the 50-75 GHz and 220-330 GHz bands, respectively. These are
close to the theoretical limits of 25 to 19 mm, for the lower band,
and 19 to 16 mm for the higher band as predicted with hologram
aperture size and edge taper. Augmented reflections were
constructed from corner-cube measurements to evaluate the
ability to predict images of vast collection of objects. The results
with augmented data show performance comparable with the
experimental ones with limited test object space. The latent
representations for both the experimental and augmented data
indicate sparsity — a demonstration of feasibility to generalize from
reflection spectra to images. The performance of the developed
imaging technique is in par with the current, multichannel state of
art and has the advantage of substantially reduced hardware
complexity.

Index Terms— Imaging, hologram, deep neural network,
submillimeter wave

1. INTRODUCTION

HE partial transparency of common materials and high
sensitivity to water content are some of the key
parameters that continue to drive interest and
development in millimeter- and submillimeter-wave
imaging technology. In addition to numerous scientific
applications, imaging is used in personnel screening, medical
diagnosis, and non-destructive testing. Many applications under
research require real-time imagery, which often includes
increasing sensor count or expanding optomechanics
complexity. Despite significant advances in transceiver
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development, the unit cost for a sensor at these bandwidths
remains high.

The image-forming technologies used in submillimeter-wave
real-time screening systems are often based on electronic or
mechanical beam scanning combined with a quasioptical
coupling of energy from object to sensors. In scanned systems,
the object plane focal point is steered by mirrors actuated by
mechanical drives. A broad range of imaging systems based on
passive radiometry and active imaging radars have been
demonstrated and are commercially available [1].

A challenge in real-time imaging systems for personnel
screening comes from the required signal-to-noise ratio (SNR),
which is proportional to the integration time of the sensor. The
sensors are multiplexed over the field-of-view to form the full
image [2], and the sensor count is often maximized to achieve
fast and high-SNR systems. Passive submillimeter-wave
imaging radiometric sensor arrays utilizing dense, high device
count have been developed both for room-temperature and
cryogenic operation. For example, imaging with arrays of
>1000 kinetic-inductance bolometers have been demonstrated
with sufficient spatial resolution and field-of-view without
moving optomechanics [3]. However, cooled systems require
elaborate cryogenic technology that increases system cost and
footprint as well as introduces startup/initialization time that
may be up to 24-hours long.

Active imaging radars have been developed around linear
arrays with scanning systems that sweep the 1D atray over a 2D
region of interest (Rol) [4]. Active imaging systems may apply
sensor arrays with controllable phase shifts resulting in
electronic beam steering that avoids actuating large physical
elements. Phase shifts can also be applied for post detection in
a multi-sensor system for similar effect [5]. Imaging systems
with electronic beam steering may include thousands of sensors
operating in a coherent way [6]. Although the cost of
transceiver technology at millimeter waves has come down
thanks to mass production for telecommunications and
automotive radar, the technology remains prohibitively
expensive, especially at higher millimeter wave frequencies and
at submillimeter waves.

“Single-pixel camera” refers to technology where an imaging
system relies on a single transceiver that is then multiplexed to
different modes to interrogate the target in specific ways.
Transmittance images of 2D test objects have been reported [7]-
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[10]. The modes can be created with masks that introduce
spatial modulation into the illumination on the target. In optical
wavelengths, the multiple masks can be created in fast
succession by using spatial light modulators such as
microelectromechanical mirror arrays or liquid-crystal devices.
Our work presented here is similar to single-pixel camera as it
bears only one transceiver and a quasioptical element with
analogous function to the masks used in single-pixel
experiments. There is no need for active control as the
dispersive hologram passively varies the target illumination
over a frequency sweep.

