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A B S T R A C T   

The Collision Avoidance (CA) system constitutes a key enabling technology for the Maritime Autonomous Sur-
face Ships (MASS), the appropriate functionality of which is critical for assuring the navigation safety. Although 
several techniques including testing of the collision scenarios in a virtual environment can be employed, the trust 
of testing phase results depends on the number of tested scenarios and their coverage. This study aims at pro-
posing a systematic and automatic process for the generation of the traffic scenarios that can be employed for the 
CA system testing. First, the range of the investigated parameters is defined, and samples of potential traffic 
parameters are generated using Sobol sequences. Subsequently, hazardous traffic scenarios are identified from 
the initially generated scenarios by using predefined rules. For these hazardous scenarios, a risk vector 
considering weather conditions and traffic conditions is calculated. A clustering algorithm is employed to 
identify the groups of traffic conditions that can be encountered based on each scenario risk vector and COLREGs 
traffic scenarios. For each of these groups, the riskiest scenario is provided as input for the test cases develop-
ment, thus, simplifying the selection process of testing scenarios. The process is applied to a theoretical Short Sea 
Shipping autonomous vessel, whereas the derived results are employed to discuss the advantages and disad-
vantages of the developed process.   

1. Introduction 

To address the marine industry imense challenges, novel systems and 
technologies have been introduced, including Maritime Autonomous 
Surface Ships (MASS). Major industrial initiatives, such as Yara Birke-
land (Yara, 2018) and ASKO (Smartmaritime, 2020), have already 
launched commercial MASS along with projects such as, MUNIN 
(MUNIN, 2016), AAWA (AAWA, 2016), SISU, SVAN (Daffey, 2018), 
AUTOSHIP (Bolbot et al., 2020). 

The MASS autonomy degree can be classified into four types ac-
cording to International Maritime Organisation (IMO), ranging from 
ships with automated processes to fully autonomous ships (IMO, 2020). 
The research and development initiatives pertinent to MASS extend to 
multiple directions. Several research studies focused on the develop-
ment of intelligent machinery systems in the context of MASS, such as in 
(Abaei et al., 2021; BahooToroody et al., 2022; Bolbot et al., 2021b; 
Tsoumpris and Theotokatos, 2022). The required regulatory aspects for 

MASS were investigated in (Bačkalov, 2020; Erceg, 2018; Nzengu et al., 
2021; Ringbom, 2019). The aspects related to MASS remote control 
were studied in (Basnet et al., 2022), whilst m the Collision Avoidance 
systems were investigated in (Huang et al., 2020; Utne et al., 2020). 

The Collision Avoidance (CA) system is considered a critical system 
for MASS, as it is expected to make decisions, affecting the safety of the 
own and surrounding ships (Bolbot et al., 2021a). Several approaches 
have been demonstrated for the design of CA systems with a variety of 
algorithms and models being considered, such as holonomic (Degre and 
Lefevre, 1981), kinematic (Vincent, 1977), dynamic models (Fossen, 
2002) for ship motion modelling in CA manoeuvres, physics-based 
(Fossen, 2018), manoeuvre-based (Peel and Good, 2011), 
interaction-based (Hu et al., 2008) for ship trajectory prediction, CA 
based on collision risk estimation (Kearon, 1997), and artificial intelli-
gence algorithms (Yu-Hong and Chao-Jian, 2005). A considerable 
number of the previous studies focused on the development of CA sys-
tems for conventional ships and MASS, as for example in (Brcko et al., 
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2021; Huang and van Gelder, 2020b; Mizythras et al., 2021; Namgung 
and Kim, 2021), or on the estimation of collision risk metrics (Goerlandt 
and Kujala, 2014; Huang and van Gelder, 2020a; Liu et al., 2019; Sil-
veira et al., 2021; Tam and Bucknall, 2010; Zhang et al., 2017). 

The existence of a plethora of advanced design methods and CA 
system solutions is an indicator of complexity and challenges associated 
with the safety assurance for CA systems. This statement is supported by 
the real-world accidents, which have occurred in other industries 
involving similar CA functions, due to defects in such systems (Guiochet 
et al., 2017; National Transportation Safety Board (NTSB), 2017). A 
prerequisite for avoiding malfunctions is to ensure adequate coverage of 
the potential scenarios that may be encountered by the ship during 
testing. This requirement stems from the problem of environmental 
complexity (Alexander et al., 2015), which indicates that MASS should 
interact properly with all the anticipated objects, under various condi-
tions and traffic scenarios (Bolbot et al., 2019; Sørensen and Ludvigsen, 
2017). 

The exhaustive testing of all the potential traffic conditions to 
determine proper functionality of the CA seems to be a challenging 
endeavour, which is almost impossible to be achieved under the present 
state of technology (Torben et al., 2022). The number of scenarios in-
creases exponentially with the number of parameters, therefore, there 
exists a critical threshold beyond which, exhaustive testing cannot be 
performed (Torben et al., 2022). The testing procedure is also restricted 
by the fact that the CA designers would prefer to conceal the details of 
their CA system, to avoid leakages of proprietary information (Pedersen 
et al., 2020). 

This dual problem can be addressed by reducing the required number 
of tested scenarios, use of gradual approaches for the verification of the 
CA system, as well as by developing black box testing and verification 
techniques that would provide sufficient confidence to the CA system 
without the disclosure of proprietary information. In other words, only 
once an adequate number of scenarios are tested in a virtual or real 
environment, it can be assured that the CA system will not jeopardise 
safety when operating. Moreover, black-box functional or performance 
testing is desirable, as these techniques do not require the release of 
sensitive intellectual property information (Nidhra and Dondeti, 2012; 
Pedersen et al., 2020). 

