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We consider the problem of frequency estimation for a single bosonic field evolving under a squeezing
Hamiltonian and continuously monitored via homodyne detection. In particular, we exploit reinforcement
learning techniques to devise feedback control strategies achieving increased estimation precision. We
show that the feedback control determined by the neural network greatly surpasses in the long-time limit
the performances of both the “no-control” strategy and the standard “open-loop control” strategy, which
we considered as benchmarks. We indeed observe how the devised strategy is able to optimize the non-
trivial estimation problem by preparing a large fraction of trajectories corresponding to more sensitive
quantum conditional states.
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I. INTRODUCTION

The goal of quantum metrology is to devise strate-
gies able to exploit purely quantum properties, such as
entanglement and squeezing, to estimate parameters with
a precision beyond that obtainable via classical means
[1,2]. In the classical domain it is usual to study estima-
tion strategies based on the continuous monitoring of a
system, leading to sensors that have applications ranging
from engineering to medicine.

This kind of approach is particularly interesting in the
context of quantum metrology with continuously moni-
tored quantum systems [3,4]. The role of continuous mea-
surements is indeed twofold: on the one hand, as happens
classically, the measurement output is exploited to acquire
information on the parameters characterizing the system;
on the other hand, the act of measuring alters the state of
the system itself, thus opening the possibility of dynam-
ically preparing more-sensitive quantum probes. Several
studies have been published, both discussing the funda-
mental statistical tools to assess the precision achievable in
this framework [5–12], and presenting practical estimation
strategies [13–30].
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Moreover, in the context of continuously monitored
quantum systems, it is also natural to study strategies
able to exploit this information to steer the evolution
toward a desired quantum state via feedback control [3,31].
Much effort has been devoted to the design of strategies
able to generate metrologically relevant quantum states,
such as squeezed states [32–41], or to cool optomechan-
ical systems toward their ground state, with outstanding
experimental results recently reported in Refs. [42–44].

Reinforcement learning (RL) is one of the main
paradigms of machine learning, together with supervised
and unsupervised learning. In RL an agent learns how
to perform a task by acting on a system and updat-
ing its policy through a reward-punishment mechanism
[45]. The introduction of deep neural networks in RL has
led to formidable results: machines have, for example,
learned how to play video games [46] or how to beat
expert human players at complex board games such as
Go [47].

RL has recently been applied in the context of quan-
tum information, and more generally to quantum tech-
nology, to find optimal strategies for some designated
tasks [48], ranging from optimizing feedback for quan-
tum error correction [49] to quantum control strate-
gies [50,51], and from optimizing quantum transport
[52,53] to quantum compiling [54], or even to solve
Rubik’s cube by exploiting quantum mechanics [55].
Recently, RL has also been used to optimize feedback
control protocols in continuously monitored quantum
systems [56–58], with a main focus on quantum state
engineering.
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Discovering feedback strategies, where decisions are
based on previously observed measurement results, is
indeed a challenging task. The stochastic nature of the
problem, together with the presence of feedback mecha-
nisms, leads to a double-exponential growth of the space of
possible strategies with respect to the number of time steps.
Such a task falls therefore beyond the scope of standard
optimal control, and also supervised learning, techniques
[57]. On the other hand, it suits the RL paradigm: the agent
explores the problem space by performing random exper-
iments on the system while learning, at the same time, an
action policy.

In this work we exploit RL to design a feedback strat-
egy optimizing a given nontrivial metrological problem.
In particular, we consider the estimation of the frequency
of a harmonic oscillator subjected to a squeezing Hamil-
tonian and undergoing a continuous homodyne detection.
Differently form previous work [56–58], where the goal
was the preparation of a given target state to be exploited
in a selected quantum information protocol, in this work
we aim to optimize real-time feedback for quantum metrol-
ogy purposes, so as to attain a high precision in parameter
estimation without targeting the preparation of a precise
quantum state.

We show that the feedback strategy determined by
RL provides a high precision in parameter estimation,
and overcomes the performance of some benchmark
approaches. Interestingly, the feedback protocol deter-
mined by the agent optimizes the interplay between
the squeezing direction and the displacement. Given the
stochastic nature of the dynamics induced by the measure-
ment back-action, such a strategy is highly nontrivial and
cannot be easily obtained with standard optimal control
techniques or supervised learning techniques.

This paper is organized as follows: In Sec. II we present
the physical model and the estimation problem. In Sec.
III we introduce the figures of merit that we will use to
assess the protocols and we discuss the role of squeezing
and feedback in the estimation procedure. In Sec. IV we
show how we apply RL to our problem, and in Sec. V we
present our main results. We conclude the paper in Sec. VI
with a brief discussion and some outlooks.

II. THE ESTIMATION PROBLEM

We consider a single bosonic mode described by the
quadrature operators (q̂, p̂) satisfying the canonical com-
mutation relation [q̂, p̂] = i1 [59]. The evolution of the
mode is determined by the Hamiltonian

Ĥ0 = ωâ†â + χ(â2 + â†2), (1)

with â = (q̂ + ip̂)/
√

2 denoting the annihilation operator.
The first term simply corresponds to the usual free quan-
tum oscillator Hamiltonian, characterized by frequency ω;

the second is a single-mode squeezing term able to gen-
erate, for ω = 0 and χ > 0, squeezing in the q̂ quadrature.
We recall here that a quantum state is said to be squeezed if
it presents fluctuations of a quadrature operator below the
vacuum shot noise. The amount of squeezing of a quan-
tum state �, for example, for the q̂ quadrature, is typically
evaluated in decibels (dB) according to the formula

ξdB = −10 log10(〈�q̂2〉/〈�q̂2〉0), (2)

where we have denoted with 〈�q̂2〉 and 〈�q̂2〉0 = 1/2
the variance of q̂ evaluated, respectively, for the quantum
state � and for the vacuum state |0〉. More generally, the
maximum amount of squeezing of a single-mode quantum
state along a generic quadrature operator can be evaluated
as ξdB = −10 log10 λ−, where λ− denotes the minimum
eigenvalue of its covariance matrix σ (see Appendix B
for more details on covariance matrices and the Gaussian
formalism).