Several emerging technologies have been suggested to limit
the number of transceivers while keeping the mechanical
beamsteering at minimum. Such technologies are millimeter-
wave holographic imaging methods [11], [12], frequency-
diverse images based on highly over-moded millimeter-wave
resonating antenna elements [13], and MIMO imaging systems
[14], and CMOS-based active metamaterials [15]. At millimeter
and submillimeter waves, the spatial light modulators have been
demonstrated, such as the photo-injected Fresnel-zone plate
antenna [16], [17]. In these imaging methods, beam steering is
carried out as a single-mode process, i.e., a single diffraction-
limited spot is scanned across the target and multiplexed in time
as the scan proceeds. Imaging based on quasi-random
illumination of the region of interest has been demonstrated at
millimeter waves in [13]. Frequency-diverse millimeter-wave
imaging with a telecommunications transceiver array is
demonstrated in [18]. The designs are rather complex and
typically also an accurate model of the radio-wave propagation
within the system is needed for the inversing task in image
formation. Our work takes advantage of the frequency diversity
of the dispersive hologram in creating complex radiation
patterns and it also uses deep neural network to carry out the
inversing task from one-dimensional spectra to images. This
can be considered a great advantage compared to the more
complex imaging methods.

At optical wavelengths, holographic imaging process has
been carried out without the knowledge of the wave
propagation in the optical arrangement. A neural network (NN)
demonstrated its ability to recover amplitude and phase from
holograms in microscopic application [19]. Also, a deep
learning method was proposed to predict a phase profile from
diffracted field intensity [20]. Computational imaging and
image segmentation using both convolutional [21] and
deconvolutional [22], [23] neural networks are applied with
sparse or latent representations of images as the input.
Deconvolutional neural network is selected as the neural-
network topology in our work due to its property to expand
latent representations into images.

At millimeter waves, machine learning has been used in non-
destructive testing [24] and in biomedical sample classification
[25]. As tangential work to that presented here, neural networks
have been utilized to design diffractive THz components [26]-
[28]. The NN was used to design output spectra from
metamaterial structures [29]. The THz wave propagation is
modeled with neural networks in a super-resolution application
of a scanned focused THz imaging system [30]. Millimeter-
wave imaging of simple reflective targets has been presented in
[31], where machine learning was applied to reconstruct the
image. The abovementioned machine-learning applications are

used to aid in designing components or as an additional layer of
image classification, whereas our novel method is an end-to-
end solution to computationally form images from reflection
spectra.

We present the first results of millimeter- and submillimeter-
wave imaging based on dispersive hologram structure and
deconvolutional neural networks. The results are obtained at
two separate bands: 50-75 GHz and 220-330 GHz. The
dispersive hologram distributes the waves on the target as the
transmitter frequency is swept. The back reflected waves are
received as spectra that are unique to the location and
reflectivity distribution of the test objects. The neural networks
are based on deconvolutional layers, and they have been earlier
used in semantic segmentation task to expand a latent
representation from a scene into an image [23]. Our key
hypothesis is that the reflection spectrum from the region of
interest through the dispersive hologram is a latent
representation that conveys the image information. The new
imaging method allows for imaging without mechanical
scanning and can potentially reduce the sensor count and
optomechanical complexity in imaging systems. Our
experiments at millimeter- and submillimeter waves show that
the cross-range resolution in the imaging task are in line with
the diffraction limit. Earlier, we have demonstrated localization
based on similar dispersive element combined with terahertz
time-domain spectrometer operating at 0.1-2 THz [32].

In the following, we will discuss the imaging method and the
dispersive hologram in Section II, we present the data from
measurements with extended targets as well as with augmented
data composed of measured reflections from a corner-cube
reflector in Section III, the deconvolutional neural network is
introduced in Section IV, and the imaging experiment results
are shown in Section V. Finally, we end up with conclusions.

11. THE IMAGING METHOD

In the proposed imaging method, the illumination is directed
towards the region of interest (Rol) through a transmission-type
hologram. With a proper design, the modulated field is both
directive and dispersive; there is minimal spatial (transverse
correlation) between spectral components and the majority of
energy within the operational band is directed towards the
region of interest. The Rol is thus illuminated with a high
amplitude, frequency-diverse, spatially varying field. In our
case, the imaging system consists of a single transceiver; a
millimeter-wave extender coupled to a vector-network analyzer
(VNA), which acquires back reflection from the Rol through
the hologram. The reflection includes the reflectivity map of the
object weighted with the spatial field distribution, which is
highly varying as function of frequency. Fig. 1 shows the
arrangement of the hologram and the field dispersion in the Rol.
The proposed method is based on the following hypothesis:
If the illuminating field varies enough spatially across the
bandwidth, the measured wide-band reflection will carry
enough information to form an image of the object. The image
formation is performed through a trained deep neural network.
A deconvolutional neural network was selected for the image
formation tasks, as it can be used to construct the images based
on latent frequency-domain representation of the object [33].
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Fig. 1. Frequency-diverse illumination of the region of interest
through a hologram. The field in the region of interest is changing
rapidly as function of frequency.
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Two setups operating at two different bands were
constructed: WR-15 at 50-75 GHz and WR-3.4 at 220-330
GHz. The imaging system was fed by Pickett-Potter horn
antennas and radiation was collimated by a 76.2-mm offset-axis
parabolic mirror (OAP). The OAP mirror’s 127-mm effective
focal length resulted in approximately radially symmetric
amplitude in the collimated beam with an edge taper of 6 dB at
WR-15 and 28 dB at WR-3.4. These edge tapers are
approximated with Gaussian beams. Following the Gaussian-
beam theory, at 600-mm distance, the edge tapers correspond
image resolutions of 25 to 19 mm and 19 to 16 mm, for WR-15
and WR-3.4, respectively [34].

