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Abstract
In multicentric calculus, one takes a polynomial p with distinct roots as a new vari-
able and represents complex valued functions by ℂd-valued functions, where d is the 
degree of p. An application is e.g. the possibility to represent a piecewise constant 
holomorphic function as a convergent power series, simultaneously in all compo-
nents of |p(z)| ≤ � . In this paper, we study the necessary modifications needed, if we 
take a rational function r = p∕q as the new variable instead. This allows to consider 
functions defined in neighborhoods of any compact set as opposed to the polynomial 
case where the domains |p(z)| ≤ � are always polynomially convex. Two applica-
tions are formulated. One giving a convergent power series expression for Sylvester 
equations AX − XB = C in the general case of A,  B being bounded operators in 
Banach spaces with distinct spectra. The other application formulates a K-spectral 
result for bounded operators in Hilbert spaces.
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1  Introduction

In a series of papers [7–10] one of us has considered the possibility and applica-
tions of taking a polynomial with simple zeros as a new global variable w = p(z) . 
As the polynomial of degree d is not one-to-one, complex valued scalar functions 
� are represented by ℂd-valued functions f. Additionally [4] contains modifica-
tions to the case w = p(z)n and [1] discusses extensions to n-tuples of operators.

The key idea in applications to functional calculus is to have a polynomial p 
such that p(A) is either small so that the series expansions of f converge fast at 
p(A), or “structurally simpler” than A so that, for example, a matrix A with non-
trivial Jordan blocks becomes diagonalizable.

By Hilbert’s lemniscate theorem, see e.g. [11], any polynomially convex compact 
set can be approximated from outside arbitrarily well using polynomial lemniscates 
|p(z)| = � . Taking such a polynomial as a new variable maps the analysis from inside 
the lemniscate into a disc, where a lot of analysis tools are available. At the end one 
transforms the results back into scalar functions in the original variable.

Sometimes one needs to have a representation for a function in sets which are 
not polynomially convex. To that end it is natural to ask whether taking a rational 
function in place of the polynomial leads to a useful representation in such cases. 
It turns out that choosing a rational function r = p∕q with q of lower degree than 
p much of the multicentric calculus carries over with minor modifications.

The paper is organized as follows. We shall first formulate and prove a 
“rational lemniscate lemma” approximating any compact set arbitrarily well in 
a fixed neighborhood of it. This is done in Sect. 2. We also formulate a result as 
corollary where the spectra of bounded operators play the role of the compact set.

In Sect.  3 we consider the existence and uniqueness of the representations 
using rational functions as variables. Given � there exists a unique representing 
function f excluding critical points of the rational function and if � is holomor-
phic then the singularities of f at critical values are removable, so f is holomor-
phic as well. In order to determine the largest class of functions for which the 
representation is continuous at critical values we modify the approach in [9] by 
moving the focus into the functions f and construct a unital Banach algebra for 
such functions so that the original function � appears as the Gelfand transform of 
f, bringing the wealth of Banach algebra theory available. Throughout the paper 
we use the convention that by function holomorphic in a compact set we mean 
that it is holomorphic in some unknown neighborhood of it.

We shall indicate two applications in which we remove the assumption on the 
compact set to be polynomially convex, needed when using polynomials as new 
variables. Sylvester equation AX − XB = C with bounded operators in Banach 
spaces, has a unique solution for every C if and only if the spectra are separated: 
�(A) ∩ �(B) = � . We show that then, without any other assumptions, there exists 
a rational function such that the solution to the Sylvester equation can be repre-
sented as a convergent power series. This is discussed in Sect. 4. This generalizes 
a result of [10] where a similar statement was shown for polynomials with the 
extra assumption that the polynomial convex hulls of the spectra do not intersect.
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In [8] it was shown that polynomial lemniscates provide K-spectral sets and we 
generalize the discussion in Sect. 5 for rational lemniscates.

2 � Rational lemniscate sets

2.1 � Approximating compact sets with rational lemniscates

Hilbert Lemniscate Theorem, e.g. [11], provides the existence of a polynomial 
such that it can surround any polynomially compact set arbitrarily closely. In fact, 
given a compact K such that ℂ ⧵ K is simply connected and 𝜀 > 0 there exists a 
polynomial p such that if

and K
�
= {z ∶ dist(z,K) ≤ �} , then

Here ⋐ means that the smaller compact is included in the interior of the larger 
compact.

Suppose r = p∕q is a rational function, with p and q having no common roots. 
Again we put

but we need to restrict Vr into a compact set as we do not have control of the size of r 
globally. To that end we denote by Γ

�
 the following compact set surrounding K:

Theorem 2.1  Given a compact K ⊂ ℂ and 𝜀 > 0 let Γ
�
 be as in (2). Then there exists 

a rational function r such that

Further, the rational function r = p∕q can be so chosen that deg q < deg p.

Proof  We define a piecewise constant holomorphic function � such that it van-
ishes in some small neighborhood of K and equals 2 in a small neighborhood of Γ

�
 . 

Denoting E = K ∪ Γ
�
 we can approximate � by Runge’s Theorem, [5], with rational 

functions in E uniformly. In particular there exists a rational function r0 such that

Then in K we have |r0(z)| < 1∕2 while in Γ
�
 we have |r0(z)| > 3∕2 . Thus (3) holds.