Physically, the Hamiltonian (1) describes an optical
parametric oscillator that is a cavity mode with reso-
nance frequency ωc interacting with a nonlinear crystal and
driven by a laser with frequency ωl. It can be obtained
by going to a frame rotating at the laser frequency, with
ω = ωc − ωl denoting the detuning between the cavity res-
onance and the laser. In what follows we focus on the
problem of estimating the fixed, but unknown, value of
this detuning parameter ω. This kind of estimation prob-
lem was recently discussed in the standard open-system
scenario for a circuit-QED implementation by also consid-
ering the usefulness of an extra Kerr-type nonlinearity in
Ref. [60]. In the continuous-variable scenario one typically
considers the estimation of an optical phase accumulated
during a finite time evolution [61,62]. Phase estimation and
frequency estimation are, however, fundamentally equiva-
lent, and we focus on the latter as in our setup we have
to deal with with a time-continuous evolution. While we
phrase our results in terms of a quantum optical scenario,
we expect that our findings can be extended to other phys-
ical platforms where frequency estimation is at the basis
of quantum enhanced atomic clocks [63,64] and quantum
magnetometry [65]. In our setting, the cavity mode is sub-
jected to loss at rate κ . The output (leaking field) signal
is then measured by means of a continuous homodyne
measurement, performed with efficiency η (this parameter
η = ηDηL takes into account both the homodyne detec-
tor efficiency ηD and the fraction of the output field ηL
that is not collected by the detector). The corresponding
continuous measurement outcome can be written as

dyt = √
ηκ〈â + â†〉c dt + dwt, (3)

where 〈·〉c = Tr[�c·] denotes the expectation over the con-
ditional state �c, and dwt is a Wiener increment, character-
ized by E[dwt] = 0 and E[dw2

t ] = dt.
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Under these assumptions the evolution of the condi-
tional state is governed by the stochastic master equation
[3]

d�c = −i[Ĥ0, �c] dt + κD[â]�c dt

+ √
ηκH[â]�c dwt, (4)

where

D[â]�c = â�câ† − â†â�c + �câ†â
2

, (5)

H[â]�c = â�c + �câ† − 〈â + â†〉c�c. (6)

Notice that the sequence of measures ỹt = {dys}t
s=0, 0 ≤

s ≤ t determines the trajectory followed by the conditional
state �c up to time t, and that the value of ω determines the
conditional joint probability density p(ỹt|ω).

In particular, the stochastic master equation (4) for the
conditional state �c is completely equivalent to the equa-
tions for its first-moment vector r̄c and covariance matrix
σ c [59,66,67]:

dr̄c = Ar̄c dt + (E − σ cB)
dwt√

2
, (7)

dσ c

dt
= Aσ c + σ cAT + D − (E − σ cB)(E − σ cB)T. (8)

The continuous measurement outcome (3) can be written
in vectorial form as dyt = −√

2BTr̄c dt + dwt, with dwt
the vector of uncorrelated Wiener increments also entering
Eq. (7). We refer the reader to Appendix B for details on
the matrices entering Eqs. (7) and (8).

It is important to note here that the dynamics determined
by the above equations is stable, (i.e., leads to a steady
state) if and only if the Hurwitz condition Re(eigs A) < 0
is satisfied; that is, if the real part of the eigenvalues of
the drift matrix A is strictly smaller than zero. In our case
it corresponds to the inequality χ < |κ/2|, and we always
assume that this condition is fulfilled.

As we pointed out before, the Hamiltonian in Eq. (1) is
able to generate squeezing. If we focus on the unmonitored
(unconditional) dynamics (i.e., for η = 0), the maximum
squeezing at the steady state is obtained in the case of ω =
0, leading to a steady-state variance of the q̂ quadrature
〈�q̂2〉unc = κ/(2κ + 4χ) that is indeed below the vacuum
limit 〈�q̂2〉0 = 1/2 for 0 < χ < κ/2 (for negative values
of χ , one would obtain squeezing along the p̂ quadrature).
We observe, in particular, that the squeezing increases as
we approach instability and that for χ ≈ κ/2 the well-
known limit of ξdB = 3 dB of squeezing is saturated
[68,69]. The Riccati equation (8) can be solved analyti-
cally in this case, and its solution shows that continuous
monitoring allows us to greatly enhance the squeezing
generation for the conditional states �c. In particular, at

the steady state and for η = 1, a variance 〈�q̂2〉c = (κ −
2χ)/2κ is obtained, thus approaching infinite squeezing
near criticality.

For ω �= 0, no analytical solution is available, but we
find by numerical means that a smaller, but still beyond
the 3-dB limit, amount of squeezing can be obtained at the
steady state; in this case, moreover, the maximum value
of the squeezing corresponds, in general, to quadratures
different from q̂ and p̂ .

III. FREQUENCY ESTIMATION, SQUEEZING,
AND FEEDBACK OPTIMIZATION

Our goal is to devise a protocol able to estimate the fre-
quency parameter ω with high precision. In particular we
compare the performance achieved by our proposal with
the performances of different strategies that are detailed
later herein. In all these strategies, information on the
unknown parameter is obtained form two sources: the
continuous measurement outcome yt and a final strong
measurement on the corresponding conditional states �c.

The observation above is made rigorous by our observ-
ing the form of the corresponding quantum Cramér-Rao
bound that applies in this scenario. As is customary in the
context of frequency estimation, we consider the total time
of the experiment T, divided into M single runs of duration
t = T/M , as a fixed resource [70]. Under this assumption,
one proves that the precision δω of any possible unbiased
estimator is lower bounded as [28]

δω
√

T ≥ 1
√Qeff/t

, (9)

where we have defined the effective quantum Fisher infor-
mation (QFI) [12,28]

Qeff = Fhom + Q̄c, (10)

and where we observe that in this scenario the quan-
tity to be optimized is Qeff/t. The first term, defined as
Fhom = F [p(ỹt|ω)], corresponds to the classical Fisher
information of the conditional probability of observing a
trajectory given the value of the parameter ω, and thus
to the information obtainable via the continuous homo-
dyne detection [8,11]. The second term, which we define as
Q̄c = Etraj [Q[�c]], is the average of the QFI Q[�c] of the
different conditional states generated by the measurement:
it thus quantifies the average information obtainable via
a final measurement on the different trajectory-dependent
�c (we have introduced the notation Etraj[·] to denote the
average over the conditional distribution p(ỹt|ω) of the
different trajectories defined by the stream of measure-
ment outcomes ỹt). Both quantities can be numerically
obtained via the evolution of the first and second moments
of the conditional states rc and σ c, via their derivatives
with respect to the parameter (i.e., ∂ωrc and ∂ωσ c) and by
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performing a Monte Carlo average of the trajectories (see
Appendix A for more details). According to Eq. (9), Qeff/t
will thus act as our figure of merit to assess the different
estimation protocols that we discuss in the next sections.