The navigation of ships is primarily regulated by the Convention on 
the International Regulations for Preventing Collisions at Sea (COL-
REGs) (COLREGS, 1972). However, as COLREGs requirements were 
developed considering crew on-board (and not autonomous systems), 
they do not provide numerical criteria for crew actions, and their 
implementation relies on the crew judgement. Therefore, they cannot be 
used to develop a comprehensive set of testing scenarios (Porathe, 2019; 
Woerner et al., 2019), they do not include information on the frequency 
of traffic scenarios, or provide a comprehensive list of objects with 
which the MASSs will interact. These COLREGs limitations in relation to 
MASSs have been discussed at International Maritime Organisation 
(IMO) level (IMO, 2021), whilst some of the national authorities have 
already issued recommendations for application of specifically adapted 
for a MASS version of COLREGs (Russian Federation, 2021). 

Automatic Identification System (AIS) data received from ship traffic 
systems can be a valuable data source for identifying such testing sce-
narios. It has been widely used for the analysis of traffic conditions, 
grouping of scenarios, identification of the most probable collision 
scenarios and development of safety domain as reported in (Gao and Shi, 
2020; Goerlandt et al., 2017; Han et al., 2021; Kulkarni et al., 2020; 
Mieczyńska and Czarnowski, 2021; Mou et al., 2010). However, the 
quality of AIS data exhibit some limitations, as the ships with switched 
off their transponder and small recreational ships that are not required 
to have AIS, are not visible (IMO, 2015). Moreover, objects other than 
ships and buoys are not included in these data sets. Testing scenarios 
generated based on AIS data will inherit these limitations, resulting in 
incomplete number of scenarios being finally considered. 

Several studies focused on testing cases generation, such as in 

automotive (Fremont et al., 2020; Khastgir et al., 2021; Li et al., 2016; 
Riedmaier et al., 2021), aviation (Lindvall et al., 2017), and other in-
dustries (Arora and Bhatia, 2018; Clark et al., 2021). Relatively few 
studies focused on both the testing process, testing cases generation, or 
formal verification in the maritime industry, as reported in (Fedorowski 
et al., 1979; Foster et al., 2020; Minne, 2017; Park and Kim, 2020; 
Pedersen et al., 2020; Rokseth et al., 2019; Shokri-Manninen et al., 
2020; Stankiewicz and Mullins, 2019; Torben et al., 2022; Woerner, 
2014; Yang et al., 2007). To the best of authors’ knowledge, only 
(Torben et al., 2022) proposed a way to automatically generate testing 
scenarios. However, this approach requires the use of simulators and 
application of search algorithms resulting in a significant number of 
simulations for testing of the CA systems. This is an important limitation 
that need to be addressed. 

This study aims to develop a process that specifies traffic scenarios 
for the ship CA system testing in automatic fashion, whilst reducing the 
required number of scenarios for testing. The novel contribution of this 
research stems from the integration of methods used in statistics, ship 
hydrodynamics and big data analytics for solving a test scenarios gen-
eration problem, and includes: (a) the development of a novel automatic 
process for traffic scenarios generation independent from CA system 
with focus on scenarios that need to be tested; (b) the recommendation 
of novel risk metrics for use in a CA system testing; (c) the process 
application to the Short Sea Shipping autonomous vessel considering 
operations close to shore. 

The remaining of the article is organised as follows. Section 2 pre-
sents the developed process methodology. Section 3 provides the 
investigated case study parameters. Section 4 reports and discusses the 
derived results. Finally, Section 5 summarises the main findings from 
this study and provides recommendations for future studies. 

2. Methodology 

2.1. Rationale, assumptions, and steps 

Considering that the potential traffic scenarios space is infinitely 
large, it is necessary to identify representative scenarios as well as to 
demonstrate how these representative traffic scenarios depict the traffic 
scenarios that were not accounted for. The intention of this study is also 
to recommend testing scenarios without considering the CA system 
properties under testing and the CA system evaluation. Another objec-
tive is to identify testing scenarios, which would require as limited as 
possible customisation of the CA system. 

To achieve the set aim and objectives, this study follows the steps 
depicted in Fig. 1. During step 1, uniform sampling of the potential 
traffic scenarios over the potential traffic space parameters values is 
conducted. These traffic encounter scenarios can be considered as 
representative for all the potential traffic encounters based on the effi-
ciency of sampling technique. 

Subsequently, an automatic risk assessment is conducted in steps 2 
and 3, with the support of several selected risk metrics and rule-based 
criteria. The risk assessment is employed to identify those traffic sce-
narios, which are the riskiest in terms of navigational safety, and to filter 
out the safe scenarios. Apparently, there is no value in testing safe traffic 
scenarios, which does not require actions from the CA system. It should 
be noted though that “safe” traffic scenarios can be selected for testing if 
the CA system overreacts to safe traffic scenarios, however, this is 
outside the scope of the present research. 

In step 4, the various collision risk metrics organised in a risk vector 
are analysed using a clustering technique to identify similarities be-
tween the selected traffic scenarios of step 3 in terms of risks. Some 
additional criteria are also employed to distinguish the different traffic 
scenarios, such as overtaking/overtaken, crossing, and head on. Based 
on these similarities, different groups of traffic scenarios can be identi-
fied, which are similar in terms of safety and traffic conditions. 

During the last step, a representative scenario is selected for each 
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identified traffic scenarios group. The main criteria for selecting a 
representative scenario include the values in the risk vector. It is 
assumed that the riskiest scenario in a group/cluster is adequate to de-
pict the CA system behaviour in other traffic scenarios belonging to the 
same group. Therefore, if the CA system passes the test criteria for the 
riskiest traffic scenario, it will also pass the criteria for the less risky 
traffic scenarios. In this way, reduction of the considered test scenarios is 
ensured, without omitting a specific category of traffic encounter 
scenarios. 