Vp = {z ∈ ℂ ∶ |p(z)| ≤ 1}

K ⋐ Vp ⋐ K
�
.

(1)Vr = {z ∈ ℂ ∶ |r(z)| ≤ 1}

(2)Γ
�
∶= K

�
⧵ int K

�∕2.

(3)K ⋐ V
r

and V
r
∩ Γ

�
= �.

max
z∈E

|𝜒(z) − r0(z)| < 1∕2.
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In order to show that we can have r → ∞ as z → ∞ , denote P(z) = 1 − (z∕R)n . 
If r0 is a rational function satisfying (3) then with R and n large enough the rational 
function r = Pr0 still satisfies (3) with deg q < deg p . 	� ◻

As Vr consists of a finite number of components, bounded by the degree of p 
there is a finite number of components, each intersecting with K and “surrounded” 
by Γ

�
 . Additionally Vr may have components both “inside and outside” of Γ

�
 . Let us 

denote by Vr(K) the union of the components of Vr which intersect with K, so that in 
particular K ⋐ Vr(K) . Assume now that � is a holomorphic function in some neigh-
borhood of K. Then with small enough � there exists r such that � is holomorphic in 
Vr(K) . Denote by � the boundary of Vr(K) , consisting of a finite number of piecewise 
smooth loops, and oriented so that K stays on the left. Then by Cauchy’s theorem we 
have for z ∈ K

Observe that along � we have |r(z)| = 1 and thus Vr(K) is mapped in w = r(z) onto 
the unit disc - and the scalar function � : Vr(K) → ℂ is likewise replaced by a vector-
valued holomorphic function f: 𝔻 → ℂ

d . In order to achieve this, we shall decom-
pose the Cauchy kernel into pieces, each yielding one component fi of f. Notice that 
r−1

(

�

)

= Vr may contain components which do not intersect K. However, we have 
the possibility to define � = 0 in those components and thus the integration and 
analysis could be done in the whole Vr as well, if so wanted.

2.2 � Spectrum as the compact set

Assume given a bounded operator A in a Banach space X  , A ∈ B(X) . Fix 𝜀 > 0 and 
let r = p∕q be as in Theorem 2.1 when the spectrum �(A) is taken as the compact set 
K. In particular r is holomorphic in the spectrum and r(A) is a well defined bounded 
operator. Then

Since r is not a constant, and �(A) ⋐ Vr , we have by maximum principle

But then there exists n such that ‖r(A)n‖ < 1 . Denote by p̃ a tiny perturbation of pn 
so that all roots of r̃ = p̃∕qn are simple and we still have ‖r̃(A)‖ < 1 . In order to for-
mulate the corollary, let us denote by Γ

�
 the set surrounding the spectrum as in (2) 

with �(A) = K.

Corollary 2.2  Given a bounded operator A ∈ B(X) , fix an 𝜀 > 0 and denote by Γ
�
 

the set around the spectrum �(A) as above. Then there exists a rational function 

(4)�(z) =
1

2�i ∫
�

�(�)

� − z
d�.

‖r(A)m‖1∕m → �(r(A)) = sup
z∈�(A)

�r(z)�.

sup
z∈𝜎(A)

|r(z)| < 1.
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r = p∕q , such that deg q < deg p where p has simple roots and ‖r(A)‖ < 1 , while 
|r(z)| > 1 for z ∈ Γ

�
.

A typical application of using polynomials or rational functions as new vari-
ables is the possibility to deal with piecewise constant holomorphic functions. 
We mention two natural situations.

Example 2.3  If the lemniscate set covering the spectrum has several components, 
then defining the holomorphic function to be identically 1 in one component while 
setting it 0 in the others leads to an explicit power series representation for the Riesz 
spectral projection [4]. In Fig. 1 we have a model situation which cannot be obtained 
by polynomial lemniscates. Two circles are separated from each others with a 
rational function r = p∕q with p of degree 16 and q of degree 9. The set in which 

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

Fig. 1   A rational function of degree 16 separting two circles
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|r(z)| < 1 is white in the picture and dots denote the zeros of p while small circles 
denote the zeros of q.

Example 2.4  Another natural piecewise holomorphic function is the sign-function 
which equals 1 in the right half plane and − 1 in the left. In Sect.  4 we outline a 
use of it in the solving of the Sylvester equation. Here one is after a polynomial or 
rational function such that the lemniscate has components both on the left and right 
half planes without intersecting the imaginary axis. In [4] sets consisting of two 
intervals, parallel to the imaginary axis and symmetrically located around the origin, 
were considered as test sets to be separated. As the phenomenon is scaling invariant, 
the angle � was used to parametrize the sets

Polynomials were then searched such that L
𝛼
⊂ Vp while Vp ∩ iℝ = � . With 

p(z) = z2 − 1 , suitably scaled, any angle below 45◦ is clearly possible. With degree 4 
one finds polynomials with angle above 61◦ but the required degree seemed to grow 
quite fast with � . For example, angles above 72◦ were found only with polynomials 
of degree 14 or higher. For details, see [4]. As to be expected, with rational func-
tions the separation is easier and for example with d = 2 and r(z) = z − 1∕z the larg-
est angle, see Fig. 3 below, is already about 69◦ . In order to have a simple rational 
function of degree 4 consider

which vanishes at ±
√
2 ± i and has poles at the origin and at ±i

√
3 . In Fig. 2 the 

lemniscate is drawn at the level |r(z)| = 5.6 with � = 80
◦ . A careful numerical search 

shows that the angle stays below 81◦ for all rational functions with p of degree 4 and 
q of degree 3.