The feedback strategy we consider later exploits the
information obtained from the continuous measurement
output dyt to perform a unitary feedback operation [3]
via the Hamiltonian Ĥfb = ωfb(t)â†â; that is, by changing
either the laser or the cavity resonance frequency via the
(possibly time-dependent) parameter ωfb(t).

To better understand the motivation for a machine learn-
ing approach for the optimization of such a feedback strat-
egy, it is expedient to discuss the peculiar features of the
estimation problem we are considering. As we discussed in
Sec. II, via the Hamiltonian Ĥ0 in Eq. (1), by fixing ω = 0
and by assuming a positive coupling χ > 0, we know that
unconditional squeezing is generated for the quadrature q̂,
and that a maximum of 3 dB can be obtained at the steady
state near instability (i.e., for χ ≈ κ/2) [68,69]. However,
if we also include a continuous homodyne detection, such
as the one described by the stochastic master equation
(4), the squeezing of the conditional states can be greatly
enhanced, going well beyond the 3-dB limit.

The continuous monitoring has, however, also another
effect on the conditional state; that is, it gives a stochas-
tic nonzero value for the first moments as described in Eq.
(7). Squeezing and nonzero first moments are the relevant
figures of merit for the estimation problem we are con-
sidering. Squeezing by itself is typically the most impor-
tant resource for frequency estimation (or analogously
for phase estimation [61,62]). However, its interplay with
nonzero first moments may play a crucial role in determin-
ing the estimation precision. A heuristic representation of
this fact is given in Fig. 1: we observe that squeezing could
further enhance the estimation if the squeezed quadrature
is orthogonal to the direction of the first-moment vector
r̄c in phase space. Remarkably, if |r̄c| is large enough,
squeezing for the quadrature parallel to the direction of r̄c
is going to be detrimental for the estimation of ω. There
is a nontrivial trade-off between the amount of squeez-
ing and |r̄c|, as for small enough |r̄c|, squeezing along the
wrong direction is still going to be a useful resource for
estimation. We thus expect that the RL agent will be able
to optimize such a nontrivial problem by devising feedback
strategies able not only to generate large squeezing but also
to generate nonzero first moments, and more importantly,
to adjust their relative directions in phase space. In general,
a final non-Gaussian measurement on the conditional states
may be needed to saturate the corresponding quantum
Cramér-Rao bound. However, as demonstrated in phase-
estimation protocols with Gaussian states [61,71] and as
we describe in Appendix E for our results, a final homo-
dyne detection will extract, in general, a fair amount of the
maximum amount of information, being nearly optimal for
pure Gaussian states.

(a) (b)

FIG. 1. A heuristic representation in phase space of frequency
(phase) estimation via a displaced squeezed state. The estimation
precision on the parameter ω can be understood both qualita-
tively and quantitatively [72] in terms of the distinguishability of
quantum states �ω and �ω+δω differing by an infinitesimal value
δω of the parameter. In (a) we observe that if the state is dis-
placed along the p̂ axis of the phase space and is squeezed along
q̂, the two states are highly distinguishable, and thus ω can be
measured with high precision. However, as one can see in (b),
the quantum states become very indistinguishable in the opposite
case (i.e., for both displacement and squeezing along q̂). Clearly
the situation is much worse for large values of |r̄c|, while for
small first moments, the benefit of squeezing may still yield a
high estimation precision.

IV. APPLYING REINFORCEMENT LEARNING

As we mentioned in Sec. I, RL deals with a reward-
based learning paradigm. An agent learns how to achieve
a certain goal by performing actions on an environment,
obtaining complete or partial information on its state, and
a reward, specifically designed for the goal.

In this framework the agent is trained over a number of
simulations with finite duration called “episodes.” At each
time step dt, we give the agent access to all the possible
information on the conditional state and on its dependence
on the parameter ω; that is, by considering as observa-
tions the set of parameters O = (

r̄c, σ c, ∂ωr̄c, ∂ωσ c, dyt
)
.

All these quantities can be updated at each time according
to Eqs. (7), (8), (B15), and (B16) once the continuous mea-
surement result dyt is obtained. The agent then performs
an action on the environment, which in our case consists
directly in the choice of a real value for the feedback
parameter ωfb.

One of the most important steps in defining a RL prob-
lem is to identify the correct reward function. As discussed
in the previous section, we assess our feedback strategies
via the effective QFI per unit time Qeff/t. We first observe
that the Fisher information corresponding to the continu-
ous homodyne detection can be written as (see Appendix
B for more details)

Fhom = Etraj

[
2

∫
dt(∂ωr̄c)

TBBT(∂ωr̄c)

]
. (11)
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As a consequence we may write

Qeff

t
= Etraj [R] , (12)

where we have defined a (positive) trajectory-dependent
quantity

R = 2
∫

dt(∂ωr̄c)
TBBT(∂ωr̄c) + Q[�c]

t
. (13)

This observation allows us to state that the maximization
of Qeff/t corresponds to the trajectory-wise maximization
of R that will thus act as our reward function (we recall the
fact that, as described in Appendix B, Q[�c] can be easily
evaluated from the properties of the Gaussian conditional
state �c).

We use here the algorithm Proximal Policy Optimization
(PPO) [73], a state-of-the-art actor-critic algorithm where
the agent is a neural network optimizing both its evaluation
of the future reward (critic) and its reward maximization
strategy (actor). We exploited the implementation of PPO
available in the package STABLE-BASELINES [74]. For this
algorithm the strategy, also called a “policy,” is a stochastic
one, meaning that the action of the agent is extracted from
a Gaussian distribution.