A. The Transmission-Type Dielectric Hologram

The design process of the hologram is presented in detail in
[35] and it is analogous to zone-plate lens design described,
e.g., in [36]. During the hologram synthesis process, a goal field
was defined first at a specific frequency, fgesign, in the region

of interest (z = zg):

— j21Py i
Egoal(xi'yj'fdesignrZROI) - ’Ri,jej i Y, (1)

where random variables are used as the amplitude \/R;;, R;; €
U(0,1) and phase P;; € U(0,1). The hologram transforms a
collimated beam, E, into the goal field, Egqy, so that the field
at the target is quasirandom and changing as function of
frequency. In the design of the hologram, the collimated beam
incident to the hologram is assumed Gaussian: E.(r) =
e " /%o® where r and W, is the radial coordinate and frequency
dependent beam waist respectively. A physical-optics method
was used to calculate the propagation of the random goal field
to the 76.2 mm X 76.2 mm hologram surface located at
z =0 mm. As a result, the diffracted goal field truncated by the
hologram aperture is obtained (Eggg) ( fdesign,za)). The design
process of the hologram structure is shown in Fig. 2.
Transmission function, T, through the hologram is realized so
that the collimated beam is transformed into approximation of
the field when it propagates through the hologram. The
transmission function is

E ign»
T(fdesign) = —goalVdesigny 7a/ (f(;('emgn Za) . (2)
c

In our case, the transmission function of the hologram was
chosen to operate on the electric field phase:

Th (fdesign) = ejF(AT(fdeSign)) , (3)

where I'(*) is a quantization function. The design frequency was
fdesign = 120 GHz. The seclected transmission function does
not consider amplitude, which is affected only by dielectric loss
and reflections within the structure. The quantization function
controls relief height. Larger reliefs are easier to manufacture,
with relaxed mechanical tolerances. An optimal quantization
avoids high-aspect-ratio details that may compromise
realization of the desired transmission. An optimal quantization
function is essential for achieving the desired dispersive
property. In our case the quantization function is

['(«T) = (m + @)round(£T/q), “4)

where g = /2 is the quantization step and m = 197 is a
phase-shift offset. The phase-shift offset increases the thickness
of the relief, which allows relative phase differences to vary
strongly as a function of frequency across 50-75 GHz and 220-
330 GHz. The choice of the design frequency, quantization
step, and phase-shift offset are discussed in [35], [37]. Fig. 2
shows the design process to determine the transmission

function.
Goal field at Rol
Goal field

Collimated Hologram Field through
at hologram 5‘. L

beam transmission hologram

Amplitude

Phase

Hologram design Physical optics
Fig. 2. Design process of the hologram. On left is the collimated
field from the OAP mirror and on right is the random goal field
at the Rol. The goal field phase at the hologram is approximated
by designing the hologram transmission accordingly. The
hologram affects the transmitted amplitude only little, and it
remains almost Gaussian after transmission.