The effectiveness of the derived results depends on the assumptions 
reported in the preceding paragraphs, which are typically employed in 
pertinent research studies. For clarity, these assumptions are summar-
ised below to ensure better understanding of the limitations of this study 
and the derived results.  

• The sampled traffic scenarios offer a comprehensive coverage of the 
potential traffic scenarios.  

• The selected rules for filtering the traffic scenarios are adequate and 
rational.  

• The selected risk metrics accurately represent the safety of the 
encounter scenarios.  

• Clustering and grouping of traffic scenarios are accurate.  
• Holonomic models, which function under the assumption that the 

ships retain their speed and direction (Huang et al., 2020), are 
considered for the identification of the hazardous scenarios.  

• Use of a circular domain is considered as a reasonable approximation 
of the ship domain.  

• The riskiest scenario in each group is considered representative for 
each group.  

• The elements of the risk vector as elaborated in section 2.5 are 
considered as equivalently important to each other.  

• A ship cannot instantly change its speed to the desired level, and an 
arbitrarily threshold is considered as elaborated in section 2.5. 

2.2. Identification of parameters influencing safety of navigation 

The collision between the ships is usually an emergent event 
dependent on a large number of risk influencing factors that are related 
to route, human factors, ship design, equipment characteristics and 
organisational factors (Chen et al., 2019; Pedersen, 2010; Puisa et al., 
2018). As the CA system reacts to the navigational factors of the route, 
only these factors are considered in this study. 

The lists of navigational factors and pertinent metrics are provided in 
Table 1. These factors were derived based on the information reported in 
(Abebe et al., 2021; Bakdi et al., 2020; Bye and Aalberg, 2018; COL-
REGS, 1972; Goerlandt et al., 2015; Li et al., 2021; Mizythras et al., 
2021; Silveira et al., 2021; Woerner et al., 2019). The identified metrics 
that can be used to represent these navigational factors are derived 
based on the pertinent literature (Chen et al., 2019). These metrics and 

their ranges can be determined with the assistance of AIS data, meteo-
rological data, geospatial services, operator prior knowledge, according 
to the methodology described in (Bolbot et al., 2022). 

The first three metrics of Table 1 can be considered as outcome of 
several basic parameters, such as, the ships location, heading, and speed. 
Hence, the latter parameters (ships location, heading, and speed) are 
selected for the sampling, instead of the metrics of Table 1. For 
demonstration purposes, we also selected the environmental conditions 
in our sampling. For the sake of this study brevity, we omitted the other 
remaining parameters/metrics, which can be considered in follow up 
studies. 

2.3. Step 1: Development of traffic scenarios using sampling techniques 

Once the sea traffic parameters are specified, the traffic scenarios can 
be generated using any sampling technique, e.g., Sobol sequences 
(Sobol’, 1967), random Monte Carlo sampling (Metropolis et al., 1953), 
Latin hypercube sampling (McKay et al., 1979). In this study, Sobol 

Fig. 1. Process overview.  

Table 1 
Navigational factors.   

Navigational factors Pertinent metrics 

1 How close the ships are/expected to 
be to each other and to the shore 

Distance between ships/to shore 
Distance to Closest Point of Approach ( 
Hilgert and Baldauf, 1997) 
Degree of Domain Violation ( 
Szlapczynski, 2006) 
Vessel collision risk operator (Zhang 
et al., 2017) 
Minimum distance to collision ( 
Montewka et al., 2012) 

2 Time allowed to implement the CA 
manoeuvre 

Time to Closest Point of Approach ( 
Hilgert and Baldauf, 1997) 
Time to Domain Violation (Lenart, 
2015; Szlapczynski and Szlapczynska, 
2016) 

3 Space required/available for ship 
manoeuvres 

Ship domain (Fujii and Tanaka, 1971;  
Szlapczynski and Szlapczynska, 2017) 
Velocity space (Degre and Lefevre, 
1981; Fiorini and Shiller, 1998) 
Collision Threat Parameter Area ( 
Lenart, 1983, 2015) 
Velocity obstacle derivatives (Huang 
et al., 2018, 2019; Huang and Gelder, 
2017) 

4 Environmental conditions Beaufort and direction of winds, 
Current speed and direction 
Waves significant height and direction 

5 Visibility Distance (The weather window, 2022) 
6 Draught against seabed depth Ship draft seabed depth 
7 Type of COLREGs scenario Ships’ locations, speeds and headings 
8 Other objects/agents in the area Location, size, speed, type of 

movement, number of crew, passengers  
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sequences were selected, as they demonstrate a number of useful 
properties. First, Sobol sequences provide an uniform coverage of the 
parameters space (Sobol’, 1967). Second, they provide greater repeat-
ability in results compared to the random and Latin hypercube sampling 
techniques without sacrificing accuracy, as demonstrated by several 
previous studies (Bolbot and Theotokatos, 2021; Burhenne et al., 2011; 
Kucherenko et al., 2015; Qian and Mahdi, 2020). Third, they do allow 
for a better repeatability of the results due to their quasi-random nature 
(Sobol’, 1967). 

The sampling is implemented over a continuous and not discrete 
space. Therefore, for the estimation of the sampling effectiveness, it is 
required to discretise the space of the potential values. This is imple-
mented with the assistance of parameter difmin, depicting the average 
normalised minimum difference in the parameter pl for the range 
(pl,max − pl,min) with sampling over a number of p parameters. The 
physical meaning of difmin is also illustrated in Fig. 2. There exist several 
other measures for assessing the sampling uniformity, such as, 
discrepancy-based, point-to-point based and volumetric (Ong et al., 
2012; Zaremba, 1968); however, parameter difmin was selected, as its 
physical meaning is more readily perceived. 