The agent we train is a neural network with a feed-
forward and fully connected architecture, composed of an
input layer of the size of the observations connected to two
distinct 64 × 64 networks (one for the actor and one for
the critic). The network is trained with use of a gradient-
descent method with linearly decreasing learning rate start-
ing from a value of 2.5 × 10−4 and an entropy coefficient
of 0.001 and discount factor γ = 0.99. At every step of
training the loss function is evaluated on batches of 512
elements given by the experience of four parallel workers
over a time horizon of 128 time steps. The total number of
time steps included in the training is 30 × 106, composed
of consecutive simulations (episodes) with a finite duration
of 105 steps. At the beginning of each episode, the initial
condition for the system is set randomly. More specifically,
both components of rc are set to be extracted from a uni-
form distribution on the interval [−3, 3], while the number
of initial thermal excitations in the system is extracted from
a uniform distribution on the interval [0, 5].

V. RESULTS

In the following we fix the unknown, but fixed, fre-
quency, the squeezing rate, and the efficiency of the homo-
dyne measurement, respectively, to ω = 0.1κ , χ = 0.49κ ,
and η = 0.9, with κ the cavity loss rate [see Eq. (3)].
Our simulations show, however, that the agent is able to
devise optimized feedback strategies in different regimes;
in Appendix D we exemplify such flexibility of the pro-
posed method by showing the results obtained for different
values of the monitoring efficiency η.

We denote our figure of merit [i.e., the effective QFI in
Eq. (10)] as Q(RL)

eff . We compare and contrast the results
obtained by means of RL with those obtained by two
benchmark strategies: one where no control is applied,
quantified by the figure of merit Q(0)

eff , and the strategy
where, thanks to some a priori information on the parame-
ter ω (a typical assumption in the context of local quantum
estimation theory [72]), a deterministic value of the con-
trol frequency is fixed as ωfb = −ω. In the latter case the
control is deterministic and thus it corresponds not to a
feedback but rather to an open-loop (OL) control strategy,
yielding the largest amount of conditional squeezing along
the quadrature q̂. The continuous monitoring, on the other
hand, will yield a nonzero (but typically small) stochastic
contribution on the q̂ axis of phase space. As a conse-
quence, the directions of squeezing and first moments will
not be optimized. We denote the figure of merit for this
open-loop control strategy as Q(OL)

eff .
The main result of this work is presented in Fig. 2. We

consider as the initial state a thermal state with nth = 5
thermal excitations and a first-moment vector r̄c = (0, 0).
We show that, apart from an initial transient time where
Q(RL)

eff � Q(OL)

eff , the feedback protocol yields a much larger
effective QFI than the benchmark strategies considered. In
particular, by looking at the behavior of the two terms
entering Eq. (10), we can make two main observations:
(i) as regards the average QFIs of the conditional states,
which in Fig. 2 correspond to the difference between the
curves with the same colors, one finds Q̄(0)

c < Q̄(RL)
c <

Q̄(OL)
c (i.e., the feedback protocol is able to generate con-

ditional states that are, on average, more sensitive than
the ones generated without feedback, but much less sen-
sitive than the ones generated via the open-loop control
protocol); (ii) the enhancement in the estimation is thus
obtained mainly thanks to the information contained in the
continuous measurement outcomes (the monitoring Fisher
information F (RL)

hom greatly overcomes the values of the
same figure of merit for the two other protocols). While for
the open-loop control protocol Q̄(OL)

c saturates at a given
value once σ c has reached its deterministic steady state, the
RL agent seems able to keep F (RL)

hom increasing steadily in
time, yielding a large enhancement in the long-time limit.

Moreover we observe that the strategy devised by the
agent clearly gives the best result, as it yields the largest
values for the figure of merit Qeff/t appearing in Eq.
(9). Our results hint also at the fact that in this case the
optimization is obtained in the long-time limit, where the
whole information is basically completely contained in
the continuous homodyne measurement outcomes and the
strong measurement on the conditional states is almost
irrelevant (we, however, refer the reader to Appendix
E for a discussion on the effectiveness of homodyne
detection as a final strong measurement for the three
strategies considered).
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FIG. 2. Comparison of the performance of the feedback strat-
egy devised by the neural network with the performances of the
two benchmark strategies described in the main text as a func-
tion of time. Solid lines correspond to the effective QFI (Q(RL)

eff ,
Q(0)

eff , and Q(OL)

eff ) divided by time, while dashed lines corre-
spond to the continuous-monitoring classical Fisher information
(F (RL)

hom , F (0)

hom, and F (OL)

hom ) divided by time. The average QFI of
the conditional states (Q̄(RL)

c , Q̄(0)
c , and Q̄(OL)

c ) can be derived
as the difference between the two curves above. The results are
obtained by simulating N = 5000 trajectories with time step dt =
0.001/κ , by fixing the other parameters as ω = 0.1κ , χ = 0.49κ ,
and η = 0.9, and by considering as an initial state a thermal state
with nth = 5 and initial first-moment vector r̄c(0) = (0, 0).

To better understand these results, it is useful to look at
the evolution of single trajectories and thus at the prop-
erties of the conditional states. As mentioned before, the
achievable estimation precision will depend on the amount
of squeezing generated during the dynamics and on its
interplay with the first-moment vector r̄c. In Fig. 3 we
compare the values of the magnitude of the first moments
averaged over the trajectories E[|r̄c|] for the three proto-
cols. We observe that the RL agent yields the largest values
of E[|r̄c|], while the OL control protocol yields almost
negligible first moments.