In this work, the hologram was a dielectric slab with a surface
relief and negligible material dispersion. The height of the
surface relief was modulated so that the desired phase shift was
introduced at the design frequency. The transmission through
the hologram is assumed locally to follow the 1D dielectric-slab
model

7,1,e BR

T )

1= pypye” b
where 7;, T, are transmission and p,, p, are reflection
coefficients through the front and back surfaces of the
hologram, f is the propagation constant in the dielectric and h
is the height of the hologram surface relief. In addition to the
phase modulation, (4) results in small amplitude modulation as
well (see Fig. 2, “Hologram transmission”). The hologram
design process only considers the phase shift in transmission
from the planar wavefront in the collimated beam to the
approximate of the phase in the goal field. The hologram was
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manufactured of Rexolite 1422, which has relative dielectric
permittivity of &, = 2.52-j0.0005 [38]. Considering the
permittivity, hologram surface relief height is given as

h—ﬂ (6)
- (e =Dk’

where &, is the relative permittivity of Rexolite and k, is the
free-space wavenumber at the design frequency.

The simple design principles presented here do not account
for the more complex propagation effects in the hologram, such
as edge effects near height change in the hologram. The
hologram was manufactured with CNC milling, and some of the
smaller synthesized relief features, described by (6) could not
be accurately reproduced due to the 1-mm mill-bit diameter.
The manufactured surface profile was calculated by machining
simulator, which enforces constant cutter load and
approximates the given relief with boundary conditions set by
the available cutter-piece dimensions. The differences between
designed and realized relief patterns appeared to have limited
effects on the desired goal fields and performance. Anisometric
view of the 3D hologram design is shown in Fig. 3.

30

z (mm)

y(mm)

20
40 x (mm)
Fig. 3. 3D surface plot of the hologram structure. The hologram
is discretized in five different height levels (shown in colors).

From (4) and (6), the hologram has five height levels in the
surface relief at the design frequency, which correspond to
phase shifts of 0,1,2,3,4x(n/2 +1.97). The 76.2 mm x 76.2 mm
hologram was milled into a 30-mm thick slab of Rexolite. The
overall dimension of the slab was 94 mm % 94 mm to leave
room for mounting screws. The expected and measured phase
profiles have been studied with near-field imaging at 275 GHz,
and the fabricated hologram delivers excellent match with
average error of less than 6° [37].

B. Imaging Setup

The 220-330-GHz imaging setup is shown in Fig. 4 The setup
consists of a submillimeter-wave extension VNAX WR-3.4
(Virginia Diodes Inc.) connected to network analyzer N5225B
PNA (Keysight Technologies). A Pickett-Potter horn
(Radiometer Physics GmbH) was used as the feed for an offset
parabolic mirror (Edmund Optics) collimating the beam. The
hologram produced a frequency-dependent beam pattern in Rol
at 600 mm from the hologram surface. The field in the region
of interest was characterized with near-field measurements and
reported in [35]. In the imaging experiment presented here, the
two Aalto University logos made of porous copper foam were
mounted on the near-field scanner in the region of interest. The

copper foam was 5-mm thick, and its pore size was 1-2 mm.
The pore size is of the order of the wavelength, which resulted
in strong isotropic scattering of the incident field. The 135 mm
% 100 mm and 154 mm x 100 mm logos have smallest detail of
about 6 mm. The measured reflection from the setup was used
as an input and binary, affine-transformed photographs of the
logos were used as the ground truth in neural-network training.

U

N
Hologram — ;
; VNA extendier—>

®)

S
! \'-
Collimating :
mirror

P'ett-Potter

irror

Fig. 4. a) A photograph of the imaging setup. The hologram is in
the center of the photograph facing the Aalto-logo target, Pickett-
Potter horn antenna and VNA extender are on the right. The
collimating mirror is in the foreground facing the hologram. b) A
rendered image from the opposite side to the photograph.

I11. MEASUREMENT RESULTS

A. Training Data for Test Targets

The imaging experiments were started by collecting training
data for the neural network, and the test objects were scanned
in the region of interest in 300-mm x 300-mm grid at 50-75
GHz and in 200-mm x 200-mm grid at 220-330 GHz. Scattering
parameter S;; was measured when the Aalto logos were
positioned at 10,201 locations in a 101 x 101 raster scan. The
raster scan is not required in the imaging process, but it is used
to deliver the training data (10,201 + 10,201 measurements) for
the neural network. Once trained with vast amount of
measurement data, only single measurement without
mechanical scanning is used in imaging.