The number of potential combinations T that can be sampled for p 
parameters, by considering the parameter difmin is estimated according 
to the following equation: 

T =

(
1

difmin
+ 1

)p

(1) 

The sampling ratio (R) (Analytic Technologies, 2010) is defined ac-
cording to the following equation, as the ratio between the N sample 
points and the total number of points that can be generated: 

R =
N
T

=
N

(
1

difmin
+ 1

)p (2) 

For an existing sample, the estimation of difmin can be approximated 
using the following formula: 

difmin =
1
N

∑N

i=1

∑p+1
j xp,i,n − xp,j,n

̅̅̅p√
(p + 1)

for i ∕= j (3)  

where p is the total number of parameters, xp,i,n is the i normalised 
sample over p parameters and j is used to denote the p points having the 
least distance from the ith point. 

For the Sobol sequences, due their pseudorandom nature, eq. (3) can 
be simplified as follows (which was determined after a series of 

numerical tests): 

difmin =

∑p+1
j xp,i,n − xp,j,n

̅̅̅p√
(p + 1)

for i ∕= j, ∀ i ∕= 1 (4)  

2.4. Step 2: Identification of the hazardous scenarios 

Τhe identification of hazardous scenarios is implemented by ana-
lysing the traffic scenarios generated using the sampling techniques 
from the previous step. 

For this purpose, a number of metrics from Table 1 is employed, such 
as, the geometric distance (Di,k) between the Own Ship (OS) and kth 
Target Ship (TSk), the time to the closest point of approach between the 
OS and TSk (TCPAi,k), the distance at the closest point of approach be-
tween the OS and TSk (DCPAi,k), and the safety domain around the OS 
that is represented by a circle with radius ai,1. These are the metrics that 
were employed in a considerable number of previous studies (Szlapc-
zynski and Szlapczynska, 2017). 

However, some more advanced and effective metrics, such as, the 
Degree of Domain Violation (Szlapczynski, 2006) and Time to Domain 
Violation (Lenart, 2015; Szlapczynski and Szlapczynska, 2016), which 
were included in Table 1 could be also employed in a follow up study. In 
this study, due to the use of circular domain, these metrics (Degree of 
Domain Violation and Time to Domain Violation) practically give the 
same information with TCPAi,k and DCPAi,k, as indicated by (Szlapc-
zynski, 2006). This is not valid for cases where different domains were 
employed, such as, elliptical domains (Szlapczynski, 2006). This is one 
of the limitations of the study. 

It should be noted that the use of circular domain constitutes an 
oversimplification and a very conservative approach to the safety 
domain definition. More advanced approaches define the safety domain 
as an ellipse (Namgung and Kim, 2021) (Coldwell, 1983; Davis et al., 
1982; Fujii and Tanaka, 1971; Hansen et al., 2013; Liu et al., 2016; 
Pietrzykowski and Wielgosz, 2021; Szlapczynski and Szlapczynska, 
2021), as block areas (Kijima and Furukawa, 2003), as quaternion 
(Wang, 2010), or as polygons (Bakdi et al., 2020; Hansen et al., 2013; 
Pietrzykowski and Uriasz, 2009; Szlapczynski and Szlapczynska, 2015). 
This simplification is adopted to facilitate the implementation and 
investigation of the overall automatic scenarios generation process. The 
consideration of alternative representations for the safety domain and 
the selection of the most appropriate is proposed as a subject for future 
research. A comprehensive review of safety domains and their charac-
teristics can be found in (Du et al., 2021a; Szlapczynski and Szlapc-
zynska, 2017). 

All these metrics are valid under the assumption that the ship 
movements are holonomic. This assumption is not valid in real condi-
tions, as the ships will eventually interact and communicate with each 
other and change their route based on the manoeuvres of the other ships 
(Huang et al., 2020). However, this assumption can be considered as 
plausible and sound approximation of traffic scenarios and traffic risks, 
as (a) the ships exhibit rather slow dynamics, and (b) the distance be-
tween the ships considered during the sampling is small relative to their 
dynamics. The calculation of more detailed safety metrics, considering 
ships interactions and simulations, would be rather too computationally 
expensive (potentially causing memory overflow issues), therefore, it 
would be challenging to implement the proposed analysis for a large 
sampling number. 

The hazards identification is based on a set of criteria/rules, as 
presented in the pseudocode form provided in Table 2. First, for each 
traffic scenario generated using samples, the previously mentioned 
metrics are estimated. Then, for the ship that is the closest to the OS, the 
violation of all safety criteria/rules is examined. The following criteria/ 
rules are considered: 

Fig. 2. Sampling space for two parameters (p1, p2) and physical meaning of 
parameter difmin with uniform sampling. 
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RV =
[ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

DCPAnkTCPAnk
√

, An, hn, Wn

]
(11) 

By setting the elements in a vector, an implicit assumption is intro-
duced, which is that the elements of vector are equally important with 
each other. 

The DCPAnk and TCPAnk represent the normalised version of DCPA 
and TCPA for TSk ship (or shore) based on the selected safety domains 
and are estimated according to eqs. (12) and (13). 

DCPAnk =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, if TCPAk < 0 or TCPAk > ts

1, if DCPAk < a1 (TSk inside safety domain)

e
dr −DCPAk

dr −a1 − 1
e − 1

, otherwise

(12)  

TCPAnk =

⎧
⎪⎨

⎪⎩

0, if TCPAk < 0 or TCPAk > ts

e
ts−TCPAk

ts − 1
e − 1

, otherwise
(13) 

The physical meaning of eq. 12 and 13 is as follows. If the closest 
point of approach with the ship TSk is in the past or too far away in the 
future, ship TSk does not contribute to the risk (relevant value 0). If the 
TCPAk→0 from positive values of TCPA, as we already excluded 
TCPA<0, then the TCPA contributes the most to the risk (relevant value 
1). For the intermediate values an exponential relationship is used to put 
greater emphasis to the conditions where the TSk is closest to the OS. If 
TSk lies within the safety domain, then the risk from DCPAk becomes 
maximum (relevant value 1). The larger the DCPAk value, the smaller is 
its contribution to the risk of collision. The parameter dr is a parameter 
depicting the distance for which the risk metric is estimated, which is set 
to 3 nm in line with (Wang et al., 2021). The multiplication between 
DCPAnk and TCPAnk is implemented to emphasise that the closer an 
encounter is in distance and in time, the higher is the risk of collision 
with the ship TSk. 