We stressed before how squeezing is the main resource
for this kind of estimation. In this respect, we know that
the maximum amount of squeezing is generated determin-
istically in the OL control protocol, yielding at the steady
state ξ (OL) ≈ 6.05 dB of squeezing for the values we con-
sider in these simulations. However, we discussed before
that this squeezing is always parallel to the corresponding
vector r̄

¯
(OL)
c ; despite this fact and because the first moments

are close to zero, this protocol still yields large values of
Q[�(OL)

c ], as we indeed observe in Fig. 2.
If we now focus on the squeezing along the quadrature

perpendicular to r̄c and thus possibly enhancing the con-
tribution due to nonzero first moments in phase space, we
find nontrivial and definitely interesting results as shown
in Fig. 4. In this figure we plot the histograms correspond-
ing to the probability density of squeezing perpendicular
to the conditional first-moment vector r̄c for the no-control

FIG. 3. Etraj[|r̄c|] as a function of time for the three proto-
cols considered (from top to bottom, RL feedback, no control,
and open-loop control). The results are obtained by simulating
N = 5000 trajectories with time step dt = 0.001/κ , by fixing the
other parameters as ω = 0.1, χ = 0.49κ , and η = 0.9, and by
considering as an initial state a thermal state with nth = 5 and
initial first-moment vector r̄c(0) = (0, 0).

protocol and for the RL agent-based feedback protocol for
different times. As regards the protocol without control,
we know that at the steady state one obtains a determin-
istic squeezing of ξ (0) ≈ 5.25 dB, and as a consequence
the squeezing along the quadrature perpendicular to the
stochastically varying r̄c is bounded by this value. This
behavior is indeed confirmed by looking at the orange his-
tograms. If we now finally focus on the results correspond-
ing to the RL agent–based feedback (blue histograms), we
can clearly observe how it is indeed able also to generate a
large fraction of trajectories with squeezing perpendicular
to r̄c not only well beyond the maximum value obtainable
without control ξ (0) but also near the limit ξ (OL) achieved
by the open-loop control discussed before and that we
recall here is, however, always parallel to the first-moment
vector r̄c. In particular, we observe not only that the RL
strategy is able to generate conditional states with the
maximum squeezing achievable and with the most use-
ful direction but also that the mode of this perpendicular
squeezing distribution quickly saturates toward this limit
ξ (OL). Our results thus suggest how the portion of tra-
jectories characterized by large first moments and large
perpendicular squeezing is responsible for the enhance-
ment in the frequency estimation precision. We refer the
reader to Appendixes C and D for some extra results that
we obtained by considering different values of the coupling
constant χ and of the monitoring efficiency η, and that
further confirm our intuitions. For example, when one con-
siders smaller values of χ , and as a consequence a smaller
amount of squeezing generated, all the strategies consid-
ered yield as expected smaller values of the effective QFI.
Similarly, we show how for smaller values of η, the effect
on the squeezing generation is slightly reduced and that
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FIG. 4. Histograms of the probability density of the squeezing
ξ (expressed in decibels) perpendicular to the conditional first-
moment vector r̄c for different times and for both the no-control
protocol (orange histograms) and the RL agent feedback protocol
(blue histograms). The two vertical lines correspond to the two
bounds on the amount of squeezing for the no-control protocol
ξ (0) and for the open-loop control protocol ξ (OL). The results are
obtained by simulating N = 5000 trajectories with time step dt =
0.001/κ , by fixing the other parameters as ω = 0.1, χ = 0.49κ ,
and η = 0.9, and by considering as an initial state a thermal state
with nth = 5 and initial first-moment vector r̄c(0) = (0, 0).

the main contribution to the enhancement is given by the
first-moment vector amplitude |r̄c|.

It is also interesting to observe the behavior of the feed-
back parameter ωfb as a function of time, both for a sample
trajectory and averaged over the different trajectories. In
Fig. 5 we find that the average value seems to converge to
a value near E[ωfb] ≈ −ω; that is, the one implemented in
the open-loop control and yielding the maximum squeez-
ing. However, at the trajectory level, the fluctuations of ωfb
are evident and are thus crucial to increase |r̄c| and to opti-
mize both the squeezing magnitude and more importantly
its direction.

Plainly speaking, we can conclude that the feedback
devised by the neural network is able to optimize the non-
trivial interplay between first moments and squeezing and
indeed to generate a significant amount of trajectories with
a larger amount of perpendicular squeezing. These tra-
jectories are thus responsible for the enhancement in the
estimation precision observed in Fig. 2. Our results show
also that this feature is much more relevant for the homo-
dyne Fisher information Fhom, which is indeed responsible
for the enhancement yielded by the feedback strategy. A
hint in this direction is already given by Eq. (11) for Fhom,
which depends directly on the vector ∂ωr̄c [however, the
evolution of ∂ωr̄c in Eq. (B15) depends also on σ c and thus
on the squeezing properties of the conditional states].

FIG. 5. Feedback parameter ωfb obtained via the RL agent as a
function of time, both for a few sample trajectories (correspond-
ing to blue lines with different shades of blue) and averaged over
5000 trajectories (black line). The dashed black lines show the
standard deviation. The average of the RL is close to the value
−ω, yielding the maximum squeezing (dotted black line). The
other physical parameters are set as in the previous figures.

VI. CONCLUSIONS

In this work we show how a RL algorithm is able to opti-
mize a feedback strategy able to attain a high precision in
frequency estimation. We understand the results in terms
of the optimization of the interplay between the amplitude
and the squeezing generated by the protocol. This kind
of optimization is highly nontrivial: a simple strategy try-
ing to optimize this kind of feature at each time t cannot
be devised because of the stochasticity of the subsequent
evolution.

As future work we aim to optimize the neural network
so as to be able to reduce the observations O needed. In
particular, we will look at strategies able to exploit just the
real-time measurement output dyt, and thus corresponding
to Markovian feedback [32,33]

We have witnessed a great experimental improve-
ment in the implementation of field-programmable gate
array–based real-time state-based feedback, as shown
recently in the context of the cooling of mechanical oscil-
lators [42–44]. Once a neural network has been trained, its
real-time interrogation is not much more computationally
costly than what has been done in the cited experiments.
We are thus confident that feedback strategies previously
trained via RL algorithms can be efficiently implemented
in the near future for quantum metrology purposes as we
have described, or for more general quantum technological
tasks.
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APPENDIX A: QUANTUM METROLOGY WITH A
CONTINUOUSLY MONITORED QUANTUM

SYSTEM

We start by giving a basic introduction to quantum esti-
mation theory. Let us consider a quantum statistical model;
that is, a family of quantum states �ω parametrized by a
parameter ω that we want to estimate. We now suppose to
perform M measurements, corresponding to a certain pos-
itive operator-valued measure {
x}, on the quantum state,
and thus collect a set of measurement outcomes {xj }M

j =1.
One can prove that the precision of any unbiased estimator
ω̃, which is a map from the measurement outcomes {xj }
to the range of parameters taken by ω, is lower bounded
according to the Cramér-Rao bound:

δω ≥ 1
√

M F [p(x|ω)]
, (A1)

where we have introduced the classical Fisher information

F [p(x|ω)] =
∑

x

(∂ωp(x|ω))2

p(x|ω)
, (A2)

= Ep(x|ω)

[(
∂ωp(x|ω)

p(x|ω)

)2
]

, (A3)

and we have denoted with p(x|ω) = Tr[�ω
x] the proba-
bility of obtaining the outcome x from the measurement.
One can further perform optimization over all the possible
measurements (positive operator-valued measures) {
x}
that one can perform on the quantum state �ω, obtaining
the quantum Cramér-Rao bound

δω ≥ 1
√

M F [p(x|ω)]
≥ 1

√
M Q[�ω]

, (A4)

where we have introduced the QFI

Q[�ω] = Tr[�ωL2
ω], (A5)

written in terms of the symmetric logarithmic derivative
defined via the Lyapunov equation

∂�ω

∂ω
= Lω�ω + �ωLω

2
. (A6)

Several alternative formulas for the QFI can be derived,
based on the diagonalization of the state �ω or based on
the fidelity between states characterized by parameter ω

differing by an infinitesimal value [72].
If we want to estimate a parameter in a continuously

monitored quantum system, at each run of the experiment

we obtain a continuous measurement output (e.g., in the
case of continuous homodyne detection) ỹt with a certain
probability distribution phom = p(ỹt|ω) and corresponding
to a particular trajectory for the quantum conditional state
of the system �c. In this framework one proves that the
bound on the estimation precision can be written as [12]

δω ≥ 1
√

M
(Fhom + Etraj [Q[�c]]

) . (A7)

The relevant figure of merit is thus the effective QFI

Qeff = Fhom + Etraj [Q[�c]] , (A8)

corresponding to the sum of the Fisher information quan-
tifying the information obtainable from the continuous
homodyne results plus the average of the quantum Fisher
information of the conditional states, quantifying the infor-
mation obtainable from a final measurement on �c.

APPENDIX B: GAUSSIAN CONDITIONAL
DYNAMICS AND NUMERICAL EVALUATION OF

THE EFFECTIVE QFI

We briefly review here how to treat the evolution of
continuously monitored quantum Gaussian states by fol-
lowing the approach in Refs. [59,67] and how to evaluate
the different figures of merit relevant for our purposes.

A Gaussian quantum state � of a continuous-variable
quantum system is completely identified by its first-
moment vector r̄ = Tr[�r̂] and its covariance matrix σ =
Tr[�c{r̂ − r̄, (r̂ − r̄)T}], where {â, b̂} = âb̂T + (b̂âT)T. We
recall that with this definition the covariance matrix for a
single-mode system reads

σ = 2
( 〈�q̂2〉 〈�q̂p̂〉

〈�q̂p̂〉 〈�p̂2〉
)

, (B1)

where

〈�ÂB̂〉 = Tr

[

�

(
ÂB̂ + B̂Â

2

)]

− Tr[�Â]Tr[�B̂]. (B2)

The covariance matrix thus directly contains all the
squeezing properties of the quantum state �.

As mentioned in the main text, the dynamics induced
by the stochastic master equation (4) preserves the Gaus-
sian character of the quantum state, and the corresponding
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evolution is described by the equations

dr̄c = Ar̄c dt + (E − σ cB)
dwt√

2
, (B3)

dσ c

dt
= Aσ c + σ cAT + D − (E − σ cB)(E − σ cB)T, (B4)

while the continuous homodyne outcome is written in
vectorial form as

dyt = −
√

2BTr̄c dt + dwt. (B5)

The matrices entering these equations can be derived by
different approaches [66,67], and for the physical setup we
are interested in read

A =
( −(χ + κ/2) ω

−ω χ − κ/2

)
, (B6)

D = κ12, (B7)

B = E =
( −√

ηκ 0
0 0

)
. (B8)

We observe that the matrices B and E are singular. The
second component of the Wiener increment dwt in Eq.
(B5), therefore, does not play any role at all, whereas the
first component is determined by the homodyne detection
output.

The solution of the Riccati equation for the covari-
ance matrix (8) can, in general, be obtained numerically.
However, an analytical solution can be obtained for the
steady-state covariance matrix for ω = 0 and by assuming
stable dynamics (i.e., χ < κ/2), leading to

σ ss
c (η) =

(
κ(2η−1)−2χ+

√
κ2−4κχ(2η−1)+4χ2

2ηκ
0

0 κ
κ−2χ

)

.

(B9)

Two opposite regimes can be observed here. By taking
the limit for the efficiency η → 0, and assuming a sta-
ble dynamics, we obtain the solution for the unconditional
(unmonitored) dynamics:

σ ss
unc =

( κ
κ+2χ

0
0 κ

κ−2χ

)
. (B10)

We thus find that for 0 < χ < κ/2, the Hamiltonian
squeezes the q̂ quadrature, with a maximum amount of
3 dB of squeezing near instability; that is, for χ → κ/2
[68,69]. In the opposite case of perfect monitoring (i.e., for

η = 1), we find

σ ss
c =

(
κ−2χ

κ
0

0 κ
κ−2χ

)
, (B11)

which in turn, for 0 < χ < κ/2, corresponds to even
smaller variances of the q̂ quadrature, and in principle infi-
nite squeezing near instability. For ω �= 0, we numerically
find that a lower amount of squeezing can be generated and
that the most squeezed quadrature depends on the value of
ω itself.