3 � Representation using rational functions as variables

Let r = p∕q with p having d simple roots � = {�j} so that q(�j) ≠ 0 and such that 
d = deg p > deg q. Denoting by �j the rational functions

we consider representations of scalar functions � in the form

L
�
= {x + iy ∶ x ∈ {−1, 1}, |y| ≤ tan(�)}.

(5)r(z) =
z4 − 2z2 + 9

z3 + 3z

(6)�j(z) =
r(z)

r�(�j)(z − �j)

(7)�(z) =

d∑

j=1

�j(z)fj(w) where w = r(z).
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The assumptions that the roots of p to be simple and q being of lower degree than p 
are not necessary but made for simplifying the discussion.

3.1 � Existence and uniqueness

We are interested in using w = r(z) as a new complex variable and assume in the fol-
lowing that q(z) ≠ 0 . Modifying the discussion in section 2.1 in [7] we take w ∈ ℂ and 
denote by zj = zj(w) the d roots of

Let zj(w0) be a simple root. Then it is analytic at w = w0 with

(8)p(z) − w q(z) = 0.

-4 -3 -2 -1 0 1 2 3 4
-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 2   The rational function r(x) in (5) with |r(z)| = 5.6
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Observe that since r� = 1

(p�−rq�)
 , all finite critical values of r agree with those of 

p − wq . So, let w
0
≠ ∞ be a noncritical value of r(w) so that the roots zj(w0) are all 

distinct. Assuming that the values of � at these roots are all known, we ask for 
“unknowns” fk(w0) satisfying the equations

for j = 1,… , d . We may write this as a linear system of equations

where A(w) = (�k(zj(w)))j,k is a square matrix, f (w0) ∈ ℂ
d has components fk(w0) 

and �(r−1(w
0
)) ∈ ℂ

d has components �(zj(w0)) . At noncritical w0 the matrix A(w0) 
is nonsingular, as is easily seen by rewriting (9) as

where zj = zj(w0) , xk = q(�k)fk(w0) and �k denote the Lagrange interpolation poly-
nomials at �k

z�
j
(w0) =

q(zj(w0))

p�(zj(w0)) − w0 q
�(zj(w0))

.

(9)
d∑

k=1

�k(zj(w0))fk(w0) = �(zj(w0))

(10)A(w0)f (w0) = �

(
r−1(w0)

)

d∑

k=1

�k(zj)xk = (q �)(zj)

-3 -2 -1 0 1 2 3

-2

-1

0

1

2

0.1 0.10.
5

0.
5

0.
5

0.5

0.9

0.
9

0.9

0.
9

0.9

0.
9

0.9

0.9

1

1

1 1

1

11

1

1
1

1.1

1.1

1.1

1.1 1.1

1.
1

1.1

1.1

1.1

1.3

1.3

1.3

1.3

1.3
1.3

1.3

1.
3

1.3

1.
31.3

Fig. 3   Level curves of z ↦ 1

2
|z − 1∕z|
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Assume now that M ⊂ ℂ is compact and let K = r−1(M) . Denote by M0 = M ⧵Wc 
where Wc denotes the set of critical values of r and put K0 = r−1(M0).

Proposition 3.1  Given a function � mapping K0 → ℂ , with K0 as above, there exists 
a unique f mapping M0 → ℂ

d such that

holds for z ∈ K0 . The function f inherits the smoothness of � . In particular, if � is 
continuous or holomorphic in K0 , then f is continuous or holomorphic in M0.

Proof  Since A(w) is holomorphic in M0 and nonsingular, then so is A(w)−1 . The 
claims follow from

	�  ◻

At a critical value wc there are less equations and fk(wc) ’s do exist but are not 
unique. It is therefore of interest to study what continuity conditions on � guarantee 
continuity of fk ’s at critical values. We shall see, that if � is holomorphic in K, then f 
can be extended from M0 to M so that it is holomorphic also at the critical values. We 
shall discuss this using Cauchy integral. However, at this point it is natural to note, that 
the constant function � ∶ z ↦ 1 is represented by f ∶ w ↦ (1,… , 1)T.

Lemma 3.2  Let deg q < deg p and denote by Zq the zeros of q. Assume z ∉ Zq . Then

Proof  For q(z) ≠ 0 we have 
∑d

k=1
�k(z) =

1

q(z)

∑d

k=1
q(�k)�k(z). But the Lagrange 

interpolant of q equals q as deg q < deg p . 	�  ◻

3.2 � Decomposing the Cauchy kernel

Assume again deg q < deg p and consider

�k(z) =
p(z)

p�(�k)(z − �k)
.

(11)�(z) =

d∑

k=1

�k(z)fk(r(z))

f (w) = A(w)−1�
(
r−1(w)

)
.