It should be noted that the above risk metrics are relevant only when 
considering ships independently from each other. To address potential 
interactions between the ships, the risk metric, A, is calculated, which 
depicts the percentage of the area in the u − φ (speed-bearing) space that 
is not allowed for manoeuvres. A is calculated using concepts from ve-
locity obstacle algorithms (Degre and Lefevre, 1981; Fiorini and Shiller, 
1998) according to the following equations: 

A =
AC

π u2
0,max

(14)  

where AC is the area in the u − φ space that is not available for safe 
navigation as collision with the ship TSk can occur according to the 
holonomic hypothesis. Therefore, AC is defined as: 

AC = ∪
k=Nv

k=1
Ak ∩ u − φ circle (15)  

where Nv denotes the number of ships interacting with the own ship, 
whereas Ak denotes the area in the u–φ space where collision of the OS 
and the TSk occurs. 

This area is also graphically depicted in Fig. 4 as the intersection 
between the highlighted triangles and the circle. The metric A is used to 
depict the traffic complexity and the area that is not available for the 
safe manoeuvring of the own ship. 

The normalised An is calculated according to: 

An =
eA − 1
e − 1

(17) 

The exponential normalisation is used to give greater emphasis on 

values of An closer to 1. 
The parameter hud is estimated according to: 

hud =

⎧
⎨

⎩

ud

0.25 u0,max
, if the OS speed vector lies within the AC area

0, otherwise
(18)  

where ud is the minimum distance between u(φ)
̅̅ →

and the safe area, as 
depicted in Fig. 4. This metric is used to depict the easiness with which 
the ship can change its speed and find itself in a safe combination of 
speed and direction values. The normalisation with 0.25 u0,max is 
implemented in line with the assumption that a ship cannot instantly 
change its velocity to the desired level. Herein, this threshold is set 
arbitrarily for simplicity reasons. Typically, it depends on the ship 
manoeuvrability characteristics (rudder size, engine power, length, etc.) 
and available manoeuvring time. 

The normalised parameter hn is calculated by the following equation: 

hn =
ehud − 1

e − 1
(19) 

The last metric of the risk vector is used to account for the weather 
conditions during manoeuvring and is estimated according to: 

W =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
HsVcVw

HsmaxVcmaxVwmax

3

√

(20)  

where Hs is the wave height that is considered for the selected scenario, 
Vc is the current speed, Vw is wind speed, and max denotes the maximum 
value of Hs, Vc and Vw. 

The normalised parameter Wn is calculated by: 

Wn =
eW − 1
e − 1

(21) 

The risk metrics presented herein are novel and to the best of the 
authors’ knowledge, have not been employed in previous studies. These 
metrics could be also employed in real CA system for the risk estimation. 
However, other metrics potentially could be considered, such as 
obedience to COLREGs of the present encounter traffic scenario (Du 
et al., 2021b), metrics having sinusoidal and parabolical relationship 
with DCPA, TCPA, distance (Abebe et al., 2021), metrics having poly-
nomial relationship with DCPA and TCPA (Kearon, 1997; Park and 
Jeong, 2021), metrics having exponential relationship with DCPA and 

Fig. 4. Description of u − φ area.  
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TCPA (Mou et al., 2010), risk metrics for the Degree of Domain Violation 
(Szlapczynski, 2006), the Time to Domain Violation (Lenart, 2015; 
Szlapczynski and Szlapczynska, 2016), or alternative approaches for risk 
estimation (Chun et al., 2021; Ha et al., 2021). However, they are 
outside the scope of this study, as the aim is to demonstrate the func-
tionality of the proposed process for identify testing scenarios. As there 
are no definite guidance with respect to which risk metrics must be 
selected in the maritime community, and it constitutes an area of an 
intense research efforts, the conclusive selection of the appropriate risk 
metrics is left as a subject for future work. 

Since the risk vector is multi-dimensional, it cannot easily be 
visualised. In order to enable its visualisation, the t-distributed sto-
chastic neighbour embedding (t-SNE) algorithm is used (Hinton and 
Roweis, 2002; Van der Maaten and Hinton, 2008). This algorithm first 
calculates a probability distribution that represents similarities between 
neighbouring points, (the conditional probability that a point would 
pick another point as its neighbour), and subsequently defines a similar 
probability distribution over the points in the low-dimensional mapping. 
Finally, the t-SNE algorithm minimises the Kullback-Leibler divergence 
(Kullback, 1968) between the two distributions to eventually derive the 
final mapping. 

2.6. Step 4: Equivalence classes identification 

In this step, mathematical tools of unsupervised clustering analysis 
are employed for the determination of equivalence classes (Bhat and 
Quadri, 2015). For the purpose of this study, the k-means clustering is 
selected (Cheng, 1995; Fukunaga and Hostetler, 1975; MacQueen, 
1967). This algorithm aims to partition any available observations into k 
clusters, in which each observation belongs to the cluster with the 
nearest mean. The parameter k, (denoting the number of clusters) is user 
selectable. 