The reflection from the region of interest was extracted from
the measured S| by subtracting average Si; and time gating.
The reflections from the quasioptics were outside the target
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location time gate and only the contributions from 6 to 8 ns in
time-domain were passed through the gate. This time window
approximately corresponds from 0.9 to 1.2 m in range, which
captures the reflection starting from distance, which equals the
path length through quasioptics (~300 mm) and from the
hologram aperture to the region of interest (600 mm).
Subtracting the average Si; removes the background reflection
that appears in the gating window for all test-object locations.
Fig. 5 shows the processed reflection from the region of interest
when the logos were 1) in the corner, 2) in the middle, and 3)
incrementally shifted from the middle position by 2 mm
(WR-3.4) and 3 mm (WR-15). The wide-band reflections from
the two logos are presented in complex plane in 1001 frequency
points for the target locations 1-3. The reflection is at a level of
—33...-35 dB at WR-15 and —28...-20 dB at WR-3.4. In the
figures, the amplitude of the reflection is normalized for
convenience.

| Al A
Logo at corner Logo at center Logo at center+A

AQ.
2
E

AQ
2
E

Re(S,, ) Re(S,, ) Re(S,, )

Fig. 5. Processed Si; measurements when Aalto logos A! and A”
are at different locations in Rol. The top row show reflection at
WR-15 and bottom row at WR-3.4.

Compared to the WR-15 measurements, the electrical sizes of
the Aalto University logos are larger at WR-3.4 and the
reflection loci in the polar plots include more detail. Aalto
University logo in the corner of the scan area results in clearly
distinct reflection when compared to middle position. For the
higher-frequency band, the average amplitude drops more
towards the corner position than in case of the lower band. This
suggests more scattering at lower frequency and more
directivity at higher frequency. The differences between loci at
the incrementally separate positions are small for low-
frequency and more significant at higher frequency — a
qualitative indication of lower resolution at longer wavelength.
At WR-15 the incremental translation is 0.6 free-space
wavelengths at center frequency 62.5 GHz whereas at WR-3.4
it is 1.8 wavelengths at 275 GHz. It is evident that the
characteristics of the test object are carried to the measured
reflectivity: The reflection from logo A! has different spectral
details than that from logo A”. However, the function to map
the reflection spectrum to an image is generally unknown.

B.  Augmented Data

Measurements covering a large parameter space is challenging
to achieve with physical test object as shown in Fig. 4(a): The
object can only be replaced manually, which is not practical for
many different test objects needed. In order to effectively train
the neural network for a larger parameter space, data
augmentation with a corner-cube reflector was carried out. The
reflection from corner cube is measured in a 200-mm X
200-mm grid with a 2-mm scan step at WR-3.4. The corner
cube diameter is 12.7 mm, and the ground truth image of it is a
disk of the same size. The MNIST dataset of hand-written digits
was used as the source of the data augmentation. An algorithm
carries an overlap of the binarized 128 x 128 images of the
digits. Each pixel values of the corner cube images were added
in the augmented image if the corner cube overlaps with the
MNIST binarized image of a digit. When the cube locations
overlap with the digit image, the corresponding reflections from
the cube are cumulatively added to form the augmented input
to the neural network. Fig. 6 shows the augmented images and
their augmented reflections.

Im(s, )

1 3 8
Re(S,,) Re(S,,) Re(S,,)
Fig. 6. Top row: Augmented images of the MNIST digits. The
augmented images are summations of corner-cube images on the
digit. Bottom row: The augmented reflections summed from all
corner-cube locations on the digits.

1V. DECONVOLUTIONAL NEURAL NETWORK

The measured reflection was mapped into an image through a
deconvolutional (DC) neural network. In deconvolution,
reflection at each frequency at the input of the neural network
is gradually spread across the image (the region of interest) at
the output of the network. Reflection at each frequency is
weighted with a collection of deconvolution kernels starting
from each frequency component and increasing the layer
dimensions through the network to arrive at the final image size,
256 x 256 pixels. Once the suitable weights were trained in the
neural network, the reflectivity map ofthe region of interest was
resolved from the spectra shown in Fig. 5. Our hypothesis is
that the neural network can be trained to learn such
generalizations that eventually a large parameter space (3D
region of interest with multiple object types) can be covered.
The ability for neural network to map from 1D to 3D computer
graphics has been demonstrated with convolutional neural
networks in [39]. Deconvolutional neural networks are better
suited for image reconstruction, as is in our case too [23]. The
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topology of the used deconvolutional neural network is shown
in Fig. 7.