As described in Appendix A, the performance of the
metrological protocol is quantified by the effective QFI
defined in Eq. (A8). The quantum states being Gaus-
sian, also this figure of merit can be derived from the
information contained in first and second moments. In par-
ticular, the homodyne classical Fisher information can be
evaluated as [37]

Fhom = Etraj

[
2

∫
dt (∂ωr̄c)

TBBT(∂ωr̄c)

]
, (B12)

while the QFI of the (Gaussian) conditional state is
obtained via the formula [75]

Q[�c] =
Tr

[(
σ−1

c (∂ωσ c)
)2

]

2(1 + μ2)
+ 2(∂ωμ)

1 − μ4

+ 2(∂ωr̄c)
Tσ−1

c (∂ωr̄c), (B13)

with

μ = Tr[�2
c ] = 1/

√
det[σ c] (B14)

denoting the purity of the conditional quantum state. We
thus also need the evolution of the derivatives of first and
second moments with respect to the parameter ω, which
can be numerically integrated via the equations [37]

d(∂ωr̄c) = (∂ωA)r̄c dt + A(∂ωr̄c) dt − (∂ωσ c)B dwt√
2

+ (E − σ cB)BT(∂ωr̄c) dt, (B15)

d(∂ωσ c)

dt
= (∂ωA)σ c + σ c(∂ωA)T + A(∂ωσ c)

+ (∂ωσ c)AT + (∂ωσ c)B(E − σ cB)T

+ (E − σ cB)BT(∂ωσ c). (B16)

At each time t, also the purity μ and its derivative ∂ωμ can
be directly obtained from σ c and (∂ωσ c) via Eq. (B14).

These quantities are also exploited as observations for
the neural network that optimizes the feedback strategy. To
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(a) (b)

(c) (d)

FIG. 6. Performance of the control strategies as a function of time, quantified by the effective quantum Fisher information Qeff
divided by time, and for different values of χ : (a) χ = 0; (b) χ = 0.35κ; (c) χ = 0.45κ; (d) χ = 0.49κ . Notice that in (a) the scale of
the y axis is logarithmic and that the curve corresponding to the open-loop control strategy Q(OL)

eff is not reported as the corresponding
values are almost negligible. Furthermore in (a),(d) an extra red curve, corresponding to the agent trained at, respectively, χ = 0.49
and χ = 0, has been added. The results are obtained by simulating N = 1000 trajectories with time step dt = 0.001/κ , by fixing the
other parameters as ω = 0.1κ and η = 0.9, and by considering as an initial state a thermal state with nth = 5 and initial first-moment
vector r̄c(0) = (0, 0).

train our agent and to assess the performance of the differ-
ent protocols, we thus numerically simulate different tra-
jectories of the quantum states via Eqs. (B3), (B4), (B15),
and (B16), and we perform the numerical integration and
the numerical average in Eqs. (B12) and (A8).

APPENDIX C: EFFECT OF THE HAMILTONIAN
COUPLING CONSTANT χ

Here we discuss the role of the Hamiltonian coupling
constant χ in the learning of the strategy by the agent and
in its performances. As highlighted in the main text, χ is

FIG. 7. Performance of the control strategies as a function of time, quantified by the Fisher information divided by time, and for
different values of η. All the other parameters are fixed as in Fig. 2.
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FIG. 8. Scatter plot of the squeezing (expressed in decibels) perpendicular to the conditional first-moment vector r̄c and the absolute
value of the first-moment vector |r̄c| for the three control strategies at time κt = 180 and for different values of η.

directly responsible for the generation of squeezing in the
conditional states. Squeezing can be observed if and only if
χ is larger than zero, and in particular near criticality (i.e.,
for χ ≈ κ/2, the amount of squeezing generated is close to
infinity in the case of perfect monitoring).

In Fig. 6 we compare our control strategy with the
benchmark strategies by plotting our figure of merit Qeff/t,
obtained by agents trained with different values of χ (0,
0.35κ , 0.45κ , and 0.49κ), as a function of time. We observe
how the agent allows us to reach values of the QFI larger
than those obtained by means of the other strategies, in par-
ticular in the long-time limit. Other relevant observations
can be drawn from these plots: (i) In general, we find that,
for all strategies, larger values of χ yield larger values of
the QFI, thus highlighting, once again, the importance of
the squeezing generated during the dynamics. (ii) For val-
ues of χ that are large enough (e.g., for χ = 0.45κ and
χ = 0.49κ), the agent is able to devise a strategy such that
the maximum of Qeff/t is observed in the long-time limit;
for smaller values of χ (e.g., χ = 0.35κ) one observes a
maximum at short times, while in the long-time limit the
ratio between the effective QFI and time tends to a smaller
stationary value. (iii) We also find that for χ = 0.45κ

the maximum of Qeff/t obtained for the open-loop con-
trol strategy is compatible with the value obtained in the
long-time limit via the agent strategy. We stress, however,
that while for the open-loop strategy one would need to
stop the dynamics at a very specific time, by using the RL
strategy, one has a wide available time window, in which
the dynamics has reached a steady-state behavior.

To better describe the properties of the strategies devised
by the neural network, we have added an extra curve in
Figs. 6(a) and 6(d): in Fig. 6(a) we have added the values
of the QFI corresponding to the agent trained at χ = 0.49κ

applied to the case χ = 0, while in Fig. 6(d) we have added
the performance of the agent trained at χ = 0 applied to
the case χ = 0.49κ . In the first scenario we observe that
the agent trained at χ = 0.49κ is still able to beat the

benchmark strategies and its performance is only slightly
poorer than that of the properly trained agent, In the sec-
ond scenario the situation is completely inverted: the agent
trained at χ = 0 yields very low values of the QFI. Our
interpretation of this result is as follows: when the agent
is trained near criticality, it learns how to optimize both
first moments and squeezing, and thus performs well also
when squeezing is absent. On the other hand, at χ = 0.49κ

(i.e., when squeezing plays a major role in the estimation
protocol) the agent trained in the no-squeezing scenario
completely fails in enhancing the estimation precision.

APPENDIX D: EFFECT OF CONTINUOUS
MONITORING OF EFFICIENCY

Here we present some results that we obtained for dif-
ferent values of the monitoring efficiency η (0.9, 0.5, and
0.1). In Fig. 7 we report the behavior of the different Fisher
information divided by time as in Fig. 2. We observe how
the enhancement is still clearly observed for η = 0.5 and
that even for very small monitoring efficiency (η = 0.1)
the agent feedback is able to yield a larger estimation pre-
cision compared with the other strategies, in particular in
the long-time limit.