(12)
d∑

k=1

�k(z) = 1.

r[�, z] =
r(�) − r(z)

� − z
.
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Consider � to be fixed and such that q(�) ≠ 0 . Then z ↦ q(z)r[�, z] is a polynomial 
of degree d − 1 . In fact, it is O(zd−1) as z → ∞ while as z → � it tends to q(�)r�(�) . 
Hence the Lagrange interpolation gives

But since r(�j) = 0 we can rewrite this for q(z) ≠ 0 as

Hence we have the following representation for the Cauchy kernel.

Proposition 3.3  Let r = p∕q with deg q < deg p . Then

where

This allows us to conclude that if � is holomorphic in {z ∶ |r(z)| < 𝜌} and con-
tinuous in {z ∶ |r(z)| ≤ �} , then fj is holomorphic in |w| < 𝜌 . To that end, denote 
by �

�
 the contour with points along |r(�)| = � , each finite curve oriented such that 

|r(z)| < 𝜌 stays on the left hand side. We assume additionally that �
�
 contains no 

critical points of r, making the components smooth. Denote

Proposition 3.4  Suppose � is holomorphic in � for |r(𝜆)| < 𝜌 and continuous in 
|r(�)| ≤ � . For |w| < 𝜌 then

and fj is holomorphic in |w| < 𝜌 and can be expanded as a convergent series

Proof  The contour �
�
 consists of a finite number of smooth curves for which we 

have for z inside �
�

q(z)r[�, z] =

d∑

j=1

�j(z)q(�j)r[�, �j].

(13)r[�, z] =

d∑

j=1

�j(z)
r(�)

� − �j

.

(14)
1

� − z
=

d∑

j=1

�j(z)Kj(�, r(z))

Kj(�,w) =
1

� − �j

r(�)

r(�) − w
.

L
�,j =

1

2� ∫
�
�

|d�|

|� − �j|
.

(15)fj(w) =
1

2�i ∫
�
�

Kj(�,w) �(�) d�

fj(w) =

∞∑

k=0

�j,kw
k, where |�j,k| ≤ L

�,j �
−k−1 max

�∈�
�

|�(�)|.



Rational functions as new variables﻿	 Page 11 of 22     37 

The claim follows substituting (14) into this. 	�  ◻

Notice in particular that fj is holomorphic at critical values |wc| < 𝜌.
We can localize this representation inside any number of components of �

�
 . In 

fact, let J ⊂ {1, 2,… , d} and let �
�,J consist of those components of �

�
 which sur-

round at least one �j with j ∈ J.

Corollary 3.5  Assume � is holomorphic inside �
�,J and continuous up to �

�,J . Then 
the previous proposition holds with �

�
 replaced by �

�,J . In particular, if j ∉ J , then 
fj = 0 and for z inside �

�,J we have

Proof  We may define � = 0 along the remaining components: �
�
⧵ �

�,J . 	� ◻

3.3 � Derivative data at 3

Denote by � the derivative w.r.t. z. Then we have (Lemma 4.1 in [7])

Proceeding as in the polynomial case, [7], it is easy to see that the formulas stay for-
mally the same with r′ in place of p′ . Given the values �(�)(�j) we can compute 
f
(�)

j
(0) from the following

where

Then the power series1

�(z) =
1

2�i ∫
�
�

�(�)

� − z
d�.

�(z) =
∑

j∈J

�j(z)fj(r(z)).

�
(�) =

d∑

k=1

�∑

�=0

(
�

�

)

�
(�−�)

k
�
�(fk◦r).

(16)r�(�j))
� f

(�)

j
(0) = �

(�)(�j) − hj,�

hj,� =

d∑

k=1

�−1∑

�=0

(
�

�

)

�
(�−�)

k
(�j)

�∑

l=0

b
�,l(�j)f

(l)

k
(0) +

�−1∑

l=0

b
�,l(�j)f

(l)

j
(0).

(17)
∞∑

�=0

f
(�)

j
(0)

�!
w�

1  the last term is missing in the corresponding line in [7]
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represents fj in a disc with radius the same as the distance from origin to the closest 
singularity of fj.

3.4 � Unital Banach algebra C6(M)

A simple functional calculus for diagonalizable matrices can be defined via sim-
ilarity transformation into diagonal form. If A = TDT−1 then one can define 
�(A) = T�(D)T−1 with �(D) = diag (�(di)) . If A has nontrivial Jordan blocks, then 
the following is possible: take a “simplifying polynomial” p with critical points with 
matching multiplicities at the eigenvalues corresponding to the nontrivial Jordan 
blocks. Then p(A) is diagonalizable, and again, �(A) is well defined via

In [9] this was approached as follows. Consider the Banach space of continuous 
functions from a compact set M into ℂd , with max-norm. Then a “polyproduct” ⊚ 
was constructed such that if f represents � and g represents � then f ⊚ g represents 
��:

for z ∈ p−1(M).
We indicate the key steps as they go for the rational variable w = r(z) in the same 

way. To define the product, let {ei} denote the standard basis of ℂd . At this point we 
assume we are given a d × d multiplication table Σ = {�ij} and a frozen w ∈ M.

Definition 3.6  Define in ℂd

and for j ≠ i

and extend to ℂd by linearity.

The product is clearly commutative. Denote � =
∑d

i=1
ei.