)

e

e

i S
= -
1

2

= 25x4x4 3x128x 128

& 25x2x2

T 1 x 256 x 256
Fully . . .

Deconvolutional Final image
connected

Fig. 7. The neural-network topology: Four fully-connected layers
decrease the input to a latent representation with 100 neurons.
Seven (four shown) deconvolutional layers expand the latent
representation into an image.

The neural networks were trained separately for 50-75 GHz
and 220-330 GHz reflectivity datasets. The input data to the
neural network was the complex reflection with its real and
imaginary parts concatenated to a 2x1001 long vectors. The
network input data was min-max normalized to the interval
[-1, 1]. In order to verify the learning of the latent
representations, a fully-connected neural network reshapes the
spectral content to a latent layer with only 100 neurons before
the deconvolutional layers. From the latent layer onwards, the
activations are reshaped to a deconvolutional neural network
with increasing dimensions in successive layers. The
deconvolutional part of the neural network with input reflection
from Aalto logo A” is shown in Fig. 8. The network is
symmetric so that all the parameters are the same for the both
dimensions in the 2D layers. The output size of one dimension
in a deconvolutional layer is

o' =s(i'"—1) +k, (7

where s =2 is stride, i’ is input layer size, and k = 3 is kernel
size [40]. For example, the output size of the first deconvolution
is given by 2(2-1) +3=5. The padding in the layers was
selected to be “same”, to have the 1* deconvolution output size
of 4 =27 and to arrive to 2° =256 pixels per dimension at the
network output. The neural network was developed in the Keras
machine-learning API [41]. The neural network was trained by
minimizing the mean squared error of the ground truth and the
predicted image. The training utilized 2 x 10000 positions of
the two Aalto logos across the region of interest. The
predictions were evaluated with the logos at the same middle
position in x-axis but varying in y-axis in 201 positions not
shown to the neural network before.

The details in the Rol are build up from the small sub-images
with increasing detail. Checkerboard-like details are carried out
through the network. Some artifacts also appear in the final
layer output. The checkerboard-like patterns are due to
parameters in the deconvolutions, s and k, and are compensated
in the final image to some extent through the learning [42]. To
limit the appearance of the artifacts and to improve the
convergence in network training, the image size could be
tailored to the deconvolution parameters so that no overlap

exists. However, in this case, the overlap was compromised
over the demand to arrive in image size corresponding to the
labels (256 x 256).

DC layer 8

n
i

i
ﬂ} M I

DC layer 7

H

iwiiium‘n’

|

DC layer 6

DC layer 5

DC layer 4
DC layers 1t0 3
Fig. 8. Feature map weights of the deconvolutional layers in the
neural network. Raster-like pattern is characteristic for
deconvolution, but it is largely compensated in the final image.

V. IMAGING RESULTS

A. Test-Target Images

Fig. 9(a,c) and Fig. 10(a,c) show 12 predicted images from
datasets at WR-15 (454 mm x 400 mm image size) and WR-3.4
(354 mm x 300 mm image size), respectively. Fig. 9(b,d) and
Fig. 10(b,d) show the absolute error in the images. The
predicted images were ranked by the mean squared sum of
pixel-value error (MSE). The predictions with smallest error are
high resolution images demonstrating very good agreement
with the ground truth while the predictions with largest error
may bear some similarities to the labels but are often incorrectly
located. The average MSE is 0.099 at 50-75 GHz and 0.049 at
220-330 GHz. At lower frequency the MSE distribution is more
uniform than at higher frequency, where the vast majority of the
predictions is close to small error. The edge-spread function
(ESF) in the predicted images is estimated across the edge at the
top of letter “A”. The ESF is determined for the 50-% percentile
of the predictions with the least MSE. At WR-15, the FWHM of
ESF is 15.0 mm while it is 10.5 mm at WR-3.4. MSE and ESF
are shown in Fig. 11.
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Fig. 9. a) Images and b) absolute value of image error for
predictions with the least MSE at WR-15. The c¢) images and d)
error with the greatest MSE.

Fig. 10. a) Images and b) absolute value of image error for
predictions with the least MSE at WR-3.4. The c¢) images and d)
error with the greatest MSE.
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Fig. 11. a) Histogram of MSE and b) ESF at the both bandwidths.