The following two approaches were used to identify the optimal 
number of clusters in the available dataset: the elbow method (Mac-
Queen, 1967) and the silhouette method (Steinhaus, 1956). The elbow 
method involves the calculation of within-cluster error sum of squares 
(SSE) and identifying the number of clusters after which the SSE stops 
reducing rapidly. The relevant equations for estimating SSE can be 
found in (Stanford, 2022). 

The silhouette method follows a similar working principle, however 
it employs the silhouette score to quantify the similarity of data points 
within a cluster and their distance to data points that belong to other 
clusters. In this way, the silhouette method calculates how similar an 
object is to its own cluster (cohesion) compared to other clusters (sep-
aration) (de Amorim and Hennig, 2015; Rousseeuw, 1987). The 
silhouette score ranges from −1 to +1, where a high value indicates that 
the object matches to the dedicated cluster (de Amorim and Hennig, 
2015; Rousseeuw, 1987). For a clustering method to be considered 
effective, most of the points must have a high value. The mean of 
silhouette score is used to assess the clustering technique quality. The 
silhouette score can be calculated as in (de Amorim and Hennig, 2015; 
Rousseeuw, 1987). 

The number of cluster zones is determined according to the following 
formula: 

CN =
(
2k+s − 1

)
3k (22)  

where s denotes the number of employed shore points. 
The rationale behind eq. (22) is as follows. When a number of k TSs 

are in proximity to the OS, the OS may collide either with one TS, or with 
any combination of two or more TSs. Eq. (22) is developed by consid-
ering that the potential to collision is expressed using binary values (Yes 
or No). The subtraction of 1 is used to address the scenario when there is 

no collision with any TS or shore (all values are No). The multiplication 
with 3k is followed to distinguish if the scenario with the kth TS is 
classified as crossing, following or heading. This distinction of traffic 
conditions is reported in (Namgung and Kim, 2021). 

Another indication of the potential cluster number is associated with 
the risk vector (RV) length. By considering that each risk value in the RV 
can either have a high or low value (binary assumption) and are inde-
pendent from one another, the total number of clusters can be calculated 
by: 

CN =
(
2dim(RV) − 1

)
3k (23) 

The subtraction of 1 is employed to account for conditions where all 
the RV elements exhibit low values. These conditions are already filtered 
using the rules in step 2 of the proposed process. 

2.7. Step 5: Scenarios selection 

Once the equivalence classes (clusters or groups) have been identi-
fied, for each class (cluster/group), the sample with its RV closest to the 
mean RV value of the whole class (cluster/group) is used as represen-
tative. However, this does not guarantee to provide the riskiest scenario 
in the cluster. For this reason, in line with the boundary value analysis 
(Bhat and Quadri, 2015), the most critical scenario is determined by 
considering the total risk (TR), which is calculated by: 

TR =

∑
RVelevements
dim(RV)

(24) 

Practically, the average of the RV elements in eq. (11) is considered 
as the risk measure for each scenario, without assigning any weight to 
the risk vector elements. In this way, more complex scenarios are 
associated with higher risk. It is assumed that if the collision is avoided 
for a scenario with high risk, it will also be avoided for the scenarios with 
lower risk in the same group. 

3. Investigated case and selected parameters 

This study considers the case of the sort ship shipping (SSS) cargo 
ship as the own ship (OS), which is employed at the AUTOSHIP project 
(AUTOSHIP, 2019). The OS is considered to operate outside the coasts of 
Norway, and interacts with a high speed craft (TS1) and a sailing boat 
(TS2). 

The input parameters for the investigated scenarios are provided in 
Table 3. The random parameters with their ranges are provided in 
Table 4. These 18 parameters are assumed to vary from 0 to their 
maximum value and are sampled using the Sobol technique as described 
in section 2. The test area is set to 3 nm × 3 nm in line with (Namgung 
and Kim, 2021). A shore is also considered, which is represented by a 
simple spline line. It should be noted that both the sailing boat and the 
high-speed craft are not required to have an AIS transponder. Hence, 
they are not visible on the AIS data, which justify the developed 
approach use. 

Table 3 
Input parameters.   

Own ship (OS) 1st target ship (TS1) 2nd target ship (TS2) 

Type Cargo ship High speed craft Sailing boat 
Length 74.7 m 12 m 6 m 
Beam 13.6 m 2.5 m 2 m 
Max speed 15 kn 40 kn 10 kn 
Max current 3 m/s 
Max waves height 2 m 
Max wind speed 14 kn  
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4. Results and discussion 

4.1. Step 1: Development of traffic scenario using sampling techniques 

A typical sampled traffic scenario is provided in Fig. 6. This is a non- 
hazardous traffic scenario for the OS, which sails far away from the high- 
speed craft (TS1) whereas the sailing boat (TS2) slowly approaches the 
OS. The shore boundary was not shown for demonstration purposes. 
This scenario can potentially occur during navigation. Therefore, it can 
be concluded that the artificial sampling can generate realistic traffic 
conditions, which can be categorised as both safe and unsafe (several 
unsafe scenarios are shown in the next figures). As the OS is sampled 
uniformly over the investigated location space (the same applies for 
both target ships), the process generates scenarios, in which no haz-
ardous situations are observed. This can be viewed as a drawback of the 
process, as it results in a certain degree of overhead, which can be 
addressed in a future study. 

The sampled positions for the OS (without presenting the target ships 
TS1 and TS2) with N = 100 (Sobol samples number) are presented in 

Fig. 5. This figure was developed by illustrating only the OS positions, 
speed vectors and safety domains for the sampled scenarios. As it can be 
observed, the Sobol sampling method provided a uniform coverage of 
the OS positions, speeds and speed directions in the selected area. This is 
in line with findings from previous studies (Bolbot and Theotokatos, 
2021; Burhenne et al., 2011; Kucherenko et al., 2015; Qian and Mahdi, 
2020), which justifies the use of the Sobol sampling compared to 
alternative sampling techniques. The estimations for the parameter 
difmin, the total number of scenarios, and the sampling ratio for several 
values of the samples number are provided in Table 5. As it can be 
observed, the average normalised minimum difference between points 
(difmin) reduces with increasing samples numbers, however, the sam-
pling ratio remains approximately the same. This also means that with a 
specified difmin, the Sobol sequence method requires far less samples 

Table 4 
Random parameters.  