Lemma 3.7 

Proof  We have using the definition

�(A) =

d∑

j=1

�j(A)fj(p(A)).

(𝜑𝜓)(z) =

d∑

j=1

�j(z)(f ⊚ g)j(p(z))

ei ⊚ ei = ei − w
∑

j≠i

(𝜎ijei + 𝜎jiej)

ei ⊚ ej = w(𝜎ijei + 𝜎jiej)

�⊚ ei = ei.
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	�  ◻

We shall now let w ∈ M to vary, with M ⊂ ℂ compact and write the functions 
f ∶ M → ℂ

d as

and extend ⊚ to these functions in a natural way by treating fj(w) ’s as scalars. 
Passing to operator norm we obtain a unital Banach algebra. Denote as before, 
|f |∞ = max1≤j≤d maxw∈M |fj(w)|.

Proposition 3.8  Defining in C(M)d

we have �f �∞ ≤ ‖f‖ ≤ C�f �∞ with C independent of f, ‖�‖ = 1 and ‖f ⊚ g‖ ≤ ‖f‖‖g‖.

With this operator norm and polyproduct ⊚ generated by the table Σ we have a 
unital Banach algebra which we denote by CΣ(M).

Proof  These properties hold in the similar way as in the polynomial case. 	�  ◻

For the full power of Banach algebra machinery we need to know the set of char-
acters. Recall that a continuous linear functional � : CΣ(M) → ℂ , is a character if it 
is nontrivial and multiplicative:

It is well known that all characters in C(M) are just evaluations � ↦ �(w
0
) , see e.g. 

[2]. We may identify the subalgebra of CΣ(M) consisting of elements of the form 
w ↦ �(w)� with C(M) and conclude that all characters in CΣ(M) reduce to evalua-
tions in this subalgebra. Fix w0 ∈ M and let � be any character mapping �� ↦ �(w0) . 
Then it follows that for any f ∈ CΣ(M) the value �(f ) only depends on f (w0) ∈ ℂ

d . 
To see this, notice that for any f we have 𝛼�⊚ f = 𝛼f  and so �(f ) = �(�f ) provided 
�(w0) = 1 . Let �n(w) = 1 −min{n |w − w0|, 1} . Then �(f − f (w0)) = 0 . In fact, as � 
is continuous in the operator norm, which is equivalent with the max-norm,

as f − f (w0) is continuous. Hence, �(f ) only depends on the vector f (w0) ∈ ℂ
d . 

Thus, � acts as evaluation at w0 followed by a multiplicative functional ℂd
→ ℂ with 

ℂ
d equipped with the product ⊚ , where the variable w takes the fixed value w0 . But 

all linear functionals in ℂd are of the form

�⊚ ei =
∑

j

ej ⊚ ei = ei ⊚ ei +
∑

j≠i

ej ⊚ ei = ei.

f ∶ w ↦

d∑

j=1

fj(w)ej

‖f‖ = sup
�g�∞≤1

�f ⊚ g�∞

𝜙(a⊚ b) = 𝜙(a)𝜙(b).

��(f − f (w0))� = ��(�n(f − f (w0))� ≤ C ‖�‖ ��n(f − f (w0))�∞ → 0
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Requiring �(�) = 1 implies 
∑d

i=1
�i = 1 . Consider first w0 = 0 . Then 𝜂(ei ⊚ ej) = 0 

implies that � has exactly one component size 1 while the others vanish. Thus there 
are d different characters. Let then w ≠ 0 . From

we conclude that �i ≠ 0 for all i. Applying to ei ⊚ ei we obtain

Taking e.g. �i as an unknown, we can solve �j for j ≠ i from

and substituting them into (18) yields a polynomial equation for �i of degree d. Thus, 
again there are (at most) d characters for every w0 . In general, the components of 
characters depend on w0 in a rather complicated way. However, when the multiplica-
tion table Σ is given by a rational function, the dependence can be explicitly given.

Definition 3.9  Let p be monic of degree d with simple roots {�j} and q of degree at 
most d − 1 , with q(�j) ≠ 0 and denote r = p∕q . If the multiplication table satisfies

then we say that the product ⊚ in CΣ(M) is determined by the rational function r.

We shall next connect the products ei ⊚ ej to those of �i�j.

Lemma 3.10  Assume that Σ is determined by the rational function r. Then

Proof  In the polynomial case with q = 1 this is Lemma 1 in [9]. In fact, we have in 
the polynomial case

where �ij =
1

p�(�j)

1

�i−�j
.

Since �i =
q(�i)

q
�i , �ij = q(�j)�ij , and q =

∑d

i=1
q(�i)�i , (20) follows from (21).

� ∶ x =

d∑

i=1

�iei ↦

d∑

i=1

�i�i.

𝜂(ei ⊚ ej) = 𝜂i𝜂j = w0[𝜎ij𝜂i + 𝜎ji𝜂j]

(18)�
2
i
= �i − w0

∑

j≠i

[�ij�i + �ji�j].

�i�j = w0[�ij�i + �ji�j],

(19)�ij =
1

r�(�j)

1

�i − �j

,

(20)�
2
i
= �i −

p

q

∑

j≠i

[
�ij�i + �ji�j

]
, while for i ≠ j, �i�j =

p

q

[
�ij�i + �ji�j

]
.