B. Loss and Accuracy

In neural networks, successful predictions may be the result
of overfitting. Then, the underlying abstractions are not learnt
rather the correct prediction is memorized through heavily
forcing the limited number of input data to the correct
predictions. Overfitting may occur when the neural network is
overly complex and certain input activations are emphasized
over others for, e.g., a location of the test object. To counter
overfitting, we use the fully-connected layer of latent
representation (100 neurons), dropout layer with 50-% dropout
probability, and limited complexity of the neural network. The
neural networks have ~ 2.6 million degrees of freedom, and
they were trained with mean squared error as the loss function.
Training was evaluated at the end of each epoch and there were
500 epochs in total for both datasets. The loss was evaluated for
both the training and validation datasets. The data in validation
is not given in training, and hence validation loss converging
simultaneously with the training loss is a sign of learning. Fig.
12 shows the mean absolute error (MAE) and loss for the
datasets during training and validation.

Training (WR-15) Training (WR-3.4)
Validation (WR-15) Validation (WR-3.4)
03— 0.1
0.2} 008!
w 0.1 o 0.06
< 0.08 s
0.06 — 0.04
0.04 \ 0.02
0.0

1 100 300 500 1 100 300 500
@ Epoch (b) Epoch
Fig. 12. a) Mean absolute value of error and b) loss for the WR-
15 and WR-3.4 datasets.

The WR-15 and WR-3.4 datasets have different baselines due
to the image size differences. Both data sets converge fast at the
beginning of the iteration. The WR-3.4 dataset shows training
and validation that both converge up to epoch 500. In case of
WR-15 dataset, the convergence differentiates between the
training and validating, suggesting some overfitting in training
that does not convey to validation (learning occurs less).
Overfitting occurs when the training continues to converge
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while validation remains unchanged. At WR-3.4, the slope in
validation loss is negative (learning occurs) whereas for
WR-15 the slope is close to zero. To conclude: At WR-3.4,
while some overfitting may exist, the neural network was able
to learn generalizations in the described setting and form high-
resolution imagery.

C. Augmented Images

Fig. 13 shows the augmented images for WR-3.4. The
successful prediction of augmented images is an indication that
overfitting does not occur to a great extent. Further, the PSF
with augmented data should be similar to the data from
extended object to justify its use. For data-processing purposes
the image size is 128 x 128 pixels. The neural network was
trained with 60000 augmented reflections from the MNIST
digits (Fig. 6). As opposed to the truly experimental imaging
tests with the Aalto University logos, the augmented data
represents a much larger set of different labels and input data.
Therefore, it was assumed that augmented data tests the
robustness of such a neural network to learn generalizations of
complex reflectivity patterns. In contrast from the classical
MNIST digit recognition task, we used the hand-written digit
examples as the label and augment the reflection from the digit-
shaped object. The predictions in Fig. 13 were not shown to the
neural network during the training, yet they agree with the
labels with an MSE less than 0.02 at WR-3.4. In general, the
predictions display smoother edges than the corresponding
labels. Some of the labels have not simply connected regions,
e.g., a separated dot. These details seem to merge to the digit or
background in the image predictions.

As the labels in the augmented dataset are each different, the
global point-spread function (PSF) is determined with a fitting
method similar to the one presented in [43]. The PSF is
approximated with a Gaussian function

9(a,0) = aexp(—(r/0)?), ®)

where ¢ is the width of the Gaussian function in the cross-range
coordinates and a is an amplitude factor. The PSF is found by
minimizing

La o)=Y (9-(+9@0))

xy

2
’ ©)

where ¥ is the prediction, y is the label, and * is the convolution
operator. The minimizing of L is equal to finding a Gaussian
blur kernel that reduces the image to the same resolution as the
prediction from the neural network. The resolution in the
images can be approximated by the full width at half maximum
(FWHM) value of the PSF.

The Gaussian function (8) relates to the resolution as

FWHM = 2vIn 2 0. Fig. 14 shows the estimates of FWHM for
the experimental and augmented datasets. The shown
histograms verify that in general predictions at WR-15 have
greater variance than at WR-3.4. In case for WR-3.4, the
FWHM distribution is well centered at 16.5 mm, close to the
theoretical value from 16 to 19 mm. For the case of the
augmented data at WR-3.4, the FWHM is surprisingly narrow.
This may be due to the averaging effects in data augmentation,
which may bring the noise down.