Random parameter Range 

Own ship (OS) speed 0–15 kn 
OS speed direction 0–2π rad 
OS location 0–3 nm × 0–3 nm 
Sail boat speed 0–10 kn 
Sail boat speed direction 0–2π rad 
Sail boat location 0–3 nm × 0–3 nm 
High speed craft speed 0–40 kn 
High speed craft direction 0–2π rad 
High speed craft location 0–3 nm × 0–3 nm 
Current speed 0–3 m/s 
Current direction 0–2π rad 
Waves height 0–2 m 
Waves direction 0–2π rad 
Wind speed 0–14 kn 
Wind direction 0–2π rad  

Fig. 5. Sampled OS positions, safety domain and speed for N = 100.  

Fig. 6. A typical sampled encounter scenario.  

Table 5 
Estimation of difmin, T and R, when p = 18 for several Sobol sample numbers.  

Number of 
Sobol samples 
(N) 

Average 
minimum 
difference (difmin)

Total scenarios number 
with difmin according to 
crude sampling (T) 

Sampling 
ratio (R) 

100 0.2535 3.12 1012 3.21 10−11 

1000 0.2132 3.93 1013 2.55 10−11 

10,000 0.1797 5.15 1014 1.94 10−11 

100,000 0.1619 2.55 1015 3.95 10−11 

1,000,000 0.1428 1.82 1016 5.49 10−11 

10,000,000 0.1228 1.99 1017 5.02 10−11  

Table 6 
Estimation of difmin, T and R, with p varying and N = 10,000,000.  

Number of 
parameters 

Average minimum 
difference (difmin) 

Total scenarios number 
with difmin according to 
crude sampling (T) 

Sampling 
ratio (R) 

2 2.03 10−5 2.41 109 0.0041 
3 0.0023 8.79 107 0.1138 
5 0.0147 1.59 109 0.0063 
10 0.0717 5.59 1011 1.78 10-−5 

15 0.1023 3.06 1015 3.27 10−9 

18 0.1228 1.99 1017 5.02 10−11  
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than the crude sampling of all potential combinations for the desired 
parameters, thus considerably reducing the number of scenarios. Due to 
the computational limitations of the employed hardware, this study 
considers the Sobol samples generated using N = 100, 1000, and 10,000. 

It should be also noted that the estimated sampling ratio, difmin and T 
depend on the number of parameters p, as was revealed based on the 
calculations presented in Table 6. The sampling ratio R decreases 
whereas the parameter difmin increases with increasing number of pa-
rameters. This results in the following two conclusions. First, the benefit 
from using sampling increases with the number of parameters, as the 
sampling ratio decreases for the same difmin compared to the exhaustive 
combinations number. Secondly, the coverage of the potential param-
eters becomes scarcer, as p and difmin increase, which means that the 
sampling results in higher uncertainty. 

4.2. Step 2: Identification of the hazardous scenarios 

The number of hazardous scenarios found using the rules from the 
second step is provided in Table 7. As the number of samples increases, 
the identified number of hazardous scenarios increases accordingly. 
However, it can be observed that the percentage of identified hazardous 
scenarios does not significantly change with the sample size. This in-
dicates that there should be a similarity between the different scenarios, 
therefore their grouping in clusters is possible. However, it should be 
noted that the required computational time on a standard desktop 
computer increases exponentially, with the number of samples, which 
constitutes an important limitation. For this reason, also the estimation 
of safety metrics based on the holonomic assumption is necessary, 
whereas the interactions between ships need to be left outside the 
analysis scope, unless a supercomputer or work/station is employed. 

4.3. Step 3: Risk vectors calculations 

As mentioned in methodology section, for each hazardous scenario a 
risk vector is calculated. The risk vector has 6 elements, as two ships and 
one shoreline are considered. As the visualisation of the estimated risk 
vector in a multi-dimensional space is impossible, the t-distributed sto-
chastic neighbour embedding (t-SNE) algorithm is applied to reduce the 
dimensionality of the data and allow for their plotting. The results of this 
algorithm are presented in Fig. 7. The colour scale represents the nor-
malised Euclidean distance of each point from the origin, prior to the 
application of the t-SNE algorithm. This is done to enable the visual 
evaluation of the algorithm results. The visualisation demonstrates that 
there are distinguished groups of potential traffic scenarios, which can 
be identified using the clustering techniques. 

4.4. Step 4: Equivalence clusters identification 

For the range of the considered sample sizes, it was investigated how 
the selected cluster number affects the performance metrics, in specific 
the sum of squared error (SSE) and the silhouette score, described in 
section 2.6. These results are provided in Fig. 8. The SSE metric rapidly 
reduces with the cluster number, whereas the relationship between 
cluster number and SSE is monotonic. The SSE also asymptomatically 
tends to 0 with increasing cluster size, which indicates that after a 
specific cluster number, the improvement in SSE is limited. 

The response is different for the silhouette score, where its optimal or 
convergent values are exhibited. This can be justified by the fact that the 
grouping converges to well-defined groups. This is anticipated as 
described in section 2.6, and the expected cluster number for the 
investigated case study is between 63 according to eq. (22) and 576 
according to eq. (23). The silhouette score is constantly on the positive 
metric side, which indicates that the convergence progresses relatively 
well. 