(21)�
2
i
= �i − p

∑

j≠i

[
�ij�i + �ji�j

]
, while for i ≠ j, �i�j = p

[
�ij�i + �ji�j

]
,
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Assume now that w is not critical, so that there are d different roots zj = zj(w) 
satisfying p(z) − wq(z) = 0 . So, for each of these roots we have, with f and g rep-
resenting � and � respectively, that

which means that for z ∈ r−1{w} and w ∈ M

is a character. Observe that the character first evaluates f at a point followed by 
application by functional in ℂd with components �i(z) . As different roots zj(w) give 
d different characters, all satisfying the polynomial equation for the components of � 
discussed above, we conclude that we have found all characters. We may summarize 
this in the following.

Theorem 3.11  In the unital commutative Banach algebra CΣ(M) with Σ generated by 
a rational function as in Definition 3.9 all characters are of the form (22). In par-
ticular the Gelfand transformation f ↦ f̂  is given by f̂ (z) = 𝜒z(f ).

Since �(z) = �z(f ) the spectrum of f is simply �(f ) = {�(z) ∶ z ∈ r−1(M)}. In 
[9] the polynomial case is analysed in detail. For example, if |𝜑(z)| ≥ 𝜂 > 0 in 
K = p−1(M) , then there exists g ∈ C

�
(M) such that g⊚ f = � satisfying

where the constant C only depends on M and on p. Further, when applying the 
functional calculus the set M must contain �(p(A)) , but then the inverse image 
K = p−1(M) may be essentially larger than �(A) . In such case a quotient algebra 
appears useful.

Example 3.12  As a simple rational function which is not a Möbius transformation, 
consider

We have Zp = {1,−1} , Zq = {0} , r�(1) = r�(−1) = 1 , and thus

(𝜑𝜓)(zj(w)) =

d∑

i=1

𝛿i(zj)(f ⊚ g)i(w),

(22)�z ∶ f ↦

d∑

i=1

�i(z)fi(w)

‖g‖ ≤ C
‖f‖d−1

�d
,

(23)r(z) =
1

2

(

z −
1

z

)

.

�1(z) =
1

2

(

1 +
1

z

)

, �2(z) =
1

2

(

1 −
1

z

)

,

2∑

1

�i(z) = 1.
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Further, with �i,j =
1

r�(�j)

1

�i−�j
 we have �

1,2
=

1

2
, �

2,1
= −

1

2
 . From z2 − 2wz − 1 = 0 , 

we obtain the inverse images z±(w) = w ±
√
1 + w2. The critical points are at 

zc = ± i , with critical values wc = ± i.
The matrix A(w) =

(
�j(zi(w))

)
 mapping f to � in (10) is

with inverse

For example, the variable z is represented by

3.5 � Relation between representations using p and r

As we may take both p and r = p∕q as new variables there naturally exists a map-
ping between the representations. In fact, let � be holomorphic in all that comes 
and suppose the multicentric representation using polynomial variable w = p(z) is 
denoted as

and

where Qj(w) = q(�j) . Then

Using r = p∕q as the new variable we have

from which we obtain

(24)A(w) =
1

2
√
1 + w2

�

1 +
√
1 + w2 − w 1 −

√
1 + w2 + w

1 −
√
1 + w2 − w 1 +

√
1 + w2 + w

�

(25)A(w)−1 =
1

2
√
1 + w2

�

1 +
√
1 + w2 + w − 1 +

√
1 + w2 − w

−1 +
√
1 + w2 + w 1 +

√
1 + w2 − w

�

.

f (w) = A(w)−1
(
z+(w)

z−(w)

)

=

(
1 + 2w

−1 + 2w

)

.

�(z) =

d∑

j=1

�j(z)Fj(p(z))

q(z) =

d∑

j=1

�j(z) Qj(p(z))

(26)(𝜑q)(z) =

d∑

j=1

�j(z)(F ⊚ Q)j(p(z))

�(z) =

d∑

j=1

�j(z)fj(r(z))
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Hence we have

where we denote by ◦ the elementwise product.
Finally, if we write Q−1 for the vector with components 1∕q(�j) we have

4 � Application to Sylvester equation

Let A and B be bounded operators in Banach spaces X  , Y respectively. Then 
AX − XB = C is the related Sylvester equation, where C is a given operator and X the 
unknown, both mapping Y to X  . It is well known [3] that a unique bounded X exists 
for every bounded C if and only if A and B have disjoint spectra: �(A) ∩ �(B) = �. In 
Section 5 of [10] the multicentric calculus was applied to the case where the poly-
nomial convex hulls of the spectra were disjoint: �̂(A) ∩ �̂(B) = � . The solution was 
constructed as a convergent power series provided that one has a polynomial lem-
niscate which separates the spectra into different components. Here we outline the 
approach using rational lemniscates, which then removes the need to assume that the 
polynomially convex hulls do not intersect.

Denote

Observe that

is satisfied exactly when AX − XB = C . Denote by sgn(z) the function taking value 1 
in the open right half plane ℂ+ and −1 in the left one. If 𝜎(A) ⊂ ℂ+ and 𝜎(B) ⊂ ℂ− , 
then sgn(M) is well defined and we have

Thus, X can be obtained if sgn(M) can be computed, see e.g. [3, 6].