Fig. 13. a) Images and b) absolute value of image error for
predictions with the least MSE for augmented dataset at WR-3.4.
The ¢) images and d) error with the greatest MSE.
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Fig. 14. Histograms of the FWHM with a) WR-15, b) WR-3.4,
and c¢) augmented WR-3.4 datasets.

D. Latent Representations

The latent representations were studied for the datasets with
Aalto logos and augmented data sets with MNIST digits, both
at the WR-3.4 band. Fig. 15 shows the 3™ hidden layer outputs
for 212 predictions with Aalto logos and for 200 predictions
with augmented MNIST digits. The output is from a layer with
100 fully connected neurons, before the deconvolutional layers
in the network. The layer output can be considered a latent
representation of the test object. The horizontal axis represents
each of the 100 neurons in the 3™ hidden layer (latent
representation). The vertical axis represents different targets and
locations, either Fig. 15(a) A! or A” increasing in y-axis location
or Fig. 15(b) MNIST digit numerical value increasing with
multiple samples of the same digit. The number of samples for
each digit vary due to random nature of the dataset. The latent
representations in Fig. 15 are sorted with Aalto logo y-axis
location. The MNIST logos were sorted with increasing digit
numerical value. The test objects with the closest resemblance
displayed increased similarities in the latent representations.

The latent representations of the Aalto University logos are
sparser compared to the MNIST representation: 32 to 35 % of



TMTT-2021-11-1467

the neuron outputs are non-zero for Aalto logos, whereas 64 to
67 % are non-zero for MNIST augmented data. The fraction of
non-zero pixel values in the final image are ~8 % for Aalto logo
and ~19 % for MNIST images. The results may indicate that
relatively few inputs are needed to map to two different test
objects located in the region of interest whereas the MNIST
consists greater number of mappings from reflection to image,
hence requiring also more non-zero values in the latent
representation. For both cases, limiting the number of values in
latent representation to 100 appears sufficient with respect to
image quality.

Logo y-location

Logo y-location

25 £ 10 if
20 40 60 80 100
Neuron #

Neuron #
Fig. 15. Latent representations of a) Aalto logos and b) MNIST

digits in the hidden layer in the neural network.

VL CONCLUSIONS

In this work we have, for the first time, demonstrated
millimeter- and submillimeter-wave imaging based on wide-
band reflection measurements through a highly dispersive
dielectric hologram. The hologram was designed to produce a
quasirandom goal field in the region of interest at the WR-15
and WR-3.4 bands. The hologram produced multi-wavelength
phase shifts across the two bandwidths so that the field at the
region of interest is highly dispersive. Two experimental
campaigns at 50-75 GHz and 220-330 GHz were carried out
with highly scattering reflective targets. Two separate deep
neural networks based on deconvolutional layers were trained
for the bandwidths with the photographs from the region of the
interest at a distance of 600 mm. The resulting image quality is
in line with the diffraction limit as estimated via illumination
frequency and hologram aperture. The experimental resolution
estimated from the global point-spread function was ~17 mm at
best at WR-3.4. The edge-spread function shows locally even
slightly better resolution, which may indicate slight overfit of
the neural network. Overfitting often occurring in neural
networks was mitigated by use of dropout layer and limited
number of neurons in the latent representation. The close-to-
theoretical resolution and analysis of loss in the train and
validation datasets during training indicate that the wave
propagation and scattering are learnt.

This initial work was carried out with a limited number of real
test objects, and data with significantly more test objects are
needed to further learn generalizations. The augmented dataset
with 60000 examples of MNIST digits presented a vast

collection of different types of test objects. The image
predictions from the augmented reflection from MNIST data
suggest that the presented imaging methodology may be able to
image more complex test objects too. A large percentage of the
latent representation values are close to zero, which suggests
that 100 neurons suffice to form an image in the cases presented
here.

The presented method enables efficient computational
millimeter- and submillimeter-wave imaging without the need
for optomechanically scanned systems or complex phase-
shifter or transceiver arrays. Currently, the field of view and
imaging distance are limited to the hologram aperture and
illumination edge taper, but the research so far foresees the
possibility to scale up to, e.g., personnel screening application.
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