We also report in Fig. 8 scatter plots of the perpendicular
squeezing defined in the main text and the absolute value
of the first-moment vector |r̄c| for a fixed time κt = 180.
We observe as remarked also for Fig. 4 that with respect
to the no-control strategy, for η = 0.9 the agent is able
to prepare trajectories with larger perpendicular squeez-
ing. However, in this plot we also observe that the agent
is in general able to prepare conditional states that, for
a fixed amount of perpendicular squeezing, yields larger
first moments, thus leading to an enhanced estimation. By
reducing the monitoring efficiency, we find that the first
effect (trajectories with larger perpendicular squeezing) is
basically lost also for η = 0.5, while the second effect (i.e.,
larger first moments at fixed squeezing) is still obtained
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FIG. 9. Scatter plot between the absolute value of the first-moment vector |r̄c| and the trajectory contribution to the homodyne
Fisher information log f (traj)

hom at time κt = 180 and for different values of η. Only the points corresponding to the agent strategy and the
no-control strategy are plotted, as f (traj)

hom = 0 for the OL control strategy.

and thus it can be considered as solely responsible for the
greater estimation precision.

The relevance of the first-moment vector is also high-
lighted in Fig. 9, corresponding to the scatter plot of |r̄c|
and log f (traj)

hom for the different trajectories, where we have
introduced the quantity

f (traj)
hom = 2

∫
dt (∂ωr̄c)

TBBT(∂ωr̄c), (D1)

FIG. 10. Ratio between the effective Fisher information Feff
for final homodyne detection and the effective QFI of the condi-
tional state Q̄eff as a function of κt for the three different strategies
(the inset shows the ratio between the average Fisher informa-
tion of the strong homodyne measurement F̄ (hd)

c and the average
QFI Q̄c.) The solid lines show the Fisher information F̄hd,opt
optimized over θ , while the dotted line shows the Fisher infor-
mation F̄hd,Oq obtained with a homodyne on the quadrature q̂ for
the RL strategy. In all cases, while not being optimal, homodyne
detection allows one to extract a significant fraction of the total
available information on the frequency ω (parameter values are
fixed as in Fig. 2).

corresponding to the contribution of each trajectory to the
homodyne Fisher information Fhom = E[f (traj)

hom ] [see Eq.
(11)]. In Fig. 9 we observe how the two quantities seem to
be correlated for the agent strategy, while they seem uncor-
related for the no-control strategy (we recall that for the OL
control strategy f (traj)

hom = 0 for each trajectory), highlight-
ing once again the mechanism behind the strategy devised
by the agent.

APPENDIX E: EFFECTIVENESS OF HOMODYNE
DETECTION AS A FINAL STRONG

MEASUREMENT

Here we discuss the effectiveness of homodyne detec-
tion as a final strong measurement in our protocol (i.e., we
calculate the Fisher information of a final homodyne mea-
surement and we compare it with the QFI Q̄c). In general,
a non-Gaussian measurement may be needed to saturate
the quantum Cramér-Rao bound (i.e., to obtain classical
Fisher information equal to the QFI); however, we expect
that homodyne detection will extract a fair amount of the
maximum information achievable, being nearly optimal
for pure Gaussian states (see Refs. [61,71] for an extensive
study of phase estimation with Gaussian states).

A projective Gaussian measurement can be modeled by
the covariance matrix of a squeezed vacuum state, with
squeezing parameter s, and a phase rotation of angle θ :

σ m(z, θ) = R(θ)diag(z, 1/z)R(θ)T, (E1)

where z = exp 2s and R(θ) is a rotation matrix. In the limit
z → 0, we have a homodyne measurement: when θ = 0
(θ = π/2), the quadrature q̂ (p̂) is measured.

The measurement outcome probability of such a mea-
surement on a state with first moments rc and covari-
ance matrix σ c is a two-dimensional Gaussian distribution
N (rc, �), where � = (σ c + σ m)/2, for which the Fisher
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FIG. 11. Qeff/t (solid lines) and Feff/t for homodyne detection
(dashed lines) as a function of κt for the three different strategies
under consideration. Use of homodyne detection as a final strong
measurement does not affect the precision in the estimation sig-
nificantly for the RL strategy, given that the biggest contribution
to Qeff comes from the continuous monitoring. The dotted blue
line shows Feff/t for homodyne detection on the q̂ quadrature for
the RL strategy. Even without optimizing the angle of the final
homodyne measurement, the RL strategy allows one to exceed
the performances of the benchmark strategies (parameter values
are fixed as in Fig. 2).

information reads

F [N (rc, �)|ω] = (∂ωrc)
T�−1∂ωrc + 1

2
Tr[(�−1∂ω�)2].

(E2)

For each trajectory, we maximize the Fisher information
for a final homodyne measurement over θ ∈ [−π/2, π/2],
F (hd)

c . We then calculate the average F̄ (hd)
c and compare

it with Q̄c. The resulting ratio, F̄ (hd)
c /Q̄c, is shown in

Fig. 10 for the three different strategies. As can be seen,
the optimized homodyne detection, although not ideal,
allows the extraction of a significant amount of informa-
tion from the quantum state. Finding the optimal angle θ

in real time should be possible by means, for example, of
a field-programmable gate array (see the discussion on the
feedback real-time implementation in Sec. VI). The dotted
lines in the inset in Fig. 10 show that even if a fixed, and
suitably a priori chosen, angle θ is used, it is still possible
to extract a significant fraction of the QFI for the state (we
set θ = 0 for the RL strategy, corresponding to measuring
q̂, as suggested by a direct inspection of the distribution
of the optimal θ values for the different trajectories). The
overall effect on the effective Fisher information when
homodyne detection is used as a strong final measurement
is shown in Fig. 10: in the strategy devised by the RL agent,
where the contribution of the final strong measurement to
Qeff is small, the ratio between the effective Fisher infor-
mation Feff corresponding to a final homodyne detection
(either optimized or for θ = 0) and the effective QFI Qeff
tends rapidly to 1 as the monitoring time κt is increased.

We also notice that the ratio is reasonably high also for
the benchmark strategies: the more significant effect can be
seen in the OL control scenario, particularly at short times,
because Qeff = Q̄c.

We finally compare the performance of a final
homodyne detection for the three strategies in Fig. 11,
where we observe that the enhancement obtained via the
RL strategy is still maintained when a final homodyne
detection is performed.
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