(27)(�q)(z) =

d∑

j=1

�j(z)q(�j)fj(r(z)).

(28)(F ⊚ Q)(p(z)) = (f◦Q)

(
p

q
(z)

)

,

f (
p

q
(z)) =

(
Q−1

◦F ⊚ Q
)
(p(z)).

(29)M =

(
A C

B

)

.

(30)M =

(
I − X

I

)(
A

B

)(
I X

I

)

(31)sgn(M) =

(
I − X

I

)(
I

− I

)(
I X

I

)

=

(
I 2X

− I

)

.
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Assume now only that �(A) ∩ �(B) = � . As the spectra are compact sets, there 
exist open Ui such that 𝜎(A) ⊂ U1 , 𝜎(B) ⊂ U2 and U

1
∩ U

2
= � . Let the �1 be a con-

tour surrounding �(A) inside U1 . Then denoting

we have

Now define, in place of the sign-function, �(z) = 1 for z ∈ U1 while �(z) = −1 for 
z ∈ U2 . In order to have a convergent series expansion for X let �2 be a contour sur-
rounding �(B) inside U2 and denote � = �1 ∪ �2 . Thus

But then adding this to both sides of

yields �(M) = 2Q − I and Q =
1

2
(�(M) + I).

Hence we have reduced the solving of the Sylvester equation into computing 
�(M) . In order to do that we need a rational function which separates the spectra 
of A and B.

Proposition 4.1  Let M in (29) be given and such that �(A) ∩ �(B) = � . Let 𝜀 > 0 sat-
isfy 𝜀 < dist(𝜎(A), 𝜎(B))∕2 . Then there exists a rational function r = p∕q such that p 
has distinct roots, deg q < deg p and such that the components of the lemniscate set

can be grouped into three disjoint sets: V = V1 ∪ V2 ∪ V0 where �(A) ⋐ V1 , 
�(B) ⋐ V2 , while V0 , which may empty, satisfies V

0
∩ �(M) = � . Further, 

dist(Vi,Vj) ≥ �∕2 for i ≠ j.

Proof  This follows from Corollary 2.2. by applying it to the operator M. In fact, 
there exists a rational function r such that ‖r(M)‖ < 1 while for z ∈ Γ

�
 we have 

|r(z)| > 1 . We have

Then collect all components of V for which the distance to �(A) is at most �∕2 into 
V1 , those which are likewise close to �(B) into V2 and the rest, if any, into V0 . Now V1 
and V2 are surrounded by Γ

�
 of width �∕2 , and the claims follow. 	�  ◻

(32)Q =
1

2�i ∫
�1

(� −M)−1

Q =

(
I − X

I

)(
I 0

0 0

)(
I X

I

)

=

(
I X

0

)

.

I =
1

2�i ∫
�

(� −M)−1.

�(M) = Q −
1

2�i ∫
�2

(� −M)−1

(33)V = {z ∶ |r(z)| < 1}

𝜎(M) = 𝜎(A) ∪ 𝜎(B) ⊂ {z ∶ �r(z)� ≤ ‖r(M)‖} ⋐ V .
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Assume now that r satisfies the assumptions of the previous proposition. We set 
�(z) = 1 in V

1
 , �(z) = −1 in V2 and �(z) = 0 in V0 . Then we have

where hj ’s are holomorphic for |w| < 1 . Computing the power series 
hj(w) =

∑∞

k=0
hj,kw

k then gives an explicit expression for �(M).

Proposition 4.2  Under the notation and assumptions above, the upper right cor-
ner element of �(M) is 2X where X is the solution of the Sylvester equation 
AX − XB = C.

Notice that the power series converges for |w| < 1 . When ‖r(M)‖ < 1 one can 
truncate the power series with the possibility to bound the truncation error. Notice 
that the asymptotic convergence factor � is given by

and is hence independent of the “right hand side” C.

Example 4.3  Let again r(z) = (z − 1∕z)∕2 and M =

(
a c

b

)

 be such that 
√
2 − 1 < a,−b <

√
2 + 1 , so that |r(a)|, |r(b)| < 1 . Hence, this serves as miniature 

model for solving the “Sylvester equation” a� − �b = c along the lines above. The 
set where |r(z)| < 1 has two components, one in the right half plane and the other in 
the left. Thus choosing � to take the value 1 in the component with Re z > 0 and −1 
in the other one we actually arrive into the restriction of sign-function into these 
sets. This however just follows from the simple form of r. So, the answer shall be

with 2� appearing in the upper right hand corner but we proceed without knowing 
the simple answer. Thus, we need to have f representing this � in the unit circle 
|w| < 1 and this is given immediately from (25)

Hence for z in |r(z)| < 1 we have �(z) = �
1
(z)f

1
(r(z)) + �

2
(z)f

2
(r(z)) which simplifies 

into

Since t(z)2 = 1 + r(z)2 we arrive to an explicit series expansion for �:

�(z) =

d∑

j=1

�j(z)hj(r(z))

� = max
�∈�(M)

|r(�)|

�(M) =

(
1

2c

a−b

− 1

)

f (w) = A(w)−1
�

1

−1

�

=
1

√
1 + w2

�
1 + w

−1 + w

�

.