Based on the optimal values of the silhouette score for the minimum 
number of clusters, the selected cluster number is provided in Table 7. 
The results demonstrate that as the number of samples increases, the 
optimal number of clusters for each sample does not increase in the same 
manner, but instead also demonstrates a trend towards convergence. 
This constitutes another evidence that the grouping of scenarios in 
clusters is possible. However, further investigation is required by using a 

Table 7 
Number of hazardous scenarios and clustering zones.  

Number of 
Sobol samples 
(N) 

Number of 
hazardous 
scenarios (NH) 

Optimal number of clusters 
(NC) and NC/NH 

percentage in parentheses 

Calculation 
time (s) 

100 18 (18%) 11 (61%) 1.2 
1000 178 (18.7%) 43 (24%) 16.6 
2000 367 (18.4%) 79 (22%) 45 
5000 898 (18.0%) 97 (11%) 246 
10,000 1810 (18.1%) 62 (3%) 958  

Fig. 7. 2D visualisation of the risk vectors of each scenario through the t-SNE algorithm.  
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work station of greater computational capacity, so that increased sample 
sizes are evaluated. 

4.5. Step 5: Scenarios selection 

The selected scenarios for N = 10,000 are presented for some of the 
equivalent classes/clusters/groups in Fig. 9. This clustering is selected, 
as it is the closest to the minimum number of classes/clusters according 
to eq. (22) (CN = 63). The selected scenarios depict the different traffic 
conditions. Some of the traffic encounters are simple, as depicted for the 
case of Sobol numbers of 7080 and 4640. However, some include both 
target ships in the proximity to OS, such as, the traffic conditions 

generaed using Sobol numbers of 795, 831, and 4183. This is in line with 
our expectations, since, as elaborated in Section 2.6, we anticipate in-
teractions with both TS. Some of these scenarios demonstrate high 
complexity and total risk (TR) value, whilst others exhibit lower risk and 
complexity, however they are different in nature. It should be noted that 
the present classes/clusters/equivalence groups have been identified 
based on the considered risk vector and risk metrics. It is expected that 
the inclusion of additional risk metrics would result in different identi-
fied scenarios. This constitutes a subject for future research. Addition-
ally, the Sobol numbers are included in Fig. 9 plots for enhancing 
traceability. In another case study considering other ships (types and 
numbers), different Sobol samples are required. 

Fig. 8. Derived performance metrics with the cluster number (a) N = 100; (b) N = 1000; (c) N = 2000; (d) N = 5000; (e) N = 10000.  
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5. Discussion and limitations 

The main advantage of the presented process is that it follows a 
deductive, and not inductive, logic compared to the traffic scenarios 
generated by using the AIS data. It starts by considering the whole set of 
potential traffic scenarios, and progresses to more specific scenarios, 
which are not expected to be the most frequently occurring, as it is ex-
pected when AIS data is used. This is a more robust process compared to 
the case of deriving the potential traffic scenarios based on AIS data. The 
identification and testing of scenarios that have not been encountered in 
the past, but might occur in the future, belongs to the ‘known unknowns’ 

region of the Johari window (Luft and Ingham, 1961). The consideration 
of these types of scenarios during testing will contribute to the safety 
assurance of the CA system. 

The reduction of the potential scenarios is achieved by using more 
effective coverage of the traffic scenarios (use of sampling techniques 
during step 1), by excluding non-hazardous scenarios (application of 
rules in step 2), by grouping the scenarios based on similarity, as well as 
by using clustering algorithms and selecting the riskiest scenario (steps 
3–5). A similar approach, with some modifications could be applied by 
using AIS data, as demonstrated in (Gao and Shi, 2020; Goerlandt et al., 
2017; Han et al., 2021; Kulkarni et al., 2020; Mieczyńska and 

Fig. 9. Most critical scenarios from some equivalence classes/groups with N = 10000 and 62 clusters.  
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Appendix A. Nomenclature and abbreviation list 

AIS Automatic Identification System 
MASS Maritime autonomous surface ships 
OS Own Ship 
RV Risk vector 
SSE Within-cluster error sum of squares 
TS Target Ship  

Nomenclature 
ai,1 Radius of safety domain around the OS (m) 
A % of area in the u − φ (speed-bearing) space (-) 
AC area in the u − φ (speed-bearing) space (m/s degree) 
CN Minimum number of cluster zones (-) 

ud Minimum distance between u(φ)
̅̅ →

and the safe area in the u − φ (speed-bearing) space (m/s) 
ds Distance threshold (nm) 
Di,k Distance between OS and TSk ship for i sampled scenario (m) 
DCPAi,k Distance at the closest point of approach between the OS and TSk (m) 
DCPAnk Normalised version of DCPAi,k (-) 
difmin Average normalised minimum difference in parameter pl of the range (pl,max − pl,min) 
hud Normalised version of ud (-) 
Hs Wave height (m) 
L Ship length (m) 
N Number of sampled points (-) 
NC Number of clusters (-) 
NH Number of hazardous scenarios (-) 
pl Parameter (-) 
p Total number of parameters (-) 
R Reduction ratio (-) 
SSE Sum of Squares Error (-) 
ts Time threshold (min) 
T Potential number of scenarios considering all possible combinations (-) 
TCPAi,k Time to the closest point of approach between the OS and TSk (min) 
TCPAnk Normalised version of TCPAi,k (-) 
TR Total risk (-) 
u Speed (m/s) 
u0,max Maximum speed for OS (m/s) 
Vc Current speed (m/s) 
Vw Wind speed (m/s) 
W Metric is used to depict the weather conditions (BF) 
φ Ship speed direction (degree) 
xp,i Value of sampled parameter pl in scenario i (depending on the type) 
(x,y ) Location for each ship (m,m) 
Index  
0 Own ship 
i Sampled scenario 
k TSk ship 
j Other sampled scenario than i 
n Normalised parameter 
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