(34)�(z) = t(z)
(
t(z)2

)−1∕2
, w here t(z) =

1

2

(

z +
1

z

)

.
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Notice that if |a − 1|, |b + 1| ≤ � , then the spectral radius of r(M)2 satisfies 
𝜌(r(M)2) < 𝜀

2 and the convergence of the series for (t(M)2)−1∕2 would be rapid and 
truncation could be done safely. The situation would remain similar if the scalars a 
and b would be replaced with bounded operators A and B with spectra near 1 and 
−1 , respectively.

5 � Application to K‑spectral sets

It was shown in [8] that polynomial lemniscate sets are K-spectral sets, provided 
that the boundaries are smooth, i.e. do not contain critical points. Here we point 
out that this extends to rational lemniscates. The proof in [8] goes as follows. 
Representing the holomorphic function in the multicentric form leads us to esti-
mate the components of f evaluated at p(A). But since f maps in a disc, we can 
apply the von Neumann inequality to get ‖fj(p(A))‖ ≤ �fj�∞ . The third step needed, 
is to bound f in terms of � . To repeat this in the rational lemniscate case, we for-
mulate the last step in the following lemma.

Lemma 5.1  Suppose r = p∕q where p has simple roots �j , q(�j) ≠ 0 and 
deg q < deg p = d . Suppose R is such that |r(z)| = R contains no critical points of r. 
Then there exists a constant C(r, R) such that for all f with components fj holomor-
phic in |w| ≤ R there holds

Proof  This follows from the Cauchy integral formulation. 	�  ◻

Then we have the following.

Theorem  5.2  Let r and R be as in the previous lemma. Suppose A is a bounded 
operator in a Hilbert space such that ‖r(A)‖ ≤ R . If � is holomorphic in 
Vr(R) = {z ∶ |r(z)| ≤ R} , then

where K = C(r,R)
∑d

j=1
‖�j(A)‖.

Proof  In

(35)�(z) = t(z)

(

1 −
1

2
r(z)2 +

3

8
r(z)4 −⋯

)

.

sup
|w|≤R

|f (w)|∞ ≤ C(r,R) sup
|r(z)|≤R

|�(z)|.

(36)‖�(A)‖ ≤ K sup
Vr(R)

���
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we apply the von Neumann inequality to get ‖fj(r(A))‖ ≤ sup�w�≤R �fj(w)� and then 
bound these by supVr(R)

|�| using Lemma 5.1. 	�  ◻

Thus, the sets are K-spectral sets with constant independent of the holomor-
phic function � but depending on the geometry of the set and on A through �j(A).

Remark 5.3  The constant C(r,  R) depends on the distance from the lemniscate to 
critical points ns ia independent of the operator A. In [8] it is shown that in the poly-
nomial case we have

where s(R) denotes the distance to the nearest critical point. Generically the behav-
ior is proportional to 1/s(R) but higher powers occur with possible multiplicities of 
the critical points. Example 2.4 in [8] shows that the worst case in (37) can happen. 
Recall that we denoted by A(w) the matrix mapping f to � , see (10). If R is small 
enough so that all critical values wc satisfy |wc| > R , then A(w)−1 is holomorphic for 
|w| ≤ R and we have

where we denote by ‖ ⋅ ‖∞ the matrix norm induced by the max-norm in ℂd . As the 
growth exponent in C(r, R) when s(R) → 0 depends on the multiplicity of the critical 
points and this behavior is local in nature, we shall not repeat the argument as it goes 
in the same way as in the polynomial case. Rather, we again return to the simple 
d = 2 case with r(z) = (z − 1∕z)∕2.

Example 5.4  The mapping matrix A(w) for r(z) = (z − 1∕z)∕2 has the inverse given 
in (25). When R = 1 − � and � → 0 the distance s(R) behaves like (1 + o(1)) � and

Example 5.5  The other consider again the rational function r(z) = (z − 1∕z)∕2 
together with the matrix

Since r(A) = 0 the coefficient C(r, R) in Lemma 5.1 shrinks to C(r, 0) = 1 and (36) 
holds with K =

∑2

1
‖�j(A)‖ . With �1(z) = (1 + 1∕z)∕2 and �2(z) = (1 − 1∕z)∕2 we 

have

‖�(A)‖ ≤

d�

j=1

‖�j(A)‖ ‖fj(r(A))‖

(37)C(p,R) ≤ 1 +
C

s(R)d−1

C(r,R) ≤ sup
�w�≤R

‖A(w)−1‖∞

‖A(w)−1‖∞ = 1 + (1 + o(1)) �−1.

A =

(
1 c

0 − 1

)

.
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For example, the Riesz projection with respect to the eigenvalue �1 = 1 is �1(A) 
while with �(z) = z we have

which shows that K =
∑2

1
‖�j(A)‖ becomes tight when |c| grows. Finally, notice that 

A is of the form

for which the corresponding “Sylvester equation” reads ax − xb = c with solution 
x = c∕(a − b) = c∕2 to be found in the upper right corners of �1(A) and −�2(A).
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�1(A) =

(
1 c∕2

0 0

)

, �2(A) =

(
0 − c∕2

0 1

)

.

A = �1(A) ⋅ 1 + �2(A) ⋅ (−1)

M =

(
a c

0 b

)
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